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Matc}〕ing problems exist widely in many practicalcomputer vision research

tasks such as template matchin菖, ima宮e n〕atching, visualtrackin8, ima曾e

Ie旦istration, etc. Three main steps which form the matching procedure can

be concluded as l) fe飢Ure selection,2) sin〕ilarity measure, and 3) search

Strate宮y design. Based on the basic intensity or c010r feature, many fea・

tures have been designed recent years, which can be broadly cate菖orized as

10calfeature descriptor or 曾10balfeature descriptor. with multゆle alter-

natives available, selectin8 an appTopriate feature for a speci6C matching

Problem becomes essential and a preprocessin昌(e.区. dimension reduction)

Can farther improve the e伍Ciency, on the other hand, based on the select-

ed feature, similarity measure plays a lole on quantifying t11e real・valued

Similarity/distance between two objects.＼入7ith speci6C feature selected, an

appropriate similar北y measure method is supposed to be carefUⅡy select-

ed froln ma11y parametric/non-parametric distance calculation methods

Besides, in case of the number of candidates is lar曾e (e.8. template lo・

Calization, image retrieval), an e伍Cient search strategy is needed instead

Of exclusive matching, because the cost of similarity measure 宮rows pro-

Portiona11y with the 血Crease of candidate number.1n this disse此ation,

We introduce solutions of matching problems in multゆle speci6.c computer

Vision tasks
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Nlatching problen〕s exist widely 血 n〕any practicalcomputer vision research

tasks such as template matching, ima留e matcl〕in旦, visualtrackin留, ima今e

re曾istration, etc. Three main steps which form the matchin旦 Procedure can

be conduded as l) feature selection,2) similarity measure, and 3) search

Strategy design. Based on the basic intenS北y or c010r feature, many fea-

tures have been desi冨ned recent years, which can be broadly cate旦orized as

10cal fe飢Ure descriptor or 旦10bal feature descript0τ. with multiple alter・

natives available, selectin菖 an appropTiate feature for a speci6C lnatchin留

Problen〕 becomes essential and a preprocessin冨(e.g. dimension reduction)

Can f口rther improve the e缶Ciency. on the other hand, based on the select-

ed feature, similarity measure plays a role on quantify血旦 the real-valued

Similarity/distance between two objects. with speci6C feature selected, an

appropriate similarity measure method is supposed to be carefUⅡy seled-

ed fron〕 many paran〕etric/non・parametTic distance calculation methods

Besides, in case of the nun〕ber of candidates is lar旦e (e.曾. template lo-

Calization, ima8e retrievaD, an e伍Cient search sttate旦y is needed 血Stead

Of exclusive matchin留, because the cost of similarity measure 旦rows pro-

PortionaⅡy with the 血Crease of candidate number.1n this dissertation,

We introduce solutions of matchin旦 Problems in multゆle speci6C computer

Vision tasks

Ch ap

INTRODUCTION

ter l

In chapter 2 and 3, as an example of paralnetric matchin旦, a伍ne and pro-

jective model based template matcl〕in留 tasks are studied respectively. Botl〕

Ofthe tasks require to use intensity feature only and the similarity measure

method is limited to sum of absolute di任erence (SAD).1n such cases,血

Order to search an approximate transformation over a very large search-

in区 Space, we treat the searchin昌 Procedure aS 田10ptimization plocedure.

Although hom0昌raphy can be estimated by combining key・point・based lo・

Calfeatures and randon〕 san〕ple consensus (RANSAC), it can hardly be

Solved with feature・1ess images or h地h outlier rate ima菖es、 Estimating the

a缶ne/projective transformation rema,ins a di伍CUH prob]em due to high・

dimensionality and stron昌 non-convexity. our approach is to quantize the

1



Parameters of ptojective transformation W北h bin飢y 6nite 員eld and seaTch

for an applopriate solution as the 6nal result over the discrete samplin8

Set. The bene6t is that we can avoid searching amon旦 a huge amount of

Potential candidates. FU此hermore, in order to appToximate the 旦10bal op・

timum more e伍Ciently, W'e develop a level・wise adaptive sampHn目(LAS)

method under 菖enetic a1留oritl)m framework.＼入lith LAS, the individuals

are uniformly selected 丘'om each 6tness level and the elite solution 6na11y

Conver菖es to the 宮10bal optimum

In chapter 4 and 5, for the tasks that parametric methods cannot be ap・

Plied, non-parametric template matchin留 methods are studied which do not

assume any speci6C deformation models、 Two di丘erent similar北y measure

methods are proposed in each chapter respectively. The 6rst method is

developed based on an assumption that the localrigidity, which is referred

to as struct11ral persistence between image patches, can help the a1曾or北h-

m to achieve better performance. A spatial relation test is proposed to

Wei旦ht the ri昌idity between two image patches. The second method caⅡed

two・side agreement learnin旦(TAL) is proposed which learns the implicit

Correlation between two sets of multidimensional data points. TAL learns

from a n〕atchin菖 exemplar to construct a symmetric tree-structured model

Using TAL C田lteduce the ambi8U北y in de6.nin菖 Similarity which is hard

to be objectively de丑ned and lead to more conver旦ent results

In chapter 6, non-paralnetricima留e matching problem withmodi6.ed query

ima8e is studied. we use a comprcssed hist0冨ran〕s of oriented 昌radients

(HOG) feature descriptor to extract globalvisualsilnilarity, For the nearest

neighbor search problem, we propose randon〕 projection indexed KD-tree

forests (rKDFS) to match 血〕a含e with local changes pair (1LP) e伍Ciently

instead of exhaustive linear search. rKDFs is builL wit}〕 1ar8e scale low-

din〕ensional KD・trees. Each KD・tree is built in a randoln plojection in-

dexed subspace and contTibutes to the 6nalresult equaⅡy through a voting

n〕echanism.1n chapter 7, non-parametric online visualtrackin旦 Problen〕

is studied.＼ue propose a real・time trackin留 a1目orithm caⅡed coupled ran・

don〕ness trackin旦(CRT) which focuses on dealing with these two issues

One randomness represents randon〕 projection, and the other randomness

represents online random forests (ORFS),1n cRT, the 旦ray・scale feature is

Compressed by a sparse measurement n〕atrix, and oRFs are used to train

the sample sequence online. During the training procedure, we introduce

2



a tree discardin昌 Strate今y which helps the oRFs to adapt fast appearance

Changes caused by iⅡUmination, Occlusion, etc. our method can constantly

adapt to the objective's latest appearance changes while keepin留 Uw prior

加formationappearance

3



TEMPLATE MATCHINGWITH AFFINE

TRANSFORMATION

2.1 Summary

In this chaptel, we address the problem oftemplate matching under a伍ne

transformations with 又eneralima旦es. our approach is to search an ap・

Proximate a伍ne transfoTmation over a binary GaloiS 五eld. The benent is

that we can avoid match血8 With huge amount ofpotentialtransformation・

S, because they are discretely sampled. HoweveT, a GaloiS 丑eld of a伍ne

transformation can stiⅡ be impractical for exhaustive searchin曾. To ap-

Proach the optimum solution e伍Ciently, we introduce a level-wise adaptive

Sampling (LAS) method under 冨enetic a1旦orithm framework.1n LAS,indi・

Viduals conver8e to the 昌10bal optimum accordin旦 to a level-wise selection

and crossover while the population number is decreased by a population

bounding scheme.1n the experiment section, we analyse our method sys-

tematica11y and compare it a冨ainst the state・of・the・a此 method on an eval-

Uation data set. The results sl〕ow that our method has a high accuracy

Perforn〕ance with few matching tests compared against the state-of-the・art

method

Ch ap ter ε

2.2 1ntroduction

In this chapter, we consider the problem oftemplate lnatching under arbi-

trary 2D a伍ne transformations. Template matchin8 is a classicalcomputer

Vision problem which aims to nnd a 菖10bal optimum aTea in the target im・

a8e (i.e' source ima旦e) according to the hint provided by a rectan旦Ular

template.1n a缶ne template matchin8, each candidate a缶ne tTansforma-

tion corresponds to a candidate area in the target image. we only use

the gray scale information ofimaaes as hint which is quanti6ed by sum of

absolute di任eTence (SAD)

Recently, feature・based matchin昌 methods like slFT and its variants are

Very e伍Cient to estimate the 2D transfoTmation matTix between template

and tar昌et image. only a few correctly matched key points are required for

Solvin旦 a system oflinear equations. with m飢dⅡng resuHs which contain

4



F珸Ure 2.1: our matchin宮 result (represented by 8reen paraⅡel0昌ram) com・
Pletely coversthe 冨round truth area (represented red para11elogam)in both
examples. A缶n6SIFT (ASIFT) can we11 handle a伍ne transformation in
the case when template has strong features (upper), but mismatches in
the case when template has weak features (10wer). common slFT can not
handle a伍ne transformation weⅡ

0Ⅱr method (template malching)

Outliers, we can also use method like RANSAC Fischler and B011es,1981to

estimate the correcttransformation matrix. Feature・based methods depend

On the assumption that the key point matchin今 results consist of inliers,

there also exist ima留es in which key points are hard to be detected like

blur ima旦es, textureless ima宮es, etc. Key points may also be mismatched

heavily as a result of noise,i11Umination chan旦es, etc. A common template

matching method is usua11y considered to be e丘ective a宮ainst such special

Situations. Figure 2.1 Shows two match血旦 exalnples respectively when a

template has stron冨 features and weak features

As we aⅡ know, template matchin旦 PotentiaⅡy requires a huge number of

Samples in order to ensure the 旦10bal optimum solution can be obtained

EspeciaⅡy for a伍ne template match血8, the number of candidate transfor-

mations increases exponentia11y when more accurate solution is Tequired

to be obtained, because scaling, rotation and shear are taken into account

additiona11y compared with common template matchin8. Matching with

numerous candidate solutions is ine丑ective and not practical.1n fact,北 is

Possible to estimate only a sma11fraction of candidate solutions in order to

Solve the optimum solution ifthe f0110win今 assumption is made: a template

is smooth. under this assumption, SAD wi11 not chan8e much around the

冨round truth area of a tar菖et image. This assumption provides chances

for developin昌 more e伍Cient matchin昌 methods. At the same time, such

methods can not guarantee the accuracy with h璃hly textured template

ASIFT (featuTe ba託d) SIFT(featⅡre based)

The rest of this chapter is structured as f0110WS.1n section 2.3, we survey

5



template matchin8 methods with transformations and the e丑ortsthat have

been done on solvin宮 a伍ne template match血g ptoblem.1n section 2.4,

We introduce our method from two perspectives:1) construction of Ga・

10iS 6eld.2) 1evel-Mse adaptive sampling method over GaloiS 丑eld.1n

Section 2.5, we investi目ate the e丘ects of tunable parameters and compare

Our method against the state・of・the-art method Korman et al.,2013. Fi・

naⅡy, we conclude tl〕is chapter in section 2.6

2.3 Related叉入70rks

In this section, we n〕ainly survey previous works on ten〕plate matchin目

Considering 旦eometric transformations. Despite the feature-based matchin昌

methodslike slFT Lowe,2004, ASIFT Moreland YU,2009, direct method・

S also have been widely studied. A common direct template method only

Consider the translation in x一餓is and y-axis, thus the degree of freedom

(DF) is simply 2. However, many applications require methods to be ro・
bust with varied transformations

Rotation and translation: same with common template matching, tar・

get area in target ima旦e is sti11 rectan8U}ar. The di丘erence is, it is rotated

and repositioned by translation. The DF in this situation iS 3. choi and

Kim choi and w.・Y. Kim,2002 Proposed a method combinin冨 the projec・

tion method and zernike n〕oments in two sta昌es. candidates with low cost

feature extracted are selected at 6玲t stage, and rotation invariant match-

ing is perforn〕ed at second stage. Fredriksson et al、nedliksson, Makinen,

and Navarro,2007 Used strin冨 matcl〕in菖 teC11nique to deal wit11 mtation

Rotation, translation and scalin曾 ln this situation, scalin冨 is addi・

tionaⅡy attached to the matcl〕in旦 Problem, thus the DF 区rows t0 5. The

number of candidate areas becomes large and it is n0 10nger practicalfor

exhaustive searchin旦. To accelerate matching procedure, kim et al.H, Y

Kim and Araojo,2007 applied cascaded 61ters to exclude areas which have

10w probability to be selected as the 丑nalresult. Akashi et al.Akashi et al.,

2007 treated template matchin宮 as an optimization problem under 昌enetic

a1旦orithn)framework and applied their method into real・time eye detection

by il)})eritina previous frame's matchin宮 result to the next. Genetic a1菖0・

rithm can evolutionarily select "promising" candidate areas to evaluate,

thus can avoid exhaustive searchin曾

A伍ne transformation: Despite basic Euclidean transformations, shear

and scaling are enhanced additionaⅡy. The DF then 旦rows t0 6. To the

6
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best of our knowledge, few direct methods have been proposed under this

Situation compared with aforementioned two situations as a result of the

broad search space. Korman et al.,2013 is probably the state-of・the-art

Work which matches template in a very sparse way under the smooth as-

Sumption.1n this chapter, a discrete samplin8 net is constructed according

to an accuracy parameter, a丘er that, a branch-and-bound scheme is em-

Ployed to search an approximate solution over the net. The basic idea of

t11is chapter is to rule out a large portion of "unpromising" candidate tTans・

formations and focus on estimatin旦 the ones which are close to the 旦round

truth. However, branch・and-bound scheme is stiⅡ exhaustive to a certain

extent, because the number of candidate transformations need to be esti-

mated grows rapidly with the increase of expected accuracy.1nsU伍Cient

Samplin旦S wi111ead to a totaⅡy di丑erent result、 on the other hand, our

method constructs a GaloiS 6eld 血Stead of a samplin目 net, and employs

adaptive samplin8 to approach the 冨round truth 丘om the perspective of

Optimization a1昌orithm、

2.4 Method010曾y

Problem Description

TW0 旦rayscale imageS 11 and 12 are given as the input W北h eacl〕 pixel'S

菖ray value nolmalized t0 10,11.11is de6.ned as a template image W北h size

Of ηI X π1.12 is de6ned as a tar留et image W北h size of π2 X π2. For darity,

We assume 11 and 12 are square in〕a留es、 An arbitrary pixelin 11 and its

mapped pixelin 12 is denoted as pl and P2 SeP釘ately.＼入le have

ル=T印D (2.1)

T is a 3 × 3 matrix which denotes a伍ne transformation between pl and

P2.1n the f0110win旦 formula, k includes operations such as rotation, scalin宮

and shear. t includes translation operations

SAD is used to measure the sinlilarity between 11 and a candidate area in

12. Normalized aray scale di丑etence between each pl and according P2 is

Summed, which can be written as

Σ風(PD 一乃(Pり1仇
PIE11

S(1b lj,乃

r-

7

7π

(、.、)

(2.3)

1
t
 
1

k
T
0t

乃尾

乃E

2

2

P
P

0
 
1π {2

1



The purpose ofour chapteristo infer an approximate a伍netransformation

r from a 即Ven candidate set.1n the best case, T equals to transformation

r. r is the closest transformation t0 旦round truth T/ amon留 a11the candi・

date transformations. An natural way to estimate T is to minimize sAD

FormaⅡy, our purpose can be denoted as

1/=

(2'4)

IYansformations overeach decomposed DF can bemodeled by a GaloiS 6eld

F2,,π is a positive integer denotin旦 the length of binary code and 2π is the

ae]d's size. Elements in F2π are expressed as binary codes. For clarity, we

assume π ofeach decomposed DF isthe same. Each DF's ran旦e isthen di-

Vided int02π discrete se8ments、 T E F20, denotes a geneTal a缶ne transfor-

mation in 6 DFS. Acceptable margin oferror can then be 旦Uaranteed on this

The construction of candidate set wiⅡ be introduced in the section 2.4

However, from Equation 2.4, we can sti11 not ensure that T is close enoU旦h

to T/ because sAD is related with not only transformation but also vari-

ation of template. variation レ 0f template can be de6ned as the sum of

m饌imal di丑erence between each pl and itS 8 nei昌hborS Ⅳ8(PI). FormaⅡy,

紅三mins(1上1動T)

(2.5)

TEF26れ

Large variation means that an ima旦e is not smooth.1n this case, two

Candidate transfoTmations' SAD value wi11 di丑er a lot even they are very

dose. Detail explanation wi11 be discussed 血 the next section

8

Galois Field of A缶ne liansformation

Matching with complete continuous a伍ne transformation set which con-

tains in6.nite C釘ldidates can be impractical, we build a discrete searching

Space accordin旦 to binary GaloiS 6eld to simplify this problem

ACCOTdin8 to HaTtley and zisserman,2003, a 旦eneral a伍ne tTansformation

matrix can l)e decomposed into r = TrR2S凡1, where Rlrepresents matrix

Operation of lst rotation, s is scale operation in x-axis and y・axis, R2 is

2nd rotation, rr is translation operation in x-axis and y-axis. By this

decomposition, we wiⅡ have 6 DFS 即Ven a certain a缶ne transform. TO

Construct a GaloiS 丑eld of a伍ne, we summarize the range of each DF in

Table 2.1

P1モ11 maxqEIV8(PI)

1ム(PO ーム(q)1

f

Σ



transformation

rotatlon

translation

Table 2,1: value ran留es of paran〕eters for constructing a Galois Field of
A伍ne Tra,nsformation

Scale

GaloiS 6eld. The m餓imum elror of rotation is within [一π/2π一1 π/2π一11,

the n〕餓imum error of translation is within l一π2/2η一1,π2/2π一11, tl〕e n〕餓i-

mum error of sca1血冨 is W北hin [(一π;- nl)/πln22π,(π3 一π1)/π1π22π]

To quantify the error between two transfoln〕ations Tl and T2, f0ⅡOwing

folmula is de6ned

ran留e

[0,2π]

[一η.,π司

[里空}π2,π1

alnountStep

2π

2η

Step slze

It has been proved in Korman et al.,2013 (Theorem 3.1) that the upper

Iim北 of 三(T,Tり is associated with three factors in disclete set of a伍ne

Step amount, variation oftemplate, template size. For GaloiS 61ed of a缶ne,

工凡7e can re叉Vrlte

2η

π2

2れ一1

Ξ(11,乃)

Ξ2二三L
η1丁122π

(2.フ)

W北h loose upperlimitation, which may be caused by smaⅡπ1, smaⅡη, or

1鍵三0 ", thoN OX玲船 P0豁ibility th肌三(T,ア)く召(r,ア). Noto th飢 r 玲

the closest transfolmation to T/ in the GaloiS 6eld, not the transformation

Which cal〕 n〕inin〕ize 三(r, r/).1n sucl〕 S北Uation, it is impossible to estimate

the right a伍ne tlansformation by minimizing sAD and wiⅡ not be taken

into account 血 this chapteT.1n orderto avoid such cond北ions, nliS Ⅱm北ed

in the experin〕ents

(2.のIS(1上 lj,殴)- S(1山 lj,乃)1

^

E(チ,ア)三 0(^)
π X π1

An approximate choice of π is needed in order to lin〕it the m獣imum eNor

to an acceptable range. However, size of GaloiS 6.eld grows exponentiaⅡy

W北h the increase of n. Typica11y, when π= 8, the tot田 Size of entire Galois

6eld can be nearly 2.8e14. considerin菖 a personal computer can not a丘ord

Such a lar冨e amount of calculation, we wiⅡ introduce our san]plin昌 n〕ethod

Over F20, in the next section

9
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工OV01・wi訟 Adoptivo sampHng (IAS)

In this section, we W辺 introduce LAS WI)ich aims to achieve a satisfac-

tory error l'ate instead of testing the complete F2九. our method is based

On genetic a180rithm (GA) H0Ⅱand,1975, which is bi010昌icaⅡy inspired

From the perspective of GA, our pToblem can be de6ned as a minimization

Problem of sAD.1n crossover operation of GA, two coded individuals swap

Certain portions W北h each other.1t is a 目ood method to span search space

around a sample point in multiple directions. However, in order to opti・

mize r in such a broad search space, two major problems should be faced

1) how to escape from local optimum、 2) how to controlthe optimization

response tlme

Preservin旦冨enetic variety lt has been ar旦Ued 血 Hutter and Le8曾,2006

that in order to prevent GA from fa11in8 int010cal optimum,宮enetic vari・

ety should be preserved somehow. Although mutation operation can surely

increase the genetic variety randomly, it can also destroy individuals which

are potentiaⅡy to be close to T.1n a broad search space, the probability to

Create a "suitable" diversity is very low and mutation can contrarily slow

down the speed of convergence.1t is worth notin留 that in our problem,

a larae enough number of randomly in北ialized population keeps sU缶Cient

genetic variety for conver部n旦 to r. Durin留 the evolution, selection opera-

tion sucl〕 as Toulette wheel selection is likely to to select individuals which

hold lalge16tness fol crossover opelation. W北h the combination of se-

Iection and crossover,曾enetic variety decreases and the whole population

Converges to an optin〕um solution. However,if an individual happened to

hold smaⅡ SAD (e.g. a C笹ldidate area is aat)血 the early sta8e of evolu・

tion, the whole population wi11 easily laⅡ into a local optimun〕 especiaⅡy
,

When the search space is very broad、 To preserve genetic variety, we select

血dividuals from each sAD level uniformly. Each sAD levelis a discrete

intervalwhich is occupied by a part ofindividuals. with m餓imum sAD in

肌 th 冨eneration de6.ned as S羅。か minimum sAD in 仇 th 区eneration de6ned

as sm. and the number of sAD level de丑ned aS σ, we can de6ne ith sAD

10W1 部[S需伽十(i -1)(S需如一 S羅伽yσ,S羅仇十 i(S羅⑳一 S羅伽)/σ]. E即h

individual which is assi区ned to ith sAD levelshould have a 6tness within

this range.1ndividuals of next 旦eneration are then randomly selected fron〕
each sAD level. The number ofindividualsselected 丘om each sAD levelis

the same.＼入7ith the increase of σ, distribution of sAD in 仇+ 1 gena'ation

approximates to uniform distribution

10
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Fi8Ure 2.2: Heat map ofmatching hequency. ThiS 6昌Ureshowsthe丘'equen-
Cy that each pixel has been used for calculatin今 SAD.＼uith the decrease
Of population number, the total matching frequency reduces while a more
accurate C釘ldidate area can be localized
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ability l 一η.1n our situation,η= 1/e. This also has been pointed out in

Korman et al.,2013

The entire procedure of LAs is described in A1晉orithm 2. A11the trans・

formations r are represented as binary Gray codes in GaloiS 員eld. LAS

runs in multゆle generations, with each 宮eneration i generates a population

Pi. At 6rst 宮eneration p゜ individuals are sampled randomly from F2"

F地Ure 2.3 i11Ustratesthe relation between sAD and the number of accord・

in8 individuals throU旦hout the conver旦ence process. W北h the generation

number grows, the overa11 distribution translates from ri8ht to le丘 as a

result of selection and crossover. The amplitude decreases as a result of

the population bounding scheme. Note that s'1π equals to s'11 and

S2仇+1 equals to S311才2, because the level・wise selection wiⅡ not generate
new solutions
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2.5 Experiments

To evaluate our a1旦or北hm, we use ilna区es from the famous suN database

Xiao et al.,2010, which has been used in evaluating many vision problems

We select 50o ima留es as tests from cate今ory "waiting room" to "ZO0". we

randomly 8enerate a ground truth a缶ne transformation matrix fot each

test image, and make sure that the four corers of para11el0今ram generat・

ed by accordin旦 matrix are a11in the image. pixels in the paraⅡelogram

are then warped to generate the square template.1n our experiment, each
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A1留orithm l Level・wise Adaptive san〕plin曾

Require: Norn〕alized ten〕plate and tar旦et ima8e,11,12.

Require: population number δ ofinitia1 昌eneration.

Require: population bounding paran]eter 入

Require: population number c oflast generation
Ensure: Estimated transforn〕ation r.

L P゜={T小、.、, T'}
2:仇= 0

& whilo lp'仇1 > o do
4: P2仇十1 (剛11 E 〆仇,S(1上1動妥)くδ入仇,S(1上1動刀)
U{S3{11',S翻才り}
P2仇十2 = crossouer(P2机+1)
肌+ 1η1

end whⅡe

Ntu"n r E P'挽n .,t. sq上乃,r)= S語1'

入Ⅲ

O S2中+2 SI. SI,m "hι、

S(11.12.フ)

Fi旦Ure 2.3:1ⅡUstration of sAD's distribution in each 8eneration p. selec・

tion, boundin留 Scheme and crossover on tl)e individuals make the distribu・

tion move to le丘 graduaⅡy, which is the procedure of estimatin菖 T

ten〕plate has a size of loo x loo pixels

E窒ect of parameters:＼入7e observe the change of sAD while chan即ng

the parameter δ and 入. Fi菖Ure 2.4a shows that larger δ Can improve the

Perfonnance of sAD on the ima菖es which are not matched weⅡ Usin8 S・

Ina11er δ. For the lnatchin昌 results which are close enough to the 曾round

truth, it is hard to improve the performance by increasin8 δ. Figure 2.4b

Shows that smaⅡ入 WiⅡ only acl)ieve roU冨h results, because the a1菖oritl)m

Converges too fast befoTe a global optimum is localized.1t is worth point-

in80ut that even the 旦round tluth transformations can have sAD lar区er

than o, because interpolation operations are involved durin旦 the creation

Of templates (warping). Fiom Figure 2.4C, we can 6nd out that our result
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Comparative results: we compare our algorithm with the sate-of-the-art

Inethod FAST-Match Korman et al.,2013. we use overlap error to com・

Pare the accuTacy which aTe de6ned as l-(area(T) narea(T'))/(area(T) U

area(r')) according to pASCAL measure (Everingham et al.,201の. we

Use number of matchin8 tests to compare the e缶Ciency which does not

depend on type of pr0留ramming lan宮Ua宮es and hard devices.1n order to

ensure the comparative results to be fair and accurate, the experiment is

Carried out under the f0110wins conditions:1) No preprocessin又 like Gaus・

Sian blur. Althouah smoothin曾 ima留es wiⅡ Surely improve the accuracy,

it wi11 also bTin8 Complexities when analysing the results.2) set the ap・

Proximation method of sAD as the same, number of sub・sampled pixels

Should be πVε2.3) set the nun〕ber of match血旦 tests as the same.1t is

di伍CU此 to controlthe number of matchin冨 tests of FAST-Match, because

it is dynamicaⅡy determined. we only set its upper limit to avoid n〕em・

Ory leak.4) To keep the simplicity of a1留orithm, restartina an a1旦orithm

Or other similar tricks for in〕provin昌 t}〕e accuracy are not aⅡOwed. From

Fi8Ure 2.5a, we can see that with respect to di丘eTent ima旦es, our method

has a signi丘Cant reduction on overlap elror. From Fi旦Ure 2.5b, we can see
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Fiaure 2.5: comparative results with 50o images. parameters are set as

δ= 116 ε= 3,入= 0.フ,(a) overlap rate error on each test ima8e.(b)
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Table 2.2: Accuracy of di丑erent overlap ertor criterion and avera旦e numbel
Of matching tests

that our n〕ethod is more stable in a1昌orithm's con〕pleX北y. By chan即ng the

Criterion of overlap error, we report accuracy in Table 2.2

＼入le present examples of our lnatching results of Fi昌Ure 2.5a in the supple・

mentary Nlaterial
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2.6 Conclusion

In this chapter, we presented a method to solve a伍ne template matchin区

Problem in GaloiS 6eld、 Fole伍dency, we proposed level・wise adaptive sam・

Pling (LAS) n〕ethod under genetic a1今orithln hamework to estin〕ate only

a sn〕aⅡ fraction of candidate transforn)ations. Experiments have shown

that our a1留or北hm is more accurate and faster than the state・of・the-art

a缶ne template matching method. The drawbacks of our a1σorithm can

be concluded as:1) The smooth assun〕ption limits the application of our

a180rithm. For template with large variation, we have to increase δ.2)

Since GA brin今 about heuristics, there is no absolute assurance that our

a1旦0τ北hm can 6nd tl〕e alobal optim口m by the limited matching tests. AS

the future work, we plan to extend our a1今orithln to projective template

matching problem
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TEMPLATE MATCHING WITH PROJECTIVE

TRANSFORMATION

3.1 Summary

In tl〕is chapter, we address the problem of projective template match・

ing which aims to estin〕ate pa17ameters of projective transfonnation. This

Wotk expands the application scope hom a伍ne tTansformation to projec-

tive transformation, AⅡhoU冨h hon〕0冨raphy can be estimated by colnbining

key・point・based localfeatures and RANSAC,it can h釘dly be solved with

feature・1ess ima旦es or hi8h outlier rate ima留es. Estimatina the projective

transformation lemains a di缶Cult problem due to hi冨h・dimensionality and

Strong non-convexity. our approach is to quantize the paralneters of pro-

jective tTansformation with binary 6nite 6eld and search for an appTOPTiate

Solution as the 6nal result over the discrete sampling set. The bene6t is

that we can avoid seaTchin宮 amon留 a huge amount ofpotentialcandidates

f、.1τthermore, in order to approximate the 810bal optimum more e伍Cient-

Iy, we develop a level-wise adaptive samplin曾(LAS) method under 宮enetic

algor北hm 丘alnework.＼入7ith LAS, the individuals are uniformly selected

丘om each 6tness level and the elite solution 6naⅡy conver昌es to the global

Optimum.1n the experiment, we compare our method against the popu-

Iar projective solution and systelnatica11y analyse our method. The result

Showsthat our method can provide convincing performance and holds wider

apPⅡCation scope

Ch ap ter s

3.2 1ntroduction

Parametric template match血g has been studied for decades as a classical

Problem. Amon旦 diaerent deformation and transformation models, PI0-

jective transformation is one of the most common transformations that

Occurs between ima8es. However, projectivities, which are the transfor-

mations within and between projective spaces, are hard to be estimated

Correctly due to hi冨h-dimensional parameters.1n many real・world match・

加g scenarios, there usuaⅡy exists a projectivity between a template and a

tar旦et ima8e (i.e., source ima旦e) since the projectivity between real object

Plane and template is usua11y di丘erent 丘om the projectivity between real
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Fi8Ure 3.1: Matchin今 examples. As we can see, SIFT十RANSAc can only

handle the 6rst example W北h sli目ht projective transformation while our

method matches aⅡ the 昌round truths we11

GT0山d加th

Object plane and tar旦et image. The purpose of this work is to estimate

the projectivity between two planar images: the template image and the

target ima8e. speci6CaⅡy,in projective template match血旦, each candidate

Projectivity corresponds to a candidate poly今on area in the target ima8e.

＼ve aim t0 丘nd a poly昌on which is most visua11y similar with the template

imaae after eliminatin昌 the e丘ect oftransformation

SⅡT+RANSAC

As a standard framework,10cal・feature-based methods such as slFT and

its variants are very e伍Cie址 to estimate the 2D homoaraphy (projectivity)

between the template and the target. parameters of projectivity can be

Solved by a system of linear equations which can be written from a few

inliers (i.e., correctly matched key points). we can also use method like

RANSAC Fischler a11d B011es,1981 to elim血ate the e窒ects of outliers (i.e.,

血Correctly matched key points). However, there sti11 exist some limita・

tions in this framework:1) For feature・1ess ima宮es,1ike medicalimages,

key points are hard to be detected. without inliers, projectivity cannot be

Solved.2) common local features (e.g., SIFT, ASIFT) are susceptible to

Projective transformationl so it is necessary to design a projective transfor・

mation invariantlocalfeature. A伍ne・SIFT Moreland YU,2009 Can handle

matchin留 With a伍ne transformation but can hardly handle the projective

transformation.3) For ima今es W北h heaⅦ, outliers,1ike noisy ima今es, it is

di缶Cult to estimate the proper pTojectiV北y.1n conclusion, the success of

0山result



feature-based methods depends on the assumption that the n〕atching re-

Sult of key point n〕atchin宮 Consists ofinliers (at least four). F璃Ure l shows

three matching examples

As we aⅡ know, the core drawback oftemplate matching is that it poten・

tiaⅡy requires a hU留e number of candidate samples to evaluate in order to

reach to the 宮10bal optimun〕.1n the case of projective telnplate matchin8,

it exponentia11y requires mole con〕P11tational cost at the tin〕e that more

accurate parameters are required to be estimated. The reason is that ei昌ht

degrees offreedom (DOFS) arerequired for de6ning a projective transforma・

tion. Due to this drawback, few existing works attempt to employ dense

template matchin宮 directly with projective transformation. To make up

for the drawback, how to search the candidate space e任ectively becomes

an essential point in this paper. we quantize the ei昌ht DOFs of projective

tTansformation with a 6nite set and then propose a meta-heuristic method

to approach the 旦10bal optimum e丑ectively. The main contTibutions ofthis

Paper can be concluded as f0ⅡOwin曾

. overa11, this paper proposes a solution to a long standin旦 Problem of

Projective template n〕atchin宮

. we apply b血ary 6nite 6eld to deal W北h very large DOF

.＼入le develop a new selection lnethod ca11ed LAs to preselve the diver・

S北y undel genetic a1菖orithm framework, while keep the e伍Ciency

3.3 Related叉入70rk

The di缶Culty oftemplate matching tasks increase asthe dimension of DOF

宮rows. Figure 3.2 Showssome common transformation models with various

dimensions ofDOF.1n thissection, we mainly survey previous worksinvolv-

ing these geon〕etric transformations. Note that a simplest transformation

model with two DOFS 0111y involves translations of ω・axis and y・鯉is

Euclidean Template Matchin曾

The dimension of DOF is three. Rotation and translation are considered in

this transformation model、 The lesult area in the target 加〕age is rectan-

曾Ular and kept ri8id, Traditional approaches Brown,1992 for solving this

Problem is to compute the correlation between each candidate and tem・

Plate which can be accelerated with fast Fourier transfonnation (FFT)
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◆0、
3 DOF 4DOF

F電Ute 3.2: Template matchin区 tasb W北h di丘erenttransformation models
As the dimension of DOF 8rows, the matchin目 di伍Culty also increases

Eudide田1

Matchi11容

Template 血age

6DOF

Low dimensional DOF a110ws exhaustive searchin冨 to some extent. AISO,

many e丘otts have been done to improve the performance of FFT. Gener-

alized Fourier transform Nair, Raja今Opal, and wenzel,20oo is one of the

alternatives which 0丑ers a relatively robust 釦d fast solution to the match-

in今 Problem. on the other hand, rotation invaliant features are considered

as more feasible 血Stead of exhaustive matchin旦. choi and Kim choi and

W.・Y. Kim,2002 Proposed a method which combines both the projection

method and zernike momentsin two stages. At 6rststage, candidates with

10w cost feature extracted are selected. At second stage, rotation invariant

matchin8 is performed.

A伍11eSinlilari智
MatC1血且MatC11i11g

Targetinlage

8DOF

Projective
MatC11i118

Similarity Template Matching

By involving the overa11 Scaling variable, the dimension of DOF 宮rows to

four. This modelis most widely applied in real-world applications. EX・

haustive searchin留 is n010n8eT feasible due to the broad searchin8 Space

To improve the e伍Ciency of matchin留 Process, Kim et al. H. Y. Kim and

Ara町0,2007 Proposed cascaded alters to exclude the candidates which

hold low probability to be selected as the 6nal result. penate・S釦Chez et

al. penate-sanchezj porzi, and Moreno-N0留Uerj 2015 treat the "proba-

bility" as "matchability", and apply dense convolutional neural network

to learn and predict the matchability in advance. Hence,1ar8e amounts

Of unnecessary computations can be avoid.1n zh田1旦 and AI【ashi,2015C,



the authors introduce a heuristic method which can sample the candidates

adaptively by utilizin昌 the property that the le丘・most bit of a binary・coded

Candidate a丘ects the binary code most signi6Cantly and vice versa. scalin旦,

translation, and rotation are considered in the above works

A伍ne lemplate Matchin目

Fewer works study on the a伍ne matchin8 Since sheatin8 is involved and

the dimension of DOF 旦rows to six、 A伍ne invariant feature Morel and YU,

2009 made a breakt}〕rouah on this problen〕. However, researches on direct

matching are sti11 needed since inliers with A・SIFT can not always l)e guar・

anteed, especia11y for feature・1ess ima菖es. FFT has also been extended for

a伍ne invariant matchina Gundam and charalampidis,2015.1n this work,

template iS 6rst decon〕posed into non-overlappin旦 Concentric circular rings,

and each ring'S FT is calculated. parameters of a伍ne are then estimated

Underthe assumption that rin8S may be rotated with respectto each otl)er

S. Korman et al. Korman et al.,2013 Proposed a method which n)atches

the ten)plate in a very sparse way. A parameter-depended discrete sam-

Plin旦 net is constructed and a branch-and-bound scheme is employed to

Search an approximate solution over the sampling net. C. zhan宮 and T

Akashi zhan曾 and Akashi,2015a proposed a stochastic method to search

the 2D a缶ne parameters e伍Ciently with sAD

Projective Template Matching

With projection involved, the dimension of DOF 昌1'ows to ei目1)t. projective

invariant feature has not been weⅡ developed yet and apply血菖 Common

10cal descriptors directly like slFT wiⅡ lead to a lar旦e alnount of outliers

For direct methods (pixel・based lnetl〕ods), due to the hi8h・dimensionality

and high non-convexity,1imited related literature can be found.1nstead

Of 菖10bal match血g, F. Jurie et al. Jurie 即d Dhome,2002 Proposed a

tracking・based matdⅡn旦 approach which can greatly reduce the number of

Candidates.1t can deal with projective transformation to a certain extent

However, the problem setting in this paper is more close to online trackin旦

Iike zhang, Yama留ata, and Akashi,2015 rather th如 template n〕atching

To the best of our knowledge, OUT work 6rst attempts to solve the global

dense template matchin旦 Problen〕 under projection transformation model
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3.4 Method010留y

Problem Description

TW0 菖rayscale ima旦eS 11 and 12 are given as the input. Each pixel's gray

Value is normalized from l01 25司 to f01 11. Here1 11 represents for πI × 7ι1

template image and 12 represents for π2 X π2 tar昌et image,π1,π2 E N十

For the convenience of denotation, here we assume that both 11 and 12 are

Square ima区es, An arbitrary pixelp E 11is mapped t012 Via projectivity

7 E R4×4 Which wi11 be further de6ned in section 3.4.＼,ve use p' to denote

the mapped pixe1 血 12、

For simplicity, sum of absolute di丘erence (SAD) is used 加 measuTe the

Silnilarity between 11 and a candidate area lc E 12.＼入1北h sAD de6ned,

We can focus on studying the searchin昌 nlechanisn〕 rather than feature

extraction. candidate area lc corresponds to a candidate projectivity 7

Normalized sAD is utiHzed, which can be folmaⅡy de6ned as

乃(Pり1机Σ,'h 1ム(P)
S(1,,1.,カ

The purpose of this paper is to estimate an approximate projectivity テ

Which is a member of a samplin留 Set. T】〕e sampling set can be constructed

by 6nite set F which wi11 be 血troduced in the f0ⅡOwin宮 Section 3.4.1n the

Case of the best resuH is achieved,テ E F equals t0 テ E F. projectivity テ is

the closest one to ground truth T* amon留 aⅡ the candidate projectivities in

F. Because we use a discrete samplin昌 Set oftransformation to approach

the f11Ⅱ Continuous set of transformation, there is a strong possibility that

the best transformation in the discrete sampling set does not equal to the

best transformation in the fUⅡ Continuous set. The best tlansformation in

the fUⅡ Continuous set is the 8round truth 7* and the best transformation

in the disa'ete samplin昌 Set iS 孑, whjch is supposed to be the closest one

t07*.＼入7ith sAD de6ned,テ Can be il〕directly estimated by minin]izin旦 the

SAD

テ=

Geometric Model

In this section, we detailedly de6ne the 7.2D projectivity is widely uti・

Iized in multi-vieW 旦eometTy. The projectivity is de丑ned as a non-sin目Ular

3 × 3 n〕atlix.1t at least needs four pairs of 血liers to solve the eight pa-

rameters (projectivity is a holn0昌eneous matrix and it only has ei旦ht DOFS

(3.1)

釘冨min s(11,12,フ)
テEF
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P血Cゆ田P1田le

Target血age platle

F電Ure 3.3: pin・hole camera model. Template image is placed in world
Coordinate system,it is projected onto the tar留et ima冨e plane by draW血g
the lines throU留h the camera center c. By chan即ng the appearance of
template image in the world coordinate system, various poly今on candidates
Canbeobserved 血thetargetima宮eplane. Tunable parameters of7 includes
rotation r., rv, r幻 translation ω, y, scaling sl, sv and distance of principal
Plane z。. parameters z. and zv are set to zero.
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even it has nine elements). Typica11y, parameters are estimated by and加8

the correspondences between template and target. However, in our case,

it is hard to solve the projectivity directly since we optimize the 7 W北h

the feedback of sAD. Hence, each paralneter must be assigned a mean血8

in our algorithm in order to tune the parameters within bounded ran旦es

Since projectivity is resulted by a chain oftransformations, we decompose

北 into multiple transformation matrices instead of estimatin今 the fused pa-

rameters directly.＼入7e modelthe 7 Under pin-hole calnera 宮eometry AS

Shown in Figure 3.3, varying the ei8ht parameters can chan今e the appear-

ance ofthe template's outer contour observed by the pin-hole camera and
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Table 3.1: List of eacl) parameter's real number ran区e, the step size and
amount in san〕plin曾 Set

Parameter

r乞

r

rz

Range

卸

[一π/2,π/2]

y

[一π々,π/21

Sm

[一π々,π/21
[-m々,πy21

S

in the tar旦etCandidatethuS 冨enerate various FormaⅡy,areas 11na菖e

[ール々,ny21

Z

Step an〕ount

1π,/π動πyπ,1
{πゾ"動πyπ,1

2η

[0,十剣

2π

2π

2π

Step size

2η

7

2π

S乞

π/2"

2η

が野

0

Cosr

0

π/2"

0

S

?12/2π

(π

X

π2/2η

(π.一π.)/mπ辺"

Slnr

0

一π

- SⅡ〕r

0

yπ.切2"

X

0

Cos r

0

Cos rm

WheTe r記, rv, r.紅e the rotation an旦les with respect to eacl〕 axis. paran〕e・

ter l, y are translation paramete玲 With respect to both tar8et ima留e plane

and principle plane. Target in)age plane is para11elto the principle plane

Parameter sl, sv are scalin宮 factors with respect t0 認一axis and y-axis. we

Set ω。 and y。 to zero t}}us the tar昌et image plane is concentric with tl〕e

Prindpal plane、 paran]eter z。 is tl〕e 之一餓is's value of the optical center

D11rin8 implen〕entation, Z。 iS 6Xed as a positive inte昌er since it ca,n be pos-

北ive in6n北y and unlim北able. A reasonable 2。 is hard to be determ血ed

Since lar菖er z。 wi111ead to sn〕aⅡer candidate area in the taTget image plane

and vice versa.1n the other words, not only the scalin冨 Paran〕eters s. and

- SⅡ〕rm

0

0

Cos r之

- sln rz

Sln rm

X

Cosr記

0

2C

0

0

Slnr之

Cosr

(3.3)

ω

X

0y

25

Z

X

0
 
0
 
0

1
 
0
 
0
 
0

0
 
0

0
 
0

0
 
0

1

0
 
0

0
 
0

0
 
0
 
0

0
0
0
1

CyC
認

0
1
0
0

1
 
0

0
 
0
 
1
 
0

0
0
0
1

0
 
1
 
0

0
 
0
 
1
 
0

0
 
0
 
0
 
1

0
 
0
 
1
 
0

0
 
0
 
0
 
1

Z
O

0
0



but also the z。 can a丑ect the size of a candidate polygon. As long asS

the 2。 iS 6Xed, the size of a candidate can be speci6.ca11y tuned by sl and

SV. However, if we choose a relatively large Z山 let us say z。= 1000, the
Size of a candidate wiⅡ be very smaⅡ no matter how we tune the S宮 and sv

W北h血 the 即Ven range {π1/π2, nyπ1]. parameter z。 plays a role on limiting

the extremity of the perspectivities. The decision of z。 depends on the size

Of an object you expect to observe from the tar旦et in〕a旦es in the specif-

ic applications. At the same time, matching 血Signi6Cantly smaⅡ regions

is impracticalin real-world applications. we sU宮gest that the ran留e of z。

Should be determined empiricaⅡy depend on speci6C applications. Each

Parametefs ran8e is shown in Table 3.1

＼入lith 7 de6ned, we can calculate the P丁 by simply multiply the matrices

Note that p and p' aTe Tepresented by homogeneous coordinate, speci丑Ca11y,

P =(P.,P沙 0,1). when calculating the coordinate of p', P' should also be

Converted to hom0留eneous folm, that is, the value offourth dimension in

P' should be normalized to one

Pテ= P7,where p E RI×4 7 E R4×4

Finite Field of projective lYansformation

Matchin目 With complete continuous projective transformation set which

Contains in6.nite candidates can be impractical. To avoid this problem,

We build a discrete set with binary 6nite set. we extend the smaⅡest

丑nite set F2 ={0,1} to F2,, where π E N+ represents the length of each

binary code and implicitly corresponds to t}1e accuracy of san〕.pling,2π

IF2,1. Each 7 E F2π is coded by 7η b北 binary code. parameter over each

decomposed DOF can be discretely sampled by each independent 6n北e set

For denotation clarity, we assumethat π in each 6.n北e setisthe same. Table

3.1 Shows t.he step size and amount when 6n北e set is used to construct the

Samplin留 Set. Each DOF's range is then divided 血to discrete se昌ments

To analyze whether minimiZ加昌 SAD can help the a1冨orithm reach to the

best transformation 血 the discrete sampling set, we discuss what kind

OffactoTs wiⅡ a丑ect the error bound. with Equation 3.2, we can stiⅡ not

ensure the approximate solution テ is close enoU又h t0 〒 due to the drawback

Of sAD. An important factor which wiⅡ a丘ect the "approximate degree"

is the variation u Korman et al.,2013 0f the template. variation u can

(3.4)
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Figure 3.4: a) Example of projective matchin旦; b) Heat map of matching
丘equency ofeach generation lt08 With respect to exalnple (a). ThiS 丑旦Ure
i11Ustrates the frequency of each pixel that has been used to calculate the

SAD durin宮 the match血旦 Procedure. W北h theincrease ofgeneration num・
ber, pixels close to the 810bal optimum are more frequently to be matched

While the totalsum of match血g frequency decrease, which is an important

Prope此y in LAS
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be de6ned asthe sum of maximum di窒erence between each p and its ei8ht

noighb0鵄Ⅳ.(P). Fωm肌ly,

(b)
#Genetauon 8

56000
48000
40000
32000
24000
16000
8000

X

If we refer to simple cases especiaⅡy when template is an edge ima旦e or

Other cross-domain ima今eszhan宮 and Akashi,2015b, applyin冨 SAD directly

WiⅡ lead to a high u, which means that S1地ht ttanslation near the ground

truth area MⅡ yield lar8e di丘erence (i.e., the solution space is not smooth)
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In order to qualify the di丑erence between two candidate projectivitieS 71

and 72, we introduce the f0ⅡOW血昌 Projectivity error

Ξ(乃,乃)= 1Sq上lj,η)- S(1L lj,乃)1

R has been addressed in Korman et al.,2013 (Theorem 3.1) that the upper

Iim北 of 三(デ,?・*)is associate with t}〕e size oftemplate, variation oftemplate,

and step amount.1n our condition,

Larger u, smaⅡer π1, smaⅡer π WiⅡ 10osen the upper bound of Equation

3.フ. with loo.o uppa bo゛nd, thoN OX玲橘 0郎o th飢三(テ,,、)くΞ(テJ*)

While テ is far away from テ in the transformation space.1n this case, min-

imizina the sAD only can never reach to the lnost approxin)ate candidate

血 the sample set. To avoid this case, we limit πlin this paper since the

Variation u is uncontr011able and π Should be reasonably smaⅡ Considerin旦

the computational cost. AS πlis the si2e of the template, we can 6X it to

avoid to be too sma11 (e.旦.ウπ1 > 100), Typica11y} in our implementationづ

8. The size of the samplin旦 Set iS 27π剣 7.2 × 1016. obviously,We set π

it is haTd foT a personal computer to aaord such a lar区e-scale computation

task.1nstead of eva]uatin旦 each sample exhaustively, we propose LAs to

adaptively select the samples to evaluate, which wiⅡ be 加troduced 血 the

next sectlon

Ξ(テ1、)< 0(ーーエ)71127π

(3.の

Ievel・wise Adaptive samplin旦(IAS)

In thjs section, we introduce LAS W}〕ic}) ailns to reach the approximate

Solution instead of testing the con〕plete F27π. To optimize 7 based on the

Complete Fが九, two main problems should be considered:1) How to escape

from local optimums; 2) How t0 旦Uarantee the optimization response time

Because our methods is based on the 8enetic a1菖orithm (GA) framework

H0Ⅱand,1975, we 血her北 terms of GA such as population,旦eneration, etc,

Which are brieay introduced as f0ⅡOwin8

(3.フ)

. An individualis a candidate transformation to which the sAD func-

tion can be applied

. A population is a set of individuals

. Each successive population in an iteration is caⅡed a 曾eneration
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● Diversity refers to the average distance between individuals in a pop・

Ulation

● Crossover iS 区enetic operator to recombine portions of individuals

LAs reduces the population number as the 宮eneration number 宮rows and

the individuals are selected uniformly 丘om each level of 6tness value. At

丑rst, we refer to a simple example in ordeTt0 即Ve outthe whole operational

impression of our method, which is iⅡUstrated in Fi8Ure 3.4. ThiS 68Ure

i11Ustrates the heat map of each pixel's matchin旦 frequency througl〕 gener-

ation one to ei晉ht, we can observe two important properties of LAs fron〕

thiS 丑冨Ure: A) The totalnumber of matchin8 丘equency decreases with the

increase of 昌eneration nun〕ber, which n〕eans that the computational cost

has been adaptively reduced; B) The number of matchin8 丘equency with

respect to pixels which are close to the global optimum increases, which

means that our algorithn〕 adaptively selects "hopeful" samples to evaluate

rather than exhaustive sealchin昌

For problem l): preserving diversity lt has been ar旦Ued 血 Hutter

and Le留留,2006 that diversity should be preserved somehow if we want

to prevent GA fron]. faⅡing int0 10cal optimun〕S. Mutation opel'ation can

increase the diversity randomly and has been regarded as a typical process

in GA. However, n〕utation can also randon〕1y destroy individuals which

are potentia11y closin昌 t0 テ.1n a broad search space, tl)e probability of

曾eneratin8 a "just ri菖ht" diversity is very low and the mutation process

may slow down the speed of convergence and be counterproductive.1t is

Worth notin留 that 血 Our problem, a lar菖e number of randon〕1y initialized

individuals is able to keep sU缶Cient diveTsity for the a1σorithm converging

t0 テ. ThroU昌hout the evolution P王Ocess, classicalselection method such

as roulette wheel selection is more prone to select individuals which hold

SmaⅡer sAD for crossover operation.＼和ith the combination of selection

and crossover, diverS北y decreases and the whole population converges to

an optimum solution, However, if an 血dividual happened to hold smaⅡ

SAD (e.8., a 丑at candidate a.rea) at the early stage of evolution, then the

Whole population wiⅡ faⅡ into a local optimum easily, especiaⅡy when the

Sample space is very broad

As a key to solve this problen〕, we select individuals fron〕 each sAD level

Uniforlnly. Each sAD levelis a discrete interval which is occupied by 8.
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Part ofindividuals. W北h maximum sAD 血肌 th generation denoted as

S;1αか minin〕um sAD in m th 8eneration denoted as S二liπ and the number

Of sAD level denoted aS π1, we can denote the ran旦e of i th sAD level as

IS濡伽+(i-1)(S需叩一 S羅伽)/π1, S祭仇十i(S;1⑳一S需,)ml]. E誕h indiⅥd如1

Which is asS喰ned to ith sAD levelshould hold a sAD value within this

range、 1ndividuals of next 留eneration are then r釦domly selected from each

SAD level. The nulnber of individuals selected from each sAD levelis the

＼刃北h the increase of π1, distribution of sAD in 机十 1 冨enerationSalne

approximates to uniform distribution

F北ness uniform selection scheme (FUSS) is proposed in Hutter and Leag,

2006, which selects a 6tness value uniformly at 丑rst 鉱ld then randomly

Select the nearest individual. The di丘erence is, LAs can controlthe degree

Of uniform approximation by π1, which can directly a任ect the convergence

Speed. Fuss wiⅡ take a lon旦er tin〕e to conver旦e, because the individuals

With hi8h atness in Fuss make up only a smaⅡ Percentage of overaⅡ indi-
Viduals

For problem 2):1imiting population size. Evaluatin菖 a lar留e size

Of population at initia1 昌eneration is very important to avoid to faⅡ into

10cal optimum. However, evaluatin宮 entire generations with same popula-

tion size is time consun〕in留 and not practical. To accelerate the evolution

Procedure, we wish to rule out the candidate individuals which hold high

SAD score.1nstead of determining a 6.xed threshold, we learn a thresh-

Old at each 菖eneration which can rule out a ce此ain fraction (入 Percent)

Of individuals. Learnin旦 Procedure is to adjust two constants a and β in

diaerent order of ma8nitude such that s(11,12,フ)< 0.1 X α十β holds for

入 Percent of the individuals. speci6Ca11y, parameters a and β are initial・

ized to o, thus the threshold is initialized to o'1 × 0 + 0 = 0. paran)eters

α釦d β飢o inoN郎od by looP■[0.1,0.2,.「 0,9]釦d [0.01,0.02,.「 0.11
#{iπdiuidu0ι引SADくh.'hold}

respectively, and the value of object function #iηdiuidUαιS

is observed. when the object function stops reducin昌, the best threshold

is achieved.1nvolvin旦 the limitin宮 Scheme, the number of match血区 tests

that LAs requires can be represented as

Paran〕eter δ is the population size of initia18eneration. parameter c is a

Sma11 Constant which denotes the population size of the last 区eneration

δΣD 入i,δ入仇> C
7n

i=0
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The time colnpleX北y then can be ensured as lon宮 as the paran〕eters are

Predetermined

Approximation of sAD: Each matching test with respectto a candidate

Projectivity has a time complexity of o(π1). To speed up each matchin曾

test, we wisl〕 to inspect only a smaⅡ fraction of pixels instead of the entire

Pixels in template. we sample pixels at an equalil〕terval on both width

and heigl〕t oftemplate by a parameter ξ to reduce the time con〕plexity to

0(πVε2)、 The Equation 3,1Can then be rewrote asf0ⅡOwin曾 ifthe number

Of samplin昌 Pixels is enoU旦h

Accordin8 to chern0丘 bound, the number of samplina pixels should be

10g(Vη)π;/" if wo W玲h ls(1b l.,カー S(1{,1iJ)1 <'/η, h01心 With pmb・

ability l 一η.1n our situation,η= ve. This also has been pointed out in

Korman et al.,2013

S(1上 1.,力郎 S(11,1.,カ,1111

The entire procedure of LAs is described in A珸0τ北hm 2.11〕 roW 40f the

algorithm, u means uniform and sql,12,?、i)~ U(S机iπ, S机。り indicates

that the value of sql,12,7i) is equaⅡy likely to be observed 丘om S机伽 to

S挽。., which reaects that individuals a.re equa11y sampled 丘om each sAD

Ievel. A11 the pTojectivitieS 7 are represented as binary codes in 6nite

Set. LAS I'unS 血 multiple 冨ena'ations, W北h each generation i 8enerates a

Population pi. At arst 留eneration p゜, individuals are sampled randomly

from F2π, Figure 3.5 iⅡUstrates the relation between sAD and the nun〕ber

Of according individuals throU旦hout the conver旦ence process. with the

留eneration number 旦rows, the overa11 distribution translates fron] right to

Ie丘 as a result of selection and crossover, which also means that sAD of

the elite decreases. on the other hand, the amplitude decreases as a result

Ofthe population limit血g scheme

(3.9)

3.5 Experiment

Experiment Environment

We construct a benchmark inher北ed fTom the benchmark used in zhan宮

and AI{ashi,2015a to evaluate our method. The ori旦inalima今es are from

the famous suN dataset xiao et al.,2010. Each test in〕age in this bench・

mark corresponds to a r田}domly 宮eneTated projective transforn〕ation with

Z。= 30. To generate a random projectiV北y, at 6rst, four points within a
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A地orithm 2 Level・wise Adaptive sampling

Require: Template and target image,11,12

Require: population size δ of initia1 曾eneration

Require: population limiting paran)eter 入

Require: population size c oflast generation
Ensure: Estimated transformation テ

L P゜={,0,.「乃}
机=0

Whilo lp'ml > o do
(η1η E P翫,S(1bl.J、')< 0.1 ゞα十β,S(1上lj,η)~P27n+1

U{S3翻が,S語才り}
P2m+2 = crossouer(P2机十1)
机十17n ^

end while

return テ E P2仇十2 S.t. sql,12,テ)= S語12

test ima曾e are selected. secondly, we warp the poly80n constructed by four

Points into squale template、 we avoid t08enerate polygons w}〕ich have too

Sma11 area. overaⅡ, there are loo pairs of template and tar区et in〕a8es in

this benchn〕ark with various ima8e size、 AⅡ the 旦round truth boundin宮

boxes are de6.ned by the four points which are randomly selected at 6rst

We apply overlap rate to judge whether a matchin曾 result is successful by

referrina to the 留round truth. speci6Ca11y, PASCAL criteria Everingham

et al.,2010 is used to calculate the overlap rate

紅田(BB光nBB少)
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.N飢BB祀UBB,D

Where 召Bπ means polygon bounding box ofresult and BBgtlneans poly-

gon bounding box of 旦round truth. area(・) is a function to count number

Of pixels. Based on the overlap rate, we can determine whether a matching

result is correct or wron8 by setting a threshold. speci6CaⅡy, we have

> thresholdOvera ra e

Overlap rate

FinaⅡy, Success ratlo

terlon

answer

Comparison

To the best of our knowledge, SIFT and 北S invariants are the most stable,

and widely・used feature descriptors in dealing with viewpoint chan8es dur・

血8 matching problems. HoweveT, they can only handle smaⅡ Viewpoint

#{answerlanswer = 1}/#test as the accuracy cri・

(3.1の

(3,11)
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Chan昌es which mean a very narrow range in the projective transformation

Space. Although con〕paring with slFT is not fair since it is not a con)pletely

Projective invariant feature, we take it as a baseline method. Figure 3.6(a)

Shows the success curves of our method and slFT十RANSAC.＼入7e ina'ease

the threshold of overlap rate in 影一餓is while observin留 the chan留e of suc・

Cess rate. As we can see, the success Tate keeps lar旦er than 90% untilthe

threshold 8ets to o.6. Even when the threshold is limited to o.9, which

is very strict and visuaⅡy make li桃le di任erence between result area and

ground truth area, we can reach a success rate of 60%

On the other hand, we compare the sAD value a留ainst 8round truth case

by case, which has been shown in Fi旦Ure 3.6(b). since we generate ten〕・

Plates by warpin冨 tl〕e polygon area which is determined by four Tandomly

菖enerated points with interpolation, the s(11,12,フ*) cannot exactly be ze・

ro. Except severalima旦es which are misn〕atched, most of the test ima菖es

Show close sAD value with the 菖round truths

E丘ect of parameters

Several parameters are considered most likely to a任ect the success curve

They are δ1 ξ1 ε1 π1,入 and σ as shown in the caption of Figure 6.5 and

Previous content. To analyse how each parameter a丘ect the success curve,

We 6× other parameters while observin旦 one paTameter. AⅡ the results

are achieved under a same random seed. Hom Figure 6.5(a), we can see

th飢 at least l,5 × 106 initial population size is needed in order to provide

acceptable performance.＼入7北h bad initialization, t}1e algor北hm is easy to

faⅡ int0 10cal optimun〕s since the crossover operation can only genelate

new il〕dividuals covering a sma11 ran8e around each individual.1n other

Words, the " gap" between individuals in the 負rst generation are large when

δ is sn〕aⅡ, n〕any candidates in the "留ap" are hard to be reached which may

Contain the global optimum. Froln Fi旦UI'e 6,5(b), we can see that crossover

Tate does not a丘ect the success curve much and the best pelform雛Ice can

be achieved when ξ= 0.8、 From Figure 6.5(C), we can see that tl〕e best

Pel'formance is achieved lvhen εissmaⅡest、 However, the accuracy does not

reduce in proportion to the the decrease ofε, which means that takin昌 n〕ore

Pixels'information into account when calculating sAD does not guarantee

the improvement of accuracy. From Fi留Ure 6.5(d), we can see that the

Ievels of sAD does not a丘ect the accuTacy much. From Figure 6.5(e), we

Can see that the accuracy improves in proportion to the the increase of 入
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High 入 means that the decay rate of population size is smaⅡ and lar留er

amount of individuals wi11 be evaluated. Hence, high 入 results in better

Performance. considerin留 Computational cost, we set 入= 0.7 in F珸Ure

3.6. From Figure 6.5(D, we can see th飢 like many matching problems,

Smooth parameter has great inauence on accuracy. An appropriate choice

3.0IS O'
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Fi菖Ure 3.10 shows some examples ofsuccussed lnatchin8. we can observe

that even feature-1ess templates or drasticaⅡy warped can be coTrecdy

matched

Noise-tolerance Experiment

In this section, we W辺 Check how our a1冨orithn〕 deals with Gaussian noise

It is important to see at which levels of noise the method can stiⅡ Work

in order to test the robustness to real-world n].atchin留 Conditions.＼入lith

Gaussian noise, each pixelin the image 圦dⅡ be chan昌ed from its ori即nal

Value by a sma11amount. A histogram, aplot ofthe amount of dist0此ion of

a pixelvalue a8ainstthe 丘equency W北h which it occurs, shows a Gaussian

distribution of noise. The level ofthe noise is contr011ed by the expectation

(set to o in tl)e experiment) and the standard deviation (set to [0.01,0.03,

、,0.09] of Gaussian distribution.＼入7e apply the parameter settin冨 for

Plottin昌 Fi8Ure 3.6 to match and draw curves of each noise leve1 血 Figure

3.9. Fiaure 3.8 Shows the i11UstTation of diaerent levels of noise 雛ld the

Corresponding matchin曾 results、 Froln Fi冨Ure 3.9, we can see t}〕at with the

increase of noise, the matchin曾 accuracy decreases. However, even with

the heaviest noise, our algorithm can stiⅡ achieve a Auc of o.67, which is

better than the Auc of applyin8 ASIFT without any noise (AUC=0.65)

that has been shown in Fi留Ure 3.6

Processin宮 Time

In this section, we provide processin旦 tin〕e oftwo kinds of parameter settin曾

as a reference in Table 3,2. we test the processin曾 time of our unoptimized

Code with a laptop equipped W北h lntel core i7-460OM 2.90GHz cpu and

16 GB RAM. From Table 3.2 We can see tl)at increasing approxilnation

PaTan〕eter ε Can drastica11y reduce the processin区 time, while keep a sat-

isfactory matching accuracy. Each template's size is loo × 10o pixels and

each target image's size iS 320 × 240 pixels during the test.1n real・world

applications, we can further reduce the pTocessin8 time by limiting the ex-



tremity of the plojectivities.＼入7e can limit the r田)昌e of paran〕eter s., S

and espedaⅡy z。 to lim北 the extremity ofthe projectivities. For a speci丑C

application, we can empiricaⅡy determine the ran昌es of these parameters

to get rid of redundant candidates that wiⅡ never appear in real world

Table 3.2: Avera8e processin旦 tin].e of tuned paralneter settings

AUC

0.88

0.83

Processln8

3.6 Condusion

11〕 U〕is paper, we propose level・wise adaptive san〕pling (LAS) to optimize

ParameteTs of projective transforn〕ation in template n〕atchin留 Problem-

S. At 6rst, we use binary 6nite set to construct a discTete sampling set

TI〕en, instead of exhaustive searching, LAs selects the individuals in dif・

ferent 6tness levels and thus can preselve the dive玲北y better and help the

a1宮orithn〕 to converge to the 晉10bal optimun].. The results on the bench-

mark show the e伍Ciency of our method and many practical applications

Can be expanded based on this

206.4 Sec/ima8e
59.5 Sec/image

t11ne δ

1062.5 X

g

0.8

On the other hand, sevelal drawbacks of this method can be concluded

as:1) Due to smoothness assumption, template with hi昌h variation value

Can cause failure in matchin8.1ncreasing initial population size can solve

Problen〕 ifreducin留 Con〕putational cost is not a priority.2) severa11ninutes

(1~3 minutes) are needed for producin留 a result with the best-performance-

Palameters and in〕ages in the bencl〕malk. There stiⅡ remains distance

away fron〕 real-tilne applications. As the future work, we aim to accelerate

the algorithm and expect real・world applications

ε πι 入

0.フ

ξ

3.0
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initialized randomly in total. Better solutions are closer to the ori即nal
Point with lower sAD value. As a result ofrandom process, W'e observe an
elite individual with sAD value around o.015. b) Accordin今 to the initial
Iimiting threshold 入,individuals which hold sAD value that is lar菖er than
入 are excluded in further stages. FU此hermoTe, with the operation of LAS,
Samples distribute approximately uniformly with respect to sAD levels. C)
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method. SIFT+RANSAc obtains a poor performance since slFT feature

is not projective invariant. ASIFT十RANSAc achieves better performance
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Parameters shown in the sub-caption. Auc stands for avera旦e accuracy of

the success curve. b) comparative results on sAD value between 旦round
truth and our method. Ground truths also produce unavoidable sAD due

to interpolation. The sAD value of our method is very close with the

菖round truth sAD.
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the level of noise by increasing the standard deviation of Gaussian from
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ROBUST NON、PARAMETRIC TEMPLATE MATCHING

WITH LOCAL RIGIDITY CONSTRAINTS

4.1 Summary

In this paper, we address the problem of non-parametric template match-

in8 Which does not assume any speci丑C defoTmation models.1n real-world

matchin8 Scenarios, deformation between a template and a matcl)ing re-

Sult usua11y appears to be non-rigid and non-1inear.＼入7e propose a novel

approacl〕 ca11ed local ri部dity constraints (LRC). LRc is built based on

an assun)ption that the local ri即dity, which is referred to as stTuct11ral

Persistence between image patches, can help the a1菖OTithm to achieve bet-

ter perforn〕ance. A spatialrelation test is proposed to weight the ri即dity

between two ima留e patches.＼入lhen estimating visualsimilarity under an

Unconstrained environment, h珸h-1evelsimilarity (e,宮. W北h complex geoln・

etry transformations) can then be estimated by investi冨ating the number

Of LRC.1n the searching step, exhaustive matching is possible because of

the simplicity of the a1旦0τ北hm. Global maxin〕um is given out as the 6nal

matching result. To evaluate our n〕ethod, we carry out a comprehensive

Comparison on a pul〕1icly available benchmark and sl〕ow th飢 Our method

Can outperform the state・of・the・art method

Chapter イ

4.2 1ntroduction

Telnplate matchin曾 has been studied as a classical problem for a nun〕beT

Of decades. current techniques can n〕atch template with similar candidate

W血dows in the taτ旦et ima8e while estimatin8 translation, rotation, a伍ne

transformation and even some re留Ular deformation. However,in real-world

applicatiの婦 Such as online tracking K. zhan旦, L. zhan区, and Yan昌,2012;

C. zhang, Yan〕agata, and Takuya Akashi,2015, the fore8round n〕odels in

the templates usuaⅡy deform complexly. such deformation can hardly be

modeled mathematica11y since the result in the taτ留et image is projected

from the template a丘er involvin曾 fusion of 3D transformations. Further-

more, externaHnauences, such as occlusion,iⅡUmination chan8e, and back-

旦round clutter wi11increase the degree of non-1inearity and the di伍Culty of

template n〕atching
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T勧 1駄e

Figure 4.1: Matching example and its local ri今idity constraints (LRC)
Which are 留enerated by our program. Template area is predetermined W北h-

in a reference ima今e. Result area is represented by red rectan今le,昌round

truth is presented by 今reen rectangle in both tar宮et image and likelihood

image. Dotted linesrepresent the corresponding LRC W北h 3 × 3 Pixelri部d
Patches

The drawbacks of existing parametric template matchin今 frameworks can

be mainly summarized as:1) Dense matching at pixel-1evelis usua11y nec-

essary in order to estimate more accurate parameters, which requires a lot

Of computin旦 Costs; 2) 1n the case of heavy occlusion, the ocduded part

may drastica11y a丑ect the whole similar北y score and lead to mismatch; 3)

A lar今e number of parameters may need to be estimated w'hen complex

ttansformations occur, which is very di伍Cult due to high-dimensiona1北y

and stron今 non・convexity. These drawbacks limit the scope of applications

and increase the dependence on environment

As a common solution, histogram matchin宮(HM) plays an important role

in non・parametric template matching. HM can deal with the deformable

matching problem by disre8ardin昌昌eometric relationship between pixels

However, we ar冨Ue that disre宮ardin旦 geometry completely may increase

the number oflocal optimums and thus increase the level of non・convexity

When partial occlusion occurs to the tar宮et object, the template is also

easy to be mismatched to a local optimum sato and AI【ashi,2015

In this paper, we address the import即Ce of local rigidity constraints. AS

a circle can be approximated by many ri冨id strai8ht lines, most of the ob・

jects can be approximated by rigid patches if the size of each rigid patch

is sma11 enoU宮h. Fi冨Ure 4.1 Shows an example of matchin8 result with an
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^^^
^^^
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^^
^^
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F珸Ure 4.2:2D and 3D ri又idity W北h i11Ustration examples. a) Each rect・
an今le holdS 2D local ri宮idity, since no deformation occur, ri即dity can be
Preserved we11in the tar留et ima冨e. b) Each cube holdS 3D local ri即d・
ity Due t0 3D transformation, each cube of result in the tar8et image
Changes its appearance compared to the template. Hence,3D ri8idity is
more di缶Cult to be preseTved in 2D ima菖es

athlete.＼入le specify a region of interest (ROD as a template in the refer-

ence image which is taken at a runnin昌 race. As the race progresses, the

appearance ofthe athlete continuously chan留es. By decomposing the tem-

Plate and the result int03×3 Patches, we can 6nd that althoU8h the alobal

appeara11Ce has been changed (e.昌. hands, head,1e菖S and background),

many patches sti11 have corresponding relationships between the template

and the result. Two patches and their corresponding relationship together

form a constraint w'hich implicitly reaects the inherent characteristics of

the object.1t is worth pointin80ut that there mainly exist two kinds of

rigidity, which have been i11Ustrated in Figure 4.2. object holdS 3D ri即dity

appears to be 血Variant in 3D space while chan宮es appearance in 2D image

due to pTojection. Hence, it is di伍Cult to modelthe 3D ti8id北y and we

Only utilize the 2D ri部dity in this paper.

By applyin区 the ri部dity, we extend a non-parametric template matching

framework Dekel et al.,2015 named Best・Buddies (BB) similarity. The

main idea of BB is that a pair of points plays an important role in esti-

mating the similarity when each point is the nearest nei今hboT ofthe other

We apply BB to de6.ne the corresponding relationship between tw'o ri今id

Patches.
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4.3 Related叉入70rk

In this paper, we n〕ainly focus on the problem W北h sin冨le template and

Sin菖le result. cross-domain matching c. zhang and Takuya AI{ashi,2015b

is not considered in this paper (e.昌. template is a sketch ima昌e while

result is an RGB image)、＼N'e survey previous works and contributions in

this section.1n section 2.1, we conclude the basic distance measuren〕ent

methods ofsin〕ilar北y. These methods are widely applied in the applications

Of template matching, which wiⅡ be sumn〕arized in section 2.2 and 2.3

respectively in terms of usin曾曾eometry model or not using

Visual similarity Estimation

As the most imp0此ant component in template matchin8, popular direct

methods such as sum of absolute di丘erences (SAD), sum ofsquared di丘er・

ence (SSD), normaHzed cross・correlation (NCC), and zero・means normal・

ized cross・correlation (ZNCC) have been widely applied Lucas, Kanade, et

al.,1981; C. zhan冨 and Takuya Akashi,2015a; Di stefano, Nlattoccia, and

Tombari,2005. Due to the computational e伍dency, direct methods are

SU北able for dense matchin宮. on the other hand, feature-based n〕ethods,

Such as slFT Lowe,2004, ASIFT Morel and YU,2009 are very e丘ective

especiaⅡy dealing with rotation, scaling, and simple transfonnation. HOW・

ever, feature・based n〕etl)ods are usuaⅡy h喰h・din〕ensional(e.旦. SIFT is

typica11y 128・dimensional), it is ine伍Cient for dense match血且 and is usual・

Iy employed wit11 key points,1t has also been discussed in Tuytela飢's and

Mikolajczyk,2008 that the most dama即ng e丘ect on the match血g results

Of keypoint-based local features are the non-planarities or non-rigid defor-

mation, which abound in our testing ima留es. To cover the advantages of

both direct n〕ethod and featule・based method, Dekel et al. Dekel et al

2015 found an 血trinsic relationship between tw0 今roups of points, thus can

reduce the outlier rate without increasing the nun〕ber offeature dimension

Parametric Template Matchin旦

Lucas, et al. Lucas, Kanade, et al.,1981 Ploposed paTametric optica1 且OW

to estimate inliers between a ten〕plate and a target. FU此her developed

by feature-based n〕ethods, Lucas and Kanade'S 丘amework has becon〕e an

essential approach in n〕any n]atch血昌 Problen〕S. combined with RANSAC

Fiscl〕1er and B011es,1981, parameters of transforn〕ation can be estimated

However, a sU伍Cient number ofinliers (i.e、, distinct features) are necessary
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in order to estimate the parameters. on the other hand, although a伍ne

Or projective transformation can be calculated by solving a system of lin-

ear equations, parameters of non-ri部d transformations are di伍Cult to be

Calculated. C. zhan旦 and T. Akashi c. zhang and Takuya Akashi,2015a

Proposed a stochastic method to seaTch the 2D a伍ne parameters e伍Ciently

W北h the 6tness function of sAD.1t is also di缶Cult to be applied in real

images since the real-world transformations are n〕ore complex. D. J. Tan,

et al. Tan et al.2014 mode11ed the 2D deformation with cubic B・splines

Lar留er number of control points are required if more complex deformation

Want to be matched、 overaⅡ, to the best of our knowled留e, n〕ost of the

P紅ametric methods can hardly be applied to "wild" ima留es which n〕ay

Contain incalculable and unpredictable deformation

46

Non-parametric Template Matchin留

It is more e伍Cient and feasible to desi8n deformation-invariant features

instead ofestimating the speciac parameters when matching W北h the real-

World deformation. Despite hist0旦ram matching swain and BaⅡard,1991;

UⅡah and Kaneko,2004; comaniciu, Ramesh, and Meer,2000, D. P. Hut・

tenlocher et al. Huttenlocher, Klanderman, Rucklid留e, et al.,1993 desi8ned

a distancefunction which n〕easuresthe levelofmismatch between two point

Sets. The distance is calculated when point ofset A is the farthest from any

Point of set B and vice ve玲a. This idea is qU北e similar with Dekel et al.,

2015. The di丑erence is, instead of calculating the farthest distance, Dekel

et al、,2015 Counts the number of matdles which satisfy t11e condition: point

Ofset A isthe nearest froln any point ofset B and vice versa. Y. Rubner et

al、 Rubner, Tomasi, and Guibas,20oo intloduced a function nalned Earth

Mover'S Distance (E八ID) to measure the minimum cost that must be paid

from one point set to another. EMD aⅡOws partial matches, WI〕ich means

北 is robust W北h occlusion and clutter. D. simakov et al. simakov et al

2008 Proposed bidirectionalsimilarity (BDS). BDs considers two point sets

are similar if aⅡ Patches of set A are contained in set B and vice ve鵄a

It is worth pointin留 Out that the term "10cal rigidity constraint" has also

been used by Loecb et al.,2004 and related ima昌e registration pape鵄

However, the dean北ion is quite di丑erent with our method since in Loecb

et al.,2004,10calri部dity constraint is treated as a penalty term ofthe cost

function, which is based on Jacobian matrix,1n our paper, IRc is treated

as a one・to-one map lim北ation (i.e、 restriction) between a rigid patch of



template 田ld a ri部d patch of candidate

4.4 Method010宮y

TWO C010r ima曾es are 即Ven as the input W北h each pixel and each channel

normalized to [0,1].1r is de6ned as Tw x rh pixeltemplate ima冨e extracted

fron] a reference image and ls is de6ned as a sw x sh pixeltar旦et ima曾e

(i.e. source ima旦e). Each Ti即d patch is de6ned as a s x s pixel square

Patch. TW. Th, SW, sh, S E N十. A candidate lc in tar区et ilna昌e ls is an R01

de6ned by asearch window. F0ⅡOwingthetrad比ionalslid血σW血dowsearch

method, we have candidates arran留ed in order from top le丘 to botton〕

rigl〕t in the tar今et image. To clarify the meaning of reference, tar今et, and

template image, we de6ne them as f0ⅡOwin8:

Reference ima旦e: Base image fron〕 which a template is cropped

Template ima曾e: A region cropped 丘om the reference ima旦e manuaⅡy,

and holds semantic mean血旦(usuaⅡy an object) for matching with similar

Objects in t11e tar留et image

Tar宮et image: Also known as souTce ima留e, is an ima旦e in which the

Object described by template exists, but may change 血 appearance due to

internal and exteTnalinauences

Problem The pToblem ofthis paper C田l be de6ned as

釘gm餓LRCS(1r,1C), (4.1)
ICEIS

Where LRCS(1T,1C)is a function to estimate the LRc similar北y between a

telnplate and a candidate, which W辺 be introduced in the f0ⅡOW血曾 Section

Feature of local Rigid patch

Feature vector of a rigid patch is denoted by

(4,2)

Where ι, C, G are feature spaces. Pι E R2 denotes a patch's center location

in image l. sped6CaⅡy, pl represents x-axis value and Pξ represents y

axis value. PC E RSXSX3 denotes a patch'S C010r feature (e.g. RGB). PC

represents a patch's spatial structure. The dimensionality of pG depends

On t11e presentation of spatial structuTe.1n this paper, PG E R'X'×3

Deanition l The oper飢or to investi曾ate a nei昌hbor pixeys feature value

is denoted by e.,V.ω,y is the relat武妃 Coordinate to the location of cor・
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template

Pf = 1f'

RGB C010rspace
丁.+『〒一 rユ+デ1 -,.1+ 1,3 ーデ') 8

Figure 4.3: A simple case of calculating spatialfeature in R channel where
S = 3, C = RGB,ω(・)= 1. PG is calculated by only investigating the
relationship between 8 nearest neighbors.

Spa廿田fea仙eofi廿ld血e11Sion

1, and pf is the featurerespondin目 Pixel. speci6Ca11y, when ω 1, y ^^

Value obtained at (2,2) in the ima今e coord血ate, then [pf]エ,y equals to the
feature value of the same dimension i w'hich is located at (3,3).

With De6nition l in m血d, W'e represent a patch's spatialfeature by inves-

tigating the relationship between each pixelin the patch and its neighbor

Pixels.
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Pf = 1φf]ψ.),ψ,)一印fl一ψ.),01/8

+1ゆfl-"(究),岻η)ー[pf]0,一岻η)V8
(4.3)

十1舮fl一ψ"),一岻η)ー[pflo,岻η)V8

+1舮f]岻,,),ー"(T,)一φf]岻,,),01/8,

Where ω is a linearfunction to dynamica11y determine the neighbor pixelsto

investi昌ate according to the template's size.1nstead of 6Xina the position

Of nei菖hbor pixels to investigate (e.g.10cal binary pattern), we change the

Position dynamica11y based on a simple fact: the size ofri部d parts depend

On the size of object 血 the template

The desi今n of pG is important since w'e can con6rm how' the complex de-

formation a任ect the patches by check血g the spatial structure feature in

both template and candidate ima8es. To gain more 血Sightinto the featuTe

desi8n, we refer to a simple case when s = 3, C = RGB,ω(・)= 1. Figure

4.3 i11Ustrates this case

Rspace

De丑nition 2 The operator to calculate the feature distance between two

rigid patches is denoted by 11・,・11、, which is de6ned as:



十W。11PC - qC1惨十 W,ゆG - qG1惨,

Where fl and f2 are the feature vectors oftwo ri冨id patches. W厶 W山 W E R

are the wei区hts of each feature space, These weights balance the feature

Space to describe better appeara11Ce model of a template、 1n the experin〕ent

Of paran〕eter analysis, we wiⅡ Comprehensively study how the wb Wビ and

W a丘ect the performance.(each ofthem is varied from o.5 t03、の

工Ocal Rigidity constraint similarity

With the distance between two feature vect0玲 de6ned, we can estimate

the similarity between 圦Vo ri即d patc}]es. F0ⅡOwin冨 traditional method

Such as sAD, we may estin〕ate the sin〕ilarity between telnplate and candi-

date by usin昌 the sum of patches' distance. However, it has been proved

to be ine伍Cient when deformation occurred in the tar旦et ima旦e and the

Corresponding relationships between pixel pairs n010nger exist.1nstead of

Using the feature distance to estimate the distance directly, we extend the

method in Dekel et al,2015

De6nition 3 The opa'ator to jud旦e wether constraint exists between a

rigid patch of ten〕plate ima今e lr and a ri即d patch of candidate ima曾e lc

is denoted by <・,・>1T,1C , which is de6ned as

(4.4)

< f,,ら>h,,。. R心"',R゜゛托→{0,1卜 f,,ら→

NN(f上IC)=ら< NN(f11"= f.1

Otherwise

WhoN NN(f上IC)=笹三m血ら目。 11f上 f,11、,釦d NN(f.,1C)

argminfiξh 11f2, fil*. Both fl and f2 are feat田、e vector ofsin81e patch which
is extracted 丘om lr and lc respectively. similaT operator is also de6ned

加 Dekel et al.,2015, This operator is similar with binary quantization,

Which conve此S a pair of feature distance in real number into a countable

nun〕ber. This operator can also be seen as a compression procedure. By

Sun〕ming up o/1 number, the degree ofsimilarity can be compressed from

hiah-din〕ensional feature space

De負nition 4 The LRc similarity between a template and a candidate can

(4.5)
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A1曾orithm 3 Template matching with LRC

Require: Template ima宮e extracted from reference ima留e:1T
Require: Tar宮etima冨e:1S

Requlre: size ofri即d patch: S
1: for i 丘om lto r do

2. forjfrom lto Tん do

ifi-y2 聖 0<j- y2 竺 0<i+y2 冬 S,<j十y2 冬 S"thon3

Preprocessin旦 W北h Gaussian smoothing4

Calculate LRCS(1T,1C), the center of lc locates at (i,j)5

end if6

end for7

& end for

9: Return argmaxlcels LRCS(1T} 1C)

then be de丑ned as

血0(1fT 11上 11fC 11D
1,J

Where fT is the feature vector of ith rigid patch extracted fTom lT, f.c is

the feature vector of j仇 ri即d patch extracted from lc, fT ={fl, f牙',.ー},

fc ={ff, ff,...}

Overa11, Equation 4.5 and 4.6 Specify the genera expressions in Equation l

and 20f Dekel et al.,2015. our contribution is to add a spatialrelation test

de6.ned in Equation 4.3 to feature extraction, which helps to match rigid

Patches. The whole procedure of our a1宮olithm is concluded jn A1旦orithn〕
4

LRCS(1乃IC) RTWXTh Rr仙ゞTh → R十:1T,1C →
1

1)iscussion

In mathematics and physic, the de丑nition of "r璃id北y" can also be referred

to as "stianess" which means the property of a solid body to lesist defor・

mation.1n our paper, the "ri旦idity" has the similar n)eanin曾, which means

the property of an image patch to resist geometry deformation. Further-

more, as each image patch is loca11y existed with respect to an image, we

name it as "10cal ri即dity". Let us show a speci6C situation to visua11y

iⅡUstrates the di丘erence between BBs and LRc in Figure 4.4. As we can

See from Fi留Ure 4.4, by involvin昌 Such a certain pattern of spatial relation

test, LRc tends to match patches that are structuraⅡy persistent. From

this example, it is hard to jud8e directly whether the matchin今 result of

>1D< fi,f・>1T,1,
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Figure 4.4: A speci五C matching example to compare the detail between
BBs and LRC. overaⅡ, LRc tendsto match patches that are structuraⅡy

Persistent, which is referred to as "ri8idity" in our paper. on the other

hand, BBs tends to be inauenced by partial consistency of c010r feature

a) Each 8reen line represents a spatial relation test, which is manua11y
desi8ned. b) Two sets ofimage patches p and Q are used for matchin区. For
Clar北y, each image patch is set W北h only l channel and each pixel's value

is normalized to [0,1]. At this example, as each image patch is dependent
from an imaae, only the center pixel's p is calculated to calculate the

Spatialrelationship of a11ima留e patch. outside this exa111Ple, the average

Value of 3 × 3 Pixels' PG is calculated because the outer pixels exist. C)
After adding a weighted pG the matchin8 result is chan今ed

PC=1

P

BBs sqn虹ーエユdl't如CιofP詠.1V址如

d ,邑雪)=0.52 =025
d(^,^)=?×0.5'=0.5
d【,目雪)=2 × 051= 0.5
d(号雪, )= 1+ 0.52 = 125

d(目雪,^)= 052 = 025
d(且雪,目雪)= 2 × 05゜= 0.5
d(^,
d(^,

柚証、叫爾山tof朗S
^CN嘩r師11toflRC

①

IRC=BBS+2 "(△PO)ユ

d(,呂雪)= 025+?× 0.52 = 0.75
d(^,^)= 05+2 ×0= 0.5
d(且男,号雪)= 0.5+ユ X I= 2.5
d(号男,^)= 125+ 2 × 1.5'= 5.75

'(圏, )= 025 十ユ X O.5コ= 075

d(目雪,目雪)= 0.5 + 2 × 1 = 2.5
d(^,)=ユ X O.5コ= 0.5 )= 05+ 2 × 0 = 0.5

)= 1+0.5コ= 1.25 d(^, )= 1.コ5 +ユ X I.52 = 5.75

巨=0■=050=1

(C)

,0-25

Q

LRc is better than BBS. Howeverjthe result of LRc is more in line with

Our assumption: the matched image patches which are structura11y persis-

te址(rigid) play moTe import田lt role on similarity estimation, and both

the symmetric and real-data experiments show that this assumption can

help improvin今 the performance

Analysis

In order to underst鉱ld the e缶Ciency, we 6rst show a simple 2D case which

is i11Ustrated 加 Fi昌Ure 4.5. To increase the matching di缶Culty, two di丘er-

ent back今round models (in red points) are 今enerated, and each of them is

mixed with the fore冨round model(in blue points). we match (a) and (b)

and compare the results generated without LRC (C, d) and with LRC (e,

f). By comparin昌 With result (C) and (e), we can see that the number of

matched fore冨round pointsisroU昌hly doubled while the number ofmatched

backgound points only increased by 12. The proportion of matched fore・

冨round points increases from 57% t069%. By comparing result (d) and (f),

We can als06.nd that the number of matched fore旦round points is roU8hly



doubled while the number of n〕atched background points only increased

by 7. The proportion of matched fore菖round points incleases from 65% to

75%. This example shows that considerin宮 LRc can further improve the

matchin今 rate offore昌round and separate the back旦round weⅡ Colnparing

Wjth Dekel et al.,2015

To prove LRc as a better method, we have to prove two assulnption-

S:1) The expectation of a pair of ri即d patches to be matched is high・

est when two patches are from the same fore8round (same distribution)

Conversely, the expectation drops sharply when two foreground model-

S leave each other.2) 1f li旦idity exist, considerin旦 the neighbor patches

Can enhance the phenon〕enon described in (1). we prove these two as・

Sumptions under one-din〕ensional case. First we generate a point set p

Under normal distribution Ⅳ(0,0.1),1P11 100, and t}〕en extend p to^

P ={P, P - d, P十 d}, d E R,11P11 = 300. simi1町ly, wo g肌ONt■ q und艇

Ⅳ(μ,σ)脚d 獣tond it to q ={@, q - d, q 十 d},1ql = 300. Noto th飢

the pointS 血 P and q n0 10nger obey simple Gaussi田l distribution since

P - d, P 十 d, q - d, q 十 d are involved. The expectation oftwo points

(P, q), P E plq E q to be matched can be de6ned aS 三1. The case in which

P and q are simple Gaussian distributions has been proved in Dekel et al.,

2015

(4.8)■・*111(加岡*・乢山・吐四、
jで・(q)F戸(11×- q11. S 11P - q1愉11戸11、り dpdq,

Where x

and P十

{"-1-}, P ={P-,P-}, q ={q-,q'}. V飢i■blo^

E p are the the closest le丘 Point and the closest ri旦ht

P- e

Polnt to

1ヲ・ー 々ー

(4.フ)
-P三P-q

Wh(n'e FQ(・) and FP(・) are the probal)ility f11nctions. FQ(・) describes the

Probability that a 卸 E R with a 即Ven distribution ovel q wiⅡ be found to

have a value which satisaes the cond北ion within the patentheses. Rlnc-

tion l'P(・) holds the same de丑nition. F11nction jp(P) represents probability

d0那iw f如dion whi血 oqU心 t0 1川P11, fQ(q) oqU心 t0 1川q11. on tho

Othel hand, W'e de6ne the expectation considering localrigidity aS 三2

f々(q)F戸(ルー ql s lp - ql)舮11一り如dq,
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(a)#Blue=500,#Red=500

.

.

.

(の#Blue=97,#Red=73

(b)#Blue=500,#Red=500

0

Figure 4.5:2D case with synthetic data旦enerated by Gaussian distribution
a) we 員rst 旦enerate loo Nue pointS 丘om a normal distribution Ⅳ(μ1,σ1)
To give each blue point ri即d北y, we generate four points around each blue
Point vertica11y and horiz0址a11y. Tota11y, the combination of 50o blue

Points is treated as fore旦round model. As shown in the enlar区ed part of
(a), the combination of blue points shows like a cross. we then generate
50o red points as back旦round from a di丑erent distribution N(μ2,び2). b)
Similarlyケ We 6.rst 旦enerate loo blue points hom Ⅳ(μ1,σ1) and then extend
them t0500. Back菖round is drawn from Ⅳ(μ3,σ3). C) The matchin8 result
Of (a) by Dekel et al.,2015 Without considering the LRC. d) The matchin冨
result of (b) by Dekel et al.,2015 Without considerin8 the LRC. e) The
matchin8 result of (a) considering LRC. f) The matchin旦 result of (b)
Considerin宮 LRC

P E p respectively The meanin冨 ofthis denotation also applies to x and

q. From Figure 4.6, we can observe two properties,1) h喰her expectation

Can be observed when parameterS μ,グ are closer to (0,0.1); 2) in (b), the

expectation drops faster than (a) when (μ,グ) become lar旦er than (0,0.1).

.

゛

(e)#B山e=185,#Red=85

(d)#Blue=110,#Red=60

'手

.

'

'

(り#B山e=203,#Red=67
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、σ:0.1,0.11,0.12, ...,

F電田0 4.6 E"poot飢io" of . P.廿 of poi"船(P,q)(P E P,q E Q) to b●
matched. P E p is a distribution with parameter (μ= 0,び 0.1), Q e Q
is a distribution with dynamic parameterS μ and σ. parameter μ Chan旦es
from o t02, with each step equals to o.05. parameter o' changes from o.1
t0 1, with each step equals to o.01. Each combination of μ and σ Plots a
Pixelin both heat map (a) and (b). Left top point shows the expectation
When distribution Q E Q is the same with p E P.(a) is the result of BB
Dekel et al.,2015.(b) is the result of LRC. As we can observe, comparin宮
With (a), the expectation drops faster when μ and o'血Crease.
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...,

Thesetw'0員菖Uresshow'that ourmethodis moresensitivewith thedi丘erence

Of distribution and thus results in better performance. These two properties

We observed C田I weⅡ Prove the two assumptions we made.
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4.5 Experiment

Experiment Environment

We use the benchmark used in Dekelet al.2015 to evaluate our method.

This benchmark isinherited from onlinetrack加冨 benchmark wu, Lim, and

Yan8,2013. Hence,it is very cha11en留ing for 810baltemplate matchin冨 task

Mal)y real-W'orld di伍Culties have been considered 血 this benchmark such

as occlusion, i11Umination chan8e, background clutter, deformation, etc

There are l06 Pairs oftemplate and target images in this benchmark with

Various ima8e size. A11the 旦round truth boundin曾 boxes are annotated

manuaⅡy W北h a semantic foreground de負ned

We use the overlap rate to jud8e w'hether a matching result is successful by

referring to the 8round truth. speci6CaⅡy, PASCAL criteria Everin冨ham

(b)
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Template

Fi8Ure 4.フ: Example ofcomparison. A bike passes troU宮h a series ofscenes,
the template is selected from previous frames and the target ima冨e is se・
Iected from later frames. Likelihood mainly focuses on two ROIS: an R01

Which has the same background with template and an Rol which has the

Same fore三round with the template.1t is di缶Cult to answer which one

is coTrecuy matched since a fore留round is usua11y semantica11y de6ned by

In this example, bike is de6ned as the fore8round and our methodUsers

Correctly matched

55

Result by LRC

et al.,2010 is used to calculate the overlap rate:

ON飢BB托nBB,リ

ON飢BBルUBBφ)'

Where BBル means boundin8 box ofresult a11d BB t means boundin8 box

Of 留round truth. area(・) is a function to count number of pixels. Based

On the overlap rate, we can achieve the answer about whether a matchin冨

result is correct or wron8 by settin8 a threshold. speci6Ca11y, we have

Result by BB

Overlap rate

FinaⅡy, success ratio =#{answerlanswer = 1}/#test as the accuracy cri・
terlon.

AⅡ the experiments have been done on a pc equipped with lntel core・i7

2.9GHz and 16 GB RAM

answer

Comparison

We compare our method with both classical methods and state・of・theart

methods. classical methods such as sAD, SSDj HM and Ncc have been

Comprehensively studied in ouya118 et al.,2012. Amon今 recent methods,

(49)
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BB, BDs are patch-to-patch similarity measurements, which are closest

to our method. HOG is a dense feature combined with ssD during the

Comparison. F電Ure 5.9(a) i11Ustrates the comparison result of accuracy

at a 今lance. For clarity, we dynamica11y ch笹lge the threshold and each

threshold corresponds to a success ratio value. Each curve represents one

method's result and 北 is worth noting that BB only partia11y improves the

accuracy a旦ainst previous methods when the threshold issma11erthan o.63.

＼和hen the threshold exceeds o.63, other methods such as HOG, SAD can

even outperform BB. This is because dense feature matching methods can

adjust the location of 6nal matdlina result better when less deformation

Occur. on the other handj LRc can not only improves the success ratio in

Case ofthreshold く 0.63, but also maintain the same level of accuracy with

dense feature matching method when the oYerlap rate becomes higher

Table 6.1 Shows the average success ratio over a11 the matchin昌 tests in

the benchmark. BB improves the accuracy by 5% and LRc improves the

accuracy against BB by 4%

E丘ect of parameters

In this section, we systematica11y report the results for studying how each

Parameter a丘ectsthe performance ofour matching method. six parametets

WbWのWg,ツ, C,s are studied which have been mentioned in section 3. The
results are concluded in Figure 6.5. From (a) to (f) we can see that a11

the six parameters a窒ect the 6nal result in a certain extent. The best

＼
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Figure 4.9: Eaect ofparameters on successratio.(a) vaTyin今 the parameter
Of location feature's weight Wι from o.5 t03.0.(b) varyin宮 the parameter
Of c010r feature's wei8ht w。 from o.5 t03.0.(C) varying the paralneter of
Spatialfeature's wei8ht u}g from o.5 t0 3.0.(d) varyin今 the parameter σ
Which a丘ects the de菖ree ofsmoothnesS 丘'om o.1 to o.9.(e) comparin旦 the
results overthree di丘erent c010r spaces.(f) vaTyin8 the parameter ofpatch
Size s from 3 t06
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Performance is achieved when Wι C-2, W。 1ι1 -^ ^

g

S = 3. AⅡ the solid curves show the parameters we have used in the

Comparative experiment. unexpectedly,increasing the patch size wi11Cause

a sharp decrease on accuracy, that mea11S our method needsto pay a certain

amount of computational cost to keep the accuracy.1n our implement,

about 2 Seconds are needed for matchin今 a 480 × 270 pixeltar今et image

W北h 19 × 45 Pixeltemplate. processin宮 time is directly proportional to

the template size and target size.1n addition to the patch size, smooth

Ievel also a丘ect the performance a lot. smoothness assumption is a very

importa11t precondition for template match血g. An ed8e ima昌e (which is

not smooth) without preprocessin旦 is not suitable for template matchin留

Since a little displacement W辺 Chan8e the matchin8 Score drasticaⅡy. over・

Smoothed ima宮es wi11 als010se important feature information and lead to

failed matchin8. F珸Ure 4.10 shows some examples ofmatching results with

tuned paramete鵄. our approach succeeded in many di丘erent cond北ions
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T^P1急te

T^P1会te

Result

圃

Iikeliboodm叩

T^Plate

R'sult Iikelih伽d血叩

T^Plate

Result

T^Plate

Figure 4.10: Examples of match血g results

Table 4.1: comparative result of avera旦e success ratio.

Redt

ιikeliModm急P

T^P1丑te

Result

LRC (0Ⅷ mothod)
BB Dekel et al.,2015

BDs simakov et al.,2008
SAD

EMD Rubner, Tomasi, and Guibas, 2000

HOG Dalal and 1Υ珸部,2005
NCC Lewis,1995
SSD

HM

ιikelihood血叩

ι正e11hoodm叩

T^P寂加

Result

Method

ιike血ood血即

T^P1丑te

Redt

Such as: drastic appearance change,辺Umination change, sma11Size, etc

4.6 Conclusion

In conclusion, this chapter presents a template matching method which has

no need to de6ne a speci6C deformation model. Local ri8idity constraint

(LRC) has been proposed, which is de6ned as a pair of matched patches

Countin旦 number of LRc is treated asthe visualsimilarity between a tem・

Plate and a candidate. A11the one-dimensional, two-dimensionalsynthetic

expeTiments and real matchin8 test show the e缶Ciency of consideTing the

10calrigidity (if any) can improve the matching accuracy However, several

Iikeli五ood血叩

Result

稔tio (%)average success

Likelihood m即
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drawbacks have lin〕ited the application ofthis method.1) since only trans-

Iation has been considered, scalin昌 and rotation cannot be sensed durin昌

the matching.2) The matching accuracy of non-rigid objects, such as auid,

Can hardly be improved

Asthe future work, we intend to enhance this method for mole intense envi-

ronment changes in oldelto solve the problems which have been reaected

in most of the failure tests. Fina11y, we hope to improve the matching

accuracy and expect further real-world applications
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TWO、SIDE AGREEMENT LEARNING FOR

NON、PARAMETRIC TEMPLATE MATCHING

5.1 Summary

We addressthe problen〕 of measurin菖 matching similariw in terms oftem-

Plate matching. A novelmethod caⅡed two・side agreementlearnin留(TAL)

is proposed which learns the ilnplicit correlation between two sets of multi・

din〕ensional data points. TAL learns from a matd)in昌 exemplar to con-

Struct a symmetric tree・structured model. Two points fron〕 source set and

taraet set agree to form a two・side agreement (TA) pair if each point faⅡS

into the same leaf cluster ofthe model.1n the training stage, unsupervised

Weak hyper-planes of each node are learned at 6rst. After then, tree selec-

tion based on a cost ftlnction yieldS 6nal model.1n the test sta3e, points

are propa昌ated down to leaf nodes and TA pairs are observed to quantify

the similar北y usin8 TAL can reduce the ambiguity 血 de丑nina similar北y

Which is hald to be objectively de6ned and lead to more conver旦ent result・

S. Experiments show the e丘ectiveness a昌ainst the state-of-the-art methods

qualitatively al)d quantitatively

Ch ap ter 5

5,2 1ntroduction

Relationship between similarity estimation and template match-

in旦: Matchin8Similarity estimation is one ofthe fundamentalkey problen〕S

to many computeT vision tasks. GeneraⅡy,即Ven two input point sets p

and q, a numerical output is required in order to quantify the similar北y

between p and Q. Each point in the p0血t sets belongs to n-dimensional

feature space which depends on speci丑C applications. Template matching,

Which is a classical problem and has been studied for a number of decades,

is a typical application that largely depends on the performance of visual

Similarity estimation、 Template matching can also be expressed in p - q

n〕atchin曾 form because any ima旦e can be divided into patches and each

Patch can be treated as a 7ι・dimensional point.1n real-world matching s-

Cenarios, there usuaⅡy exist deformation between a reference ima昌e and a

tar旦et image, this requires an a1曾orithm to be able to estimate the visual

Similarity under unconstrained environment and does not depend on any

62



ideal deformation models (e.旦. a伍ne transformation, projective transfor-

mation).1n addition, extelnalinauences, such as occlusion, i11Un〕ination

Chan宮e and back今round clU枇er wiⅡ increase the de宮ree of non-1inear北y and

the di伍Culty oftemplate matchin旦

Non-parametrlc way for deaHng with appearance-variant match-

in留 task To dealwith mentioned problems,血Stead ofdeformation・model-

based approaches, many works try to improve matching performance in

non-paran)etTic way. An〕ong them, the relationship between image patch・

es have been proved as an important property. For a lon区 time, there

exists an argument that wl)ether similarity should be treated as a sym-

n〕etric or asymmetric relation Tve鵄ky,197フ. As an example of asymmet-

ric methods, Hausdor丑 distance Huttenlocher, K1雛〕derm田), Rucklidge, et

al.,1993 takes the lar8est distance of a11 tl〕e distances from a point 血

One set to the closest point in the ot}〕er set as the output. Forma11y,

max(dm餓(P, q), dmax(@, P)), where function dmax(P, q) calculates tl〕e

Iargest directed distance which starts from p、 As an example ofsymmetric

mothod., B部t・Buddi郎.imi1紅ity (BBS) D.k.10t 飢.,20156nd.th舗. P.廿

Of points plays a、n impottant role in n〕atchin8 if each point is the neaTest

neighbor of the other. FormaⅡy,ΣP ΣQ bb(P, q), where function 比(P, q)
equals to l if point p and q are each other the nearest nei旦hbor, and oth-

erwise equals to o. E北her symmetric way or asymmetric way reveals an

inlportant principle that when estimating the simjlarity between p and q,

quantifyin区 Point・wise relationship usua11y yields better performance than

taking a distance measurelnent after extractin旦 feature of whole p and @

Separately

Problems in conventional methods: However, most oftheconventional

methods burden with manual desi旦ned matching mechanisn〕S. The draw-

back is obvious because for a11 kinds of foreground models, there is only

One predetern〕ined n)ethod can be used to estimate the similality, which is

di伍Cult to be redesigned when confronted W北h failure

data・driven method caⅡed two・sideOur contributions: we Propose a

aareement learnin旦(TAI,) based on the assumption that to each speci6C

Con〕bination offoreground and background in the template, there underlies

an appropriate m8.tching mechanisn]. with a 即Ven n〕atchin目 exemplar, we

extrad a single positive sample and a lar冨e number of negative samples for

Iearning. The contributions can be concluded as f0ⅡOWS:
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. we design a symmetricaⅡy tree-structured modelwhich containstwo

randomized clustering tree (RCT) as shown 加 Figure 5.1

.＼入le propose a new unsupervised quality measurement method for

node splittin宮 of RCT, which is formulated in Equation 5.11

. A cost function is proposed for model selection, which is formulated

in Equation 5.13

. Based on the above model, a data-driven distance estin)ation lnethod

is proposed, which is forn)ulated in Equation 5,2

. The e丑ectiveness of

tl)etic data and real

5.3 Related叉入7'ork

In this section, we mainly review the related works from two points of view

In section 2.1, sin〕ilarity estimation methods with respect to ten〕plate

matching are reviewed includin8 Parametric and non-parametric ways.1n

Section 2.2, similarity learning techniques are reviewed which may easy to

be confⅡSed W北h the proposed method, and the diaerence is also described

the proposed method is proved both with syn-

11na冨es

Similarity Estimation for Template Matching

Paramatric matchin宮: classical n〕etl)ods, based on such as sAD, SSD,

NCC, and zNcc have been widely applied Lucas, Kanade, et al.,1981;

Zhan菖 and Akashi,2015; Di stefano, Mattoccia, and Tombari,2005. LU・

Cas, et al.1,ucas, Kanade, et al,,1981 Proposed parametric optica1 且OW

to estimate inliers between a template and a target. Further developed

by feature-based methods, Lucas and Kanade's framework has becon〕e an

essential approach in many matching problems. C. zhan昌 and T. Akashi

Zhan旦 and Akashi,2015 Proposed a stochastic method to search the 2D

a伍ne parameters e伍Ciently with a 6tness function of sAD. D. J. Tan, et

al. Tan et al.2014 modeⅡed 2D deformation W北h the cubic B-splines

Lar留er number of control points are required if more complex deformation

Want to be matched. Most of the parametric methods can hardly be ap-

Plied to "wild" ima今es which may contain incalculable and unpTedictable

deforn〕ation

Non-parametric matchin旦: As a comn〕on solution, hist0昌τan〕 match-

血8 (HM) S松in 釦d B飢1紅d,1991; UⅡ.h .nd K釦oko,2004; com■nid・
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U, Ramesh, and Meer,20oo plays an important role in non-parametTic

template match加旦. HM can deal with deformable match血旦 Problem by

disre旦arding the geometric relationshゆ between pixels.1n add北ion to men-

tioned methods Huttenlocher, Klanderman, Rucklid8e, et al.,1993; Dekel

et al.,2015, Y. Rubner et al. Rubner, Tomasi, and Guibas,20oo introduced

a functjon named Earth MoveT'S Distance (EMD)to measurethe minimum

Cost tl〕at must be paid fron〕 one point set to another. E入ID aⅡOws partial

matches, which means it is robust W北h occlusion and clutter. D. simakov

et al, simakov et al.,2008 Proposed bidirectionalsimilarity (BDS). BDS

Considers two point sets are similar if aⅡ Points of set p are contained in

Set @ and vice versa

Similarity learning

Instead ofusin宮 Prede6ned metricssuch as Bhattacharyya coe缶Cient, KU11back-

Leibler diver旦ence, a majority ofsimilarity lean〕in今 methods focus on lean)・

血8 metrics based on Nlahalanobis distance or bilinear sin〕ilarity Davis et

al.,2007; chechik et al.,2010. Di任erently with metric learning methods,

Our method attempts to learn a lneasurement over each data point in・

Stead of each feature channel. For d-dimensional points, metric le釘nina

requires to estimate o(d2) parameters wl〕ich becon〕e much harder in high-

din〕ensional situation W北hout considering din〕ension reduction methods

In the case of template n]atC11ing, a typica1 3 × 3 image patch with RGB

feature yieldS 27・din〕ensionalfeature vector and thuS 729 Paramete玲 are

required to be estin].ated' on the other hand, the nulnber of n)atchin目 ex-

en].plars for training are usua11y lilnited il〕 template matching、 similarly in

the case of ranking metTic learnin旦, supeTvised prede6ned order is needed

for training and 北 is hard to learn fron〕 only a sin曾le positive sample and

a large number of negative samples、 Besides metric lean]ing, shrivastava

et al. shrivastava et al.,2011 Use linear svM to learn data・driven "U-

niqueness" fron〕 a sin81e positive sample and a very large ne昌ative set of

Sanlples. The uniqueness is than used to quantjfy the similarity、 However,

it is hard to be applied on template matchin旦 Since 北 only woTks based

On the precondition that each pair of in〕a8e patches is roU留hly spatiaⅡy

Conslstent

65



P P4

Input p

Figure 5.1: Example of symmetrica11y structured randomized clusterin旦
tree (RCT). TWO RCTs are exactly the same and connected by the leaf
nodes. point sets p and Q ate input from le丘 root node and ri8ht root
node respectively. points ate assigned to diaerent leaf nodeS 田)d two-side
a宮reements are constructed between each pair ofleaf nodes in alignment

5.4 Method010留y

Problem setting

Ifwe treat apatch ofan image as a multi-dimensionalpoint, and atemplate

as a point set which includes multiple points, then the template matching

Problem can be converted t0 宮eneral p - Q form: P ={pi}1竺l and Q ^

{qj}1ι1, W'here pi,qj E Rd and Al is the number of patches a template
Can be divided. The number of feature dimension d is proportional to

the patch size. For a pz x pz image patch W北h RGB feature, d = 3 X

PZ X PZ. For clarity, we only use c010r feature in this paper to concentTate

On the analysis of matchin留 mechanisms. under exhaustive slide・W血dow-

detection framework, the 今oal of our approach can be formulated as

ql qユ

q3q4

InPⅡt

1、,0-sideAgree0罵nt

d(PI,Q)=、T二、Tる1ゴ=ユ。,3,
d(P2,Q)= 0,

d(P3, Q)= 1,

d(P4, Q)= 1

Where p is the template extracted from a reference ima8e 卸d

Candidate area within each search window of the target ima今e

function TAD wi11 be introduced in the next section.

TWO-side A留reement Distance

The basic form of TAD can be presented as:

笹gm鯉rAD(P,Q).
QEltar9 t

(5.2)TAD(RQ)

倒

1戸f Σd(P', Q)・1 1'.'

(5.1)

Q is the

Distance
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Where function d is an asymmetric distance measurement function based

On なVO-side a昌reements, which can be speci6CaⅡy de6ned as

d(n, q)

Where ι denotes the spatia110cation of each ima宮e patch W北h respect to

the image cooTdinate, c denotes which leaf node an image patch leaches

Pf equals to qc when the two nodes that pi and q reach can be connected

by a two・side a留reement. qjis randon〕1y selected from the candidates which

n)eet the conditions wl〕en d(P力 q)= 1/11Pf - q1體 because either of u〕em
has tl〕e possibility to be matched with pi.1n tl〕e right part of Fi昌Ure 5.11

Some exan〕ples ofcalculatin留 d(P力 q) have been shown. The combination of

Ieaf nodes can also be seen as a number ofcompact dusters. The remained

Problem turns outto be howto assi旦n each image patch s into each leafnode

Such that TAD of positive san〕ple and negative sample can be distinguished

at the most. we wish to leam a function with input s and an output of

reac}〕ed leaf cluster

171府,(>qj E q,11PI- q1體一の

qf)

and extend j to a symmetric n〕odel

jj(P,qン R心剛,R心IQ1 → R P,@→ 7AD(P,@) (5.5)

TWO-side A旦reement learnin旦

As mentioned in section 5.2, we take both the advanta留es oftree designs of

density forest criminisi, shotton, and Konuk0旦IU,2011 and random forest

Breiman,20olto modelfunction f W北h randomized clustering tree (RCT)

Positive salnple and ne旦ative samples are san〕pled fron〕tl)e foreground and

background models ofthe trainin目 image respectively. similar wit}) ranking

metric learnin旦, the template is known to be more similar with the positive

San]ple than the ne区ative samples. T}〕e tree construction process is based

On the binary random tree Breiman,2001. The di丘el'ence is, we redesi昌n

the information 8ain (Equation 5.11) which can use unlabeⅡed samples to

dotamin0 ■ hyP剖Plono (EqU飢ion 5.12) fo, nodo .P1北tioE

(5.3)

(5.4)R →N
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Node splittin留: RCT is a fUⅡ binary tree with each internal node 血itial・

ized with a set of Ⅳ random tests Sク={くφ力θi>}仁1. Each random test can

be treated as a candidate hyper・plane that can divide the data ofthe node

into two parts. speci丑Ca11y,

ι, Sφi 之θi
(5.6)SE

R, Sφi くθi

Where S仇 denotes a sample set of a certail〕 node. Sι and sR represent

the sample sets that belong to a left child node and a ri宮ht child node

respectively. A best splittin昌 hyper・plane <φ力θi> is selected accordin留 to a

qua1北y measurement. Forlabe11ed salnples, entropy or Giniindex are usual

Choices for t}〕e quality meaS11rement. However, in our case, altl)ough p, q

are labe11ed as positive or ne旦ative, image patches P力 qj are not labeⅡed

This TequiTes us to de6ne an unsupervised quality measurement to select a

Suitable hyper・P1釦e

Unsupervised quality measurement: The density forest provides an

Unsupervised quality measurement method undel'the assumption that the

data in each node distributes with Gaussian distribution criminisi, shot・

ton, and Konukoglu,2011. The 留enera1 加formation 旦ain W北h respect to a

node's sample set s and a random test is de丑ned as

(5.8)
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As the extension of information entropy, general di丑erential entropy is de-

6ned as

(5.9)

1(S,くφ"θ羽

＼和here g(幻 is a 昌eneral distribution function. with the assumption that

the data in the sample set s obey a lnulti-variate Gaussian distribution,

the above equation can then be rewritten by replacin宮 g(即) with Gaussian

Ism1 机

凱S)一Σ丁§1・H(S机)

H(S)

机Eι,R

ιg(.)108g(司h

Where c is a constant number equals t0 110目(2πe)d. The di丘erential of

muHi・variate Gaussian entropy H isthen de丑ned by the determinant ofthe

H(S)
I d
-108((2π.)"dot(Σ(S)))

-10gdot(Σ(S))+ 0

(5.フ)
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Trai11hle hna8e T田'getima8e (test mlage)

[1^: positive salnple [::コ: MatC11itlg result
[ニコ: Gr0如d加th[::3: Negative salnples

Figure 5.2: Example ofsampling from trainin留 image.1Υaining image (i.e
matchin8 exemplar) is given alone and di丑erent Mth reference and tar目et
ima今es. A sin留le positive sample 雛ld a lar旦e number of neeative samples
Can be extracted from the training image

Refetence image

Eコ: Tanplate

.'、

、゛毛ま^亜劃'^^画言戸^

Covariance matriX Σ E Rdゞd which can be seen asthe volume ofthe hyper-

eⅡipsoid that bounds the uncertainty ofthe data distribution. substitutin今

Equation 5.9 into Equation 5.フ, we can get

1(S,くφ',θ'>)

Since the value of 6rst term } 10菖det(Σ(S)) is axed as long as the sample
Set s of a node iS 6Xed, it is not needed w'hen m餓imizing l for selecting

a best random test with respect to a given node. Note that Σ(S) is the

Covari紅Ice matrix calculated from observation (reald飢a), and the realdata

Can distribute in a more complex way lt has been pointed in pei, Kim,

and zha,2013 that such measurement has the problem ofrank-de6Ciency,

and sU昌gests to use the trace of covariance matrix instead of determinant

Although it has been argued in sim and Roy,2005 that trace is not suitable

for covari飢Ice based metric due to the lack of invariance to scales and

Sensitiveness to the parameters, it is not the problem in our case because

the RGB C010r feature is natura11y we11 Scaled by itseH.1n addition, we

add two penalty terms to avoid splittin区 0丑 degenerate clusters and ensure

a fU11 binary tree can be built. Based on the above discussion, Equation

5.10 can be rewritten as:

29山行a1ηC

1 11Sm 仇
Ξ 103d.t(Σ(S))一巨Σ 1・・108dot(Σ(S仇)) (5.1の

?πEι,R

1'(S,くφ',θ'>)

+入2

1 1S仇l m
一互Σ丁百f・10gtr(Σ(sm))
仇Eι,R

IS『 ISRI
IS引' 1S'1

十入lmax

Icentroid(Sι)- centroid(SR)1伽

Σ仇E{ι,R} max.Esm11S Centroid(S仇川M
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Where function centroid(,) returns the centroid of input sample set,入1

and 入2 are constant numbers. The 6rst wei旦hted penalty term avoids an

internal node t08enerate hyper-P1笹)es that split 0丘 extremely unba1釦Ced

Child nodes. This is important for RCT since every node other than the

Ieaf nodes sl〕ould has two child nodes. The second penalty term is similar

With pei, Kim, and zha,2013, it increases as tl〕e centroid of two child

nodes get apaTt and sampleS 血 each child node distribute dosely W北h the

Centroid. with unsupervised quality measurement de6ned, we can select a

best hyper・plane by maximiZ血旦 the l/

(5,12)<φ',仇>=釘gm餓1'(S,軌,θり
(φ力θi>Eψ

'

Salnplin昌: Besides reference ima8e and tar曾et ilna昌e, we additiona11y use

a match血旦 exemplar (trainin冨 ima昌e) to plovide positive sample set lP卯

(where 11P゜町= 1 血 Our template matching application) and ne8ative saln-

Ple set 1πog,11伽gl =/V', and N 》 1. Each image sample Q E IP山 U 1加g

has u imaae patches. As shown in Figure 5.2, positive sample is de負ned as

the 留τOund truth manua11y annotated. Negative samples are selected ran-

domly from the entire trainin8 ima昌e and do not overlap with the positive

Sample

Analysis

The central point ofthis section is t0 留enerate synthetic numericalsamples

from two di丘erent mathematical distributions (Gaussian distributions) and

Σ TAD(P,qy十入

Cost function for tree selection: slide・window search leads to dense

matchina which requires e伍Cient similaTity estimation, considerin昌 the

Con〕putational cost, we select a best symmetric RCT n〕odelfrom candi-

date model set {jft}器、1instead of performing weighted combination of

each independent lnodel's result. Given positive sample set sP卯 and ne旦・

ative sanlple set Sπ四 the cost function is de6ned and the tree model with

minimum cost function value is selected for matC11in旦

IP山1ΣQU,四 rAD(P,q)
ガ

QE1π.g
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Where a L2 re昌Ularization term weighted by 入 is added to avoid the situ・

飢io"th飢ΣQU,四IAD(P,q)釦d ΣQψ"TAD
(P, q) are both too smaⅡ

ar宮lnln

11那,1ΣQ'P。、 TAD(P, q)ff'E{ガ'ゞ=.
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Figure 5.3: visualization of matchin昌 results undeltwo diaerent 2D back-

宮round models. a) positive samples are drawn from distribution A and
negative samples are drawn from distribution B. Template is also drawn

丘om A and kept 五Xed durin留 matchina. b) one positive sample and one
negative sample are drawn from A and B respectively for test. C) Matchin8
result of TAL. Result points (pi, qj) are drawn as lon区 as d(P力 Q)= 1. d)
Matchin冨 result of BBS. Result points are drawn as lon留 as bb(P力 qj)= 1
e) Template and positive samples are the same with (a).1nstead of B, dis・
tribution c is used to draw negative samples.(f~h) similar with (b~d).

Table 5.1: Number of correctly distinguished pairs of test. A pair of test

is correctly distin8Uished if positive sample has hi区her score than ne今ative
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Check whether two samples drawn from the same distribution has h璃her

Similarity score then the two samples which are drawn h'om two di丘erent

distributions. we 6rst visualize the matchin留 results in 2D case (d=2) and

then calculate the matching expectation of TAL with lD case (d = 1). The

State・of・the・art alternative Dekel et al.,2015 is compared in both cases

2D case: points of positive samples (fore套round) and ne冨ative samples

(backaround) are dtawn hom two di丘erent multivariate Gaussian distri・

bution N'(μ,Σ) respectively. Each sample and template consists of 50

2D data points. we prepare 3 kinds of distributions for 区enerating da・
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、(μ.0)
、(0.0.1)

(b)Ξ(TAι(P', qゴ)) ①三(BBS印i,qj))

Fi冨Ure 5.4: Expectation of a pair of points (P力qj) to be matched. p is
Sampled from Ⅳ'(0,0.1) and Q is salnpled from Ⅳ'(μ,グ). parameterS μ and
グ are dynamica11y increased to plot each pixe1 血 the heat maps (b) and
(C). a) probability density function of each distribution. b) Heat map of
expectation 菖enerated by TAL. C) Heat map of expectation 留enerated by
BBS Dekel et 肌.,2015.

(a) DistTibutions

グ:0.1,0.11,0.12, ,1

as information 留ain can be more reasonably calculated 丘'om more sU伍Cient

data for node splitting.2) W北h more ne昌ative samples, the cost function

Can be calculated from more samples thus contributes to selecting a better

model. However,increasin留 the number ofne旦ative samples can not always

improve the performance of a1旦orithm. with sha110w depth of RCT tree,

the number of internal hyperplanes is not enough to divide the data 血to

"pure" clusters and the number of leaf nodes is also not enough to hold

a11 kinds of clusters.1n this condition,血Creasin旦 the number of ne8ative

Samples wiⅡ Conversely reduce the performance. we visuaⅡy show how the

number of negative salnples a丘ect the whole perfotmance of our algoTithm

in lD Gaussian case, which is shown in Fi8'ure 5.5. under ideal conditions,

h珸hest expectation should be observed at top le丘, where μ= 0,σ= 0.1.

As we can observe from Figure 5.5, when the number ofne今ative samplesis

1, the hi8h values of expectation do not 冨ather on the top left area. when

the number of negative samples increases t0 100, the h喰h valueS 8ather

most closely on the top left area. However, further increasin曾 the num-

ber of ne昌ative samples can not make the h璃h valueS 旦ather more dosely

due to the limitation of tree depth. This observation weⅡ Supports our

explanation on the inauence ofthe number of ne目ative samples

Implementation and complexity

In this section, we analyze the complexity ofour a180rithm, which can theo・

retica11y rea.ect the processing speed and memory cost.1nstead of constant
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グ:0.1 0.11 0.12

#nega廿Vesa血Ple= 1

グ:0.1 0.11 0.12

Fi宮Ure 5.5:1nauence of the number of negative salnples. The numbeT of
negative samples varies from l t01000. The number of positive samples is
Set t01, the tree depth is set t03 and the dimensionality of each sample is
Set t0 100. Heat maps ofthe match血旦 expectation are show'n. Each heat
map iS 8enerated by models with di丑erent number of neaative samples

#ne三auvesample= 10

d :0.1 0.11 0.12

Ttee d即th=5

#ne三ativesa血Ple= 100 #negative sample= 1000

d :0.1 0.11 0.12

^

Refaence 血ヨgeand
template (green BB)

Tree deP血=9Tfee deP伍=フ TTee deP血=8TteedeP血一

Fi8Ure 5.6:1nauence of the tree depth. W北h the increase of tree depth,
the red and ye110w re宮ionS 目radua11y shrink and the blue re8ion expands
This observation indicates that deeper RCT has higher distin8Uish ability
between positive sample and ne今ative sample.

number, TAL dynamicaⅡy determines patch size pz accordin昌 to the size

Oftemplate (rangeS 丘om 2 t05 Pixelin the experiment). The inauence of

Pz and template size ca11 be concluded as: in case of sma11template,1ar宮e

Pz wi111ead to insU缶Cient patches for trai11ing a reliable model.1n case of

Iar冨e template, smaⅡ Pz wiⅡ make each patch feature・1ess and burden with

high computational cost in train血冨 Sta冨e. The stride of sliding・window・

detection is set to the size of sin宮le ima又e patch. Besides, calculatin昌 TAD

Over each detection window independently wiⅡ result in redundant compu・

tation since detection W加dows alwaysshare image patches with each other.

To improve the e伍Ciency, we construct a bU丘er vector c where cj = qc
to assi昌n each non・overlapped ima宮e patch of the tar今et image to the ac-

Cord血g cluster in advance. The size of p and Q depend on the size of

Tar宮et血agea五d
血altesult(M BB)
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template, the patch size pz, and the stride parameter of detection window

Assun〕ing that a tar区et ima宮e can be divided into k x k non・overlapped

ima昌e patches, and a template can be divided into k' x k'ima宮e patches,

by using buaerin旦 Vector, the complexity reduces ftom o(k'2(k - k')2) to

0(kり

Each splitting operation with hyper・plane has complexity of o(d), we ran-

domly select 5 CI〕annels from the patch feature instead offU11 d・din〕ensional

feature to construct each hyper・plane.＼入7北h depth of tree 旦iven by D, the

main complexity for matchin留 a tar宮et ima昌e is o(Ddk2). The D is set

t0 9 during the comparative experin〕ent. on the other hand, BBs is a

Symmetric matchjng lnetl)od and 北 needs to compute fUⅡ d-dimensional

Euclidean distance between each patch 血 the template and each patch 血

the target 血〕a冨e, thus it has complexity of o(dk'2k2) usin曾 bU任er matrix,

Which is lar旦er than TAL.

5.5 Experiments

Qualitative Evaluation

Inauence ofhyper-parameters Main hyper-paran〕eters ofTAL include

tree depth, nulnber oftrees, number ofrandom tests, and number offeature

Channels for splittin8.1n Figure 5,6, we take an example of matching and

Plot the accoTdina likelihood map to analyse the in丑Uence of tlee depth

We cal〕 see that when tl〕e depth is smaⅡ, multiple local optin〕ums can be

Observed. with increase of the tree depth, the number of ne8ative local

Optimums decrease while the positive optin〕un) remains. As a conclusion,

We state that deeper structured tree can better distinguish between positive

and ne今ative sample, Based on t11e matching example shown in Figure 5.6,

Fi留Ure 5.7 Shows the change of cost function value with respect to the tree

depth and the nulnbeT of candidate trees respectively. As we can see, both

increasin旦 the tree depth and number of candidate treescan reduce the cost

function value and thus contribute to selecting a better lnodel. considering

the computationalcost, we settlee dept}〕 aS 9 and the number ofcandidate

trees as loo in the experin〕ent

Robustness lvith multi-vieW 今eometry:1n real-world applications of

non-parametric template matching (e、冨.3D reconstruction, product in-

Spection), the key, characteristic expected by users is the ability to handle

matchin留 tasks tl〕at not limited to idea1 留eon〕etry models.＼入7e use the

75



0.8

Fi昌Ure 5.フ: curvesto show the relationship between hyper-parameters (tree
depth and nun〕ber oftrees) and cost function val{1e based on the test exam-
Ple shown 血 Figure 5.6. The cost fTlnction is de6.ned 血 Equation 13.工Ower
Cost function value n〕eal〕s that a selected model can distinguish between

Positive and ne冨ative samples better

0
2 4 6

Deplh of tree

0.5

famous multi-view sequence Gra伍til to evaluate this chal'acteristic and

Plot the results of TAL, BBs and ssD in Fiaure 5.8. As we can see, both

TAL and BBs can deal with template matchin8 Under multi・view envi-

ronment. Howevel, in the case of the last tar8et ima旦e, which exist lar菖e

deformation caused by drastic view point chan旦e, BBs fails in matchin昌

While our method can sti11 keep successful. As a baseline method, classical

SSD cannot dealW北h mU此i・view situation weⅡ

＼
'＼1

8

0.4

10
0,3

0 50

Number oftrees

Quantitative Evaluation

＼和e use the benchmark b11ilt by Dekel et al.,2015 to evaluate our method

qua11titatively. This benchmark is inherited from online tracking bench-

mark ＼入7U, Lim, a.nd Yan昌,2013.1n this benchmark, various di伍Culties

in real scenes have been talくen into account (e.g. iⅡUn〕ination variation,

Occlusion, deformation, background clutter), and it is more chaⅡen旦ing for

宮10baltemplate matchin旦 task than Rol based online tracking task. There

are l05 Pairs of template and tar旦et image in this benchlnark in various

Sizes. Each pai1 Φhsists frame t and t + 20 of a sequence as template and

target image respectively, and t is randomly selected. Additionaltrainin留

f玲mofo, TAL i部010dod hom lt+15,t+191U[t+21,t+2司 Nndomly.0"1y

One kind ofrandom seed is used throU旦hout the experiment. The 8round

truth bounding boxes are annotated manuaⅡy 訊dth a semantic foreground

de6ned

We use the overlap rate to jud菖e whether a matching result is successful by

100
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F電Ure 5.& Qua1北ative comparison on Gra伍tisequence. Between any tw'0
frames of the sequence, the camera's view point is chan冨ed. An object

(comic person) is predetermined on this sequence. Each frame is manuaⅡy
annotated, and the center ofthe ground truth (GT) is kept as the object'S
Center. Numbers within parentheses represent overlap rate

referrin区 to the ground truth. speci6CaⅡy, the criteria used by pASCAL

Cha11en冨e Everin留ham et al.,2010 is applied to calculate the overlap rate:

aN飢BB光nBB,リ

TAL (72.0)

BBS 6900

SSD (21%)

TAL (88%)

GT

TAI

BBS (91%)

SSD (3500
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Where BBル represents boundina box ofresult and BB trepresents bound・

in8 box of ground truth. area(・) is a function to count number of pixels

Within the input area. Based on the overlap rate, we can obtain the answer

about whether a matching resU此 is correct or wron8 by setting a threshold

Speci6Ca11y,

BBS(9%)

GT

BBS

SSD(34%)

Overlap rate
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Fina11y, success ratio =#{answerlanswer = 1}/#tests is taken as the ac・

Curacy criterion. A11the experiments have been done on a pc equipped

With lntel core、i72.9GHz and 16 GB RAM

We compare ouT method W北h both classical methods and state・of-the・a此

methods. classical methods such as sAD, SSD, H入l and Ncc have been

Comprehensively studied in ouyang et al.,2012. Among recent methods,

BBSDekelet al.,2015, LRczhang, Haitian, and Akashi,2016, BDssimakov

et al.2008 are patch based similarity measurements, which are closest to

Our method. other methods indude EMDRubner, Tomasi, and Guibas,

20oo and HOG Dalaland Tri旦部,2005. HOG is extracted as a densefeature

and combined W北h ssD durin留 the comparison. FiguN 5.9a iⅡUstrates

the comparative result of accuracy at a glance.1he threshold of overlap

rate is dynamica11y changed and each threshold corresponds to a success

ratio. Each curve represents a method's result. we can observe from

Fi留Ure 5.9a that the curve of TAL outperforms the other methods overaⅡ

Especia11y, when threshold equals to o.5, which is a widely・used criteria in

detection or n〕atchin今 tasks, TAL nearly improvesthe accuracy by 6% and

3% comparin冨 a留ainst BBs and LRc respectively. when threshold equals

to o.6, TAL nearly improves the accuracy by 9% and 4.5% comparin冨

a区ainst BBs and LRc respectively. AISO, we plot the overlap rate of TAL

and BBs a)se by case in Fi昌Ure 5,9b.＼入le can see that in most of the

Cases, TAL can in〕prove the performance con〕parin宮 a宮ainst BBS. Figure

5.10 shows some matchina results on the bencl〕mark. The likelihood maps

菖enerated by TAL convelge on the around tTuth more than ones generated

by BBS

5.6 Conclusion

11) this chapter, we introduced a new method caⅡed TWO・side agreement

Iearning (TAL)to improvethe accuracy ofnon・parametrictemplate match-

ing with a sin曾le lnatching exemplar for trainin旦.＼入1'e compare our n〕ethod

against several widely used methods on public benchn〕ark and show the
e丘ectiveness. TAL can work weⅡ Unde1τeal-world scenes and make user

easier to de6ne the "similar北y" since a matching exemplaT is a110wed to be

Provided

Our method can fail when extreme changes

target ima宮e as weⅡ as other methods do

Occur between template and

For example, drastic scalin曾
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Fi宮Ure 5.9: comparative result. Avera宮e success ratio of each method is

Shown a丘erthe accordin81e留end. Avera鳥e success ratio is the mean ofnon-
Zero sample points on each curve. a) success ratio curves w'北h threshold of
Overlap rate is chan冨ed from o t01. b) case・by-case comparison with BB.
TAL improves the overlap rate on m田ly test cases in the benchmark.
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Change,辺Umination change, Occlusion, etc. pa此 ofthe reasons are that we

Only use RGB C010r feature rather than ma11y state・of-the・art features such

as slFT, HOG, etc. After TAL has been proved as e丑ective, integratin8

Such features can further improve the accuracy and contribute to many

Computer vision tasks which may bene6t 丘om object localization
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HIGH、SPEED AND LOCAL、CHANGESINVARIANT

IMAGEMATCHING

6.1 Summary

In recent years, many variants of key point based image descriptors have

been designed foT the in〕age n〕atching, and they have achieved remarkable

Performances. However, to some ima宮es,10calfeatures appear to be inap・

Plicable. since theses in〕ages usuaⅡy have many local chan旦es around key

Points compaTed W北h a normaHma目e, we de6ne this specialima旦e catego-

ry asthe ima留e with localchanges (1L)、 An lL pair (1LP) refersto an ima曾e

Pair which contains a normalima旦e and itslL.1Lp usuaⅡy loses localvisual

Similarities between two ima宮es while stiⅡ holdin旦 global visual similarity

＼配hen an lL is given as a query image, the purpose ofthis work is to match

the correspondin旦 ILp in a large scale ilnage set. As a solution, we use

a colnpressed HOG feature descriptor to extract 宮10bal visual similal'ity

For the nearest neighbor search pToblem, we propose randoln projection

indexed KD-tree forests (rKDFS) to match lLp e伍Ciently instead of ex-

1〕austive linear search. rKDFs is built with lar曾e scale low-dimensional

KD-trees. Each KD-tree is built il〕 a random projection indexed subspace

and contributes to the 6na11esult equaⅡy through a votin旦 mechanism

We evaluated our lnethod by a benchmark which containS 35ρoo candi-

date ima今es a'nd 5,ooo query ima菖es. The results show that our lnethod is

e伍Cient for solvina local-chan昌es invariant imaσe matchin菖 Problems

Ch ap ter 6

6.2 1ntroduction

Durin旦 the last decade,image match血旦田ld retrievaltecl〕n010gy have been

Widely studied. At the same time, with t}〕e development of internet and

in〕a曾e editin旦 techn010gy, ima留es are sh飢Vin菖 moTe and n〕ore diversity in

Our daily life. The explosion of image data requires image descriptors to

be not only lighter but also more discrin〕inative for n〕atching and retrieval

tasks. SIFT David G. Lowe,2004 feature and other key point based ima菖e

features we11 Solved t}〕is problem and are now becon〕ing one of the n〕ost

Popular research branches. However, key point based frameworks have

becolne less e丑ective a三且inst ima菖es with local chan8es (1L).1L can not be
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F屯Ure 6.1: Exalnples of11,P.1n thiS 6旦Ure, we use suRF feature to match
the key points detected in the image pairs. Because of the local chan区es
Occurred in the right column ima宮es, the key points can not be matched
WeⅡ. our task is to grasp the visualsimilarity in lLp when such local
Changes exist.

de6ned

Inla曾e.

nornlal

by a sin81e image since "chan留es" exist W北h respect to a normal

IL is an ima留e in an lL pair (1LP). An lLP 血Cludes two ima8es: a

image 田ld its lL.

Main reasons fot why localfeatures aTe less e丑ective 血 matching lLp can

be concluded as :1) 1n some lL, detection of corner points is di伍Cult.2)

An lLp may contains ma11y localchan8es (e.g. an lLp containstwo photos

Which are taken at same place but in di丑erent seasons).3) Multゆle simi1釘

regions may exist in an lL. An lLp can be ima曾e with ima宮e,ima菖e with

Sketch,ima菖e with noise ima宮e,ima宮e Mth paintin8,image with synthetic

image, ima8e with blur ilna宮e, image with ed8e image, etc. Figure 6.1

Shows some examples of lLP. As we ca11 See, various local changes can be

Considered such as changes ofi11Um血ation, C010r, edge, shape, texture. The

SURF Bay, Tuytelaars, and van GO01,2006 descriptor failed in matching

With each key point, which wiⅡ lead to a failure of matchin留 the whole

11nage
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Ima旦e matchin冨 is a basic research topic for various applications of com-

Puter vision, such as near-duplicate image detection (NDID), content・based

imaae retrieval(CBIR), texture classi6Cation. The task is to search a lar留e

database of candidate ima8es Mth a query image a11d then 6ndsthe result

Which matches to the query ima8e.1n our problem, there is one query as

the input and one ima昌e as the output. The input and output are exactly



the same despite the local changes. Most ofthe in〕a目e matchil〕旦 Problem・

S are studied 丘on〕 two points of view:1) ima旦e feature presentation 2)

neaTest neia})bor (NN) search technique

LOW-1evelfeatures, such as histogram based 8radient features and key point

based features, usuaⅡy have trade-0任 Problem between the number of di-

mensions and the discriminative ability.1n other words, features composed

Of n〕ore dimensions usuaⅡy have stronger ability to ptesent 田lima昌e'S

Visual sin)ilaTity. AlthoU区h higher・1evel feat田'es learned by sparse cod・

in曾/deep learnin昌 Can surely present in〕a宮e's visualsimilarity we11 With less

dimensions, the coding process is time consumin昌、 1n our research, the

Original hi昌h・dimensional HOG feat田、e is projected onto a low・dimensional

Subspace while trying to keep disclim血ative ability based on Achlioptas,

2003. Accordin宮 to the compressive sensing theory, a sn〕aⅡ number of

randomly 旦enerated linear n)easuren〕ents can preserve most of the salient

inforn〕ation. The projection plocessing does not cost much time when the

ProJectlon n]atrⅨ Is very sparse

On the other hand, most of the current data structures for e丑ective NN

Search can only index data points in low-dimensionalfeature space. These

data structures becon)e less e缶Cient with the 目rowin目 of dimension num-

ber due to the curse of dimensiona1北y. The di缶Cult point is that 北 is

hard to solve the exact NN problem e缶Ciently 血 high・dimensionalfeature

Space while the accuracy is low when solvin旦 the exact NN problem in

10W-dimension feature space.1n this chapter, our solution is t06nd numer-

Ous approximate nearest nei又hbors (ANN) in thousands of low-dimension

feature spaces and then vote for the best ANN as the 6nal output. By

doin8 this, we can accelerate the n〕atching procedure while achieve satis-

factory matchin宮 accuracy. To tl〕e best of our knowled目e, there is little

Study on image n〕atching problem lvith various types oflocal chan旦es. our

method builds a hU目e number ofsubspaces to reduce noise's e丘ect brought

by localchan旦es, and 丑naⅡy 8rasps the 昌10balsimilar北y between query and

Candidate imaaes

6.3 Related叉入1'ork

Feature Descriptors for visual similarity Evaluation

An〕on留 recent state-of-art works,10cal feature descriptors for quantifyin留

ima8es' visualsimilar北y have been proved to be very e丘ective. SIFT David
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G. Lowe,2004 and its variants are representative. f、、1rthermore, D. C

Haua留留e et α1. Haua8留e and snavely,2012 Proposed a localfeature descrip・

tor which based on detecting and representing localsymmetries foT match-

in旦 Pairs of photos taken at urban scenes. K. Grauman et α1. Grauman

and DarreⅡ,2005 Proposed a technique that compares ima旦es by matching

their distributions of localinvariant featいres

On the other hand, global feature descriptors are also used for evaluating

the visual sin〕ilarity. A. oliva et α1. oliva and Torralba,2006 noted the

昌10balima宮e features play an in〕portant role on scene peTception. S. Lazeb-

nik et α1. Lazebnik, schmid, and ponce,2006 noted that a alobal feature

representation can be surprisin81y e丑ective for identify血g the overa11Scene

P. Li et α1、 Li et al.,2012 Proposed a method to enrich the discriminative

ability oflocalfeature with globa1 血fonnation. They noted that the cur・

rent local descriptors wiⅡ fail to match when an image has multiple silnilar

regions. C、 zhang et al zhang and Akashi,2015 Proposed a compressed

HOG descriptor for lL image matchin区. They used random projection to

Compress the high-dimensional HOG feature int010W-din〕ensionalfeature

However, in matchins procedure, only a simple brute-force method with

Ll distance measure is applied

Image Matchin旦 and NN search

NN search problem for image nlatd)in又 has been widely studied. For exact

ima菖e matching, blute-force is an e伍Cient method especia11y the number of

feature dimension is }ar宮e. A. Torra11)a et α1. Torralba, Fergus, and ＼入leiss,

2008 applied brute・force search to match images whkh are converted into

bil〕ary code from GIST descriptor. when the numl)er offeature dimension

is smaⅡ, many data structures can be applied for ilnage matchin留 Such as

Kd、tree, R・tree, Ba11tree, SR・tree. C. silpa et α1. silpa-Anan and Hartley,

2008 introduced an optimized Kd-tree Friedman, Bentley, and Finkel,197フ

a1冨orithm which is used to match slFT descriptors. on the other hand,

instead of6nding the nearest ima旦e to the query ima旦e, approximate image

matcb血g aimst06nd ima旦es which are W北hin a certain distance threshold

to query ima8e, such as ima曾e retrieval. ANN search can deal with the

high・dimensionalfeature e丘ectively by reducing the dependency on dimen・

Sionality. Y. Ke et α1. Ke, sukthankar, and Huston,2004 employed local

Sensitive hashina (LSH) to index the local descriptors for near-duplicate

detection. LSH also applied the random projection for searchin旦 ANNS
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Over hi留h・dimensional data. P. wu et α1. wu et al.,20H used multiple

randomly projected kd・trees to search ANN. Each kd-tree search the AN・

N in a random projected low・dimensionalspace and rank the results by

distance at last

Ima区e Matchin留 W'ith lL

To the best of our knowledge, there are few chapters for studyin8 aⅡ type-

S of lL, sketches and paintin冨S are most studied problen〕s belon冨 to lLP

Inatching. A. shrivastava et α1. shrivastava et al.,2011 de丑ned lL as

Cross・domain images, the authors n)ainly considered the matchin旦 task for

Sketches, paintin8S and photos taken in di丑erent seasons which are aⅡ in-

duded in the de丑n辻ion of lL. They learned the weights for each HOG

feature's dimension with sin昌le positive query image and a very large set of

ne今ative ima昌es by svNI. The trainin菖 Process is very tin〕e consuming and

hard to be 6nished within query time. other similar chapterS 血Clude E北Z

et al.,20H for matchin曾 Sketches with photographs, Russe11 et al.,2011 for

matching paintin旦S with phot0旦raphs, chong, Gortler, and zickler,2008

for matching ima昌es under di丑erent iⅡUmination conditions. Furthermore,

Zhan昌 and Akashi,2015 Used a colnpressed HOG descriptor and brute-

force NN search to match the lLP.1n this chapter, the din〕ension nun]ber

Of oTiginal HOG descriptor is reduced 丘om 6384 t0500 血 order to reduce

the burden of matching time. However, aftet projection with a single ran-

dom sparse matrix, the oTi部nalfeature lost oTi冨inalinforn〕ation naturaⅡy

The balance between matching accuracy and matchin曾 time is stiⅡ not be

Solved weⅡ in this chapter

Our work is mainly based on work zhan目 and Akas}1i 2015;＼入Iu et al.,

2011. we use the feature descriptor proposed in zhang and AI【asl〕i 2015

and enhance the ANN method proposed in wu et al.,2011for hi昌h・speed

exad lLp matchin曾

6.4 Method010冨y

Problem settin留

We have a set p。 ofn pre-processed candidate image feature vectors {PI, P2

,..., Pπ}, where Pη E Rm.机 is the number of compressed feature vector'S

dimension. Given an arbitrary query feature vector qπ e R仇 from query

Set P中 return Pη Which is closest to qη Under the distance n〕easurement

function.1n the f0110Mn8 Sections, we wiⅡ分.rst introduce how to generate
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Set p。 and p from candidate image set l。 and query lL set 1中 and then we

WiⅡ introduce how t06.nd Pη by usin菖 random projection indexed KD・tree

f0鄭橘←KDF命

Feature compression

HOG feature Dalal and nig菖S,2005 Counts occurrences of 8radient ori・

entationS 血 CeⅡS/blockywindows and merge them into one feature vector

P/ E Rπ n is the dimension number of ori旦inal HOG feature.1n this chap・

ter, we treat the whole ima曾e as a sin旦le window, and construct 昌rid-1ike

Structure for extracting feature W北h un北S caⅡed block and ceⅡ. we de6ne

R(i, j).丑(i,j) do・R as a 机 X n random n〕easurement matrix, and rij ^

notes the entry in row i, column j of matlix R. Each rij is independent

With others and decided by the f0ⅡOW加留 Probabi1北y distril〕ution,

1

W北h probability
2S
1

Vi (6.1)O withprobabi1北y lrij
^

S

With probabi1北y

Achlioptas et α1. Achlioptas,2003 State that when the s = 10r 3, R satis・

6es the Johnson-Lindenstrauss lemma. such kind of matrices can achieve

favorable compression performance. The method of wu et,al.,2011 also

3 to generate tl〕e random nleasuren〕ent matrix. when s = 3, onlyUses s

1/3 data need to be processed. However, when the size of candidate image

Set l。 is very lar旦e, the procedure of pre-processing becomes tilne consum-

ing. For each query image, althoU旦h compression operation only needs to

be performed once, we hope to avoid lar菖e an)ount of numerical calcula-

tion in order to reduce query time as much as possible. Fortunately, this

random spalse matTix has been pToved to be e丑ective even s 》 3 Zhang,

Yama曾ata, and Akashi,2015.1n this chapter, we set s >π/2. Therefore,

Only 2/π data need to be processed at most. parameter s is determined by

rule ofthumb. For example,in both zhan合, Yamag飢a, and Akashi,2015

and zhang and Akashi,2015, s is set aS π/4 for e伍Cient compression pro・

Cedure.1n addition, since no aoatin8・point aTithmetic is needed expect a

Square root operation, the con〕pression process needs little computational

Cost. AISO, this random measurement matrix only needs to be 菖enerated

Once during the pre・processing procedure

The process of compression can be seen as a projection from the h珸h・
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^

F喰Ure 6.2: compressin8 HOG feature from 仇・dimension t0 π・dimension

The dimensions of p' are randomly selected for 宮eneratin留 P

■
口■

■口■
■口

dimensionalspacet010W-dimensionalspace.＼vede6ne p' as h喰h・dimensional

HOG feature (P/ E R九), p aslow・dimensionalcompressed feature (P E Rm).

Forthe sparse random projection,π》仇. The compression procedure can

be presented as,

■
■■

ro、V I

口■
■

P(の=Σj=oro/PU)

P①=Σj!.01'U'PU)

R
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This quick 砥ld simple matrix multiplication complies our requirements for

Computin8 Speed. However, with lar8er s, the loss of feature's information

W辺 be unavoidable.＼入7e apply multゆle ra11dom matrices to remedy this

Problem. we use pijto denote the feature vector ofima今e li which is com・

Pressed by random matrix Rj. As a result, each ima旦e wi11 be presented

by ツ Compressed feature vectors in totalinstead of a sin宮le vector. AI-

thoU8h dimension number of each pi・is much smaⅡer than the descriptor

Proposed in zhan留 and AI【ashi,2015, the combination of a11the pi・ can

hold more information. Furthermore,10wer-dimensional pi・ is much easier

to be processed by KD・tree

P(11) Σj=or,リPU)

(仇XI) R(仇ゞπ),(nxl)

The theoreticalfoundation of why such a simple matrix can do data com・

Pression we11is proved in Baraniuk et al.,2007. R.Baraniuk et α1. give a

Simple proofthat R satiS6es the restricted isometry property. At the same

time 究 SatiS丑es the Johnson-Lindenstrauss lemma, thus it has high prob-

ability to reconstruct p' from p with minimum error. Figure 6.2 Shows

the feature compression procedure.究 is created W北h Equation l, black

Squares represent positive entries, and the white squares represent ne宮ative

(62)
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A1旦orithm 4 Feature extraction and compression

Require: candidate ima宮e set :1C
Require: Query image set :1q
Require: compressed feature set of candidate ima旦es: PC
Require: compressed feature set of query ima昌es : pq
Require: Gaussian blur kernelsize : k
Require: Number ofrandom matrices :ツ

Require: parameter: S
1: for i from l t0 ツ do

2: Generate projection matrix Riwith Equation la11d s
3: end for

4: for each ima三e liin lc u l do

S ム=8釦豁i釦B1田(ム,k)
既t玲dHOGqD6: P/

フ: forjfrom lt07do

Pij = compress(P , Rj)8

12 = normalize(pij)9

if li E I。 then10

Push pu to p。11

else12

Push pijto pq13

end if14

end for15

16: end for

17: Return p。 and pq

entlies' 1n order to calculate i th dimension's value p(り, dimensions of p/

are randon〕1y selected and combined accordin旦 to R

The whole compression procedure can also be considered as a procedure to

ilnprove the original HOG's feature level. The problem of HOG feature is

that it is not clear which din〕ension of p/ performs a nwre in)porしant role

in further application, which dimension of p' is useless. A丘er con〕pression,

each dimension ofp is calculated from multiple dimensions of p/, thus more

血forn〕ation iS 血Cluded in p's sin留le dimension t}〕an p'. As we aⅡ know

that with h璃herlevelfeatures,1ess dimensions are needed 加 hold the same

discriminative ability、 From this point ofview, we can also understand why

the random projection works for feature dimension reduction with less loss

Of discrim血ative ability

The preprocessing a180rithm can be concluded with A1留orithm 4
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Random projection lndexed KD-tree Forests

KD・tree Robinson,1981 is a widely used tree structure for searchin昌 ANN

in multi・dimensional data space. R is a binary tree with each node has

a hyper・plane (typica11y one dimension) to divide the data space into t・

Wo subspaces. The feature vectors which are le丘 to the hyper・plane wi11

be assi留ned to left child node, and the feature vectors which are right to

the hyper・plane W辺 be assigned to ri旦ht child node. As one ofthe ANN

a1旦OTithms, KD・tree woTks e丘ectively when dealing with low・dimensional

data. However, KD・tree works poorly especiaⅡy the number of feature

Vector's dimension is lar今e since it wi11 degrade to linear search Gionisj

Indyk, Motwani, et al.,1999.1n our matchin宮 Problem, KD・tree seems

to be inapplicable because the dimension number of HOG feature is lar8e.

By usin旦 the compression method mentioned above, dimension number of

HOG feature can be reduced.1n our condition, we set compressed feature

Vector's dimension extremely sma11to build KD-tree in an e丘ective way

(e.g., n = 6384,仇= 1の. such KD-tree is very li宮ht both in memory and

Search time. HOW'ever, much information on the originalfeature vectors wiⅡ

be lost naturaⅡy and ANN of query lcL becomes hard to search by sin留le

KD・tree. To solve this problem, our idea is to build a large scale KD-tree

forests (e.g.,α= 8,00の W北h each tree indexed by a random matrix. Each

q

.

ilna冬e n叩lberin pc

Figure 6.3: The main pTocess of our modi負ed ima区e retrieval a1旦or北hm

eX抑Ple queW 血a套e oUゆ11t柄th N冬hest町otm冬

hna冬e n1ゆberln Pι



Build rKDFSA地or北hm 5

Require: compressed feature set of candidate images: PC

Require: Number ofrandom matrices :ツ

Require: Number oftrees in one 旦roup :δ

Require: Maximum depth of one tree:入

En.U,0. 1P。1 > 0
1: for j 丘om lt0 ツ do
2: forifrom lt0 δ do

Initialize KD・tree KT with root node π and d飢a p。3

Whilo dopth(九)く入 do4

SplitNode(n)5

π= 6ndL肌f(KT)6

end while7

Push kr into tree 8roup kGj8

end for9

10: end for

kG11: Return KD-tree

tree in rKDFs is built with di丘erent input compressed data sets which are

generated by diaerent random matrices."indexed" in rKDFs means that

We use one random matrix to discriminate a certain tree from others. ANN

results returned by a sin旦le KD-tree in rKDFs are very inaccurate but bet・

terthan random 区Uesses, because the compressed feature space's dimension

is too smaⅡ to reaect the oriainalfeatute space's data distribution. we vote

With ANNs provided by each tree by a hist0留ran〕 and atlast select the AN・

N which is most voted as the 6nal output. Figure 6.3 iⅡUstrates the whole

Processin菖. P町 denotes a compressed featule set which js compTessed via

random n〕atrix Rj

留roups
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We now introduce how to build rKDFS. P。 includeS ツ feature subspaces

Whicl) are returned by A1曾orithm 4. we build δ trees in one subspace in

ParaⅡel、δ trees in one subspace form a tree 冨roup. For each tree, data in

the accordin留 Subspace is partitioned recursively froln the root node to leaf

nodes,1n initialization process, dimensions with lar留e variance are selected

as candidate dimensions to partition the data (e.g.,五Ve dimensions). At

each node, we 6rst randomly select a dimension for splittin8 and then

Calculate the median value of this dimension, After that, a11the feature

VectorS 血 the node W辺 be split into two child nodes according to the

median value. The split operation wi11 Stop untilthe depth of the tree

reaches to the depth threshold 入.1n order to store a11the trees, we need



Space complexity about o(α仇 X IP。1). The buildin昌 algorithm is concluded

加 A1曾orithm 5

＼ve now introduce how to search with rKDFS. T0 6nd the best ANN

Of a given feature vector p E P中 We need to search with ツ X δ trees

A丘er preprocessin宮, p has already been projected int0 ツ Subspaces.1n

each subspace, we search ANNs of p W北h a tree 留roup which is returned

by A1昌orithm 5. However, these ANNs are very inaccurate since each is

Outputted by a single tree、 1n order to boost the accuracy, ANNs searched

by a tree group are ranked by distance and output best β ANNs for votin冨

the 負nal NN. The votin旦 mechanism is established under this assumption

exact NN of a query in〕a区e has higher probability to appear in the ANNs of

each sub feature space.＼ve need time complexity about o(αη X I0昌 IP。1) to

Search with one query, The searching a1留orithm is concluded in A1旦orithm

6

The di丘erences between our matchin宮 method and W11 et al.,2011 Can

be concluded as f0ⅡOwing.1) we introduced Tandomized kd・tree forests

Vedaldi and Fulke玲on,2010 to divide tress int0 冨roups accordin旦 to dif-

ferent subspaces.2) Nlethod of wu et al.,2011 Uses only about 20 trees

to search ANNS, in our condition, number of trees iS 8,ooo and more.3)

Nlethod 血 Wu et al.,2011ranked a11the ANNs by distance 田ld treat the

top rank which is closest to the query in subspace as the 6nal NN. This

method wiⅡ become less e丑ective when the dimension number of ori8inal

feature vector is vely lar旦e like the HOG feature. Because the distance

measuTement in subspace ca.n not we11reaect the dist釦Ce in the original

Our method vote W北h aⅡ the ANNs to determine the 6nalfeature Space

NN which appeal'ed mostfrequently as an ANN.4) our n〕ethod compress-

es feature dimension from thousands t010 while method of ＼入7U et al.,2011

Con〕presses feature din〕ension 丘om hundreds t0 10. Randon〕 projection

is a r田ldom method which does not depend on any trainin菖 data, thus

buildin昌 lar冨e number of KD-trees in a same subspace is risky and unwar-

ranted. our met}}od disperses the risk to each subspace and achieve better

Performance oveTaⅡ
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Search with rKDFSA1晉orithm 6

Require: compressed feature set of query images : pq
Require: compressed feature set of candidate ima区es : P。

Require: Number ofrandom matrices :ツ
Require: KD-tree groups kG

Require: Number of ANNs outputted by a single KD-tree 8roup:βNU

> 0 釦d lp。1 > 0IP。1Ensure:

I to lp。1 dofron〕1: for i

2: initializehistogrα7nW北h lp、1bins'tiali

3: forjfrom lt0ツ do

AⅣⅣ=託釘oh(kG力P'力β)4

Vote(histogrα仇, A八rⅣ)5

end for6

フ: Returnar昌lnaxbiπ。
Isoflp。1

& end for

6.5 Experiment

Experiment Environment

We use the benchmark used in zhang and AIくashi,2015 to evaluate our

method.1t is a chaⅡen即n旦 benchmark which containS 5,ooo qua'y images

and 35,ooo candidate images' 5,ooo query jma宮es are modi6ed W北h local

Changes based on nonnalimages which are randomly selected from 35ρ00

Candidate ima曾es. wi(1th of ima昌es is between 454 Pixels t0 1272 Pixels,

the ofimages is between 482 Pixels t0 1024 Pixels, Many types of lL are

included in the query set, and the local changes can l)e mainly conclud-

ed into tl〕ree cate宮ories: chan曾es of c010r-texture infon〕〕ation, changes of

ed昌e-gra.dient information, and chal)ges with specia161ters. C010r-texture

血formation can be changed by the addin昌 of text and scribblin旦, iⅡUmi・

nation changes, ima昌e binarization, etc. Edge・gradient infoln〕ation can be

Chanaed by image rotation,10cal deformation, text addin旦, scribblin旦, etc

Specialimage 丘lters wi111ar8ely change ima8e's localfeatuN and keeP 810b-

al similarity like crayon drawin曾, oil paint, pencil drawing, pixel explosion,

Stained 宮lass, etc、 This benchmark is an one-to-one matching task bench-

mark, a query in〕a曾e and its ground truth are exactly the same despite the

10cal chan宮es. To the best of our knowled宮e, there are few similar bench-

marks for one-to-one ima8e matching task involvin旦 Various types oflocal

Chan留es

＼和e did aⅡ the experiments with a pc eqUゆPed with lntel core・i5 2.5GHZ
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Table 6.1: parametel' settin留 for each experin〕ent. parameter value with

"ー" is variable durin8 the accordin昌 experin〕ent. Results are summarized

血 F珸Ure 6.5 (shown in last paae)

Sub 6旦UTe NO

Cpu and6 GB RAM

α

400

400

8000

8000

400

E丘ect of parameters

In this section, we systematica11y report the experimentalresults for study-

in旦 how each parameteT a丘ects the performance of our matchina method

In this chapter, some paTameters are 6Xed to Teduce complexity of experi-

n〕ent.＼ue set the number of treeS δ= 4 in each tTee 菖roup, ilna昌e size as

320×240,8radient an菖le's range as [0゜,180゜],び" of Gaussian blur aS 8 and

σ of Gaussian blur aS 6. F喰Ure 6.5 (shown in last page) sumn)arizes the

eaects of various parameters. Experimental conditions for each sub 68Ure

are given out in Table 6.1. Two evaluation criteria are observed duTing ex-

Periments: error rate and n〕atching tin〕e per query image in miⅡiseconds

Elror rate is de丑ned as f0ⅡOWS,

β

10

S

6000

6000

d

35000

35000

35000

6000

2000

6000

k

(6.3)

π

35000

35000

6384

6384

6384

6384

2700

6384

7n

95

31

IP。1

n〕atch function returns l if a query in].a昌e can be approximately matched

according to ground truth, returns o if not

AS Figure 6.5(a) SI〕OWS, increasin昌 the nun〕ber of trees a of rKDFs im・

Proves the performance si目ni6Cantly. Error rate stops decreasin昌 from a

Certain value of a. The n〕atcl〕in曾 time per query image increases linea11y

AS F喰UTe 6.5(b) shows, when the numbeT of ANNs out・as a lncreases

Putted by each tree 旦roup is increased, the votin曾 Process appears to be

more accurate、 AS Fi昌Ure 6,5(C) shows, W北h the increase of s, errol rate

declines in a stepwise fashion. Lar昌er s leads the a1昌orithn〕 t0 宮eneTate a

more sparse randon〕 matrix to compress the original HOG feature vector

error rate
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Table

is the

Set a

6.2: Example of parameter settin8S
dimension number of HOG feature

8000,β=、 10, d = 35000, k = 31,

π

1836

2396

2700

5508

6384

9576

12768

29376

35964

error rate

0,149

0.099

0.066

0.110

0.076

0.071

0.080

0.087

0.092

block

(64,64)
(32β2)
(16,1の
(64,64)
(32β2)
(32β2)
(32β2)
(64,64)
(32β2)

extractin冨 HOG feature.πfor

Calculate the error rate, we
10

In our method,1ar宮er s shows to be a more appropriate choice. As one

Of the possible reasons, excessive compression may cause bad inauence on

Calculating the visual similarity of lL conversely. AS Fi留Ure 6.5(d) shows,

W北h the increase of candidate ima旦es, error rate maintains. This can ex-

Plain that our method is robust in chan8e ofseal'ch space. we can als06.nd

that the processin8 time increase linearly with the increase of d, this is very

ilnp0此ant for practical applications. Fron〕 F珸Ure 6.5(e) and (f), we can

6nd thatthere exists minimum errorrate while increasin曾 k and 肌 Step by

Step.＼入le can tune both the parameters by a validation set. Furthermore,

the dimension nun〕ber of original HOG feature vector π also plays an in〕ー

Portant role. some palameter tuning exan)ples are shown in Table 6.2. we

found out that parameter setting with 9 bins performs better than 6 bins,

the best accuracy is achieved when block size, ceⅡ Size, block stride are a11

Set to (16,16). After tuning on a validation data set, we report the lowest
error rate in the next section

block stride

(16,1の
(16,1の
(16,1の
(16,22)
(16,1の
(16,1の
(16,1の
(16,1の
(8β)

CeⅡ

(64,64)
(32β2)
(16,1の
(32β2)
(16,1の
(16,1の
(16,1の
(16,1の
(16,1の

bin S

1000

2000

2000

5000

6000

6000

6000

6000

6000

12

Comparison

＼ve compare our method with others from two aspects for the di任eren-

t needs of practical applications,1) considerin冨 accuracy as priority,2)

Considerin昌 matchin留 time as priority. The compared methods are listed

below

N-BOF-SIFT:1n experiment, we combine BOF with slFT David G

Lowe,2004. The visual vocabulary is built by randomly sampled 血〕a昌es

hom the candidate dataset and each pacl【a旦ed feature iS 6.na11y normalized
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We extract 128 dimension slFT descriptors for a11the detected key points

and then use K-me飢Is clusterin菖 method, which is usuaⅡy used in many

BOF implementations, to cluster visual words.1nitial centToid positions of

K・means are chosen according to Arthur and vassilvitskii,2007. For the

assignmenttask, we use fast approximate nearest nei留hbor (FLANN) Muja

and David G Lowe,2009 to assi旦n the novelfeatures to the dosest terms in

the vocabulary. A丘el norn〕alization, we use the packaged feature to match

tl〕e data set by Ll distance

-RP-HOG: The method 血 Zhan旦 and AI【ashi,2015 Compressesthe HOG

feature W北h Tandon) projection and then match the NN by brute・force with

Ll distance n〕easuren〕ent

N-HOG: ori部nal HOG features Dalal and Trig曾S,2005 are extraded

from each ima曾e and then normalized by L2 norm. we use brute-force

method to n〕atcl〕 the NN with Ll distance measurement

GIST: Gist feature oliva and Torralba,2006 is a 菖10balimage feature

Which convolves a gradient 61teT to encode the amount and stren8th of

ed旦es. A丘er Gist is extracted, we use brute・force method to match the NN

With Ll distance measurement

Fisher vector: GNIM is used to construct a visual word dictionary at

丑rst. we extract slFT feature as the loca] feature of each ima8e. Fisher

Vector is encoded by the slFT feature and the prior obtained G入圧NI, and

6naⅡy normalized by L2 norm

VIAD: VIAD can be seen as the simpli負Cation of Fisher vector.1n

experiment, K一入leans is used instead of GMM for visual word 旦eneratin曾,

and KD-tree is used for vector quantization.1t is also nonnalized by L2

norn〕 at last

Table 6.3 and 6.4 Show the comparison results. From Table 6.3 We can

See that slFT appears to be very ine丑ective even the visual words are set

t0 10ρ00. By this point we can prove the e任ectiveness of our dataset foT

evaluating the KF in〕ages. Furthern〕ore, our method is about 54% faster

tha11 N-HOG at a san].e accuracy level.＼入le successfUⅡy converted a hi曾h-

din〕ensional feat田'e match血冨 Problen〕 into a low・dimensional matching

PI'oblem and in]proved the accuracy. FTom Table 6.4 We can see that our

method is about 74% faster tl〕an RP-HOG at a same accuracy level and

Outperforn〕s othel methods both in accuracy and time. AlthoU冨h Fisher

Vector and vLAD C田I perform very weⅡ in standard image retrievaltasks,
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F璃Ure 6.4: Examples ofcomparison with method zhan宮 and AI【ashi,2015

Table 6.3: comparison results considerin宮 accuracy as prior北y Dimension
number of descriptors are shown after accordin区 method's name

quety lmage

tesult by method [9]

result by our method

Our.method-accurate

BO、V-SIFT、100oo csurka et al.,2004

RP、HOG、30oo zhang 3nd Alcashi,2015
N、HOG"6384 Dalal and Diggs,2005
GIST-640o oliva and Torralba,2006

FisheT、vectot-7680 perronnin and Dance,2007

VLAD-640O Delhumeau et al.,2013

query lmage

method

result by method [9]

it can not perform we11in our problem. The main reason can be concluded

as: both ofthe methods are developed based on the localfeatures such as

SIFT, the matching error brought by localfeatures can be further expand-

ed durin冨 the transformation offeatures. As a conclusion, our method can

match lLp in high・speed with lar区e scale candidate database, at the salne

time, accuracy is satisfactory. Dense salnplin宮 methods such as slFT FIOW

Liu, Yuen, and Torralba,2011 is recently showing the e丘ectiveness. HOW-

ever, to compute a 128・dimensional slFT feature for each pixelis very time

Consumin留 and impractical. with the increase of data base's size, both the

time and space complexity grow dramaticaⅡy

Figure 6.4 血tuitively shows some matching examples comparing to zhang

and Akashi,2015. A synthesized image example and a dist0此ed ima今e

example are shown to be mismatched by zhang 田ld Akashi,2015 While

Our method can sti11 match correctly

re ult by 0山 method

error rate

0.061

0.426

0.135

0.067

0.211

0.637

0.66

matching time peT query image (ms)

1343

541.2

128.5

294.6

295.3

352.1

294.9

6.6 Conclusion

This chapter presented a problem which aims to match a special catego-

ry ofima旦es ca11ed lL. The proposed method applied a compressed HOG

descriptor for extraction and introduced rKDFs for high・speed NN search
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Table 6.4: comparison results considering matchin冨 time as priority. Di-

n〕ension nun)ber of descriptors are shown after accordin畜 method's name

Our-method-fast

B0凡V-SIFT・50o csurl(a et al.,2004

RP-HOG、50o zhang 3nd Akashi,2015

N、HOG、1836 Dalal and 1Υiggs,2005

GIST-5120Hva and Torr31ba,2006

Fishcr-vcctor-1280 perronnin and Dancc,2007

VLAD-1280 Delhumeau et al.,2013

mcthod

There stiⅡ exist some limitations in pradical applications, The main lin〕ー

itation is that colnpressed HOG descriptor is not rotation invariant, thus

IL plesented in di丑erent rotation angles wiⅡ failin matchin旦. Farther-

more, our metl〕od W辺 fai1 血 matching when lnultゆle cand誠ate images in

a candidate data set appear to be visuaⅡy similar (e.g., successive frames

in video). our method wiⅡ also faiHn matchin旦 When both ima晉esshoW血8

a same basiC 8eometric shape (e.g., an in〕a8e of sun and an in〕a冨e of ba11)

In the future, we plan to develop rotation 血Variant descriptor which can

als0 旦rasP 冨10bal visualsin〕ilarity 血 order to solve tl]e problems n〕entioned

above. Furthermore, since each tree can pa'form matchil〕旦 independently,

the matchin昌 Process can be fU此her accelerated by GPU

Crror ratc

0.159

0.584

0.151

0.187

0362

0,630

0.560

matching timc pcr query lmage (ms)

5.5

92.6

21.3

88.6

23,フ

57,4

57,9
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F喰Ure 6.5:.E丘ect of paralneters on eTror rate a11d pTocessin留 time per
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C0血P,ression factor: S.'(d) 1ncreasing the size of candidate dataset: d.(e)
Increasin宮 the size of blur kernel: k.(f) 1ncreasing the dimension number
after compression:仇
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ROBUST VISUAL TRACKING VIA COUPLED

RANDOMNESS

フ.1 Summary

TracMng algorithms foT arb北rary objects are widely researched in the 6eld

Of computer vision. At the be即nning, an 血itialized bounding box iS 部Ven

as the input. A丘er th飢, the algorithms are required to track the objective

in the later frames on・the・ay.1tacking・by・detection is one of the main

research branches of online trackin昌. However, there stiⅡ exist two issues

in oTder to in〕prove the perforn〕ance.1) The lilnited processin昌 tin〕e re・

quires the model to extTact low-dimensional and discriminative features

from the training san〕ples.2) The n〕odelis required to be able to bal-

ance both the prior and new objectives' appearance infonnation in order

to maintain the relocation ability and avoid the driftin今 Problem.1n tl〕is

Chapter, we propose a real-tin〕e trackin冨 a180rithm caⅡed coupled random-

ness trackin留(CRT) which focuses on dealin冨 With tl〕ese two issues. one

randon〕ness represents random projection, and tl〕e other randon〕ness rep-

resents online randon〕 forests (ORFS).1n cRT, tl〕e 冨ray-scale feature is

Con〕pressed by a sparse measurement matrix, and oRFs are used to train

the sample sequence online. Durin旦 the trainin旦 Procedure, we introduce

a tree discardin区 Strate曾y which helps the oRFs to adapt fast appeal'ance

Chan旦es caused by iⅡUmination, ocdusion, etc. our method can constantly

adapt to the objective'S '1atest appearance d}an今es while keeping tl〕e pTior

appearance inforn〕ation. The experin〕ental results show that our a1旦orith-

m perfon〕〕s robustly with many publicly available benchmark videos and

Outperfonns severalstate・of-the・art algorithn玲. AdditionaⅡy, our a180rith・

m can be easily 11tilized into a paraⅡel pr0曾ram

Ch ap ter 7

72 1ntroduction

Visualtrackin留 Without depth information has become an important re・

Search area of computer vision. A typical real・world application is video

SurveiⅡance Akashi et al.,2007. we have to deal W北h many problem・

S when trackin区 one objective with a sin留le camera, such as i11Umination,

Occlusion, scale variation, defon〕〕ation, motion blur, in-plane rotation, out-
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Of-plane rotation, etc. Many of the current trackin留 methods depend on

the trainin昌 data c0Ⅱected in advance. By comparison with such methods,

a trackin留 tasIく for an arbitrary objective W北hout prior knowledge is more

di伍Cult, because the appe矼ance of the objective wiⅡ be chan留ed due to

Various conditions durin区 the trackil〕旦 Process. There is a question which

may seeln contradictory, of whether new infolmation should be incorpo-

rated for prediction purposes while tl)e prior 血formation should be saved

for relocation.1n the past decades, many trackin区 a1留orithms have been

Proposed W北h better and better perfonnance.1n many comprehensivesur-

Veys Yilmaz, Javed, and shah,2006; Li et al.,2013; WU, Lim, and Yan宮,

2013, various object tracking n〕ethods have been investi昌ated. we wi11in-

troduce the state-of-the-art surrounding feature dimension reduction and

Online learnin区 based on the last decade's chapteTS

Feature Dimension Reduction

Before an appearance modelis built, feature extraction is usua11y the 丑rst

Step. No n〕atter whether the feature is global or local, it should be low・

dimensionalin order to reduce the entire processin菖 time.1n recent years,

Sparse presentation and compressive sensing theories have attracted a lot of

theoretical and applied research interest. As one ofthe various techniques,

Principal component analysis (PCA) and its variations are widely applied

in online traddn昌、 The n〕ethod in Ross et al.,2008 Proposes an online algo・

rithn〕 that increlnenta11y lean〕s and adapts a low din〕ensional ei8enspace

representation to rea.ect the appearance changes of the objective. The

method in Kwon and Lee 2010 proposes a trackin菖 model which can be

decomposed into severalbasic observation models. Each decomposed mod-

el can be seen as a feature template that is constructed by sparse principal

Component analysis (SPCA). AⅡ the observation models are combined to

Cover a speci丑C appearance ofthe objective. The method in Kwon 雛ld Lee,

2011 builds a h璃h・1eveltracker selectin旦 framework which focuses on the

novel point that the trackers should be adapted or constructed depending

On the current situation. Among di丘erent models, SPCA is used to build

modelthe appearance

It is also possible to use sparse presentation (SP) to code feature with low

dimension. For instance, Jia, LU, and Yan菖,2012 develops a structural

10cal sparse appearance model, unlike the traditional sp based trackers

Which only consider the holistic presentation, this chaptel addresses the
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Fi8Ure 7.1: compressing rectan宮Ular gray-scale feature from 仇・dimension
t0 π・dimension

0

0

ψ牙

HIHI

Online l,earnin窟

Online learnin昌 has recently become more and more popular due to the

Successf{11 application of machine learning algorithlns in the 6eld of object

detection. A tracking・by・detection concept is proposed and many online

Iearnin昌 methods are derived 丘om their 0丘一line versions. Most of the on-

Iine learnin菖 methods are based on the support vector machine (SVM) or

boostin8. For svM group, the method in Avidan,2004 inte旦ratesthe svM

H3

importance of partial and spatialinformation. The method in Bao et al.,

2012 improves the performance of Lltracker by addin留 a ι2 norm regular-

ization on the coe伍Cients associated with the templates. Most of the LI

tracke玲 and their variations modelthe tar旦et appearance by a sparse linear

Combination oftemplates. The method in T. zhang et 肌.,2012 modelsthe

Particles as linear combinations of dictionary templates under the particle

61ter 丘amework. since each template is updated dynamicaⅡy, the combi-

nation can adapt the latest target's appearance. since the information of

the high-dimensionalfeature can be preserved based on the compressive

Sensin8 theory, compressive sensin冨 Can also be used for feature reduction

The method in K. zhan8, L. zhang, and Yan宮,2012 Uses a very sparse

measurement matrix to compress h璃h-dimensional Haar-1ike features to a

10W・dimensional domain

0
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Classi6er into a trackin旦 algorithm in an optica1且OW 丘'amework. This chap・

ter tTies to m饌imize the svM classi6Cation score, instead of minimizin8

an intensity di丑erence function between successive frames. This idea ex-

empli6es the tTacking-bydetection concept. The method in Hare, sa狂ari,

and Torr,2011 develops a new svM algorithm ca11ed kernelized structured

Output svM, which does not use labeⅡed samples to update the classi6er

The method in Bai and Tan曾,2012 treats the tracldng problen〕 as a ranking

Problem which uses the ranking svM to rank the samples extracted from

the next fran〕e. For the boostin旦 group, the method in H. Grabner, M、

Grabner, and Bischof,2006 Proposes an online AdaBoost feature selection

a1菖orithm for the trackin旦 Problem. The method in H. Grabner, Leist・

ner, and Bischof,2008 introduces a sen〕i-supervised leamin曾 Schen〕e into

the online boostin8 Classi丑er. By doin8 this, update erroTs caused by each

Iearnin菖 Sample are lim北ed. The method in Babenko, Yang, and Belongie,

2009 Proposes a mU此ゆle 血Stance learnin宮 n〕ethod instead of traditional

Samplin宮 methods. However, relatively few researchers pay attention to

Solving online tracking problems under the original Randon〕 Forests (RFS)

framework Breiman,2001; sa丑ari et al.,2009

It is that RFs have an over丑ttin昌 Problem, especiaⅡy when the data to

1)e trained has lar昌e noise information or is structured in h璃h-dimensions

However,it is also worth pointin旦 Out that RFs have the advanta曾e offast

Convergence. on tl〕e other 11and, they can be easily implemented and can

handle pala11el processina with GPGpu natura11y, since evely tree is in・

dependent from the others. These are very potentialfeatures for real-time

trackin昌, since the current n〕ac}1ine learnin8 research is more and more

inseparable from the development of GPU.1n order to ovelcolne the short-

Comin留S ofthe RFS, our method runs online random forests (ORFS) with

Only 50-dimensional training data and a sha110w decision tree structure

By doin旦 this, we can lim北 the disadvanta旦es of RFs and achieve favor-

able tracking results、＼入le apply similar ideas from the work K. zhang, L

Zhan8, and Yan8,2012 for feature dimension reduction 雛ld introd11Ce a

tTee discarding strate区y into the oRFs fr釦lewolk sa丘ari et al.,2009. we

6nd the oRFs perform weⅡ With compressed features and the whole model

becon〕es more robust by periodica11y discardin冨 trees
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フ.3 Featurecompression

Gray-scale feature and random projection

In this section, we wiⅡ血troduce the basic de丑n北ions of the grayscale

feature and random projection. The rectan8Ular gray-scale feature can

be de6ned as the sum of each pixel'S 旦ray value inside a redangle. The

rectangle can be any size at any position inside a bounding box (bb) area

The 菖rayscale feature is a little diaerent from Haar-1ike feature since 北

does not need to calculate the di丘erence between multゆle redan旦les in

the fe飢Ure extraction step.1t can be simply calculated by using inte旦ral

image viola and Jones,2001. we de丑ne a rectangle as Hi. For each H力 We

extract the 又ray-scale feature, which is denoted by 認力 Where 0 三 i 三机

仇 is the number of rectangles extracted in one bb. A featule vector x is

de6ned by combin曾 every element zi. The le丘 Part of F璃Ure 7.1 SI)OWS

the feature extraction procedure intujtively. Let R机Xπ be a very sparse

n〕easurement n〕atriX 旦enerated by equation 7.1

With probability十1

Vヌ (フ.1)O withprobability
1

With probability
2S

11〕 this probability distribution, rij = R(i,j). R(i,j) denotes the entry

in row i, column j of matrix R. ri・ are aⅡ independent from each other

Generatin昌 this r笹ldom matrix is totaⅡy independent hom the data, with

Only one parameter s havin昌 to be tuned considerin昌 the balance be仇Veen

the feature's discTin〕inative ability and computational cost. Not lin〕ited to

1 0r 3 in real applications, s can be a lar留er number.1t has been proved

thatthe compression can bee伍Cientevenwhen s =机/4 in work K. zh釦昌,

L. zhang, and Yan昌,2012.1n this chapter, we set s =η1/4.＼入le found that

Only 4/机 ofthe data needs to be processed during the projection procedure

W北h such a sparse measurement matrix. since no aoating-point ar北hmetic

is needed in addition to a square root operation, the con〕pression process

needs little con〕P11tational cost. AISO, tl〕is distribution only needs to be

Calculated once at the 丑rst frame and kept 6Xed until end. To be robust

With scale variation 血 the trackin留 Problem, Hishould be selected in multi・

Scales. The width of a Nctan旦le fV鳥 Should be in tl〕e ran留e [1, wbbl and

the hei留ht of a rectan旦le HH. should be 血 the range [1, Hbb].11/bb with Hbb
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beins the width and hei曾ht of bb. W鳥 and HH. are aⅡ integers. Therefore,

We can generate wbb x Hbb types of rectangles in a certain bb. Then for

every pixelin the bb area (W励 X Hbb pixelS 血 Sum), we extrad aⅡ types

Of rectangles for feature extlaction. The 6nalfeatuTe vector x's dimension

is (wbb x Hbb)2

Feature compresslon

In this section, we wiⅡ introduce how to compress the gray-scale feature

in a 8iven bb. The compression procedure is a projection plocedure which

Can be expressed as Equation 7.2

(フ.2)RX

(・) indicates the compression operation. For example, x indicates the

Compressed feature vector. The ri冨ht part of F喰Ure 7.1 Shows the feature

Compression procedure intuitively. AHhoU旦h R is created W北h qU北e large

randomness, it is able to preserve the originalinfoln)ation stably duTin旦

tracking、 There is a theoretical basis Achlioptas,2003 Which states when

the 仇 is sU北ably h璃h, the distances between the points in a vector space

Can be preserved W北h high pTobability. our settin留 SatiS6es this theoretical

basis since 机 is between l06 and l01゜, on the other l)and, during the pro-

jection procedure, the weighted sum or di丘erence between 念iis calculated

due to V吾 and -＼4 in the distribution

The projection can also be considered as a procedure to ilnprove the level

Of the 旦ray-scale feature. The compressed feature vector is very similar to

the N-rectangle Haal-1ike feature. However, they are obviously di丑erent

because the compressed feature is calculated based on a huge nun)ber of

rectangles.1t is weⅡ known that W北h higher levelfeatures,1ess din〕ensions

are needed to hold the same discriminative abi1北y. From this view point,北

is clear why the random projection works for feature dimension reduction

With less loss of discriminative ability

X
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フ.4 1i'ackin套 by detection

Problem settin曾

In this section, we wi11 de丑ne some symbols to iⅡUstrate the trackin目 Prob・

Iem after we have explained how to calculate X 血 Section 7.3. The main

Purpose ofour a1昌orithm is to estimate the objective's position (represented



by bb) continuously which has been speci丑ed in the 6rst 丘'ame lo. sam・

Ple xp is de負ned by the grayscale feature of an ima8e patch extracted

fron〕 a bb area with certain position p. There are three types of sam-

Ples: positive samples xp E XP, ne昌ative samples xp E χ九, candidate

Samples xr E X。.χ仰χπ and x。 are sets con)posed by accordin冨 Samples

The corresponding compressed feature can be expressed as (XP) E X ,

(Xξ'y E χ1,(xty E χ1. Then 血 each frame 1力i > 0, our classi丘er'S PUI・
Pose can be expressed as c = sigπ(h(X)), where h :χ1 → R. C E {1,-1},

in which l means positive label, and -1 means ne区ative label.1n our al・

gorithm, h(X) is the function to solve the average probabi1北y density of

Positive labels.1 - h(X) is the avera菖e pTobability density of negative la・
,

bels.＼vhen tlaining the classi丑er with xp and χⅣ, every sample's label c

has been detern〕ined. And lasuy, the main purpose of our a1旦orithm can

be expressed as Equation 7.3.×1(1) denotes the trackina result of 丘ame li
ノ

X1① is selected from x。

Distance tl〕reshold ツ,α,δ and β田'e aⅡ Positive real numbers which indi・

rectly determine the nun〕ber of san〕ples. P(X) is tl〕e function to leturn

the 2D position of certain uncompressed sample.or compressed sample in

the image. This is quite a direct way to extract samples, since we assun〕e

that between two continuous frames,01〕1y a sn〕aⅡ an〕ount of displacelnent

Ofthe objective can be observed. Fi旦Ure 7.2 i11UstTates how we do samplin留

durin冨 tracking by drawin昌 bb of each san〕ple. These bbs are drawn W北h

the paran〕eters which are used for experin〕ental evaluation. This a110WS US

to visua11y discover the learnin昌 and detection scope of cRT

Preparin宮 San〕ples

In this section, we wiⅡ introduce how we sample x and χη from the pre・

Vious frame li_1 and sample xc from the current frame li.＼入lith the use

Of Euclidean distance, we can extract samples with the f0ⅡOwin旦 equation

フ.4

(フ.3)

(フ.4)

X1①
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1^ Resultbbof捫^ Positivesamples l^]Ne9ativesamples ^Candidalesamples l^ Resultbbof#2
(ヨ)向(C)(d)(e)

Figure 7.2: samplin区 Operation between two successive frames. a) Result
bb of frame #1 is determined by the previous prediction. b) About 45
Positive samples are selected from frame #1 for online trainin宮. C) About
80 ne今ative samples are selected from frame #1 for online trainin曾. d)
About 190o ca11didate samples are selected from fralne #2 for prediction.
e) A candidate sample W北h highest classi6Cation score is determ血ed as
frame #2's trackin今 result

Online random forests

Sample arrival

＼N'e denote oRFs with o ={tl,._,tr}, whereas r is an inte留er that indicates

the number of trees in the entire forest.1n our experiment, T is set t0100

In the non-para11el program, we consider the sample arrives sequentia11y

at oRFS. A sample wi11 be the input of the classi丘er only if the pTevious

Sample has been learned or predicted. Every salnple wi11be trained k times

from 北S alrival, and k is determined by a poisson distribution poisson(θ0)

referrin冨 to work oza,2005.1n our experiment, eo is set t0 1. For those

Samples which k = 0, wiⅡ not be used fortraining. The samples w'hich are

not included durin今 the training procedure are ca11ed out-of・ba8 (0OB)

Samples. considering computational consumption, we do not use these

0OB samplesto compute the out・of・ba留・error (0OBE). The reason is low

that a ooBE sometimes does not mean thatthe objective is bein昌 tracked

We11. Especia11y after background or obstacles are wron昌ly learned as the

Positive feature for a certain time, the ooBE cannot Teaect the tracMng

result's quality.

IYainin宮

For the random binary decision treeS 血 ORFS, training is the procedure of

Splitting each node from top to bottom. we can simply use the a桃ributes

Ofthe feature to split the nodes. However,北 is time consuming to measure

every attribute's quality by entropy oT Gini coe伍Cient.1nstead of that,

We use test functions to split each node saaari et al.,2009. A random

test is de6ned as a pair (test(X'),σ).0' is a real number threshold, and
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it determines whether the accord加旦 Salnple sl〕ould be split into left child

node or ri旦ht child node.＼入7hen test(X')>σ, X' wiⅡ faⅡ into the ri旦ht

Child node, otherwise 北 WiⅡ faⅡ into the le丘 node. Eacl〕σ is randomly

Selected from a numericalran冨e which is determined in advance. This

Speci丑ed ran8e's loweT lim北 is the sum of the minimum value on each

feature dimension, and its upper limit is the sum ofthe max value on each

feature dimension. Both lim北S should be speci6ed in a rational range,1f

We have a large nun〕ber of training samples and feature dimensions, the

absolute value oftl〕e limit wiⅡ be a relatively lar昌er nun].ber. Test f{1nction

test(X )= X MT where ead〕 dimension's value of M is a real number

randomly generated between o and l

For every node in the random tlees, we 旦enerate a C田tain number of

random tests.＼入7e denote a randon〕 test set induded by a node as s ^

((t郎tKX'),の),

,(testN(X'),σⅣ)...}.1t is a trade・0丘 relationship between the number of

random tests and accuracy perfonnance. For every randon〕 test, we use a

noTn〕alized information 今ain (1G) to evaluate its quality. The one with tl)e

hi旦hest normalized lG is selected to split the current node、 Node π Contains

a set of san)ples. The calculation of lG for random test s il) node π Can

be denoted in Equation 7,5. split Entropy (SPE), prior Entropy (prE),

Posterior EntTopy (POE) are calculated respectively in Equation 7.6. PR

is the number of positive salnples which are assi留ned to the right child node

丘on〕 the current node.ⅣR is the number of ne留ative samples which are

assi冨ned to the Tight cl)ild node froln the C山'rent node. Pι is the num・

ber of positive san〕ples which are assi留ned to the left child node from the

Current node.<1ι is the number of ne昌ative san〕ples which are assigned

to the.1e丘 Child node from the current node. su is the total nulnber of

San〕ples in the current node. Before being split,π n]11St meet other いVO

additional conditions which are proposed as non-recursive strate部 Sa丑ari

et al.,2009.1) The number ofsamples in node π must be lar留er than θ1

2) The value of information 旦ain for tl}e split must be lar冨er than θ2.3)

The depth of the node n lnust be sn〕aⅡer than θ3. After bein菖 Split, the

Ie丘 Child node and ri今1]t child node wiⅡ keep the parent node's samples,

thus it can be used to calculate the probability density for classi6Cation

IG(π,')
Pr召一 P0Ξ

PrE X SP三
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P究 ^

ⅣR=

Pι

Ⅳι

1{×1×' E π}1,n

(PR十Pι)

1{X'1X E χシ, X' E π,t郎tN(X')> ON}1,
1{X'1父 E χ1,父 E η,t..tⅣ(X')>σⅣ}1,

1{X'1父 E χシ,父 E 九,t"tⅣ(X')くσⅣ}1,
1{X'1X E χ1, X E π,t..tN(X')くσN}1,

(Pι十Ⅳι)(PR十ⅣR)
SU

P3

P6

SU

ⅣR

(PR十ⅣR)

Discarding

Discardin留 trees is a very necessary step for trackin菖. without discarding,

the entire oRFs cannottrack the objective adaptively throU留hout the time

A common method Leistner et al.,2009 is to discard a certain random tree

by measuring its ooBE. speciacaⅡy, a random tree with a h珸1〕er ooBE

has a hi菖her probability of bein旦 discarded. This strate旦y can S11rely deal

Wi1上 Slow iⅡUlnination chan旦es or ocC111Sion changes, However,it can l〕ardly

deal witl) drastic i11Un〕ination chan菖Cs or occlusion changes. Takin宮 Figure

フ.3 as an example, aa the singer is suddenly exposed to li旦ht, the ooBE

instantaneously becomes lar宮e.Ⅱ We use the strate菖y n〕entioned above,

most of the trees wi11 be discarded in order to incorporate the new feature

Caused by shinin宮 light. This strate8y can temporarily hold the chan留es,

however it W田 10se the originalinformation of the objective、 This W辺

Cause the loss of relocation ability

Our discardin留 Strategy is to discard and retrain half of the trees peri・

OdicaⅡy while the other half of the trees continue to be updated W北h the

initial appearance information ofthe objective. hnproving the perforn〕ance

Of Random Forests by discarding trees is a widely used techn010曾y. For ex・

ample, Robnik・sikonja,2004 discards trees with negative mar即n, which is

decided by a votin8 mechanism. The di丘erence is, OUT strategy discards

trees with "time" while Robnilく・sikonja,2004 discards trees with "voting

,P4

SU

(ⅣR十Nι)

P0Ξ

, P7
(Pι+Ⅳιy (Pι十Ⅳιy

SP三=-1npl -1nP2,

Pr三=-1nP3 -1nP小

Inpo) x n +(一血n -1np.) X P.

SU

Pι

(-1nP5

, P2

, P5

SU

PR

, P8

(PR十ⅣR)'
Pι

(フ.の
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Figure 7.3: comparison oftrackin菖 results on shaking sequence.(a) ORFS
訊lith our discardin宮 Strate宮y.(b) ORFs without discarding strate旦y.

mechanism". since we discard the trees according to frequency, we wi11

introduce how the h'ame rate a丘ects our method. At 6rst, the discarding

Parameter wi11 not be a丘ected with the hame rate, because this ftequency

Parameter is determined in advance. secondly, the train血冨 Procedure W辺

not be a丑ected W北h the sequence's h'ame rate, because we train the entire

ORFs every frame. Then, the e丘ect ofthe discarding operation can be af-

fected by the sequence's frame rate. with a lower frame rate sequence, our

discardin8 method can improve the perform田Ice ofthe oRFs accordingly,

and with a higher frame rate sequence, althoU8h we cannot improve the

Performance ofthe oRFsjthe performance wiⅡ not be reduced. Lastly, the

tracking performance wiⅡ be a丑ected by the h'ame rate in the same way

as most ofthe online trackin8 algorithms.1n the experiment, we discard

the 6.rst haH ofthe trees every tw0 丘ames. By doin8 this, our classi6er can

deal with intense i11Umination changes and occlusions while keepin留 the

Objective's originalinformation.1f we discard the trees every 6Ve 丘'ames

Or ten fTames, when sudden environment changes occur in the low frame

rate sequence, the tracker wi1110se the tar8et objective more easily.1n

Figure 7.3,(a) shows the trackin宮 results without this discarding strategy

and (b) shows the trackin8 results with this discardin目 Strate宮y.1n (b),

the classi丑er prevent the bb dri丘in且丘'om the objective when the light dims

agaln

Predictin今

Fi8Ure 7.4 i11Ustrates the prediction procedure with a ce此ain bb's com・

Pressed feature x . The arrows in lst and rth random tree iⅡUstrate how

a x fa11S from the root node to a certain leaf node. Each arrow is deter・

mined by the selected random test on each node. Attheleafnode which x'
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Fi冨Ure 7.4: prediction with online random forests.

fa11S, the probability density of both the positive labe1 釘ld negative label

W辺 be calculated. The 6nal avera目e pTobability density can be calculated

by averagin8 the statistical results of a11 the trees

The entire algor北hm of cRT is depicted in Algorithm 7

フ.5 Experiments

Evaluation settings

In recent years, many sequences for tracking evaluation have been publicly

available. However at the same time, one sequence may have several ver-

Sions of annotation data which are edited by di任erent people.1n order to

ensure comparative experiments to be fair and accurate, W'e selected 20 se-
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quences W北h their ori即nal annotation data. Animal, shakin冨 from Kwon

and Lee,2010, Box from santner et al.,2010, Kitesurf, Biker, Bolt, skiin宮

from K. zhan区, L. zhan昌, and Yan宮,2012, others from Babenko, Yang,

and Belon8ie,2009, etc. These 20 sequences can reaect the 9 attributes

deaned 血 WU, lim, and Yang,2013.＼ue compared our results with the

best experimentalresults reported in K. zhang, L. zhan旦, and Yan曾,2012

to avoid tuning other algorithm parameters. The trackers to be compared

indude the compressive tracker (CT) K. zhan8, L. zhan旦, and Yan旦,2012,

the fra旦ment tracker (Fra幻 Adan〕, Rivlin, and shimshoni,2006, the on・

Iine AdaBoost tracker (OAB) H. GrabneT, M. Grabner, and Bischof,2006,

the semi-supervised tracker (semiB) H. Grabner, Leistner, and Bischof,

2008, th. N11LTmok 址gωithm (N11L) B.b印ko, Y釦R,釦d B.10ngio,2009,

th0 ム・訂Mko,(ム・T) Moi .nd Ling,2011, tho TLD t皿oko,(TLD) K山1,

入latas, and Mik01勾Czyk,2010, and the strucR a1旦oritl〕m (struck) Hare,

SaaaTi, and Torl,2011. since most of the trackin昌 a180rithms Tun with

randomness, the expeTimenta1τesults' accuracy auctuates W北hin a certain

range of accuracy、 1n order to objectively evaluate the performance of the

a1旦orithn〕, we repeated the experiment lo tin〕es and calculated the avera宮e

Value for each result

We use the overlap rate as the criteria to judge whether a trackil〕旦 result

is successful or not. The overlap rate is calculated with a trackh〕昌 result

bb (BBh)■nd ■部0゛nd tNth BB(B召,り. spod6鳳Ⅱy, wo omploy tho

PASCAL Everin今ham et al.,2010 measure, which states that the overlap

rate between successful BBh and BBgt should exceed 50%. This widely

Used criteria is shown in Equation 7.フ. Based on tl〕is criterion, the success

rate is calculated with the totalnumber of bbs and the number ofsucceeded

bbs

area(BBtり U area(BB9t)

＼入le also evaluate the center location en'or (CLE) with 旦round trutl) data

First we calculate the sum of the distance between each BBh's center

and BB9t's center. Then we con〕pute the avera留e distance based on each

Sequence'S 丘ame number. Note that the cLE wiⅡ be lalgely inauenced

by driftin冨.1f the tracker completely loses the objective 飢 a celtain time

durin区 the t王ackin昌, the cLE wiⅡ become very lar留e. AlthoU曾h most of

the trackers have the ability to relocate, when t})e detectin宮 bb dri丘S away

from the objective,北 is very hard for online tracers to relocate (global

area(BBtり n area(BBgt)
> 0.5 (フ.フ)
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Sequences used in the experimentTable 7.1

Animal

Sequence

BOX

Coupon book
CⅡ丘b釘

David 血door

Girl

Resolution

Occluded face 2

704 × 400

Sylvester

640 × 480

Shaking

320 × 240

Soccer

320 × 240

Twinin部

320 × 240

Initial BB

Tiger l

320 × 240

70300,5,100,

476,143,86, Ⅱ2

Ti昌er 2

320 × 240

Panda

320 × 240

142,62,62,98

Jumping

138,120,38,59

624 × 352

K北esurf

640 × 360

122,58,75,97

128,46,104, 127

Biker

ラ半、Franles

320 × 240

B0Ⅱ

H2,50,92,116

320 × 240

Walk血又

320 × 240

121,58,51,50

Skiin旦

exploration is needed). Therefore, there is less value in evaluating the cLE

When a tracIくer cannot continuously kcep trackin目 the objective. we do not

Show the cLE ofthe TLD tracker durin旦 U〕e sequences in whjch the TLD

tradくer can easily lose the objective completely

225,135,60,70

312 × 233

71

1161

302,135,66,80

352 × 288

126,165,73,53

327

480 × 270

329

640 × 360

116,44,38,42

462

480 × 270

16,30,34,39

502

768 × 576

58,100,27,22

ExperimentalresU此S

Combined W北h low・dimensional feature (con〕pressed by Tandom projec・

tion) and tree stTucture classi丑er (ORFS), the running e缶Ciency of the

CRT is trustworthy.1n fact, the cRT runs at an avera曾e 18 Fps on an

Intel core、i7 3.4 GHz cpu with a 8 GB RAM.1Vs slower tl〕an the cT

but outperforms the other compared trackers in processin8 tin〕e. Table

フ.2 Shows the sR estimated with 9 trackers. The toP 3 results are shown

in bold font. The rank of each result is shown in the parentheses. our

tracker cRT achieved the most lst-ranks amon留 13 Sequences、 The cRT

旦ot the highest avera区e rank among 9 trackers. EspeciaⅡy W北h sequences

Tigerl and Ti旦er2, the cRT outperformed other trackers by 15% t0 80%

and 30% t080%. The robustness ofthe cRT is hi旦hlighted 血 the T喰erl

147,110,33,32

812

640 × 360

1345

201,40,30,32

365

254,92,33,42

392

265,70,42,74

692,439,24,79

472

454,190,48,47

354

365

1014

313

84

180

293

412

67
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(.) Arli松1

C ocd、,d.df.W 2

(g) C1冷b8r (h) sylV郎t引

F璃Ure 7.5: Examples ofresults comparin8 With cT on severalsequences

(●) Tlg可 1

and Tiger2 Sequences from many aspects such as fast motion, Occlusion, ro-

tationji11Umination change, etc.1n the shaking sequence, the cRT adapts

the drastic i11Umination chan8e better than other trackers.1n the Animal

Sequencej our tracker can catch up with the fast motion of a deer. other

appearance changes can also be weⅡ maintained such as the Girl(in-plane

and out・of・plane rotation),the cli丑bar and the coupon book (back区round

Clutters), etc. However,in the soccer and box sequences, we obtained an sR

beloW 50%.1n both ofthe video sequences, the cRT easily fails in trackin区

When heavy pr010nged occlusions occur. For heavy pr010nged occlusions,

Our dassi6er continues learning from the wrong appearance information

and chan8es the probability densiw in each leaf node. when the objective

appears againj the cRT tends to track the obstructions. Table 7.3 Shows

the cLE achieved by 9 trackers on 13 Sequences. AlthoU留h the cRT did

not achieve the best Avera冨e cLE Rank,it outperforms many trackers in

many sequences W北h cLE.1t is worth pointing out that the cLE ofthe

Soccer and Box sequences is relatively hi8h because the cRE easily fai1 血

these two sequences due to heavy pr010n曾ed occlusion and the result bb

Usua11y drifts away from the objective. Figure 7.5 Shows some examples on

di丘erent sequences while comparing with cT for clarity Rom the results

Of our experiments, we can see that for practical use, our method tends

to perform weⅡ on the sequences W北hout pr010n昌ed occlusion and out of

View frames. For the other sequences, our trackin昌 a1曾orithm can perform

Satisfactorily

b)sh.村叩

(d) OCC1ιld.d f.C.2

m T19●r 2

Ⅱ7



フ.6 Conclusion

In this chapter, we applied random projection to reduce the 8rayscale fea・

ture's dimension and realize real-time tracking under the online random

forests framework. The feature levelis upgraded after compression W北h

the dimension reduced. Random projection 6tsthe random forests we11by

reducin昌 the risk of over6tting. we also discovered that discard血且 trees

Periodica11y e丑ectively solved the problem of balal)cing the new appear-

ance information of the objective for adaptive trackin宮 and the original

appear砥Ice information of the objective for relocation. The results of the

experiments show that our method performed robusuy W北h many bench・

mark sequences and outperformed many state-of・the-art trackers. on the

Other hand, it also showed that in some sequences, the proposed method

tendsto perform poorly dueto pr010nged occlusion, as mentioned in section

4.2. Future plans include try血留 to overcome this problem by introducing

an obstacle detection mechanism.1f our tracker can refuse to learn the

feature ofthe obstacles, we believe performance can be fU此her improved.

Table 7.2: Evaluationl: success Rate(SR). The rank ofeach resU此 is shown
in the parentheses. The toP 31esults are shown 加 bold font.

Sequence
Animal

BOX

Coupon book
Cli丑 ar

D3Vid indoor

Girl

Occluded face2

SylvestcT

Shaking
Soccer

Twinin宮S

Tiger l
Tiger 2
Pa11d8

Jumping
Kitesurf

Biker

Bolt

、和alking
SkiinE
Ave. SR Rank

CRT

99 1)
49(4)
100 1

91 1

CT

76 3

89(2)
100(1)
89 2

89(2
78(4)
100 1

75 5

92 2

78 1

89 3

78 2

60 2

81 2

100(1
68 3

75 2)
79 2

89(3
0(3)
2.30

100 1

100 1

78(4)
97(1
18 3

95(2)
93 1)
92 1)
93(1)
100 1

94(1)
88(1
60(3)
100(1)
100(1)
1.65

Struck

97

92(1)
99 2)
70

98 1

99 2)
78 4

87 2

19

14 5

98 1

33

22 6

13 8

18 の
40(6)
35(5)
10(6)
100(1)
80(2)

MILT

73(5)
6

99(2)
65(5)
68(4)
50(8)
99 2

80 3

85 3

17 4

72 5

39 5

45 3

75 )
99 2

90(2)
21 8

83(1)
32(6)
42(の
4.00

LD

75(4)
92 1

16(の
67(4)
98 1

57 フ)
46 7)
94 1

16 7

10 7

46 7

65(4
41(4
29(フ
99(2)
65 5

42(4)
1 8)
55(5)
59(5
4.80
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Table

result

f0址

フ.3: Evaluation2: center Location Error(CLE). The rank of each
is shown in the parentheses. The toP 3 results are shown in bold

Sequence
Animal

BOX

Coupon book
Cli丑 b3r

David indoor

Girl

Occluded face 2

Sylvester
Shakin底
Soccer

Twinings

Tiger l
Tiget 2
Panda

Jumping
K辻esurf

Biker

Bolt

凡Ualkin冨
Skiing
Ave. CLE Rank

CRT

14(1)
152(5)
17(5)
12(2)
26(5)
20(3)
16 2

11(4)
10 2)
119(6)
12(3)
91

11 1

92
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82
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73(4)
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14(2)
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16(3)
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10(1)
9(2
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16(1)
92
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10(4)
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12 3

22(4)
67(5)
42 6)
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4 2)
189(フ)
5.50

10 1

1.75
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25(3)
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74(フ)
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39(5)
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10 3
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10(4)
13 3
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3'50

Ra宮
99(の
160(の
63(の
34(5)
73(9)
26(フ)
58(フ)
47(8)
134(6
54 2

15(5)
39(5)
37(の
69(6)
29(5)
55(8
72(の
43(2
59(フ)
134(5)
5.855.05
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A1留orithm 7 Coupled Randomness Tracking.

Require:1ma8e sequence l

Require: Number oftreesin oRFs r

Require: parameter number of poisson distribution eo
Requlre: Minin〕um number ofsamples for split θ1
Require: Minimum value ofinformation gain for split θ2
Requlre: Maximum depth ofevery random tree θ3
1: frame number i ← 0

2: Draw initialbb

3: i ← i + 1

4: while li exists and i > o do
5. ifi%2isothen

for 机丘om lto T/2 do6

discardTree(t仇)7

end for8

end if9

10: Do samPⅡn8 by Equation 7.4 With li_1 and li

11: DOFeaturecompressionbyEquation 72

12: for j th decision tree from lto r do

13: foreveryx inx andxndo
k ← Poiss0π(θ0)14

if k'> o then15:

for k from lto k do16

π= fiπd三改f(X17

, C))Upd0たNoddη,(X18

if 1π1 >θ1.nd 玉 ES19

20

then

11×')

Sπ= argmaxlG(π,S)
SES

叩lit(n,',)
end if

end for

end if

end for

end for

X in x do

C飢OU1飢O P(C =一叫X')釦d p(C
end for

X1①=飢'Em■XP(C = 11×')
X/EX。

d捻W bb with p(×1(j))
i←i+1

end while
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IG(η,.)>θ2.nd d叩th(π)くθ3
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11〕 this dissertation, many matchin冨 tasIくS are studied f0110W血今 the proce・

dures:1) feature selection,2) silnilarity measure, and 3) search strate菖y

desi8n. These tasks can be n〕ainly cate旦OTized as: parametTic (geomet-

ric n〕odel based) tasks and non・parametric (non・geometric model based)

tasks. parametric n〕ethods are very lim北ed in application because a pre-

determined geometric is needed in order to do the matching、 one the

Other hand, non・parametTic methods can be more widely applied and ro・

bust against the appearance chan冨e.1n chapter 2 and 3, as an example of

Parametric matchin目, a缶ne and pTojective model based template match・

ing tasks are studied respectively.1n chapter 4 and 5, for the tasks that

Parametric methods cannot be applied, non-parametric template matching

methods are studied which do not assume any speci6C deformation mod-

els.1n chapter 6, non-paTametric image matchin留 Problem with modi6ed

query ima8e is studied.1n chapter 7, non・parametric online visualtrackin宮

Problen〕 is studied

Ch ap

CONCLUSION

ter 8

As the future work, we plan to apply the researcl) results to real-world

Scenes and contribute to the industry. Although many template n〕atching

applications have been developed last decades, we believe that our methods,

Which are n〕ore robust W北1) tl〕e objecvs geometric c}〕anges and objed'S

appearance chan8es, can help improve the existin旦 industry systemstoward

a n〕ore practica11evel
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