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Abstract. In this paper we generalize the formula of Frobenius-Stickelberger
(see (0.1) below) and the formula of Kiepert (see (0.2) below) to the genus-two case.
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Introduction. There is a classical formula
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ð0:1Þ

where �ðuÞ and }ðuÞ are the usual elliptic functions. As far as the author knows the
earliest work in which this formula appeared is a paper of Frobenius and Stick-
elberger [10]. Before publication of their paper, Kiepert [14] gave the formula
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�ðnuÞ

�ðuÞn
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���������

���������
ð0:2Þ

which also can be obtained by a limiting process from (0.1). These formulae are
included in the book [21, p. 458 and p. 460] as exercises and are also treated in [9, I,
p. 183 and p. 186]. The function �ðnuÞ=�ðuÞn

2

in (0.2) has been denoted by  nðuÞ ever
since the book of Weber [20].

There is also a detailed analytic theory of Abelian functions for the Jacobian
variety of any hyperelliptic curve. In the theory there is a nice generalization by H.F.
Baker and others of the elliptic sigma function. If the genus of the curve, say C, is g,
this function is also denoted by �ðuÞ ¼ �ðuð1Þ; � � � ; uðgÞÞ (see (1.1) below). Although
the function

�ðnuÞ

�ðuÞn
2
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is a function on the Jacobian variety and is a natural generalization of  nðuÞ for the
given genus g curve, it has poles along a theta divisor � which is the ðg� 1Þ-fold
sum of the curve C embedded with a Weierstrass point as base point, so does not
naturally restrict to a function on the curve itself.

Now we restrict ourselves to consider only functions associated to a hyper-
elliptic curve of genus g ¼ 2. Then we consider the modified function

�ðnuÞ

�2ðuÞ
n2
;

where �2ðuÞ ¼ ð@�=@uð2ÞÞðuÞ. Although this function is not a function on the Jacobian
variety of the curve, via restriction to C it can be regarded as a function on the curve
itself, and is a good candidate to be called the hyperelliptic psi function. So we denote
it by  nðuÞ. The zeroes of  nðuÞ on the curve are just the points whose multiplication
by n are on �. If g ¼ 2 the theta divisor � coincides exactly with C.

The aim of this paper is to give a natural generalization of the expressions (0.1) and
(0.2) for any hyperelliptic curve of genus two. See Theorem 2.3 and Theorem 3.3 below.

The function  nðuÞ has been investigated in several contexts as follows. First, it
had an important role in the new theory of complex multiplication due to D. Grant
([12] and [19]). Secondly, a recursion relation for any hyperelliptic psi function was
given by D.G. Cantor in [7], and such a relation is used to compute the torsion
points on the corresponding curve. He also gave a determinant expression for  nðuÞ,
which is different from our expression and should be regarded as a generalization of
the formula of Brioschi [6, p. 770, l.3] to all hyperelliptic curves.

After this paper had been already prepared, our formula of Kiepert type was
generalized to all hyperelliptic curves by S. Matsutani and the author in [15] by
using the formula of Cantor.

The formula (0.1) also has a classical generalization to all non-singular algebraic
curves in terms of the Klein prime form, which is the formula (44) in [8, p. 33], and a
generalization to all hyperelliptic curves of genus two in terms of Gunning’s prime
form, which is the formula (2) of [13]. The referee of this paper kindly informed the
author about these two kinds of generalizations.

The author would like to acknowledge that the proof of the main theorem
(Theorem 2.3) was simplified by the referee.

The first things which inspired the author in this work are the very important
and strange formulae which appeared in the famous papers [16] and [17]. These
papers solved the problem of the determination of the argument of cubic and quartic
Gauss sums, respectively, by using the formulae given by Propositions 7.3 and 7.4 in
[16, p. 181] and by (6.37) and (6.38) in [17], which resemble quite closely (0.2) above.
Matthews mentions in [16, p. 179] that such a line of attack was suggested by
observations of S.J. Patterson. The author hopes that our new formulae will be used
to establish a new theory of complex multiplication.

The author was led to believe in the existence of our determinant expressions
through continual communication with Matsutani. The author found another gen-
eralization of the formula of Frobenius and Stickelberger to the three variables case
(i.e. n ¼ 2) for genus-two curves in [5, pp. 96–97] after having already obtained these
results. Quite recently all our formulae were generalized to any hyperelliptic curves
by the author himself in [19]. Moreover the connection of Theorem 3.3 below and
the determinant expression of Cantor mentioned above was completely clarified by
S. Matsutani (see Appendix of [19]).
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0. Convention. We denote, as usual, by Z and C the ring of rational integers
and the field of complex numbers, respectively. In an expression of the Laurent
expansion of a function, the symbol ðd�ðz1; z2; � � � ; zmÞ 	 nÞ stands for the terms of
total degree at least n with respect to the given variables z1, z2, � � �, zm.

In cross references, we indicate a formula as (1.2), and each of Lemmas, Pro-
positions, Theorems and Remarks also as 1.2.

1. The sigma function in genus two. In this Section we summarize the funda-
mental facts used in Sections 2 and 3. Detailed treatment of these facts are given in
[1], [2] and [3] (see also Section 1 of [19]).

Let

fðxÞ ¼ l0 þ l1xþ l2x2 þ l3x3 þ l4x4 þ l5x5

be an polynomial of x over C such that all its zeros are different from each other. Let
C be a smooth projective model of the curve of genus 2 defined by y2 ¼ fðxÞ. We
denote by 1 the unique point at infinity. In this paper we suppose l5 ¼ 1. The set of
forms

!ð1Þ ¼
dx

2y
; !ð2Þ ¼

xdx

2y

is a basis of the space of differential forms of first kind. Let


ð1Þ ¼
ðl3xþ 2l4x2 þ 3l5x3Þdx

2y
; 
ð2Þ ¼

x2dx

2y
:

Then 
ð1Þ and 
ð2Þ are differential forms of the second kind without poles except at
1. We fix generators �1, �2, �1, �2 of the fundamental group of C such that their
intersections are �i � �j ¼ �i � �j ¼ 0, �i � �j ¼ ij for i, j ¼ 1, 2. If we set

!0 ¼

R
�1
!ð1Þ

R
�2
!ð1ÞR

�1
!ð2Þ

R
�2
!ð2Þ

" #
; !00 ¼

R
�1
!ð1Þ

R
�2
!ð1ÞR

�1
!ð2Þ

R
�2
!ð2Þ

" #

the lattice of periods of our Abelian functions appearing below is given by

� ¼ !0 Z

Z

� �
þ !00 Z

Z

� �
ð� C2

Þ:

The modulus of C is Z :¼ !0�1!00. We also introduce matrices


0 ¼

R
�1

ð1Þ

R
�2

ð1ÞR

�1

ð2Þ

R
�2

ð2Þ

" #
; 
00 ¼

R
�1

ð1Þ

R
�2

ð1ÞR

�1

ð2Þ

R
�2

ð2Þ

" #
:

Let J be the Jacobian variety of the curve C. We identify J with the Picard
group Pic�ðCÞ of linear equivalence classes of divisors of degree 0 of C. Let Sym2

ðCÞ
be the symmetric product of two copies of C. Then we have a birational map
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Sym2
ðCÞ ! Pic�ðCÞ ¼ J

ðP1;P2Þ7!the class of P1 þ P2 � 2 � 1:

We may also identify (the C-rational points of) J with C2=�. We denote by � the
canonical map C2

! C2=� and by � the embedding of C into J given by mapping P
to the class of P�1. Then the image �ðCÞ is a theta divisor which is usually denoted
by �. Although we treat only the case of genus 2, we use both of these two symbols
to make as clear as possible the shape of our expected generalization to the case of
higher genus. We denote by O the origin of J. Obviously � ¼ ��1ðOÞ ¼ ��1�ð1Þ. If
u 2 C2, we denote by uð1Þ and uð2Þ the first and second entries of u.

Lemma 1.1. As a subvariety of J, the divisor � is non-singular.

A proof of this fact is seen, for instance, in [19, Lemma 1.7.2, p. 390]. If we set

00 ¼
1

2

1

2

� �
; 0 ¼ 0

1

2

� �
;

then the sigma function attached to C is defined, as in [2], by

�ðuÞ ¼ c expð�
1

2
u
0!0�1 tuÞ

�
X
n2Z2

exp½2�
ffiffiffiffiffiffiffi
�1

p
f
1

2
tðnþ 00ÞZðnþ 00Þ þ tðnþ 00Þð!0�1 tuþ 0Þg�:

ð1:1Þ

To fix the constant c above we need the following lemma.

Lemma 1.2. The Taylor expansion of �ðuÞ at u ¼ ð0; 0Þ is of the form

uð1Þ þ
1

6
l2uð1Þ

3
�
1

3
l5uð2Þ

3
þ ðd�ðuð1Þ; uð2ÞÞ 	 5Þ

up to a multiplicative constant.

Lemma 1.2 is proved in [4, p. 96] (see also [11, pp. 129–130] or [19, Proposition
2.1.1(2)]). We fix the constant c in (1.1) such that the expansion is exactly of the form
in 1.2.

Lemma 1.3. Let ‘ be an element in �. The function u 7! �ðuÞ on C2 satisfies the
translational formula

�ðuþ ‘Þ ¼ �ð‘Þ�ðuÞ expLðuþ ‘; ‘Þ;

where �ð‘Þ ¼ �1 is independent of u, Lðu; vÞ is a form which is bilinear over the field of
real numbers and C-linear with respect to the first variable u and Lð‘1; ‘2Þ is 2�

ffiffiffiffiffiffiffi
�1

p

times an integer if ‘1 and ‘2 are in �.

The details of 1.3 are given in [1, p. 286] (see also [19, pp. 395–396]).
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Lemma 1.4. (1) The function �ðuÞ on C2 vanishes if and only if u 2 ��1ð�Þ.
(2) Suppose v1, v2 are two points of ��1�ðCÞ. The function u 7!�ðu� v1 � v2Þ for

u 2 ��1�ðCÞ is identically zero if and only if v1 þ v2 is contained in ��1ðOÞð¼ �Þ. If the
function is not identically zero, it vanishes only at u ¼ v1 and v2 modulo � to order 1 or
to order 2 if these two points coincide.

(3) Let v be a fixed point of ��1�ðCÞ. There exist a point v1 of �
�1�ðCÞ such that the

function u 7!�ðu� v� v1Þ on ��1�ðCÞ is not identically zero and vanishes at u ¼ v
modulo � of order 1.

The assertions 1.4(1) and (2) are proved in [1, pp. 252–258], for instance. The
assertion 1.4(3) obviously follows from (2).

We introduce the functions

}jkðuÞ ¼ �
@2

@uð jÞ@uðkÞ
log �ðuÞ; }jk���rðuÞ ¼

@

@uð jÞ
}k���rðuÞ:

These functions are periodic with respect to the lattice � by 1.3, and have poles
along ��1ð�Þ by 1.4(1). We also use the notation

�jðuÞ ¼
@

@uð jÞ
�ðuÞ; �jkðuÞ ¼

@2

@uð jÞ@uðkÞ
�ðuÞ:

The following formula was also obtained by Baker in [2, p. 381].

Lemma 1.5. We have

�
�ðuþ vÞ�ðu� vÞ

�ðuÞ2�ðvÞ2
¼ }11ðuÞ � }11ðvÞ þ }12ðuÞ}22ðvÞ � }12ðvÞ}22ðuÞ:

Let ðuð1Þ; uð2ÞÞ be an arbitrary point not in ��1ð�Þ. Then we can find a unique
pair of points ðx1; y1Þ and ðx2; y2Þ on C such that

uð1Þ ¼

Z ðx1;y1Þ

1

!ð1Þ þ

Z ðx2;y2Þ

1

!ð1Þ; uð2Þ ¼

Z ðx1;y1Þ

1

!ð2Þ þ

Z ðx2;y2Þ

1

!ð2Þ ð1:2Þ

with certain choices of the two paths in the integrals. Then one can show that ([2,
p. 377])

}12ðuÞ ¼ �x1x2; }22ðuÞ ¼ x1 þ x2: ð1:3Þ

If u is a point on ��1�ðCÞ, the x- and y-coordinates of ��1�ðuÞ will be denoted by xðuÞ
and yðuÞ, respectively.

Lemma 1.6. If u is a point on ��1�ðCÞ, then

}12

}22
ðuÞ ¼

�1
�2

ðuÞ ¼ �xðuÞ:

These equalities are shown in [12, p. 124] by using 1.4(1) and (1.3) (see also [19,
proof of Proposition 2.1.1]). By 1.2 and 1.4(1), we see the following.
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Lemma 1.7. If u 2 ��1�ðCÞ, then

uð1Þ ¼
1

3
uð2Þ

3
þ ðd�ðuð2ÞÞ 	 4Þ:

Hence uð2Þ is a local parameter at ð0; 0Þ. While Lemma 1.8 below gives a local para-
meter at any point of ��1�ðCÞ except ��1ðOÞ and is not used in this paper, it would be
helpful to the reader’s understanding of our main results.

Lemma 1.8. Let v0 ¼ ðv
ð1Þ
0 ; v

ð2Þ
0 Þ be a fixed point on ��1�ðCÞ and assume

v0 62 �
�1ðOÞ. Let u ¼ ðuð1Þ; uð2ÞÞ be a variable point on ��1�ðCÞ. Then the variable

uð1Þ � v
ð1Þ
0 is a local parameter at v0 along ��1�ðCÞ. In other words, the function

u 7!uð1Þ � v
ð1Þ
0 vanishes at u ¼ v0 of order 1.

Proof. Since

dðuð2Þ � v
ð2Þ
0 Þ

dðuð1Þ � v
ð1Þ
0 Þ

¼
duð2Þ

duð1Þ
¼

duð2Þ

dx

dx

duð1Þ
¼ xðuÞ;

we have

uð2Þ � v
ð2Þ
0 ¼ xðv0Þðu

ð1Þ � v
ð1Þ
0 Þ þ ðd�ðuð1Þ � v

ð1Þ
0 Þ 	 2Þ:

Lemma 1.4(3) states that there exists a point v1 in ��1�ðCÞ such that the function
u 7!�ðu� v0 � v1Þ is not identically zero and vanishes at u ¼ v0 of order 1. Then we
have

�ðu� v0 � v1Þ ¼ �1ð�v1Þðu
ð1Þ � v

ð1Þ
0 Þ þ �2ð�v1Þðu

ð2Þ � v
ð2Þ
0 Þ

þ ðd�ðuð1Þ � v
ð1Þ
0 ; u

ð2Þ � v
ð2Þ
0 Þ 	 2Þ:

Hence the vanishing order of u 7!uð1Þ � v
ð1Þ
0 at u ¼ v0 cannot be higher than 1. So we

see that uð1Þ � v
ð1Þ
0 is a local parameter at v0. &

Lemma 1.9. (1) Let u be an arbitrary point on ��1�ðCÞ. Then �2ðuÞ is 0 if and only
if u is a lattice point, that is, the case �ðuÞ ¼ �ð1Þ.

(2) The Taylor expansion of the function �2ðuÞ on �
�1�ðCÞ at u ¼ ð0; 0Þ is of the

form

�2ðuÞ ¼ �uð2Þ
2
þ ðd�ðuð2ÞÞ 	 3Þ:

(3) Let v0 ¼ ðv
ð1Þ
0 ; v

ð2Þ
0 Þ be a fixed point on ��1�ðCÞ and assume v0 62 �

�1ðOÞ. The
Taylor expansion of the function u 7!�ðu� v0Þ on �

�1�ðCÞ at u ¼ ð0; 0Þ is of the form

�ðu� v0Þ ¼ �2ðv0Þu
ð2Þ þ ðd�ðuð2ÞÞ 	 2Þ:

Proof. If �2ðuÞ ¼ 0, then the second equality of 1.6 yields �1ðuÞ ¼ 0. This contra-
dicts 1.4(1), (2) and 1.1. So �2ðuÞ 6¼ 0. The assertion (2) follows from 1.2 and 1.7.
Because �2ðuÞ is an even function, the assertion (3) follows from 1.4(1) and 1.7. &
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Proposition 1.10. Let n be a positive integer. If u 2 ��1�ðCÞ, then

 nðuÞ :¼
�ðnuÞ

�2ðuÞ
n2

is periodic with respect to �. In other words it is a function on �ðCÞ.

For a proof of this, see [12, p. 124] or [19, Proposition 3.2.2].

Lemma 1.11. We have that  2ðuÞ ¼ 2yðuÞ.

This is a result stated in [12, p. 128] (see also [19, Lemma 3.2.4]). We end this
Section by stating the following easily shown relations (see [19, Lemma 2.3.1]).

Lemma 1.12. If u 2 ��1�ðCÞ then

xðuÞ ¼
1

uð2Þ
2
þ ðd�ðuð2ÞÞ 	 �1Þ; yðuÞ ¼ �

1

uð2Þ
5
þ ðd�ðuð2ÞÞ 	 �4Þ:

2. A generalization of the formula of Frobenius-Stickelberger. Let us start by
stating the simplest case of our generalization.

Proposition 2.1. Assume u and v belong to ��1�ðCÞ. Then

�
�ðuþ vÞ�ðu� vÞ

�2ðuÞ
2�2ðvÞ

2
¼ �xðuÞ þ xðvÞ ¼

1 xðuÞ
1 xðvÞ

����
����

� �
:

Proof. We give two proofs. First we use the formula of 1.5. For u 62 ��1�ðCÞ and
v 62 ��1�ðCÞ, after dividing the formula of 1.5 by

}22ðuÞ}22ðvÞ ¼
ð�2ðuÞ

2
� �22ðuÞ�ðuÞÞ

�ðuÞ2
�
ð�2ðvÞ

2
� �22ðvÞ�ðvÞÞ

�ðvÞ2
;

and bringing u and v close to any points on ��1�ðCÞ, we have the desired formula
because of 1.4(1) and 1.6.

Our second proof is done by comparing the zeros and poles of each side. If we
regard the two sides as functions of u, they are functions on �ðCÞ. We may assume
v 62 ��1ðOÞ. The zeros of the two sides coincide and they are at u ¼ v and at u ¼ �v,
and both sides have their only pole at u ¼ ð0; 0Þ of order 2 by 1.9(2) and 1.12. By

1.9(3), the coefficient of 1=uð2Þ
2
of the left hand side is �1. Thus we have proved the

formula once again. &

Remark 2.2. Although the formula of 1.5 is a natural generalization of the
corresponding formula for Weierstrass’ functions �ðuÞ and }ðuÞ ([21, p. 451,
Example 1]), the formula of 2.1 bears a striking likeness to the formula for elliptic
functions. Finding this formula was the clue to the discovery of the formula in
Theorem 2.3.
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Our generalization of (0.2) is the following formula.

Theorem 2.3. Let n be a positive integer. Assume uð¼ u0Þ, u1, � � �, un all belong to
��1�ðCÞ. Then

�
�ðu0 þ u1 þ � � � þ unÞ

Q
i<j �ðui � ujÞ

�2ðu0Þ
nþ1�2ðu1Þ

nþ1
� � � �2ðunÞ

nþ1

is equal to

1 xðu0Þ x2ðu0Þ yðu0Þ x3ðu0Þ yxðu0Þ � � � yxðn�4Þ=2ðu0Þ xðnþ2Þ=2ðu0Þ
1 xðu1Þ x2ðu1Þ yðu1Þ x3ðu1Þ yxðu1Þ � � � yxðn�4Þ=2ðu1Þ xðnþ2Þ=2ðu1Þ

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

.

1 xðunÞ x2ðunÞ yðunÞ x3ðunÞ yxðunÞ � � � yxðn�4Þ=2ðunÞ xðnþ2Þ=2ðunÞ

���������

���������
or

1 xðu0Þ x2ðu0Þ yðu0Þ x3ðu0Þ yxðu0Þ � � � xðnþ1Þ=2ðu0Þ yxðn�3Þ=2ðu0Þ
1 xðu1Þ x2ðu1Þ yðu1Þ x3ðu1Þ yxðu1Þ � � � xðnþ1Þ=2ðu1Þ yxðn�3Þ=2ðu1Þ

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

.

1 xðunÞ x2ðunÞ yðunÞ x3ðunÞ yxðunÞ � � � xðnþ1Þ=2ðunÞ yxðn�3Þ=2ðunÞ

���������

���������
according to whether n is even or odd.

Proof. Proposition 2.1 is the case of n ¼ 1. We prove this formula by induction
on n. Suppose the points u0, u1, � � �, ug do not belong to ��1�ðCÞ. We know that each
of the functions

uj 7! �
�ðu0 þ u1 þ � � � þ unÞ

Q
i<j �ðui � ujÞ

�ðu0Þ
nþ1�ðu1Þ

nþ1
� � � �ðunÞ

nþ1

is periodic with respect to � by 1.4(1) and the theorem of the square ([18, Corollory
4 on p. 59]). After multiplying

ð�1Þnþ1
}22ðu0Þ}22ðu1Þ � � �}22ðunÞ

}222ðu0Þ}222ðu1Þ � � �}222ðunÞ

¼
ð�22 � �22Þ�

�32 � 3��2�22 þ ��222
ðu0Þ

ð�22 � �22Þ�

�32 � 3��2�22 þ ��222
ðu1Þ� � �

ð�22 � �22Þ�

�32 � 3��2�22 þ ��222
ðunÞ;

bringing uj’s close to any point of ��1�ðCÞ, we see by 1.4(1) that the left hand side of
the claimed formula is, as a function of each uj, a periodic function on �

�1�ðCÞ. Now
we regard both sides of the claimed formula as a function on C of variable u ¼ u0,
and regard the points uj as points on C. We denote the left hand side by f1ðuÞ and the
right hand side by f2ðuÞ. We consider a divisor

D ¼ ðnþ 2Þ1 � u1 � u2 � � � � � un

of C. Lemmas 1.4(2) and 1.9 show that the divisor ðf1Þ þD is effective, and 1.12
shows that the divisor ðf2Þ þD is also effective. Since D is not a canonical divisor and

360 YOSHIHIRO ÔNISHI



C is of genus 2, the Riemann-Roch theorem shows that the space of the functions f
such that ð f Þ þD is effective is of dimension 1. Therefore the two sides coincide up
to a non-zero multiplicative constant. We know by 1.4(2), 1.9(2) and 1.9(3) that the
coefficient of the Laurent expansion at u ¼ ð0; 0Þ with respect to uðgÞ of the left hand
side is just the left hand side of the hypothetical statement of our induction. We also
know by 1.12 that the coefficient of such the Laurent expansion of the right hand
side is just the right hand side of the hypothesis. Thus the formula holds. &

Remark 2.4. The formula in 2.3 should be regarded as a generalization of the
genus-one formula

�ðu0 þ u1 þ � � � þ unÞ
Q

i<j �ðui � ujÞ

�ðu0Þ
nþ1�ðu1Þ

nþ1
� � � �ðunÞ

nþ1

¼

1 xðu0Þ yðu0Þ x2ðu0Þ yxðu0Þ x3ðu0Þ � � �

1 xðu1Þ yðu1Þ x2ðu2Þ yxðu2Þ x3ðu1Þ � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

1 xðunÞ yðunÞ x2ðunÞ yxðunÞ x3ðunÞ � � �

����������

����������
rather than of (0.1). Here we suppose the sigma function �ðuÞ is associated with the
elliptic curve defined by an equation of the form y2 ¼ x3 þ l2x2 þ l1xþ l0. The size
of the matrix above is also nþ 1 by nþ 1. This formula is easily obtained from (0.1)
and explains the meaning of the multiplicative constant of the left hand side of (0.1).

3. A determinant expression for generalized psi-functions. We give in this Section
a generalization of the formula of Kiepert [14] (see also [21, Exercise 33, p. 460] or
[9, p. 186]). There is a pretty formula:

Lemma 3.1. Let u and v be belong to ��1�ðCÞ. Then

lim
uð1Þ!vð1Þ

�ðu� vÞ

uð1Þ � vð1Þ
¼ 1:

Proof. Because of 2.1 we have

xðuÞ � xðvÞ

uð1Þ � vð1Þ
¼

�ðuþ vÞ

�2ðuÞ
2�2ðvÞ

2
�
�ðu� vÞ

uð1Þ � vð1Þ
:

Now we bring uð1Þ close to vð1Þ. Then the limit of the left hand side is

lim
uð1Þ!vð1Þ

xðuÞ � xðvÞ

uð1Þ � vð1Þ
¼

dx

duð1Þ
ðvÞ:

This is equal to 2y by (1.2). The required formula follows from 1.11. &

Remark 3.2. The reader should take care to note that the left hand side in 3.1 is
not
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lim
hð1Þ!0

�ðhÞ

hð1Þ
ðh 2 ��1�ðCÞÞ:

Our generalization of the formula (0.2) for nðuÞð¼ �ðnuÞ=�2ðuÞ
n2
Þ is the following.

Theorem 3.3. Let n be an integer greater than 1. Assume that u belongs to
��1�ðCÞ. Let j be 1 or 2. Then the following formula holds:

� ð1!2! � � � ðn� 1Þ!Þ nðuÞ ¼ xð j�1Þnðn�1Þ=2ðuÞ�

x0ðuÞ ðx2Þ0ðuÞ y0ðuÞ ðx3Þ0ðuÞ ðyxÞ0ðuÞ ðx4Þ0ðuÞ � � �

x00ðuÞ ðx2Þ00ðuÞ y00ðuÞ ðx3Þ00ðuÞ ðyxÞ00ðuÞ ðx4Þ00ðuÞ � � �

x000ðuÞ ðx2Þ000ðuÞ y000ðuÞ ðx3Þ000ðuÞ ðyxÞ000ðuÞ ðx4Þ000ðuÞ � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

xðn�1ÞðuÞ ðx2Þðn�1ÞðuÞ yðn�1ÞðuÞ ðx3Þðn�1ÞðuÞ ðyxÞðn�1ÞðuÞ ðx4Þðn�1ÞðuÞ � � �

�������������

�������������
:

Here the size of the matrix is n� 1 by n� 1. The symbols 0, 00, � � �, ðn�1Þ denote d
duð jÞ

,
d

duð jÞ

 �2
, � � �, d

duð jÞ

 �n�1
, respectively.

Proof. We start with replacing n by n� 1 in 2.3. If we use d
duð1Þ

¼ xðuÞ d
duð2Þ

in the
following proof for the case of j ¼ 1, we can easily check that the case of j ¼ 2 also
holds. We may assume that u 6¼ ð0; 0Þ modulo �. For a fixed u, we write
h ¼ ðhð1Þ; hð2ÞÞ ¼ u1 � u and varies u1. Then hð1Þ is a local parameter at the point u by
1.9 and the right hand side of 2.3 is equal to

1 xðuÞ x2ðuÞ � � �

0 xðuþ hÞ � xðuÞ x2ðuþ hÞ � x2ðuÞ � � �

1 xðu2Þ x2ðu2Þ � � �

..

. ..
. ..

. . .
.

����������

����������

¼

1 xðuÞ x2ðuÞ � � �

0 x0ðuÞhð1Þ þ ðd�ðhð1ÞÞ 	 2Þ ðx2Þ0ðuÞhð1Þ þ ðd�ðhð1ÞÞ 	 2Þ � � �

1 xðu2Þ x2ðu2Þ � � �

..

. ..
. ..

. . .
.

����������

����������
by Taylor’s theorem in one variable. After dividing both sides by hð1Þ and taking the
limit when hð1Þ ! 0 while keeping uþ h 2 ��1�ðCÞ, by using 3.1, we arrive at the
formula

�
�ð2uþ u2 þ � � � þ un�1Þ�ðu� u2Þ

2
� � � �ðu� un�1Þ

2Q
2�i<j �ðui � ujÞ

�2ðuÞ
2n�2ðu2Þ

n
� � � �2ðun�1Þ

n

¼

1 xðuÞ x2ðuÞ � � �

0 x0ðuÞ ðx2Þ0ðuÞ � � �

1 xðu2Þ x2ðu2Þ � � �

..

. ..
. ..

. . .
.

����������

����������
:
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Applying Taylor’s theorem in one variable again we see that the right hand side with
h ¼ u2 � u is given by

1 xðuÞ x2ðuÞ � � �

0 x0ðuÞ ðx2Þ0ðuÞ � � �

0 xðuþ hÞ � xðuÞ þ x0ðuÞhð1Þ
 �

x2ðuþ hÞ � x2ðuÞ þ ðx2Þ0ðuÞhð1Þ
 �

� � �

1 xðu3Þ x2ðu3Þ � � �

..

. ..
. ..

. . .
.

�������������

�������������

¼

1 xðuÞ x2ðuÞ � � �

0 x0ðuÞ ðx2Þ0ðuÞ � � �

0 1
2! x

00ðuÞðhð1ÞÞ2 þ ðd�ðhð1ÞÞ 	 3Þ 1
2! ðx

2Þ
00
ðuÞðhð1ÞÞ2 þ ðd�ðhð1ÞÞ 	 3Þ � � �

1 xðu3Þ x2ðu3Þ � � �

..

. ..
. ..

. . .
.

�������������

�������������
:

After dividing both sides by ðhð1ÞÞ2 and taking the limit when hð1Þ ! 0, by applying
3.1 we have

� ð1!2!Þ
�ð3uþ u3 þ � � � þ un�1Þ�ðu� u3Þ

3
� � � �ðu� un�1Þ

3Q
3�i<j �ðui � ujÞ

�2ðuÞ
3n�2ðu3Þ

n
� � � �2ðun�1Þ

n

¼

1 xðuÞ x2ðuÞ � � �

0 x0ðuÞ ðx2Þ0ðuÞ � � �

0 x00ðuÞ ðx2Þ00ðuÞ � � �

1 xðu3Þ x2ðu3Þ � � �

..

. ..
. ..

. . .
.

�������������

�������������
:

Using similar operations repeatedly, we have the formula for  nðuÞ. &

Example. We have

x0ðuÞ ¼
d

duð1Þ
xðuÞ ¼ 1

. duð1Þ

dx
ðuÞ ¼

2y

x
ðuÞ; y0ðuÞ ¼

DfðxÞ

x
;

x00ðuÞ ¼
d

duð1Þ
2y

x

� �
¼ 2

x �DfðxÞ � 2y2

x3
; ðx2Þ0ðuÞ ¼ 4yðuÞ; ðx2Þ00ðuÞ ¼

4

x
DfðxÞ;

where fðxÞ is as in the beginning of Section 1 and DfðxÞ ¼ d
dx fðxÞ. Then

� 3ðuÞ ¼ ��ð3uÞ=�2ðuÞ
9
¼ 8y3ðuÞ by 3.3. This example is mentioned in the proof of

[12, Lemma 2 (e)], too, and the proof here is different from the one there (see also
[19, Lemma 3.2(2)]).
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