「粒子」を柱とした系統的な物質学習
—小学校理科に粒子概念を導入し活用するための考え方と授業提案—

菊地洋一・武井隆明・村上祐*、尾崎尚子・高室敬・黄川田泰幸**、橋戸孝行***
坂本有希****、佐々木俊・小泉孝典・曽山正和*****
*岩手大学教育学部、**岩手大学教育学部附属小学校、***岩手県常代小学校、
****岩手県北教育事務所、*****岩手大学教育学部附属中学校

（平成26年3月7日受理）

1. はじめに

平成20年版学習指導要領・理科では、小・中学校を通じた内容の構造化と系統的な学習の重視、および科学的思考力・表現力の育成の重視などが強調されている。物質学習分野では「粒子」がその柱に据えられ、「粒子概念」の取り扱いが系統的な学習を構築する際のポイントである。

同指導要領において中学校の物質学習カリキュラムは充実が見られる。中学1年時に粒子モデルが新たに加わった。2年生では従来通り化学変化とともに原子・分子を学習する。3年生では前指導要領で削除されていいたイオン学習が復活した。微視的観念の取り扱いにはまだ課題も多いが、中学3年間で粒子概念を柱として一貫の内容を学習する構成となっている。今後さらに本質を押さえられた上で理解しやすい授業構想の検討が期待される。

一方、同指導要領は小学校での粒子の取り扱いについては具体的には明記していない

科学的思考力や表現力の育成の観点から物質の現象を図や絵を用いて表現させる指示は頻繁に出る。本来、物質の現象を科学的に正確に表現するには粒子概念が必要だが、同指導要領には小学校段階での粒子概念の導入を意図しているのか、あいまいな状況である。このことを反映するように、教科書の教科書について物質の同じ例（例えば、「4年：閉じ込められた空気を圧縮した場面」や「5年：水にものを吸かす場面」など）を解釈する段を見比べてみると、子どもの自由な発想に合わせた（科学的な要素を含まない）作図の例から本格的に粒子を用いて科学的に解釈している例まで、教科書による違いは実に幅広い。

小学校理科での粒子概念導入の可否や導入するところはどのように取り扱うかは、子どもの実態に即した適時性と問題解決黙習のありようとも関係し、理科教育における大重要な立場であり、採用する教科書によってこれほど取り扱いに違いがあってよいのか疑問である。したがって現在、小学校における粒子概念の取り扱いは、教育現場において差し迫った重要課題といえる。

これまでに小学校段階における粒子概念に関わる調査研究が数多く報告されており、粒子概念導入の可能性や有用性が示唆されている。しかし、これらの授業実践研究は単独の場面を取り上げたものであり、系統的な学習のつながりの観点については、授業レベルでの具体的な研究はあまりされてこなかった。粒子概念は系統的に物理学のポインタとなることから、今後、系統的な視点からの授業実践を授業レベルでの具体的な提案についても盛り込んだ研究が期待される。

このような状況を背景に、我々は、小学校段階に粒子概念を導入し物理的学習を構築することが可能かについて、全体構想とともに具体的な授業開発を行い、実践的に検証することを目的として研究を行った。この研究は岩手大学教育学部プロジェクト推進支援事業の一環として行った研究であり、本稿はその一部を報告するものである。本稿では、はじめに研究を進める中で整理してきた物理学における粒子概念の取り扱いについて考えを述べた。次に系統的な学習のための具体的な提案を行った。最後にまとめを行った。
2. 粒子概念はなぜ物質学習において重要なのか

我々の眼には連続体に見えるコップの中の水や金属棒も微視的には小さな粒子の集合体である。またこれらの物質の状態や性質は、物質を構成している粒子の振る舞いで決まることである。これらのこととはすべての物質に共通のことである。したがって物質を理解する上で、以下の2点が最も根本的な共通要素である。

(1) 物質はすべて小さな粒（原子・分子・イオン）からできている。

(2) 物質の現象は、それを構成する粒子の振る舞いに基づく。

このことを教育の場面に投影して考え、物質学習に粒子概念を導入する場合のメリットをまとめると、以下の3点が挙げられる。

(A) 粒子概念を導入することにより、物質の現象の本質や原因を対象とした学習が可能になる。「なぜそうなるのか？」「〇〇とはどういうことか？」の学習

(B) 粒子概念を導入することにより、異なる単元の学習内容を本質的につなげて理解することができるようになる。（学習内容の相関的な理解、統一的な理解）

(C) 目に見えないためにイメージしにくくて理解しにくい傾向にあった学習内容が、粒子概念を導入し、粒子モデルで可視化することにより、理解しやすくなる可能性がある。（代表例：水蒸気、溶液の均一性、水の空気の性質の違いなど）

理科では物質の種々の現象を、実験を通して学習する。ここで“なぜそのようになるのか？”について子どもたちは大変興味を示し、この先に本格的な科学的思考力を鍛える学習が構成できる。そのためには上記(2)から、粒子概念は不可欠である。粒子概念を入れることによってメリット(A)が可能になる。

このことは物質学習の大きな転換点である。すなわち粒子概念の導入によって物質の現象の本質や原因を探る学習に踏み込むことができるため、粒子概念の導入はその前後の物質学習の質を大きく変えることとなる。

また上記(1)(2)により粒子概念は物質学習全体を貫く共通の根本要素である。したがって粒子概念を活用した学習の積み重ねは、メリット(B)を誘導する構造となっている。したがって粒子概念は系統的な物質学習の柱となる。

これらのこと（下線部）は物質学習における粒子概念の最も重要な意義である。

なおメリット(C)は、粒子概念を粒子モデルの形で導入することにより、学習内容のイメージ化を図ることの効果である。例えば「水蒸気」は言葉だけで学習しても子ども達には得体のしれないものであり実感を持たない。このような学習内容は一般に子どもの理解度が低い。これには粒子概念を導入しない学習での問題点（限界）である、粒子概念（粒子モデル）の導入により改善が期待される。

小学校に粒子概念を導入するのであれば、ここで示したメリットを生かす形で入れるべきである。明確な指針も無しに導入するのは混乱の元となる。

3. 粒子概念の活用

粒子概念は、知識としての重要性も然る事ながら、活用する概念として大変重要である。粒子概念を活用する基礎として、粒子概念に関わる最も根本的な事項を図1に整理して示した。はじめに粒子概念を大きく2段階に分けて整理した。初期段階は、粒子概念を原子概念、分子概念、イオン概念に区別をしないで「小さな粒」と表現する段階である。これを初歩的粒子概念として考える。次の段階は、この「小さな粒」の正体を原子、分子、イオンに分けて扱う段階で、この段階では物質の個性（種類、性質の違い）に着目することができるようになる。小学校では初歩的粒子概念が対象となる。

図1では、初歩的粒子概念として①「物質は全て小さな粒でできている。」に加えて、その粒の基本的な事項をまとめている。②は①と表裏一体の関係であり、③～⑦が粒子の基本的性質である。この①～⑦の中のいくつかの組み合わせによってマクロの現象を説明することができる。例えば、「閉じ込められた水はおしろかっただけができないが、空気はおしろかっただけができる（小学校4年）」の理由を説明するには、①、②、③、⑤が必要になる。さらに厳密な理解
4. 粒子概念を取り入れた授業の考え方

小学校理科では実験・観察を中心として、その結果から子どもの考えを引き出し、まとめていく授業が多く行われている。ここで教師はあまり知識を教える前に子どもの自由な発想を大事にすることが最大限尊重される考え方も強い。一方、そのような授業スタイルには無理があり、教えるべきことは教えた上で考えさせる授業スタイルの重要性も指摘されている8, 9。

これらのことは学習内容に応じて使い分けることが必要である。ここで粒子概念の取り扱いは、教えるべきことは教える代替的な学習内容であると考える。その理由とともに粒子概念を導入する授業の考え方を以下に述べる。

(1) 必要な知識を教えない場合、粒子概念について根拠をもって予備知識のない子どもから引き出すのは難しく、また小学校段階での実験結果から直接的な証拠を示すのも難しい。よって粒子概念を子ども自らの自由な発想の中から導き出すのは、普通の授業としては構想しにくい。

また仮に子どもの中から粒を用いた表現が出てきた場合でも図1の③④⑤に示した粒の性質については認識されていない場合が多い、例えば、粒の大きさが自由に変化するという新概念は子どもの思考の中にしばしば見られることであるが、それも否定できるのは教師の知識によることである。このような関係にある要素が、授業の課題解決の中心に位置づけられることで教師が教えない限り明確な結論を出さない授業になってしまう。このような授業は、積み上げを意図する系統的な学習に組み込むのは難しい。また明確な結論を出さない授業を繰り返すのは子どもの学習意欲を減退させる心配がある。

(2) 粒子概念は目に見えない世界に導くことである。その導入は子どもたちにとって唐突感があると思われる。これを緩和するためには授業の課題設定が子どもにとって興味関心が高く、その課題を使いるために粒子概念を使う必要感が生まれるような場面を考える必要がある。そのため粒子概念を取り扱う授業は、上記のメリット(A)「物質の現象についてなぜそうなるのか？」を課題として行われる授業が多く話されている。ここで重要なことは「なぜそうなるのか？」で子どもを引き付けた授業は、やはりその答えを明確に示す形で終わるべきであろうということである。

そのための授業方策は、前提となる知識を教えることにより子どもの思考対象を広げずずに明確にすること、授業をあまり複雑しないでシンプルに課題解決につき
なる構造とすることである。教師は、子どもの思考対象を狭めたり、授業を単純化することによりしませんが、後述で紹介する我々の授業実践では、すっきりと講義を解けることで子どもは満足感を示しました。このことは粒子概念を取り扱う学習内容の特徴と言える。

5. 系統的物質学習を行うための学習シート
「つぶつぶシート」との提案

ここまで物質学習に粒子概念を導入する際の考え方について述べてきた今後、これらの考え方に基づいて系統的物質学習のための具体的な提案を行う。

小学校の物質学習では、物質の三態の性質を扱う内容が中心である。そこで小学校の物質学習の全体構想として、物質の三態の特徴を粒であると理解し学習シートを作成し、活用することを提案したい。この学習シートを図2に示す。これを「つぶつぶシート」と呼ぶこととする。この学習シートの特徴は、一つの授業や単元に限定した学習シートということではなく、単元を越えていつでも参照できる基本シートとすることである。その意味では同期表の位置づけにイメージが近い。この学習シートは、前述の3つのメリット(A)(C)を活かすもので、物質の現象についてイメージを持っていることから、異なる学習内容をつなげる基になるものである。

つぶつぶシートの上段は、物質の三態の違いをイメージできるように粒子モデルを描いてある。下段にはマクロの視点での三態の違いについて2点あげて整理してある。1点目は、目に見えるかどうかである。2点目は、自由に形を変えることができるかどうかである。この2点は三態を子どもの視点で区別するポイントであると考えた。シートにはその理由を粒で説明した内容がまとめられている。これらは視点で三態のイメージ化ができ、整理されていれば、その後の多くの学習内容の思考の基礎となる。

ただしシートを初めから作成しておき子どもに活用を促しても、子どもには唐突でありシートの内容もあまり理解できないことがあると考えられる。そこでまずはこの学習シートの内容を、あらかじめ授業を通して学習する。その後、その学習内容をまとめめる形で、子どもが自分たちでシートを作ることを考えた。この段階を踏むことにより子どもはシートの中身を理解した上で、以後の学習でシートを活用することができる。

つぶつぶシートを作成する授業場面は、4年「水の姿とゆくえ」を選んだ。この授業のはじめに教師から「物はすべて目に見えない小さな粒でできている（図1(1)）」と「物の大きさは変わらない（図1(6)）」ことを知識として教えた。このことを基礎知識として子ども達は物質の三態の違いについて学習し、その内容のまとめとしてつぶつぶシートを作成した。つぶつぶシートの考え方、シートを作成するための授業の詳細は別報（岩手大学教育学科附属教育実践総合センター研究紀要）で現在印刷中。本誌はインターネットで全文を無料ダウンロードできる。）に報告するので参照されたい。

つぶつぶシート

<table>
<thead>
<tr>
<th>項目</th>
<th>気体</th>
<th>液体</th>
<th>固体</th>
</tr>
</thead>
<tbody>
<tr>
<td>小さな粒で表現してみよう。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>目に見える？</td>
<td>見えない</td>
<td>見える</td>
<td>見える</td>
</tr>
<tr>
<td>物質は視覚しない。粒子載せば粒子貯々だ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>自由に形を変えることができるか？</td>
<td>見える</td>
<td>見える</td>
<td>見えない</td>
</tr>
<tr>
<td>物質の三態は物質にかかわるかどうか</td>
<td>粒が自由に動くことができるから</td>
<td>粒が自由に動きやすいから</td>
<td>粒が自由に動かすことができないから</td>
</tr>
<tr>
<td>なぜなら粒子を動かせば粒子が広がるから</td>
<td>粒が自由に動くことができるから</td>
<td>粒を自由に動かすことができないから</td>
<td></td>
</tr>
</tbody>
</table>

図2 「つぶつぶシート」

6. 系統的物質学習の授業実践

我々が行った授業実践をいくつか紹介する。

(1) 3年：「形と重さ」の授業

この単元は小学校における物質学習のはじめに位置している。子どもの科学的な思考力や表現力を育成する効果的なツールと
して、プラスチックブロックを活用しながら考えさせる内容を取り入れた。さらにブロック学習が粒子概念につながる布石となることを意識した。

本単元の前半部「ものの重さをしらべよう」で、種々の実験を通じて“物は置き方や形をかえてても重さはかわらない”ことを学習した後の1時間として、ブロック学習（本課）を設定した。本時では、形（重さ）の異なる2種類のブロック（三角ブロック、四角ブロック）を用い、形の違う体のロボットを提示し、それぞれの重さに、ロボットの重さが何グラムかを考えることを課題とした。

ロボットの重さを当てることの誘導に、子どもたちは夢中になって取り組んでいた。本時を通じて子どもたちはブロックの数に着目して重さについて考え、定量的に説明することができた。また異なるブロックが重さしていても重さは足し算が成り立つことも自らの作業を通じて見出した。5ヶ月後に実施した事後テストの結果も良好であった。

ブロックはものの重さのしくみを子どもたちが表現するのに大切に立つ。また表現に至る過程で科学的思考が定量化に深まるツールである。さらにその思考・表現内容は粒子概念による質量保存の本質的な理解に合致するものである。本単元でのブロックの活用は大変有功であった。なお本実践の詳細は前報に報告してあるので参照されたい。

（2）4年：「水の姿とゆうえ」の授業
つぶつぶシートを作るとなる授業である。本単元の教科書の内容について一通りの学習をした後、2時間の授業を行った。

1時間目は、水と水蒸気の違いを取り上げ、課題「水は見えて、水蒸気が見えないのはどうしてなのだろうか？」を考える授業である。そのヒントとして「物はすべて目に見えない小さな粒でできている（図1①）」と「粒の大きさは変わる（図1⑤）」ことを知識として教えた。小さな粒のモデルとして円形のマグネットを用い、ホワイトボード上で子ども達が実際に操作しながらグループ毎に事象を考察した。その結果、子ども達は「水は目に見えない粒が集まっているから見える、水蒸気は見えない小さな粒がばらばらに広がっているから見えない。」を見出すことができた。このことを全体で共有した後、水蒸気が水に変化する示実験を通してマクロの事象をミクロの粒で想像して説明する学習を行った。この授業は、子ども達にとって初めて粒子概念を学習する場面の授業である。

2時間目は、水と水の違いについて学び上げた。マクロの視点で水と水の違いについて意見を引き出した後、「水は自由に形を変えられるのに、氷は自由に姿を変えられないのであろうか？」を課題として設定した。今回は、粒の結び付きを実感しやすくするため、小さな粒のモデルとしてブロックを用いた。班ごとに多数のブロックをわたして、水蒸気（気体）、水（液体）、氷（固体）をブロックで表現させた。子ども達は、ブロックをバラバラに配置して水蒸気を、寄せ集めて氷を、くっけて水を表現していた。次に、固体は自由に形が変わらないのはなぜかについて説明させた。「水は、小さな粒が自由に動くことができるだけで形が変わる。氷は、小さな粒が強く結び付いて自由に動くことができないので形が変わらない。」とまとめることができた。最後に学習内容の実感を高めるために、ろうそくを加熱して溶かし、新たにようそくを作る実験を行いながら、その現象をブロックでも表現させることによってマクロの事象をミクロの視点で再現する活動を行った。

2時間の授業を終わった後、学習内容をつぶつぶシートにまとめる作業を行った。子ども達は戸惑うことなく作業することができ、実践一月後の事後テストの結果も大変良好であった。

（3）4年：「空気と水の性質」の授業
つぶつぶシートを活用する授業である。すでに物の体積と力」単元で、「空気はおされると体積が小さくなる。水はおされても体積は変わらない。」ことを、実験を通して学習している。本時はこの現象について、つぶつぶシートを活用してその理由を考える授業である。個人の予想を立てさせてから、ホワイトボードと円形マグネットを使い、班で意見交換し考えをまとめる。班毎の意見を発表しながら全体で議論を行い、全体でまとめを行った。
子どもたちは本時を通じて、水と空気を表すマグネットのまわりに着目しながら、体積変化を説明することができた。はじめは加圧後の空気について、粒子が密にしたモデルが出てきた。これをめぐって活発な議論が行われ、加圧後気体なのでときが間が残るモデルに修正することもできた。これらの過程でつぶつぶシートは大変有益に活用されている。3ヶ月後に実施した事後テストの結果も良好であった。

（5）授業実践のまとめ
これらの授業はいずれも科学的本質的な問題として設定していることから子ども達は大変興味を持って積極的に取り組んでいた。実践後のアンケート調査からは、授業内容を「やや難しい」と感じるが、「楽しむ」、「おおかかった」という結果が得られた。またどの授業の事後テストの結果も大変良好である。これらの授業は、本報半面で述べた考え方に基づいて構想している。このような授業を、子どもたちの興味を引き付けながら実際の授業として実施することは、小学校で十分に可能と考えられる。

つぶつぶシートの作成と活用も良好な結果で、今後、さらに活用面を増やし小学校全体のシステム的モデルカリキュラムを提示したいと考えている。

7. おわりに

小学校理科では実験・観察に基づいてマクロの現象を中心に展開される。物質学習の中でも子どもの自由な発想を引き出す授業も大事である。本研究はそれらを否定するものではない。むしろミクロの視点が中心の授業は、時間としてもそれほど多くなくてもよいだろう。それでも本研究で述べた系統的な学習は構成できる。

物質学習は粒子についての少しだけの知識が多くの学習面に活用できる。それによって学習がつながり、深めていくことができる。系統的学習がやりやすい分野と言える。また根拠となる知識を持って、ものを考える訓練をする分野としても向いている。本研究のもとに新たなことが、物質学習という学習分野の特徴（下線部）を活かした教育を構築しようという提案である。学習は、教

引用文献

1) 文部科学省：『小学校学習指導要領解説 理科編』大日本図書（2008）
2) 宗近秀夫：『中学生の溶解概念に関する実態調査』『理科教育学研究』第40巻、第3号、pp.13-22（2000）
3) 高野圭世、福原善夫、平田邦男：『粒子概念の理解に関する研究—「空気の温度による体積変化」を事例にして』『日本理科教育学会研究紀要』第32巻、第2号、pp.91-100（1991）
4) 池谷信、小嶋美子、勝村郁之、円宮秀雄、金田昭之：『小学校理科への物質の粒子概念導入の可能性』『児童の科学・粒子概念についての調査』『東京学芸大学紀要自然科学系』第58巻、pp.15-39（2006）
5) 宗近秀夫：『小学生の溶解認識における概念変容の研究』『理科教育学研究』第43巻、第2号、pp.1-13（2002）
6) 福島いずみ、芝原寛泰、西村彰幸、山田鈴子：『小学校理科授業における粒子概念の導入の新しい試み』『京都教育大学教育実践研究紀要』第1巻、pp.67-80（2001）
7) 久保隆基、菊野貴広、天野真一：成瀬英美：『科学的思考力を育むための理科教材の開発研究—小学校の気体概念および科学的な見方に対する認識状況』『理科教育研究』第29巻、第2号、pp.146-156（2005）
8) 川上昭吾：『教育の復権をめざす理科授業』東洋館出版社（2003）
9) 市川伸一、賀田良夫：『教えて考えさせる 理科 小学校』図書文化社（2010）
10) 菊地洋一、高室敬、尾崎尚子、木幡勇希、近藤藤樹、村上裕、『小学校の物質学習を通して粒子概念を有効に活用するための新規学習シート「つぶつぶシート」の提案』『岩手大学教育学部附属教育実践総合センター研究紀要』、印刷中。
11) 尾崎尚子、菊地洋一、『思考力や表現力を高める科学の本質にもつながる教材の活用—小学校3年「ものの重さ」をブロックで考える授業実践』『初等理科教育』第47巻、3月号、pp.22-25（2013）
12) 菊地洋一、尾崎尚子、川田泰幸、高室敬：『小学校理科に粒子概念を初めて導入する場面の授業実践—4学年「木の姿をゆく」単元での実践』『初等理科教育』第46巻、8月号、pp.62-65（2012）