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ABSTRACT

Matching problems exist widely in many practical computer vision research
tasks such as template matching, image matching, visual tracking, image
registration, etc. Three main steps which form the matching procedure can
be concluded as 1) feature selection, 2) similarity measure, and 3) search
strategy design. Based on the basic intensity or color feature, many fea-
tures have been designed recent years, which can be broadly categorized as
local feature descriptor or global feature descriptor. With multiple alter-
natives available, selecting an appropriate feature for a specific matching
problem becomes essential and a preprocessing (e.g. dimension reduction)
can further improve the efficiency. On the other hand, based on the select-
ed feature, similarity measure plays a role on quantifying the real-valued
similarity /distance between two objects. With specific feature selected, an
appropriate similarity measure method is supposed to be carefully select-
ed from many parametric/non-parametric distance calculation methods.
Besides, in case of the number of candidates is large (e.g. template lo-
calization, image retrieval), an efficient search strategy is needed instead
of exclusive matching, because the cost of similarity measure grows pro-
portionally with the increase of candidate number. In this dissertation,
-we introduce solutions of matching problems in multiple specific computer

vision tasks.
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Chapter 1

INTRODUCTION

Matching problems exist widely in many practical computer vision research
tasks such as template matching, image matching, visual tracking, image
registration, etc. Three main steps which form the matching procedure can
be concluded as 1) feature selection, 2) similarity measure, and 3) search
strategy design. Based on the basic intensity or color feature, many fea-
tures have been designed recent years, which can be broadly categorized as
local feature descriptor or global feature descriptor. With multiple alter-
natives available, selecting an appropriate feature for a specific matching
problem becomes essential and a preprocessing (e.g. dimension reduction)
can further improve the efficiency. On the other hand, based on the select-
ed feature, similarity measure plays a role on quantifying the real-valued
similarity/distance between two objects. With specific feature selected, an
appropriate similarity measure method is supposed to be carefully select-
ed from many parametric/non-parametric distance calculation methods.
Besides, in case of the number of candidates is large (e.g. template lo-
calization, image retrieval), an efficient search strategy is needed instead
of exclusive matching, because the cost of similarity measure grows pro-
portionally with the increase of candidate number. In this dissertation,
we introduce solutions of matching problems in multiple specific computer

vision tasks.

In Chapter 2 and 3, as an example of parametric matching, affine and pro-
jective model based template matching tasks are studied respectively. Both
of the tasks require to use intensity feature only and the similarity measure
method is limited to sum of absolute difference (SAD). In such cases, in
order to search an approximate transformation over a very large search-
ing space, we treat the searching procedure as an optimization procedure.
Although homography can be estimated by combining key-point-based lo-
cal features and random sample consensus (RANSAC), it can hardly be
solved with feature-less images or high outlier rate images. Estimating the
affine/projective transformation remains a difficult problem due to high-

dimensionality and strong non-convexity. Our approach is to quantize the



parameters of projective transformation with binary finite field and search
for an appropriate solution as the final result over the discrete sampling
set. The benefit is that we can avoid searching among a huge amount of
potential candidates. Furthermore, in order to approximate the global op- -
timum more efficiently, we develop a level-wise adaptive sampling (LAS)
method under genetic algorithm framework. With LAS, the individuals
are uniformly selected from each fitness level and the elite solution finally

converges to the global optimum.

In Chapter 4 and 5, for the tasks that parametric methods cannot be ap-
plied, non-parametric template matching methods are studied which do not
assume any specific deformation models. Two different similarity measure
methods are proposed in each chapter respectively. The first method is
developed based on an assumption that the local rigidity, which is referred
to as structural persistence between image patches, can help the algorith-
m to achieve better performance. A spatial relation test is proposed to
weight the rigidity between two image patches. The second method called
two-side agreement learning (TAL) is proposed which learns the implicit
- correlation between two sets of multidimensional data points. TAL learns
from a matching exemplar to construct a symmetric tree-structured model.
Using TAL can reduce the ambiguity in defining similarity which is hard

to be objectively defined and lead to more convergent results.

In Chapter 6, non-parametric image matching problem with modified query
image is studied. We use a compressed histograms of oriented gradients
(HOG) feature descriptor to extract global visual similarity. For the nearest
neighbor search problem, we propose random projection indexed KD-tree
forests (rKDFs) to match image with local changes pair (ILP) efficiently
instead of exhaustive linear search. rKDFs is built with large scale low-
dimensional KD-trees. Each KD-tree is built in a random projection in-
dexed subspace and contributes to the final result equally through a voting
mechanism. In Chapter 7, non-parametric online visual tracking problem
is studied. We propose a real-time tracking algorithm called coupled ran-
domness tracking (CRT) which focuses on dealing with these two issues.
One randomness represents random projection, and the other randomness
represents online random forests (ORFs). In CRT, the gray-scale feature is
compressed by a sparse measurement matrix, and ORF's are used to train

the sample sequence online. During the training procedure, we introduce



a tree discarding strategy which helps the ORFs to adapt fast appearance
changes caused by illumination, occlusion, etc. Our method can constantly
adapt to the objective’s latest appearance changes while keeping the prior

appearance information.



Chapter 2

TEMPLATE MATCHING WITH AFFINE
TRANSFORMATION

2.1 Summary

In this chapter, we address the problem of template matching under affine
transformations with general images. Our approach is to search an ap-
proximate affine transformation over a binary Galois field. The benefit is
that we can avoid matching with huge amount of potential transformation-
s, because they are discretely sampled. However, a Galois field of affine
transformation can still be impractical for exhaustive searching. To ap-
proach the optimum solution efficiently, we introduce a level-wise adaptive
sampling (LAS) method under genetic algorithm framework. In LAS, indi-
viduals converge to the global optimum according to a level-wise selection
and crossover while the poi)ulation number is decreased by a population
bounding scheme. In the experiment section, we analyse our method sys-
tematically and compare it against the state-of-the-art method on an eval-
uation data set. The results show that our method has a high accuracy
performance with few matching tests compared a,gaihst the state-of-the-art
method.

2.2 Introduction

In this chapter, we consider the problem of template matching under arbi-
trary 2D affine transformations. Template matching is a classical computer
vision problem which aims to find a global optimum area in the target im-
age (i.e. source image) according to the hint provided by a rectangular
template. In affine template matching, each candidate affine transforma-
tion corresponds to a candidate area in the target image. We only use
the gray scale information of images as hint which is quantified by sum of
absolute difference (SAD).

Recently, feature-based matching methods like SIFT and its variants are
very efficient to estimate the 2D transformation matrix between template
and target image. Only a few correctly matched key points are required for

solving a system of linear equations. With matching results which contain



Our method (template matching) ASIFT (feature based) SIFT (feature based)

Figure 2.1: Our matching result (represented by green parallelogram) com-
pletely covers the ground truth area (represented red parallelogram) in both
examples. Affine-SIFT (ASIFT) can well handle affine transformation in
the case when template has strong features (upper), but mismatches in
the case when template has weak features (lower). Common SIFT can not
handle affine transformation well.

outliers, we can also use method like RANSAC Fischler and Bolles, 1981 to
estimate the correct transformation matrix. Feature-based methods depend
on the assumption that the key point matching results consist of inliers,
there also exist images in which key points are hard to be detected like
blur images, texture-less images, etc. Key points may also be mismatched
heavily as a result of noise, illumination changes, etc. A common template
matching method is usually considered to be effective against such special
situations. Figure 2.1 shows two matching examples respectively when a

template has strong features and weak features.

As we all know, template matching potentially requires a huge number of
samples in order to ensure the global optimum solution can be obtained.
Especially for affine template matching, the number of candidate transfor-
mations increases exponentially when more accurate solution is required
to be obtained, because scaling, rotation and shear are taken into account
additionally compared with common template matching. Matching with
numerous candidate solutions is ineffective and not practical. In fact, it is
possible to estimate only a small fraction of candidate solutions in order to
solve the optimum solution if the following assumption is made: a template
is smooth. Under this assumption, SAD will not change much around the
ground truth area of a target image. This assumption provides chances
for developing more efficient matching methods. At the same time, such

methods can not guarantee the accuracy with highly textured template.

The rest of this chapter is structured as follows. In Section 2.3, we survey



template matching methods with transformations and the efforts that have
been done on solving affine template matching problem. In Section 2.4,
we introduce our method from two perspectives: 1) construction of Ga-
lois field. 2) level-wise adaptive sampling method over Galois field. In
Section 2.5, we investigate the effects of tunable parameters and compare
our method against the state-of-the-art method Korman et al., 2013. Fi-

nally, we conclude this chapter in Section 2.6.

2.3 Related Works

In this section, we mainly survey previous works on template matching
considering geometric transformations. Despite the feature-based matching
methods like SIFT Lowe, 2004, ASIFT Morel and Yu, 2009, direct method-
s also have been widely studied. A common direct template method only
consider the translation in x-axis and y-axis, thus the degree of freedom
(DF) is simply 2. However, many applications require methods to be ro-
bust with varied transformations.

Rotation and translation: Same with common template matching, tar-
get area in target image is still rectangular. The difference is, it is rotated
and repositioned by translation. The DF in this situation is 3. Choi and
Kim Choi and W.-Y. Kim, 2002 proposed a method combining the projec-
tion method and Zernike moments in two stages. Candidates with low cost
feature extracted are selected at first stage, and rotation invariant match-
ing is performed at second stage. Fredriksson et al.Fredriksson, Makinen,
and Navarro, 2007 used string matching technique to deal with rotation.
Rotation, translation and scaling: In this situation, scaling is addi-
tionally attached to the matching problem, thus the DF grows to 5. The
number of candidate areas becomes large and it is no longer practical for
exhaustive searching. To accelerate matching procedure, kim et al. H. Y.
Kim and Aratjo, 2007 applied cascaded filters to exclude areas which have
low probability to be selected as the final result. Akashi et al. Akashi et al.,
2007 treated template matching as an optimization problem under genetic
algorithm framework and applied their method into real-time eye detection
by inheriting previous frame’s matching result to the next. Genetic algo-
rithm can evolutionarily select “promising” candidate areas to evaluate,
thus can avoid exhaustive searching.

Affine transformation: Despite basic Euclidean transformations, shear

and scaling are enhanced additionally. The DF then grows to 6. To the



best of our knowledge, few direct methods have been proposed under this
situation compared with aforementioned two situations as a result of the
broad search space. Korman et al., 2013 is probably the state-of-the-art
work which matches template in a very sparse way under the smooth as-
sumption. In this chapter, a discrete sampling net is constructed according
to an accuracy parameter, after that, a branch-and-bound scheme is em-:
ployed to search an approximate solution over the net. The basic idea of
this chapter is to rule out a large portion of “unpromising” candidate trans-
formations and focus on estimating the ones which are close to the ground
truth. However, branch-and-bound scheme is still exhaustive to a certain
extent, because the number of candidate transformations need to be esti-
mated grows rapidly with the increase of expected accuracy. Insufficient
samplings will lead to a totally different result. On the other hand, our
method constructs a Galois field instead of a sampling net, and employs
adaptive sampling to approach the ground truth from the perspective of

optimization algorithm.

2.4 Methodology

Problem Description

Two grayscale images /; and I, are given as the input with each pixel’s
gray value normalized to [0, 1]. [; is defined as a template image with size
of ny x ny. I is defined as a target image with size of ny X ny. For clarity,
we assume [; and I, are square images. An arbitrary pixel in [; and its

mapped pixel in 5 is denoted as p; and p, separately. We have

p2 =T(p1). (2.1)

T is a 3 x 3 matrix which denotes affine transformation between p; and
p2. In the following formula, k includes operations such as rotation, scaling

and shear.- t includes translation operations:

k t |
S o

SAD is used to measure the similarity between I; and a candidate area in
I,. Normalized gray scale difference between each p; and according ps is

summed, which can be written as:

> L) = L) { 0 p gl

1 pQEIQ'

S(h, L, T) = 28 - m =
ny

(2.3)



The purpose of our chapter is to infer an approximate affine transformation
T from a given candidate set. In the best case, T equals to transformation
T. T is the closest transformation to ground truth 7”7 among all the candi-
date transformations. An natural way to estimate 7' is to minimize SAD.

Formally, our purpose can be denoted as:

T = argminS(L, I, T). (2.4)

TEF,6n
The construction of candidate set will be introduced in the Section 2.4.
However, from Equation 2.4, we can still not ensure that T' is close enough
to T”, because SAD is related with not only transformation but also vari-
ation of template. Variation v of template can be defined as the sum of

maximal difference between each p; and its 8 neighbors Ng(p;). Formally,

v= Z [1i(p1) — Li(g)]- (2.5)

p1€]1 max gENg(p1)

Large variation means that an image is not smooth. In this case, two
candidate transformations’ SAD value will differ a lot even they are very

close. Detail explanation will be discussed in the next section.

Galois Field of Affine Transformation
Matching with complete continuous affine transformation set which con-
tains infinite candidates can be impractical. We build a discrete searching

space according to binary Galois field to simplify this problem.

According to Hartley and Zisserman, 2003, a general affine transformation
matrix can be decomposed into T' = Tr Ry SRy, where R; represents matrix
operation of 1st rotation, S is scale operation in x-axis and y-axis, Ry is
2nd rotation, T'r is translation operation in x-axis and y-axis. By this
decomposition, we will have 6 DFs given a certain affine transform. To
construct a Galois field of affine, we summarize the range of each DF in
Table 2.1.

Transformations over each decomposed DF can be modeled by a Galois field
Fan, n is a positive integer denoting the length of binary code and 2" is the
field’s size. Elements in Fy» are expressed as binary codes. For clarity, we
assume n of each decomposed DF is the same. Each DF’s range is then di-
vided into 2" discrete segments. T' € Fqen denotes a general affine transfor-

mation in 6 DFs. Acceptable margin of error can then be guaranteed on this



| transformation | range | step amount | step size |

rotation [0, 27] 2" SRt

translation [—na, na) 2" Fh2T
ol n2 on =i

scale [nQ ’nl] ~ ning2t

Table 2.1: Value ranges of parameters for constructing a Galois Field of
Affine Transformation.

Galois field. The maximum error of rotation is within [—7 /2"t 7/2"1]
the maximum error of translation is within [—ns/2""1, ny /271, the maxi-

mum error of scaling is within [(—n2 — n?)/nine2", (n2 — n?)/n1na2").

To quantify the error between two transformations 77 and 75, following
formula is defined:

E(TI,TQ) - [S(Il,IQ,Tl) e S(Il,IQ,TQ)I. (26)

It has been proved in Korman et al., 2013 (Theorem 3.1) that the upper
limit of E(T,T") is associated with three factors in discrete set of affine:
step amount, variation of template, template size. For Galois filed of affine,

we can rewrite:
v

B(T,T') < 0(—2—) (2.7)

With loose upper limitation, which may be caused by small n;, small n, or
large v, there exists possibility that E(T,T") < E(T,T"). Note that T is
the closest transformation to 7" in the Galois field, not the transformation

n X n

which can minimize E(7,T"). In such situation, it is impossible to estimate
the right affine transformation by minimizing SAD and will not be taken
into account in this chapter. In order to avoid such conditions, n, is limited

in the experiments.

An approximate choice of n is needed in order to limit the maximum error
to an acceptable range. However, size of Galois field grows exponentially
with the increase of n. Typically, when n = 8, the total size of entire Galois
field can be nearly 2.8¢!4. Considering a personal computer can not afford
such a large amount of calculation, we will introduce our sampling method

over Foen in the next section.



Level-wise Adaptive Sampling (LAS)

In this section, we will introduce LAS which aims to achieve a satisfac-
tory error rate instead of testing the complete Fon. Our method is based
on genetic algorithm (GA) Holland, 1975, which is biologically inspired.
From the perspective of GA, our problem can be defined as a minimization
problem of SAD. In crossover operation of GA, two coded individuals swap
certain portions with each other. It is a good method to span search space
around a sample point in multiple directions. However, in order to opti-
mize 7" in such a broad search space, two major problems should be faced:
1) how to escape from local optimum. 2) how to control the optimization
response time.

Preserving genetic variety: It has been argued in Hutter and Legg, 2006
that in order to prevent GA from falling into local optimum, genetic vari-
ety should be preserved somehow. Although mutation operation can surely
increase the genetic variety randomly, it can also destroy individuals which
are potentially to be close to 7. In a broad search space, the probability to
create a “suitable” diversity is very low and mutation can contrarily slow
down the speed of convergence. It is worth noting that in our problem,
a large enough number of randomly initialized population keeps sufficient
genetic variety for converging to 7'. During the evolution, selection opera-
tion such as roulette wheel selection is likely to to select individuals which
hold larger fitness for crossover operation. With the combination of se-
lection and crossover, genetic variety decreases and the whole population
converges to an optimum solution. However, if an individual happened to
hold small SAD (e.g. a candidate area is flat) in the early stage of evolu-
tion, the whole population will easily fall into a local optimum especially
when the search space is very broad. To preservé genetic variety, we select
individuals from each SAD level uniformly. Each SAD level is a discrete
interval which is occupied by a part of individuals. With maximum SAD in
m th generation defined as S72,,, minimum SAD in m th generation defined
as S™  and the number of SAD level defined as o, we can define ¢ th SAD

level s (S, + (i — 1)(STay — S/, Sy + i(SThy — Sikin)/0). Bach
individual which is assigned to ¢ th SAD level should have a fitness within
this range. Individuals of next generation are then randomly selected from
each SAD level. The number of individuals selected from each SAD level is
the same. With the increase of o, distribution of SAD in m + 1 generation

approximates to uniform distribution.

10



Fitness uniform selection scheme (FUSS) is proposed in Hutter and Legg,
2006, which selects a fitness value uniformly at first and then randomly
select the nearest individual. The difference is, LAS can control the degree
of uniform approximation by ¢, which can directly affect the convergence
speed. FUSS will take a longer time to converge, because the individuals
with high fitness in FUSS make up only a small percentage of overall indi-
viduals.

Bounding population number: Evaluating a large number of popu-
lation at initial generation is very important to avoid falling into local
optimum. However, evaluating entire generations with same population
number is time consuming and not practical. To accelerate the evolution
procedure, we wish to rule out the candidate individuals which hold high
SAD score. Instead of determining a fixed threshold, we learn a threshold
at each generation which can rule out a certain fraction (A percent) of indi-
viduals. Learning procedure is to adjust two constants o and £ such that
S(I,13,T) < 0.1 x &+ S holds for A percent of the individuals. Figure 2.2
illustrates the matching frequency of each pixel in each generation. With
the decrease of population number, matching frequency around each lo-
cal optimum reduces, and finally the area with respect to global optimum
transformation is localized. Involving the bounding scheme, the number of

matching tests that LAS requires can be represented as:

5> XL > e (2.8)

i=0
0 is the population number of initial generation. ¢ is a small constant which
denotes the population number the last generation. The time complexity
then can be ensured as long as the parameters are predetermined.
Approximation of SAD: Each matching test with respect to a single
transformation has a time complexity of O(n?). To speed up each matching
test, we wish to inspect only a small fraction of pixels instead of the entire
pixels in template. We sample pixels at an equal interval on both width
and height of template by a parameter € to reduce the time complexity to
O(n?/e?). The Equation 2.3 can then be rewrote as following if the number

of sampling pixels is enough.
S(I,I,,T) = S(I, I,,T),|I;| = n?/e. (2.9)

According to Chernoff bound, the number of sampling pixels should be
log(1/n)n?/e? if we wish |S(I1, I, T) = S(I1, I, T)| < ¢/n1 holds with prob-

11
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Figure 2.2: Heat map of matching frequency. This figure shows the frequen-
cy that each pixel has been used for calculating SAD. With the decrease
of population number, the total matching frequency reduces while a more
accurate candidate area can be localized.

ability 1 — n. In our situation, n = 1/e. This also has been pointed out in
Korman et al., 2013.

The entire procedure of LAS is described in Algorithm 2. All the trans-
formations T' are represented as binary Gray codes in Galois field. LAS
runs in multiple generations, with each generation ¢ generates a population
Pi. At first generation P°, individuals are sampled randomly from Fan.
Figure 2.3 illustrates the relation between SAD and the number of accord-
ing individuals throughout the convergence process. With the generation
number grows, the overall distribution translates from right to left as a

result of selection and crossover. The amplitude decreases as a result of
G2m+1

min

52m+2

the population bounding scheme. Note that i and

equals to
SZmtl equals to S2H2) because the level-wise selection will not generate

new solutions.

2.5 Experiments

To evaluate our algorithm, we use imiages from the famous SUN database
Xiao et al., 2010, which has been used in evaluating many vision problems.
We select 500 images as tests from category “waiting room” to “zoo”. We
randomly generate a ground truth affine transformation matrix for each
test image, and make sure that the four corers of parallelogram generat-
ed by accordirig matrix are all in the image. Pixels in the parallelogram

are then warped to generate the square template. In our experiment, each

12



Algorithm 1 Level-wise Adaptive Sampling.

Require: Normalized template and target image, I3, Is.
Require: Population number § of initial generation.
Require: Population bounding parameter A.

Require: Population number ¢ of last generation.
Ensure: Estimated transformation 7.

1: PO ={Ty,...,Ts}
2m=20
3: while |P*™| > ¢ do
4: P2m+l = {ﬂ]ﬂ € szJS([la-[Q;ﬂ) < 5)\77175’(]17]2)1';_) ~
U(SQm—H_ 52m+1)}
5 P2 = crossover(P?™*1)
6: m=m-+1
7: end Whi}e A
8 return T € P>™*2 st S(I), I, T) = S27+2
A ll"
=
:c:-:’ E:ol Pi
= P
.g PZ/N+2

SZ/;:+2 S2
min min

59

min

S(ll 3137T)

Figure 2.3: Illustration of SAD’s distribution in each generation P. Selec-
tion, bounding scheme and crossover on the individuals make the distribu-
tion move to left gradually, which is the procedure of estimating 7.

template has a size of 100 x 100 pixels.

Effect of parameters: We observe the change of SAD while changing
the parameter 6 and A. Figure 2.4a shows that larger § can improve the
performance of SAD on the images which are not matched well using s-
maller §. For the matching results which are close enough to the ground
truth, it is hard to improve the performance by increasing §. Figure 2.4b
shows that small A will only achieve rough results, because the algorithm
converges too fast before a global optimum is localized. It is worth point-
ing out that even the ground truth transformations can have SAD larger
than 0, because interpolation operations are involved during the creation

of templates (warping). From Figure 2.4c, we can find out that our result

13



(a) Effect of § on SAD
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Figure 2.4: Parameter analysis on 500 images. (a) Effect of §. Other
parameters are: ¢ = 3,A = 0.7. (b) Effect of A. Other parameters are:
€= 3,6 = 9% (c) Comparing tuned parameters with ground truth. Tuned
parameters are: € = 3,6 = 115, A = 0.7.

can well fit the SAD of ground truth except mismatched tests.

Comparative results: We compare our algorithm with the sate-of-the-art
method FAsT-Match Korman et al., 2013. We use overlap error to com-
pare the accuracy which are defined as 1— (area(T") Narea(T"))/(area(T)U
area(T")) according to PASCAL measure (Everingham et al., 2010). We
use number of matching tests to compare the efficiency which does not
depend on type of programming languages and hard devices. In order to
ensure the comparative results to be fair and accurate, the experiment is
carried out under the following conditions: 1) No preprocessing like Gaus-
sian blur. Although smoothing images will surely improve the accuracy,
it will also bring complexities when analysiné the results. 2) Set the ap-
proximation method of SAD as the same, number of sub-sampled pixels
should be n2/e2. 3) Set the number of matching tests as the same. It is
difficult to control the number of matching tests of FAsT-Match, because
it is dynamically determined. We only set its upper limit to avoid mem-
ory leak. 4) To keep the simplicity of algorithm, restarting an algorithm
or other similar tricks for improving the accuracy are not allowed. From
Figure 2.5a, we can see that with respect to different images, our method

has a significant reduction on overlap error. From Figure 2.5b, we can see
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Figure 2.5: Comparative results with 500 images. Parameters are set as:
6 = 11%€ = 3,1 = 0.7. (a) Overlap rate error on each test image. (b)
- Number of matching tests on each test image.

|  method | error | 50% | error j 10% | error | 5% | average matching tests |
FAsT-Match 92.2 48.4 11.8 8.6x10°
Our method 97.4 91.0 68.0 6.7x108

Table 2.2: Accuracy of different overlap error criterion and average number
of matching tests.

that our method is more stable in algorithm’s complexity. By changing the

criterion of overlap error, we report accuracy in Table 2.2.

We present examples of our matching results of Figure 2.5a in the Supple-

mentary Material.

2.6 Conclusion

In this chapter; we presented a method to solve affine template matching
problem in Galois field. For efficiency, we proposed level-wise adaptive sam-
pling (LAS) method under genetic algorithm framework to estimate only
a small fraction of candidate transformations. Experiments have shown
that our algorithm is more accurate and faster than the state-of-the-art
affine template matching method. The drawbacks of our algorithm can
be concluded as: 1) The smooth assumption limits the application of our
algorithm. For template with large variation, we have to increase 4. 2)
Since GA bring about heuristics, there is no absolute assurance that our
algorithm can find the global optimum by the limited matching tests. As
the future work, we plan to extend our algorithm to projective template

matching problem.
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Chapter 8

TEMPLATE MATCHING WITH PROJECTIVE
TRANSFORMATION

3.1 Summary

In this chapter, we address the problem of projective template match-
ing which aims to estimate parameters of projective transformation. This
work expands the application scope from affine transformation to projec-
tive transformation. Although homography can be estimated by combining
key-point-based local features and RANSAC, it can hardly be solved with
feature-less images or high outlier rate images. Estimating the projective
transformation remains a difficult problem due to high-dimensionality and
strong non-convexity. Our approach is to quantize the parameters of pro-
jective transformation with binary finite field and search for an appropriate
solution as the final result over the discrete sampling set. The benefit is
that we can avoid searching among a huge amount of potential candidates.
Furthermore, in order to approximate the global optimum more efficient-
ly, we develop a level-wise adaptive sampling (LAS) method under genetic
algorithm framework. With LAS, the individuals are uniformly selected
from each fitness level and the elite solution finally converges to the global
optimum. In the experiment, we compare our method against the popu-
lar projective solution and systematically analyse our method. The result
shows that our method can provide convincing performance and holds wider

application scope.

3.2 Introduction

Parametric template matching has been studied for decades as a classical
problem. Among different deformation and transformation models, pro-
jective transformation is one of the most common transformations that
occurs between images. However, projectivities, which are the transfor-
mations within and between projective spaces, are hard to be estimated
correctly due to high-dimensional parameters. In many real-world match-
ing scenarios, there usually exists a projecti{/ity between a template and a
target image (i.e., source image) since the projectivity between real object

plane and template is usually different from the projectivity between real
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Figure 3.1: Matching examples. As we can see, SIFT+RANSAC can only
handle the first example with slight projective transformation while our
method matches all the ground truths well.

object plane and target image. The purpose of this work is to estimate
the projectivity between two planar images: the template image and the
target image. Specifically, in projective template matching, each candidate
projectivity corresponds to a candidate polygon area in the target image.
We aim to find a polygon which is most visually similar with the template

image after eliminating the effect of transformation.

As a standard framework, local-feature-based methods such as SIFT and
its variants are very efficient to estimate the 2D homography (projectivity)
between the template and the target. Parameters of projectivity can be
solved by a system of linear equations which can be written from a few
inliers (i.e., correctly matched key points). We can also use method like
RANSAC Fischler and Bolles, 1981 to eliminate the effects of outliers (i.e.,
incorrectly matched key points). However, there still exist some limita-
tions in this framework: 1) For feature-less images, like medical images,
key points are hard to be detected. Without inliers, projectivity cannot be
solved. 2) Common local features (e.g., SIFT, ASIFT) are susceptible to
projective transformation, so it is necessary to design a projective transfor-
mation invariant local feature. Affine-SIF'T Morel and Yu, 2009 can handle
matching with affine transformation but can hardly handle the projective
transformation. 3) For images with heavy outliers, like noisy images, it is

difficult to estimate the proper projectivity. In conclusion, the success of
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feature-based methods depends on the assumption that the matching re-
sult of key point matching consists of inliers (at least four). Figure 1 shows

three matching examples.

As we all know, the core drawback of template matching is that it poten-
tially requires a huge number of candidate samples to evaluate in order to
reach to the global optimum. In the case of projective template matching,
it exponentially requires more computational cost at the time that more
accurate parameters are required to be estimated. The reason is that eight
degrees of freedom (DoF's) are required for defining a projective transforma-
tion. Due to this drawback, few existing works attempt to employ dense
template matching directly with projective transformation. To make up
for the drawback, how to search the candidate space effectively becomes
an essential point in this paper. We quantize the eight DoFs of projective
transformation with a finite set and then propose a meta-heuristic method
to approach the global optimum effectively. The main contributions of this

paper can be concluded as following:

e Overall, this paper proposes a solution to a long standing problem of

projective template matching.
e We apply binary finite field to deal with very large DoF.

e We develop a new selection method called LAS to preserve the diver-

sity under genetic algorithm framework, while keep the efficiency.

3.3 Related Work

The difficulty of template matching tasks increase as the dimension of DoF
grows. Figure 3.2 shows some common transformation models with various
dimensions of DoF. In this section, we mainly survey previous works involv-
ing these geometric transformations. Note that a simplest transformation

model with two DoF's only involves translations of z-axis and y-axis.

Euclidean Template Matching

The dimension of DoF is three. Rotation and translation are considered in
this transformation model. The result area in the target image is rectan-
gular and kept rigid. Traditional approaches Brown, 1992 for'solving this
problem is to compute the correlation between each candidate and tem-

plate which can be accelerated with fast Fourier transformation (FFT).
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Figure 3.2: Template matching tasks with different transformation models.
As the dimension of DoF grows, the matching difficulty also increases.

Low dimensional DoF allows exhaustive searching to some extent. Also,
many efforts have been done to improve the performance of FFT. Gener-
alized Fourier transform Nair, Rajagopal, and Wenzel, 2000 is one of the
alternatives which offers a relatively robust and fast solution to the match-
ing problem. On the other hand, rotation invariant features are considered
as more feasible instead of exhaustive matching. Choi and Kim Choi and
W.-Y. Kim, 2002 proposed a method which combines both the projection
method and Zernike moments in two stages. At first stage, candidates with
low cost feature extracted are selected. At second stage, rotation invariant

matching is performed.

Similarity Template Matching

By involving the overall scaling variable, the dimension of DoF grows to
four. This model is most widely applied in real-world applications. Ex-
haustive searching is no longer feasible due to the broad searching space.
To improve the efficiency of matching process, Kim et al. H. Y. Kim and
Aratjo, 2007 proposed cascaded filters to exclude the candidates which
hold low probability to be selected as the final result. Penate-Sanchez et
al. Penate-Sanchez, Porzi, and Moreno-Noguer, 2015 treat the “proba-
bility” as “matchability”, and apply dense convolutional neural network
to learn and predict the matchability in advance. Hence, large amounts

of unnecessary computations can be avoid. In Zhang and Akashi, 2015c,
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the authors introduce a heuristic method which can sample the candidates
adaptively by utilizing the property that the left-most bit of a binary-coded
candidate affects the binary code most significantly and vice versa. Scaling,

translation, and rotation are considered in the above works.

Affine Template Matching

Fewer works study on the affine matching since shearing is involved and
the dimension of DoF grows to six. Affine invariant feature Morel and Yu,
2009 made a breakthrough on this problem. However, researches on direct
matching are still needed since inliers with A-SIFT can not always be guar-
anteed, especially for feature-less images. FFT has also been extended for
affine invariant matching Gundam and Charalampidis, 2015. In this work,
template is first decomposed into non-overlapping concentric circular rings,
and each ring’s FT is calculated. Parameters of affine are then estimated
under the assumption that rings may be rotated with respect to each other.
S. Korman et al. Korman et al., 2013 proposed a method which matches
the template in a very sparse way. A parameter-depended discrete sam-
pling net is constructed and a branch-and-bound scheme is employed to
search an approximate solution over the sampling net. C. Zhang and T.
Akashi Zhang and Akashi, 2015a proposed a stochastic method to search
the 2D affine parameters efficiently with SAD.

Projective Template Matching

With projection involved, the dimension of DoF grows to eight. Projective
invariant feature has not been well developed yet and applying common
local descriptors directly like SIFT will lead to a large amount of outliers.
For direct methods (pixel-based methods), due to the high-dimensionality
and high non-convexity, limited related literature can be found. Instead
of global matching, F. Jurie et al. Jurie and Dhome, 2002 proposed a
tracking-based matching approach which can greatly reduce the number of
candidates. It can deal with projective transformation to a certain extent.
However, the problem setting in this paper is more close to online tracking
like Zhang, Yamagata, and Akashi, 2015 rather than template matching.
To the best of our knowledge, our work first attempts to solve the global

dense template matching problem under projection transformation model.
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3.4 Methodology

Problem Description

Two grayscale images I; and I, are given as the input. Each pixel’s gray
value is normalized from [0, 255] to [0, 1]. Here, I; represents for ny X ng
template image and I, represents for ny X my target image, ny,ny € N*.
For the convenience of denotation, here we assume that both I; and I, are
square images. An arbitrary pixel p € I; is mapped to [y via projectivity
7 € R¥*4 which will be further defined in Section 3.4. We use p” to denote
the mapped pixel in I5.

For simplicity, sum of absolute difference (SAD) is used to measure the
similarity between I; and a candidate area I, € I,. With SAD defined,
we can focus on studying the searching mechanism rather than feature
extraction. Candidate area I. corresponds to a candidate projéctivity T.
Normalized SAD is utilized, which can be formally defined as:

I — L({pH)|™ 0 pr el
5(117]2’7_)2210611] 1(10)2 2(p")| = P é 2.

(3.1)
ny 1 p" € IQ

The purpose of this paper is to estimate an approximate projectivity 7
which is a member of a sampling set. The sampling set can be constructed
by finite set FF which will be introduced in the following Section 3.4. In the
case of the best result is achieved, 7 € F equals to 7 € F. Projectivity 7 is
the closest one to ground truth 7* among all the candidate projectivities in
F. Because we use a discrete sampling set of transformation to approach
the full continuous set of transformation, there is a strong possibility that
the best transformation in the discrete sampling set does not equal to the
best transformation in the full continuous set. The best transformation in
the full continuous set is the ground truth 7* and the best transformation
in the discrete sampling set is 7, which is supposed to be the closest one
to 7*. With SAD defined, 7 can be indirectly estimated by minimizing the
SAD:

7 = argmin S(Iy, I, 7). (3.2)

reF

Geometric Model
In this section, we detailedly define the 7. 2D projectivity is widely uti-
lized in multi-view geometry. The projectivity is defined as a non-singular
3 x 3 matrix. It at least needs four pairs of inliers to solve the eight pa-

rameters (projectivity is a homogeneous matrix and it only has eight DoFs
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Figure 3.3: Pin-hole camera model. Template image is placed in world
coordinate system, it is projected onto the target image plane by drawing
the lines through the camera center C. By changing the appearance of
template image in the world coordinate system, various polygon candidates
can be observed in the target image plane. Tunable parameters of 7 includes
rotation ry, 7y, 7., translation «, y, scaling s, s, and distance of principal
plane z.. Parameters 2z, and z, are set to zero.

even it has nine elements). Typically, parameters are estimated by finding
the correspondences between template and target. However, in our case,
it is hard to solve the projectivity directly since we optimize the 7 with
the feedback of SAD. Hence, each parameter must be assigned a meaning
in our algorithm in order to tune the parameters within bounded ranges.
Since projectivity is resulted by a chain of transformations, we decompose
it into multiple transformation matrices instead of estimating the fused pa-
rameters directly. We model the 7 under pin-hole camera geometry. As
shown in Figure 3.3, varying the eight parameters can change the appear-

ance of the template’s outer contour observed by the pin-hole camera and
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Table 3.1: List of each parameter’s real number range, the step size and
amount in sampling set. '

Parameter Range Step amount Step size

Tz —m/2,7/2 2" /2"

Ty —7/2, /2 2n /2"

Ts —7/2,7/2 A /2"

z —n2/2,n2/2 2" ng/Z"’

y —ny/2,n2/2 2" ng /2"

Sz [n1/n2, na/my) 2" (n3 — ni)/mny2™
Sy [n1/ng, na /] 2n (n3 — n?)/niny2"
2 [0, +00] - -

thus generate various candidate areas in the target image. Formally,

COS Ty

sinr,

s 0 0 0]
0 s, 00
0 010
0 0 0 1
0 —sinr, 0]
1 0 0
0 cosry, O
0 0 1
100
010
001
z y 0

1 o0 0 0
0 cosrp, sinry O
X X
0 —sinr; cosr, O
_O 0 0 1_
I cosr, sinr, 0 O-
o | sinr, cosr, 0 O o (3.3)
0 0 10
| 0 0 0 1_
0] % 0 0 0
0 0 z 0 0
X
0 -z, —Y. 0 -1
1_ 0 0 0 z

Where 7, ry, 7, are the rotation angles with respect to each axis. Parame-

ter z, y are translation parameters with respect to both target image plane

and principle plane. Target image plane is parallel to the principle plane.

Parameter s, s, are scaling factors with respect to z-axis and y-axis. We

set x. and y. to zero thus the target image plane is concentric with the

principal plane. Parameter z. is the z-axis’s value of the optical center.

During implementation, z. is fixed as a positive integer since it can be pos-

itive infinity and unlimitable. A reasonable z. is hard to be determined

since larger 2. will lead to smaller candidate area in the target image plane

and vice versa. In the other words, not only the scaling parameters s, and
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sy but also the z. can affect the size of a candidate polygon. As long as
the z. is fixed, the size of a candidate can be specifically tuned by s, and
sy. However, if we choose a relatively large z, let us say z. = 1000, the
size of a candidate will be very small no matter how we tune the s, and s,
within the given range [n;/ng, na/n1]. Parameter z. plays a role on limiting
the extremity of the perspectivities. The decision of z, depends on the size
of an object you expect to observe from the target images in the specif-
ic applications. At the same time, matching insignificantly small regions
is impractical in real-world applications. We suggest that the range of 2.
should be determined empirically depend on specific applications. Each

parameter’s range is shown in Table 3.1.

With 7 defined, we can calculate the p™ by simply multiply the matrices:
p” = pr, where p € RV* 7 € R¥*4, (3.4)

Note that p and p™ are represented by homogeneous coordinate, specifically,
P = (P2, Py, 0,1). When calculating the coordinate of p”, p” should also be
converted to homogeneous form, that is, the value of fourth dimension in

p” should be normalized to one.

Finite Field of Projective Transformation

Matching with complete continuous projective transformation set which
contains infinite candidates can be impractical. To avoid this problem,
we build a discrete set with binary finite set. We extend the smallest
finite set Fy = {0,1} to Fan, where n € N* represents the length of each
binary code and implicitly corresponds to the accuracy of sampling, 2" =
|Fon|. Each 7 € Fan is coded by 7n bit binary code. Parameter over each
decomposed DoF can be discretely sampled by each independent finite set.
For denotation clarity, we assume that n in each finite set is the same. Table
3.1 shows the step size and amount when finite set is used to construct the

sampling set. Each DoF’s range is then divided into discrete segments.

To analyze whether minimizing SAD can help the algorithm reach to the
best transformation in the discrete sampling set, we discuss what kind
of factors will affect the error bound. With Equation 3.2, we can still not
ensure the approximate solution 7 is close enough to 7 due to the drawback
of SAD. An important factor which will affect the “approximate degree”

" is the variation v Korman et al., 2013 of the template. Variation v can
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Figure 3.4: a) Example of projective matching; b) Heat map of matching
frequency of each generation 1 to 8 with respect to example (a). This figure
illustrates the frequency of each pixel that has been used to calculate the
SAD during the matching procedure. With the increase of generation num-
ber, pixels close to the global optimum are more frequently to be matched
while the total sum of matching frequency decrease, which is an important
property in LAS.

be defined as the sum of maximum difference between each p and its eight
neighbors Ng(p). Formally,
b= max |I1(p) — I1(q)]. (3.5)

€N;
o s(p)

If we refer to simple cases especially when template is an edge image or
other cross-domain imagesZhang and Akashi, 2015b, applying SAD directly
will lead to a high v, which means that slight translation near the ground

truth area will yield large difference (i.e., the solution space is not smooth).
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In order to qualify the difference between two candidate projectivities 7

and 73, we introduce the following projectivity error:
E(ni,m) = |S(h, I2,1) = S(Ih, I2, ). (3.6)

It has been addressed in Korman et al., 2013 (Theorem 3.1) that the upper
limit of E(7, 7*) is associate with the size of template, variation of template,
and step amount. In our condition,

v

B(7, 1) < O

). (3.7)

Larger v, smaller ni, smaller n will loosen the upper bound of Equation
3.7. With loose upper bound, there exists case that E(#,7*) < E(7,7*)
while 7 is far away from 7 in the transformation space. In this case, min-
imizing the SAD only can never reach to the most approximate candidate
in the sample set. To avoid this case, we limit n; in this paper since the
variation v is uncontrollable and n should be reasonably small considering
the computational cost. As n; is the size of the template, we can fix it to
avoid to be too small (e.g., n; > 100). Typically, in our implementation,
we set n = 8. The size of the sampling set is 2% &~ 7.2 x 10'¢. Obviously,
it is hard for a personal computer to afford such a large-scale computation
task. Instead of evaluating each sample exhaustively, we propose LAS to
adaptively select the samples to evaluate, which will be introduced in the
next section.

Level-wise Adaptive Samplilig (LAS)

In this section, we introduce LAS which aims to reach the approximate
solution instead of testing the complete Forn. To optimize 7 based on the
complete Fyr, two main problems should be considered: 1) How to escape
from local optimums; 2) How to guarantee the optimization response time.
Because our methods is based on the genetic algorithm (GA) framework
Holland, 1975, we inherit terms of GA such as population, generation, etc,
which are briefly introduced as following:

o An individual is a candidate transformation to which the SAD func-
tion can be applied.

e A population is a set of individuals.

e Bach successive population in an iteration is called a generation.
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e Diversity refers to the average distance between individuals in a pop-

ulation.

e Crossover is genetic operator to recombine portions of individuals.

LAS reduces the population number as the generation number grows and
the individuals are selected uniformly from each level of fitness value. At
first, we refer to a simple example in order to give out the whole operational
impression of our method, which is illustrated in Figure 3.4. This figure
illustrates the heat map of each pixel’s matching frequency through gener-
ation one to eight, we can observe two important properties of LAS from
this figure: A) The total number of matching frequency decreases with the
increase of generation number, which means that the computational cost
has been adaptively reduced; B) The number of matching frequency with
respect to pixels which are close to the global optimum increases, which
means that our algorithm adaptively selects “hopeful” samples to evaluate

rather than exhaustive searching.

For problem 1): preserving diversity. It has been argued in Hutter
and Legg, 2006 that diversity should be preserved somehow if we want
to prevent GA from falling into local optimums. Mutation operation can
increase the diversity randomly and has been regarded as a typical process
in GA. However, mutation can also randomly destroy individuals which
are potentia,lly closing to 7. In a broad search space, the probability of
generating a “just right” diversity is very low and the mutation process
may slow down the speed of convergence and be counterproductive. It is
worth noting that in our problem, a large number of randomly initialized
individuals is able to keep sufficient diversity for the algorithm converging
to 7. Throughout the evolution process, classical selection method such
as roulette wheel selection is more prone to select individuals which hold
smaller SAD for crossover operation. With the combination of selection
and crossover, diversity decreases and the whole population converges to
an optimum solution. However, if an individual happened to hold small
SAD (e.g., a flat candidate area) at the early stage of evolution, then the
whole population will fall into a local optimum easily, especially when the

sample space is very broad.

As a key to solve this problem, we select individuals from each SAD level

uniformly. Each SAD level is a discrete interval which is occupied by a
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part of individuals. With maximum SAD in m th generation denoted as
Sm

m - minimum SAD in m th generation denoted as S;;, and the number

of SAD level denoted as nl, we can denote the rahge of i th SAD level as
[S™ + (i —1)(ST,. —Sm. Y /nl, Sm +i(Sm. — Sm.)/nl]. Each individual
which is assigned to i th SAD level should hold a SAD value within this
range. Individuals of next generation are then randomly selected from each
SAD level. The number of individuals selected from each SAD level is the
same. With the increase of nl, distribution of SAD in m + 1 generation

approximates to uniform distribution.

Fitness uniform selection scheme (FUSS) is proposed in Hutter and Legg,
2006, which selects a fitness value uniformly at first and then randomly
select the nearest individual. The difference is, LAS can control the degree
of uniform approximation by nl, which can directly affect the convergence
speed. FUSS will take a longer time to converge, because the individuals
with high fitness in FUSS make up only a small percentage of overall indi-
viduals.

For problem 2): limiting population size. Evaluating a large size
of population at initial generation is very important to avoid to fall into
local optimum. However, evaluating entire generations with same popula-
tion size is time consuming and not practical. To accelerate the evolution
procedure, we wish to rule out the candidate individuals which hold high
SAD score. Instead of determining a fixed threshold, we learn a thresh-
old at each generation which can rule out a certain fraction (A percent)
of individuals. Learning procedure is to adjust two constants o and 8 in
different order of magnitude such that S([;,2,7) < 0.1 X & + § holds for
) percent of the individuals. Specifically, parameters « and B are initial-
ized to 0, thus the threshold is initialized to 0.1 x 0 + 0 = 0. Parameters

a and B are increased by loops [0.1, 0.2, ..., 0.9] and [0.01, 0.02, ..., 0.1]

]#{individuals|SAD<treshold} _ >‘l
#individuals

is observed. When the object function stops reducing, the best threshold

respectively, and the value of object function

is achieved. Involving the limiting scheme, the number of matching tests

that LAS requires can be represented as:
8 X8> ¢ (3.8)
i=0

Parameter ¢ is the population size of initial generation. Parameter c is a

small constant which denotes the population size of the last generation.
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The time complexity then can be ensured as long as the parameters are

predetermined.

Approximation of SAD: Each matching test with respect to a candidate
projectivity has a time complexity of O(n?). To speed up each matching
test, we wish to inspect only a small fraction of pixels instead of the entire
pixels in template. We sample pixels at an equal interval on both width
and height of template by a parameter € to reduce the time complexity to
O(n?/€?). The Equation 3.1 can then be rewrote as following if the number

of sampling pixels is enough.
S(h, I, 7) & S(I}, I, 7), |1 = n /€. (3.9)

According to Chernoff bound, the number of sampling pixels should be
log(1/n)n3/€* if we wish |S(1y, I, 7) — S(I}, I, T)| < €/n1 holds with prob-
ability 1 — 7. In our situation, n = 1/e. This also has been pointed out in
Korman et al., 2013.

The entire procedure of LAS is described in Algorithm 2. In row 4 of the
algorithm, U means uniform and S(I1, I, 7;) ~ U(Smin, Smae) indicates
that the value of S(I, I, 7;) is equally likely to be observed from Sy, to
Smaz, Which reflects that individuals are equally sampled from each SAD
level. All the projectivities 7 are represented as binary codes in finite
set. LAS runs in multiple generations, with each generation ¢ generates a
population P?. At first generation P°, individuals are sampled randomly
from Fqn. Figure 3.5 illustrates the relation between SAD and the number
of according individuals throughout the convergence process. With the
generation number grows, the overall distribution translates from right to
left as a result of selection and crossover, which also means that SAD of
the elite decreases. On the other hand, the amplitude decreases as a result

of the population limiting scheme.

3.5 Experiment

Experiment Environment

We construct a benchmark inherited from the benchmark used in Zhang
and Akashi, 2015a to evaluate our method. The original images are from
the famous SUN dataset Xiao et al., 2010. Each test image in this bench-
mark corresponds to a randomly generated projective transformation with

z. = 30. To generate a random projectivity, at first, four points within a
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Algorithm 2 Level-wise Adaptive Sampling.

Require: Template and target image, I, Io.
Require: Population size § of initial generation.
Require: Population limiting parameter A.
Require: Population size ¢ of last generation.
Ensure: Estimated transformation 7.
]PO = {T07 "-77-5}
:m =0
while |P?™| > ¢ do

P2m+1 = {Tii’l'i € ]P)2m,S(I]_,IQ,Ti) < 01 X o+ ,8,5(]1,]2,'7'2') ~
U(Sim > S )}

P2m+2 = crossover (P?™*1)

m=m-++1
end while
return 7 € P2 st S(I, I, ) = SZm+?

min

Ll oe

test image are selected. Secondly, we warp the polygon constructed by four
points into square template. We avoid to generate polygons which have too
small area. Overall, there are 100 pairs of template and target images in
this benchmark with various image size. All the ground truth bounding

boxes are defined by the four points which are randomly selected at first.

We apply overlap rate to judge whether a matching result is successful by
referring to the ground truth. Specifically, PASCAL criteria Everingham
et al., 2010 is used to calculate the overlap rate:

area(BB;. N BB,,)
area(BB,. U BB,,)’
Where BB,. means polygon bounding box of result and BB, means poly-

overlap rate =

(3.10)

gon bounding box of ground truth. area(-) is a function to count number
~of pixels. Based on the overlap rate, we can determine whether a matching
result is correct or wrong by setting a threshold. Specifically, we have

(3.11)

1 if overlap rate > threshold
answer = .
0 otherwise

Finally, success ratio = #{answer|answer = 1}/#test as the accuracy cri-

terion.

Comparison
To the best of our knowledge, SIFT and its invariants are the most stable,
and widely-used feature descriptors in dealing with viewpoint changes dur-

ing matching problems. However, they can only handle small viewpoint
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changes which mean a very narrow range in the projective transformation
space. Although comparing with SIFT is not fair since it is not a completely
projective invariant feature, we take it as a baseline method. Figure 3.6(a)
shows the success curves of our method and SIFT+RANSAC. We increase
the threshold of overlap rate in z-axis while observing the change of suc-
cess rate. As we can see, the success rate keeps larger than 90% until the
threshold gets to 0.6. Even when the threshold is limited to 0.9, which
is very strict and visually make little difference between result area and

ground truth area, we can reach a success rate of 60%.

On the other hand, we compare the SAD value against ground truth case
by case, which has been shown in Figure 3.6(b). Since we generate tem-
plates by warping the polygon area which is determined by four randomly
generated points with interpolation, the S(Iy, I, 7*) cannot exactly be ze-
ro. Except several images which are mismatched, most of the test images

show close SAD value with the ground truths.

Effect of parameters

Several parameters are considered most likely to affect the success curve.
They are 0, <, €, nl, A and ¢ as shown in the caption of Figure 6.5 and
previous content. To analyse how each parameter affect the success curve,
we fix other parameters while observing one parameter. All the results
are achieved under a same random seed. From Figure 6.5(a), we can see
that at least 1.5 x 10° initial population size is needed in order to provide
acceptable performance. With bad initialization, the algorithm is easy to
fall into local optimums since the crossover operation can only generate
new individuals covering a small range around each individual. In other
words, the “gap” between individuals in the first generation are large when
0 is small, many candidates in the “gap” are hard to be reached which may
contain the global optimum. From Figure 6.5(b), we can see that crossover
rate does not affect the success curve much and the best performance can
be achieved when ¢ = 0.8. From Figure 6.5(c), we can see that the best
performance is achieved when ¢ is smallest. However, the accuracy does not
reduce in proportion to the the decrease of €, which means that taking more
pixels’ information into account when calculating SAD does not guarantee
the improvement of accuracy. From Figure 6.5(d), we can see that the
levels of SAD does not affect the accuracy much. From Figure 6.5(e), we

can see that the accuracy improves in proportion to the the increase of \.
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High \ means that the decay rate of population size is small and larger
amount of individuals will be evaluated. Hence, high A results in better
performance. Considering computational cost, we set A = 0.7 in Figure
3.6. From Figure 6.5(f), we can see that like many matching problems,
smooth parameter has great influence on accuracy. An appropriate choice

is o = 3.0.

Figure 3.10 shows some examples of succussed matching. We can observe
that even feature-less templates or drastically warped can be correctly

matched.

Noise-tolerance Experiment

In this section, we will check how our algorithm deals with Gaussian noise.
It is important to see at which levels of noise the method can still work
in order to test the robustness to real-world matching conditions. With
Gaussian noise, each pixel in the image will be changed from its original
value by a small amount. A histogram, a plot of the amount of distortion of
a pixel value against the frequency with which it occurs, shows a Gaussian
distribution of noise. The level of the noise is controlled by the expectation
(set to 0 in the experiment) and the standard deviation (set to [0.01, 0.03,
.., 0.09] of Gaussian distribution. We apply the parameter setting for
plotting Figure 3.6 to match and draw curves of each noise level in Figure
3.9. Figure 3.8 shows the illustration of different levels of noise and the
corresponding matching results. From Figure 3.9, we can see that with the
increase of noise, the matching accuracy decreases. However, even with
the heaviest noise, our algorithm can still achieve a AUC of 0.67, which is
better than the AUC of applying ASIFT without any noise (AUC=0.65)
that has been shown in Figure 3.6.

Processing Time

In this section, we provide processing time of two kinds of parameter setting
as a reference in Table 3.2. We test the processing time of our unoptimized
code with a laptop equipped with Intel Core i7-4600M 2.90GHz CPU and
16 GB RAM. From Table 3.2 we can see that increasing approximation
parameter € can drastically reduce the processing time, while keep a sat-
isfactory matching accuracy. Each template’s size is 100 x 100 pixels and
each target image’s size is 320 x 240 pixels during the test. In real-world

applications, we can further reduce the processing time by limiting the ex-
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tremity of the projectivities. We can limit the range of parameter s, s,
and especially z. to limit the extremity of the projectivities. For a specific
application, we can empirically determine the ranges of these parameters

to get rid of redundant candidates that will never appear in real world.

Table 3.2: Average processing time of tuned parameter settings.

AUC processing time 4] s € nl A ¢

0.88 206.4 sec/image . 3
0.83  59.5 sec/image 25x10° 0.8 g ° 0.7 3.0

3.6 Conclusion

In this paper, we propose level-wise adaptive sampling (LAS) to optimize
parameters of projective transformation in template matching problem-
s. At first, We use binary finite set to construct a discrete sampling set.
Then, instead of exhaustive searching, LAS selects the individuals in dif-
ferent fitness levels and thus can preserve the diversity better and help the
algorithm to converge to the global optimum. The results on the bench-
mark show the efficiency of our method and many practical applications

can be expanded based on this.

On the other hand, several drawbacks of this method can be concluded
as: 1) Due to smoothness assumption, template with high variation value
can cause failure in matching. Increasing initial population size can solve
problem if reducing computational cost is not a priority. 2) Several minutes
(1~3 minutes) are needed for producing a result with the best-performance-
parameters and images in the benchmark. There still remains distance
away from real-time applications. As the future work, we aim to accelerate

the algorithm and expect real-world applications.

References

Brown, Lisa Gottesfeld (1992). “A survey of image registration techniques”.
In: ACM computing surveys (CSUR) 24.4, pp. 325-376.

Choi, Min-Seok and Whoi-Yul Kim (2002). “A novel two stage template
matching method for rotation and illumination invariance”. In: Pattern
Recognition (PR) 35.1, pp. 119-129.

35



Everingham, Mark et al. (2010). “The pascal visual object classes (voc)
challenge”. In: International journal of computer vision (IJCV) 88.2,
pp. 303-338. '

Fischler, Martin A and Robert C Bolles (1981). “Random sample consen-
sus: a paradigm for model fitting with applications to image analysis and
automated cartography”. In: Communications of the ACM 24.6, pp. 381—
395.

Gundam, Madhuri and Dimitrios Charalampidis (2015). “Fourier transform-
based method for pattern matching: affine invariance and beyond”. In:
SPIE Defense+ Security. International Society for Optics and Photonics,
pp. 947701-947701.

Holland, John H (1975). “Adaptation in natural and artificial systems. an
introductory analysis with applications to biology, control and artificial
intelligence”. In: Ann Arbor: University of Michigan Press 1.

Hutter, Marcus and Shane Legg (2006). “Fitness uniform optimization”. In:
IEEE Transactions on Evolutionary Computation (TEVC) 10.5, pp. 568-
589. “ :

Jurie, Frédéric and Michel Dhome (2002). “Real Time Robust Template
Matching.” In: British Machine Vision Conference (BMVC), pp. 1-10.

Kim, Hae Yong and Sidnei Alves de Araiijo (2007). “Grayscale Template-
matching Invariant to Rotation, Scale, Translation, Brightness and Con-

trast”. In: Pacific Rim Conference on Advances in Image and Video
Technology (PSIVT). Springer-Verlag, pp. 100-113.

Korman, Simon et al. (2013). “FAsT-Match: Fast affine template match-
ing”. In: Computer Vision and Pattern Recognition (CVPR). IEEE, p-
p. 2331-2338.

Morel, Jean-Michel and Guoshen Yu (2009). “ASIFT: A new framework for
fully affine invariant image comparison”. In: STAM Journal on Imaging
Sciences (SIIMS) 2.2, pp. 438-469.

Nair, Dinesh, Ram Rajagopal, and Lothar Wenzel (2000). “Pattern match-
ing based on a generalized Fourier transform”. In: International Sympo-

sium on Optical Science and Technology. International Society for Optics
and Photonics, pp. 472-480.

Penate-Sanchez, Adrian, Lorenzo Porzi, and Francesc Moreno-Noguer (2015).
“Matchability Prediction for Full-Search Template Matching Algorithm-
s”. In: International Conference on 8D Vision (8DV). IEEE, pp. 353-
361.

Xiao, Jianxiong et al. (2010). “SUN database: Large-scale scene recogni-
tion from abbey to zoo”. In: Computer vision and pattern recognition
(CVPR). IEEE, pp. 3485-3492.

36



Zhang, Chao and Takuya Akashi (2015a). “Fast Affine Template Matching
over Galois Field”. In: British Machine Vision Conference (BMVC).

— (2015b). “High-Speed and Local-Changes Invariant Image Matching”. In:
IEICE Transactions on Information and Systems 98.11, pp. 1958-1966.

— (2015¢). “Simplifying Genetic Algorithm: A Bit Order Determined Sam-
pling Method for Adaptive Template Matching”. In: Irish Machine Vi-
sion and Image Processing Conference (IMVIP).

Zhang, Chao, Yo Yamagata, and Takuya Akashi (2015). “Robust Visual
Tracking via Coupled Randomness”. In: IEICE Transactions on Infor-
mation and Systems 98.5, pp. 1080-1088.

37



.00 005 0.0 0.15 020 i .01 0.02 0.03 0.04 0.5
SAD value SAD value

(b) After level-wise selection in gencr;tion 1

i
gaooo
L s’%
00 005 010 0415 020 00 007 002 0.03 0.04 0.5
SAD

SAD value value

(c) After crossover in generation 1

1400

%L
00 0.01 0.02 0.03 0.04 O.
SAD value

(d) After crossover in generation 10

1
00 005 010 0.15 0.
SAD value

20

-

Final solution

a@i&&s&a

.
~“G05 010 015 020
SAD value

SAD value

(e) After crossover in generation 86

Figure 3.5: Illustration of evolution procedure. This figure shows the
relation between SAD value (z-axis) and number of individuals (y-axis)
throughout the evolution. a) 2.5 x 10° individuals (i.e., candidates) are
initialized randomly in total. Better solutions are closer to the original
point with lower SAD value. As a result of random process, we observe an
elite individual with SAD value around 0.015. b) According to the initial
limiting threshold A, individuals which hold SAD value that is larger than
X are excluded in further stages. Furthermore, with the operation of LAS,
samples distribute approximately uniformly with respect to SAD levels. c)
To generate better possible individuals, crossover operation is performed.
Although decrease of SAD score is not obvious in one generation, if we
refer to (d), which is the distribution after 10 generations, we can find that
the whole distribution has moved to left. e) As the result of LAS, after 86
generations, the number of individuals reduce to hundreds and the whole
population converges to the final best solution.
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Figure 3.6: All the parameters which have been used to plot the figures
are shown in the sub-captions. a) Comparative results on success rate
between common solution SIFT+RANSAC, ASIFT+RANSAC and our
method. SIFT+RANSAC obtains a poor performance since SIFT feature
is not projective invariant. ASIFT+RANSAC achieves better performance
than SIFT+RANSAC. Our method achieves promising results with detail
parameters shown in the sub-caption. AUC stands for average accuracy of
the success curve. b) Comparative results on SAD value between ground
truth and our method. Ground truths also produce unavoidable SAD due
to interpolation. The SAD value of our method is very close with the

ground truth SAD.

39



Effect of § on success curve Effect of ¢ on success curve Effect of e on success curve
1

1 1 E
0.9 09 TEESETIES, 095 T STETEE T
0.8 038 Y3 0.8 SEE™
% 0.7 ——4=25x 10° (AUC=0.87) % 0.7, % 0.7 NN
« 0-6 ——F=20x 10" (AUC=0.86) . 0.6 » 06
20.5 e d = 1.5 x 10" (AUC=0.07) 20.5 2 0.5
8 0.4+ = =4 = 1.0 x 10 (AUC=0.08) S04 <= 04 (AUC=0.51) S0.4 3 (AUC=0.88)|
oy~ srwwamavcnon § - Fog=zzl e ) dogmsiden
oo} S\ -6=50x 10 (AUC=0.05) 0.2l 228 207 (Auc-o.s7) I\ 02ll==tZ¢ (AU(‘;O:SS;
o Nl f | 63 {AUG=080) PO N I g ity \
0 0.10.20.30.40.50.60.70.80.9 1 0 0.10.20.30.40.50.60.70.80.9 1 l'0 0.10.20.30.40.50.60.70.80.9 1
Threshold of overlap rate Threshold of overlap rate Threshold of overlap rate

(a) Fixed parameters: ¢ =(b) Fixed parameters: § =(c) Fixed parameters: § =
07, e=3nl=5 A=0725x108 e=3,nl =5, A =25 x 105, ¢ = 0.8, nl = 5,
o

=3.0 0.7, 0 =3.0 A=07,0=30
g Effect of nl on success curve ] Effect of A on success curve y Effect of o on success curve
0.9f \.-1-‘-::::@:-..§
0.8
@
© 0.7
B
g0

0.4[—=n =3 [AUC=0.88)
S — =l =5 (AUC=0.88)

@ 0.3 et = 7 (AUC=0.84)
0.2} = =nl = 10 (AUC=0.85)
0.1 nl = 50 (AUC=0.88)

nl =100 (AUC=0.86.

G0 0.10.20.30.40.50.60.70.80.9 1 00 0.10.20.30.40.50.60.70.80.9 1
Threshold of overlap rate Threshold of overlap rate Threshold of overlap rate

(d) Fixed parameters: ¢ =(e) Fixed parameters: ¢ =(f) Fixed parameters: ¢ =
2.5 % 10%, ¢ = 0.8, e = 3,08, 6§ = 2.5 x 10%, ¢ = 5,0.8, § = 2.5 x 10%, ¢ = 3,
A=0.7,06=30 c=30,nl=5 A=01,nl=5

Figure 3.7: Effect of parameters on success rate. We change one parameter
while fixing other parameters which are shown in each sub-caption to see
how a certain parameter affects the success curve. AUC stands for average
accuracy of the success curve. a) Changing initial population size §. b)
Changing crossover rate ¢. ¢) Changing approximation parameter e. d)
Changing number of SAD levels nl. e) Changing limiting parameter A. f)
Changing smooth parameter o.
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Figure 3.8: Matching results with different levels of Gaussian noise.
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Figure 3.9: Noise-tolerance experiment with Gaussian noise. We control
the level of noise by increasing the standard deviation of Gaussian from
0.01 to 0.09. Visual illustration of each noise level is shown in Figure 3.8
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Figure 3.10: Examples of successful matching results. The green bounding
box (BB), which represents our result, completely overlap the ground truth
(shown in red BB) in these cases. Various kinds of transformations are
generated in this benchmark, and many challenging cases with feature-less
and narrow-long area have also been considered.
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Chapter /4

ROBUST NON-PARAMETRIC TEMPLATE MATCHING
WITH LOCAL RIGIDITY CONSTRAINTS

4.1 Summary

In this paper, we address the problem of non-parametric template match-
ing which does not assume any specific deformation models. In real-world
matching scenarios, deformation between a template and a matching re-
sult usually appears to be non-rigid and non-linear. We propose a novel
approach called local rigidity constraints (LRC). LRC is built based on
an assumption that the local rigidity, which is referred to as structural
persistence between image patches, can help the algorithm to achieve bet-
ter performance. A spatial relation test is proposed to weight the rigidity
between two image patches. When estimating visual similarity under an
unconstrained environment, high-level similarity (e.g. with complex geom-
etry transformations) can then be estimated by investigating the number
of LRC. In the searching step, exhaustive matching is possible because of k
the simplicity of the algorithm. Global maximum is given out as the final
matching result. To evaluate our method, we carry out a comprehensive
comparison on a publicly available benchmark and show that our method

can outperform the state-of-the-art method.

4.2 Introduction

Template matching has been studied as a classical problem for a number
of decades. Current techniques can match template with similar candidate
windows in the target image while estimating translation, rotation, affine
transformation and even some regular deformation. However, in real-world
applications such as online tracking K. Zhang, L. Zhang, and Yang, 2012;
C. Zhang, Yamagata, and Takuya Akashi, 2015, the foreground models in
the templates usually deform complexly. Such deformation can hardly be
modeled mathematically since the result in the target image is projected
from the template after involving fusion of 3D transformations. Further-
- more, external influences, such as occlusion, illumination change, and back-
ground clutter will increase the degree of non-linearity and the difficulty of
template matching. '
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Local rigid constraints (LRC) between
template area and result area

Figure 4.1: Matching example and its local rigidity constraints (LRC)
which are generated by our program. Template area is predetermined with-
in a reference image. Result area is represented by red rectangle, ground
truth is presented by green rectangle in both target image and likelihood
image. Dotted lines represent the corresponding LRC with 3 x 3 pixel rigid
patches.

The drawbacks of existing parametric template matching frameworks can
be mainly summarized as: 1) Dense matching at pixel-level is usually nec-
essary in order to estimate more accurate parameters, which requires a lot
of computing costs; 2) In the case of heavy occlusion, the occluded part
may drastically affect the whole similarity score and lead to mismatch; 3)
A large number of parameters may need to be estimated when complex
transformations occur, which is very difficult due to high-dimensionality
and strong non-convexity. These drawbacks limit the scope of applications

and increase the dependence on environment.

As a common solution, histogram matching (HM) plays an important role
in non-parametric template matching. HM can deal with the deformable
matching problem by disregarding geometric relationship between pixels.
However, we argue that disregarding geometry completely may increase
the number of local optimums and thus increase the level of non-convexity.
When partial occlusion occurs to the target object, the template is also
easy to be mismatched to a local optimum Sato and Akashi, 2015.

In this papér, we address the importance of local rigidity constraints. As
a circle can be approximated by many rigid straight lines, most of the ob-
jects can be approximated by rigid patches if the size of each rigid patch

is small enough. Figure 4.1 shows an example of matching result with an
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Figure 4.2: 2D and 3D rigidity with illustration examples. a) Each rect-
angle holds 2D local rigidity, since no deformation occur, rigidity can be
preserved well in the target image. b) Each cube holds 3D local rigid-
ity. Due to 3D transformation, each cube of result in the target image
changes its appearance compared to the template. Hence, 3D rigidity is
more difficult to be preserved in 2D images.

athlete. We specify a region of interest (ROI) as a template in the refer-
ence image which is taken at a running race. As the race progresses, the
appearance of the athlete continuously changes. By decomposing the tem-
plate and the result into 3x3 patches, we can find that although the global
appearance has been changed (e.g. hands, head, legs and background),
many patches still have corresponding relationships between the template
and the result. Two patches and their corresponding relationship together
form a constraint which implicitly reflects the inherent characteristics of
the object. It is worth pointing out that there mainly exist two kinds of
rigidity, which have been illustrated in Figure 4.2. Object holds 3D rigidity
appears to be invariant in 3D space while changes appearance in 2D image
due to projection. Hence, it is difficult to model the 3D rigidity and we
only utilize the 2D rigidity in this paper.

By applying the rigidity, we extend a non-parametric template matching
framework Dekel et al., 2015 named Best-Buddies (BB) similarity. The
main idea of BB is that a pair of points plays an important role in esti-
mating the similarity when each point is the nearest neighbor of the other.
We apply BB to define the corresponding relationship between two rigid
patches.
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4.3 Related Work

In this paper, we mainly focus on the problem with single template and
single result. Cross-domain matching C. Zhang and Takuya Akashi, 2015b
is not considered in this paper (e.g. template is a sketch image while
result is an RGB image). We survey previous works and contributions in
this section. In section 2.1, we conclude the basic distance measurement
methods of similarity. These methods are widely applied in the applications
of template matching, which will be summarized in Section 2.2 and 2.3

respectively in terms of using geometry model or not using.

Visual Similarity Estimation

As the most important component in template matching, popular direct
methods such as sum of absolute differences (SAD), sum of squared differ-
ence (3SD), normalized cross-correlation (NCC), and zero-means normal-
ized cross-correlation (ZNCC) have been widely applied Lucas, Kanade, et
al., 1981; C. Zhang and Takuya Akashi, 2015a; Di Stefano, Mattoccia, and
Tombari, 2005. ‘Due to the computational efficiency, direct methods are
suitable for dense matching. On the other hand, feature-based methods,
such as SIFT Lowe, 2004, ASIFT Morel and Yu, 2009 are very effective
especially dealing with rotation, scaling, and simple transformation. How-
ever, feature-based methods are usually high-dimensional (e.g. SIFT is
typically 128-dimensional), it is inefficient for dense matching and is usual-
ly employed with key points. It has also been discussed in Tuytelaars and
Mikolajczyk, 2008 that the most damaging effect on the matching results
of keypoint-based local features are the non-planarities or non-rigid defor-
mation, which abound in our testing images. To cover the advantages of
both direct method and feature-based method, Dekel et al. Dekel et al.,
2015 found an intrinsic relationship between two groups of points, thus can

reduce the outlier rate without increasing the number of feature dimension.

Parametric Template Matching

Lucas, et al. Lucas, Kanade, et al., 1981 proposed parametric optical flow
to estimate inliers between a template and a target. Further developed
by feature-based methods, Lucas and Kanade’s framework has become an
essential approach in many matching problems. Combined with RANSAC
Fischler and Bolles, 1981, parameters of transformation can be estimated.

However, a sufficient number of inliers (i.e., distinct features) are necessary

45



in order to estimate the parameters. On the other hand, although affine
or projective transformation can be calculated by solving a system of lin-
ear equations, parameters of non-rigid transformations are difficult to be
calculated. C. Zhang and T. Akashi C. Zhang and Takuya Akashi, 2015a
proposed a stochastic method to search the 2D affine parameters efficiently
with the fitness function of SAD. It is also difficult to be applied in real
images since the real-world transformations are more complex. D. J. Tan,
et al. Tan et al., 2014 modelled the 2D deformation with cubic B-Splines.
Larger number of control points are required if more complex deformation
want to be matched. Overall, to the best of our knowledge, most of the
parametric methods can hardly be applied to “wild” images which may

contain incalculable and unpredictable deformation.

Non-parametric Template Matching

It is more efficient and feasible to design defofmation—invarié,nt features
instead of estimating the specific parameters when matching with the real-
world deformation. Despite histogram matching Swain and Ballard, 1991;
Ullah and Kaneko, 2004; Comaniciu, Ramesh, and Meer, 2000, D. P. Hut-
tenlocher et al. Huttenlocher, Klanderman, Rucklidge, et al., 1993 designed
a distance function which measures the level of mismatch between two point
sets. The distance is calculated when point of set A is the farthest from any
point of set B and vice versa. This idea is quite similar with Dekel et al.,
2015. The difference is, instead of calculating the farthest distance, Dekel
et al., 2015 counts the number of matches which satisfy the condition: point
of set A is the nearest from any point of set B and vice versa. Y. Rubner et
al. Rubner, Tomasi, and Guibas, 2000 introduced a function named Earth
Mover’s Distance (EMD) to measure the minimum cost that must be paid
from one point set to another. EMD allows partial matches, which means
it is robust with occlusion and clutter. D. Simakov et al. Simakov et al.,
2008 proposed bidirectional similarity (BDS). BDS considers two point sets
are similar if all patches of set A are contained in set B and vice versa.

It is worth pointing out that the term “local rigidity constraint” has also
been used by Loeckx et al., 2004 and related image registration papers.
However, the definition is quite different with our method since in Loeckx
et al., 2004, local rigidity constraint is treated as a penalty term of the cost
function, which is based on Jacobian matrix. In our paper, LRC is treated
as a one-to-one map limitation (i.e. restriction) between a rigid patch of
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template and a rigid patch of candidate.

4.4 Methodology

Two color images are given as the input with each pixel and each channel
normalized to [0,1]. I7 is defined as Ty, x T}, pixel template image extracted
from a reference image and g is defined as a .S, X Sj, pixel target image
(i.e. source image). Each rigid patch is defined as a s x s pixel square
patch. Ty, Th, Sw, Sk, s € N*. A candidate I in target image Ig is an ROI
defined by a search window. Following the traditional sliding window search
method, we have candidates arranged in order from top left to bottom
right in the target image. To clarify the meaning of reference, target, and
template image, we define them as following:

Reference image: Base image from which a template is cropped.
Template image: A region cropped from the reference image manually,
and holds semantic meaning (usually an object) for matching with similar
objects in the target image.

Target image: Also known as source image, is an image in which the
object described by template exists, but may change in appearance due to

internal and external influences.

Problem The problem of this paper can be defined as:

arg max LRCS(Ir, I¢), (4.1)

Ic€els
where LRCS(Ir, I¢) is a function to estimate the LRC similarity between a

template and a candidate, which will be introduced in the following section.

Feature of Local Rigid Patch

Feature vector of a rigid patch is denoted by:
f = plCO) f € RO+ (4.2)

where L, C, G are feature spaces. p* € R? denotes a patch’s center location
in image I. Specifically, p’ represents x-axis value and p’ represents y-
axis value. p® € R****3 denotes a patch’s color feature (e.g. RGB). p©
represents a patch’s spatial structure. The dimensionality of p® depends
on the presentation of spatial structure. In this paper, p& € R****3,

Definition 1 The operator to investigate a neighbor pixel’s feature value

is denoted by [];,. z,y is the relative coordinate to the location of cor-
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O

template
RGB color space

2 = (Irs — o] + |r7 = 72| + |r1 — 76| + |13 — 74])/8

-

Spatial feature of i th dimension R space

Figure 4.3: A simple case of calculating spatial feature in R channel where
s =3, C = RGB, w(-) = 1. pY is calculated by only investigating the
relationship between 8 nearest neighbors.

responding pixel. Specifically, when = = 1, y = 1, and p{ is the feature
value obtained at (2,2) in the image coordinate, then [p{],, equals to the
feature value of the same dimension ¢ which is located at (3,3).

With Definition 1 in mind, we represent a patch’s spatial feature by inves-
tigating the relationship between each pixel in the patch and its neighbor

pixels.

¢ = |p{ oy o) — 97 ]-wm ol /8
H [ -ty wim) = 9F lo—wimnl/8
HPF 1ot~y = 97 Jowimy | /8
H [P L) —wm) — F Lo ol /8,

where w is a linear function to dynamically determine the neighbor pixels to

(4.3)

investigate according to the template’s size. Instead of fixing the position
of neighbor pixels to investigate (e.g. local binary pattern), we change the
position dynamically based on a simple fact: the size of rigid parts depend

on the size of object in the template.

The design of p® is important since we can confirm how the complex de-
formation affect the patches by checking the spatial structure feature in
both template and candidate images. To gain more insight into the feature
design, we refer to a simple case when s = 3, C = RGB, w(-) = 1. Figure
4.3 illustrates this case.

Definition 2 The operator to calculate the feature distance between two
rigid patches is denoted by ||, ||, which is defined as:
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£, f2]]« : RO*H2 RO+ 5 RY 7 £, 5 wy||p” — 2|2

(4.4)

+wellp” = g3 + wyllp® — a°l3,
where f; and fy are the feature vectors of two figid patches. wy, we, wy € R
are the weights of each feature space. These weights balance the feature
space to describe better appearance model of a template. In the experiment
of parameter analysis, we will comprehensively study how the w;, w. and

wy affect the performance. (each of them is varied from 0.5 to 3.0).

Local Rigidity Constraint Similarity

With the distance between two feature vectors defined, we can estimate
the simila,rity between two rigid patches. Following traditional method
such as SAD, we may estimate the similarity between template and candi-
date by using the sum of patches’ distance. However, it has been proved
to be inefficient when deformation occurred in the target image and the
corresponding relationships between pixel pairs no longer exist. Instead of
using the feature distance to estimate the distance directly, we extend the
method in Dekel et al., 2015.

Definition 3 The operator to judge wether constraint exists between a
rigid patch of template image I and a rigid patch of candidate image I¢
is denoted by < -, >1,. 7., which is defined as:

< £y, 62 >0 RO RS2 5 {01} : £y, £
1, NN(fy,I¢) = £, ANN(f, Ir) = f; (4.5)

0, otherwise

Where NN(fy, I¢) = argming ;. [|f1, fill+, and NN(fp, I¢) =

argming .. [|f2, fi[l«. Both f; and f; are feature vector of single patch which
is extracted from It and Is respectively. Similar operator is also defined
in Dekel et al., 2015. This operator is similar with binary quantization,
which converts a pair of feature distance in real number into a countable
number. This operator can also be seen as a compression procedure. By
summing up 0/1 number, the degree of similarity can be compressed from

high-dimensional feature space.

Definition 4 The LRC similarity between a template and a candidate can
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Algorithm 3 Template matching with LRC.

Require: Template image extracted from reference image: Ir
Require: Target image: Ig
Require: Size of rigid patch: s
1: for ¢ from 1 to T, do
2 for j from 1 to 7}, do
3 ifi—s5/220A7—8/220A5+5/25 SyAj+s/2 S S, then
4: Preprocessing with Gaussian smoothing
)
6
7

Calculate LRCS(Ir, I¢), the center of I locates at (i,j)
end if
end for
8: end for
9: Return argmax; ;. LRCS(Ir, Ic)

then be defined as:
LRCS(Ip, Ig) : RTwxTh RTwxTh 5 RY : [ Io

1 T C (4.6)
(T, o) 2 < o >

where £ is the feature vector of i** rigid patch extracted from I, f€ is

the feature vector of j** rigid patch extracted from Ig, f¥ = {ff, £}, ...},
€ = {fC, £, ..}

Overall, Equation 4.5 and 4.6 specify the genera expressions in Equation 1
and 2 of Dekel et al., 2015. Our contribution is to add a spatial relation test
defined in Equation 4.3 to feature extraction, which helps to match rigid

patches. The whole procedure of our algorithm is concluded in Algorithm
4.

Discussion

In mathematics and physic, the definition of “rigidity” can also be referred
to as “stiffness”, which means the property of a solid body to resist defor-
mation. In our paper, the “rigidity” has the similar meaning, which means
the property of an image patch to resist geometry deformation. Further-
more, as each image patch is locally existed with respect to an image, we
name it as “local rigidity”. Let us show a specific situation to visually
illustrates the difference between BBS and LRC in Figure 4.4. As we can
see from Figure 4.4, by involving such a certain pattern of spatial relation
test, LRC tends to match patches that are structurally persistent. From
this example, it is hard to judge directly whether the matching result of
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BBS: Squared L2 distance of pixel value LRC=BBS+2 x (Ap®)?

d(ﬁvﬁ) =052 =025 d(ﬁyﬁ) =0.25+2x0.5%=0.75
d(e ) =2 % 05? =05 d(iH ) =05 +2x0=05
d(ﬁ‘ﬁ)=2x0.5’=&5 d(ﬁ’ﬁ)=06+2x1=2.5
() = 1+057 =125 AR ) =125+ 2157 =575

d(ﬁ,ﬁ):u5’=o.25 dﬁ'ﬁ)=0.25+2x052=0,75
d(ﬁ,ﬁ)=2x0.5“=0.5 d E-E)=O'5+“1=”
o W) =2x 0.5 =05 a(H ) =05+2x0=05
d(ﬁyﬁ)=l+0.5’=l.25 d(ﬁ‘ﬁ) =125+2x 152 =575

s Matching result of BBS
s Matching result of LRC H=0@=05]=1

(@ : ®) ©

a’s

Spatial relation fests
on pixel p

== Absolute difference

Figure 4.4: A specific matching example to compare the detail between
BBS and LRC. Overall, LRC tends to match patches that are structurally
persistent, which is referred to as “rigidity” in our paper. On the other
hand, BBS tends to be influenced by partial consistency of color feature.
a) Each green line represents a spatial relation test, which is manually
designed. b) Two sets of image patches P and ) are used for matching. For
clarity, each image patch is set with only 1 channel and each pixel’s value
is normalized to [0,1]. At this example, as each image patch is dependent
from an image, only the center pixel’s p® is calculated to calculate the
spatial relationship of an image patch. Outside this example, the average
value of 3 x 3 pixels’ p© is calculated because the outer pixels exist. c)
After adding a weighted p®, the matching result is changed.

LRC is better than BBS. However, the result of LRC is more in line with
our assumption: the matched image patches which are structurally persis-
tent (rigid) play more important role on similarity estimation, and both
the symmetric and real-data experiments show that this assumption can

help improving the performance.

Analysis

In order to understand the efficiency, we first show a simple 2D case which
is illustrated in Figure 4.5. To increase the matching difficulty, two differ-
ent background models (in red points) are generated, and each of them is
mixed with the foreground model (in blue points). We match (a) and (b)
and compare the results generated without LRC (c, d) and with LRC (e,
f). By comparing with result (c) and (e), we can see that the number of
matched foreground points is roughly doubled while the number of matched
background points only increased by 12. The proportion of matched fore-
ground points increases from 57% to 69%. By comparing result (d) and (f),

we can also find that the number of matched foreground points is roughly
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doubled while the number of matched background points only increased
by 7. The proportion of matched foreground points increases from 65% to
75%. This example shows that considering LRC can further improve the
matching rate of foreground and separate the background well comparing
with Dekel et al., 2015.

To prove LRC as a better method, we have to prove two assumption-
s: 1) The expectation of a pair of rigid patches to be matched is high-
est when two patches are from the same foreground (same distribution).
Conversely, the expectation drops sharply when two foreground model-
s leave each other. 2) If rigidity exist, considering the neighbor patches
can enhance the phenomenon described in (1). We prove these two as-
sumptions under one-dimensional case. First we generate a point set P
under normal distribution N(0,0.1), ||P|| = 100, and then extend P to
P={P, P—d, P+d},d€R,||P| = 300. Similarly, we generate () under
N(p,0) and extend it to @ = {Q, Q — d, Q + d},[|Q| = 300. Note that
the points in P and @ no longer obey simple Gaussian distribution since
P—d P+d, Q—d, Q+d are involved. The expectation of two points
(p,q), p € P,q € Q to be matched can be defined as E;. The case in which
P and Q are simple Gaussian distributions has been proved in Dekel et al.,
2015:

b= //: (F(0) Fglle = vl < Ip — al) @

fo@)Fs(lo = al < Ip — g™~ ) dpdg,

where Fg(-) and Fp(-) are the probability functions. Fp(-) describes the

(4.7)

probability that a z € R with a given distribution over @ will be found to
have a value which satisfies the condition within the parentheses. Func-
tion Fp(-) holds the same definition. Function fp(p) represents probability
density function which equals to 1/||P||, fo(q) equals to 1/[|Q[. On the

other hand, we define the expectation considering local rigidity as Es:

+o0
— () Fs(||% — pll < IIp — qfl)@2
Bri= [ (15t0)Fofllx =l < Ip )
fala)Fa(llx = all2 < Il - all2) ™1 )dpdg,

where x = {z~,2%}, p = {p~,p*}, a = {¢",¢*}. Variable p~ € P
and p* € P are the the closest left point and the closest right point to
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Figure 4.5: 2D case with synthetic data generated by Gaussian distribution.
a) We first generate 100 blue points from a normal distribution N (u1,01).
To give each blue point rigidity, we generate four points around each blue
point vertically and horizontally. Totally, the combination of 500 blue
points is treated as foreground model. As shown in the enlarged part of
(a), the combination of blue points shows like a cross. We then generate
500 red points as background from a different distribution N(u2,02). b)
Similarly, we first generate 100 blue points from N(u1,07) and then extend
them to 500. Background is drawn from N(us, 03). ¢) The matching result
of (a) by Dekel et al., 2015 without considering the LRC. d) The matching
result of (b) by Dekel et al., 2015 without considering the LRC. e) The
matching result of (a) considering LRC. f) The matching result of (b)
considering LRC.

p € P respectively. The meaning of this denotation also applies to x and
q. From Figure 4.6, we can observe two properties, 1) higher expectation
can be observed when parameters p, o are closer to (0,0.1); 2) in (b), the

expectation drops faster than (a) when (i, o) become larger than (0,0.1).
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Figure 4.6: Expectation of a pair of points (p,q) (p € P,q € Q) to be
matched. P € P is a distribution with parameter (1 =0, ¢ =0.1), Q@ € Q
is a distribution with dynamic parameters p and o. Parameter p changes
from 0 to 2, with each step equals to 0.05. Parameter o changes from 0.1
to 1, with each step equals to 0.01. Each combination of 1 and ¢ plots a
pixel in both heat map (a) and (b). Left top point shows the expectation

when distribution @ € Q is the same with P € P. (a) is the result of BB
Dekel et al., 2015. (b) is the result of LRC. As we can observe, comparing
with (a), the expectation drops faster when p and o increase.

These two figures show that our method is more sensitive with the difference
of distribution and thus results in better performance. These two properties

we observed can well prove the two assumptions we made.

4.5 Experiment

Experiment Environment

We use the benchmark used in Dekel et al., 2015 to evaluate our method.
This benchmark is inherited from online tracking benchmark Wu, Lim, and
Yang, 2013. Hence, it is very challenging for global template matching task.
Many real-world difficulties have been considered in this benchmark such
as occlusion, illumination change, background clutter, deformation, etc.
There are 106 pairs of template and target images in this benchmark with
various image size. All the ground truth bounding boxes are annotated

manually with a semantic foreground defined.

We use the overlap rate to judge whether a matching result is successful by

referring to the ground truth. Specifically, PASCAL criteria Everingham
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Result by LRC Result by BB
Figure 4.7: Example of comparison. A bike passes trough a series of scenes, *
the template is selected from previous frames and the target image is se-
lected from later frames. Likelihood mainly focuses on two ROIs: an ROI
which has the same background with template and an ROI which has the
same foreground with the template. It is difficult to answer which one
is correctly matched since a foreground is usually semantically defined by
users. In this example, bike is defined as the foreground and our method
correctly matched.

et al., 2010 is used to calculate the overlap rate:

area(BB,. N BB,,)

1 te = .
SRS area(BB,. U BB,,)

(4.9)

Where BB,. means bounding box of result and BB, means bounding box
of ground truth. area(-) is a function to count number of pixels. Based
on the overlap rate, we can achieve the answer about whether a matching

result is correct or wrong by setting a threshold. Specifically, we have

(4.10)

1 if overlap rate > threshold
answer = : .
0 otherwise

Finally, success ratio = #{answer|answer = 1} /#test as the accuracy cri-

terion.

All the experiments have been done on a PC equipped with Intel Core-i7
2.9GHz and 16 GB RAM.

Comparison

We compare our method with both classical methods and state-of-the-art
methods. Classical methods such as SAD, SSD, HM and NCC have been

comprehensively studied in Ouyang et al., 2012.- Among recent methods,
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Figure 4.8: Comparative result. a) Success ratio curves with threshold of
overlap rate be changed from 0 to 1. b) Case-by-case comparison with BB.
LRC improves the overlap rate on many test cases in the benchmark.

BB, BDS are patch-to-patch similarity measurements, which are closest
to our method. HOG is a dense feature combined with SSD during the
comparison. Figure 5.9(a) illustrates the comparison result of accuracy
at a glance. For clarity, we dynamically change the threshold and each
threshold corresponds to a success ratio value. Each curve represents one
method’s result and it is worth noting that BB only partially improves the
accuracy against previous methods when the threshold is smaller than 0.63.
When the threshold exceeds 0.63, other methods such as HOG, SAD can
even outperform BB. This is because dense feature matching methods can
adjust the location of final matching result better when less deformation
occur. On the other hand, LRC can not only improves the success ratio in
case of threshold < 0.63, but also maintain the same level of accuracy with
dense feature matching method when the overlap rate becomes higher.
Table 6.1 shows the average success ratio over all the matching tests in
the benchmark. BB improves the accuracy by 5% and LRC improves the
accuracy against BB by 4%.

Effect of Parameters

In this section, we systematically report the results for studying how each
parameter affects the performance of our matching method. Six parameters
wy, We, Wg, ¥, C, s are studied which have been mentioned in Section 3. The
results are concluded in Figure 6.5. From (a) to (f) we can see that all

the six parameters affect the final result in a certain extent. The best
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Figure 4.9: Effect of parameters on success ratio. (a) Varying the parameter
of location feature’s weight w; from 0.5 to 3.0. (b) Varying the parameter
of color feature’s weight w, from 0.5 to 3.0. (¢) Varying the parameter of
spatial feature’s weight w, from 0.5 to 3.0. (d) Varying the parameter o
which affects the degree of smoothness from 0.1 to 0.9. (e) Comparing the
results over three different color spaces. (f) Varying the parameter of patch
size s from 3 to 6.

performance is achieved when w; = 2, w, =1, wy =1, vy = 0.6, C = RGB,
s = 3. All the solid curves show the parameters we have used in the
comparative experiment. Unexpectedly, increasing the patch size will cause
a sharp decrease on accuracy, that means our method needs to pay a certain
amount of computational cost to keep the accuracy. In our implement,
about 2 seconds are needed for matching a 480 x 270 pixel target image
with 19 x 45 pixel template. Processing time is directly proportional to
the templa"ce size and target size. In addition to the patch size, smooth
level also affect the performance a lot. Smoothness assumption is a very
important precondition for template matching. An edge image (which is
not smooth) without preprocessing is not suitable for template matching
since a little displacement will change the matching score drastically. Over-
smoothed images will also lose important feature information and lead to
failed matching. Figure 4.10 shows some examples of matching results with

tuned parameters. Our approach succeeded in many different conditions
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Figure 4.10: Examples of matching results.

Table 4.1: Comparative result of average success ratio.

Method average success ratio (%)
LRC (our method) 59
BB Dekel et al., 2015 95
BDS Simakov et al., 2008 50
SAD 49
EMD Rubner, Tomasi, and Guibas, 2000 49
HOG Dalal and Triggs, 2005 49
NCC Lewis, 1995 47
SSD 43
HM 41

such as: drastic appearance change, illumination change, small size, etc.

4.6 Conclusion

In conclusion, this chapter presents a template matching method which has
no need to define a specific deformation model. Local rigidity constraint
(LRC) has been proposed, which is defined as a pair of matched patches.
Counting number of LRC is treated as the visual similarity between a tem-
plate and a candidate. All the one-dimensional, two-dimensional synthetic
experiments and real matching test show the efficiency of considering the

local rigidity (if any) can improve the matching accuracy. However, several
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drawbacks have limited the application of this method. 1) Since only trans-
lation has been considered, scaling and rotation cannot be sensed during
the matching. 2) The matching accuracy of non-rigid objects, such as fluid,

can hardly be improved.

As the future work, we intend to enhance this method for more intense envi-
ronment changes in order to solve the problems which have been reflected
in most of the failure tests. Finally, we hope to improve the matching

accuracy and expect further real-world applications.
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Chapter &

TWO-SIDE AGREEMENT LEARNING FOR
NON-PARAMETRIC TEMPLATE MATCHING

5.1 Summary

We address the problem of measuring matching similarity in terms of tem-
plate matching. A novel method called two-side agreement learning (TAL)
is proposed which learns the implicit correlation between two sets of multi-
dimensional data points. TAL learns from a matching exemplar to con-
struct a symmetric tree-structured model. Two points from source set and
target set agree to form a two-side agreement (TA) pair if each point falls
into the same leaf cluster of the model. In the training stage, unsupervised
weak hyper-planes of each node are learned at first. After then, tree selec-
tion based on a cost function yields final model. In the test stage, points
are propagated down to leaf nodes and TA pairs are observed to quantify
the similarity. Using TAL can reduce the ambiguity in defining similarity
which is hard to be objectively defined and lead to more convergent result-
s. Experiments show the effectiveness against the state-of-the-art methods

qualitatively and quantitatively.

5.2 Introduction

Relationship between similarity estimation and template match-
ing: Matching similarity estimation is one of the fundamental key problems
to many computer vision tasks. Generally, given two input point sets P
and @, a numerical output is required in order to quantify the similarity
between P and Q. Each point in the point sets belongs to n-dimensional
feature space which depends on specific applications. Template matching,
which is a classical problem and has been studied for a number of decades,
is a typical application that largely depends on the performance of visual
similarity estimation. Template matching can also be expressed in P — @)
matching form because any image can be divided into patches and each
patch can be treated as a n-dimensional point. In real-world matching s-
cenarios, there usually exist deformation between a reference image and a
target image, this requires an algorithm to be able to estimate the visual

similarity under unconstrained environment and does not depend on any
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ideal deformation models (e.g. affine transformation, projective transfor-
mation). In addition, external influences, such as occlusion, illumination
change and background clutter will increase the degree of non-linearity and

the difficulty of template matching.

Non-parametric way for dealing with appearance-variant match-
ing task: To deal with mentioned problems, instead of deformation-model-
based approaches, many works try to improve matching performance in
non-parametric way. Among them, the relationship between image patch-
es have been proved as an important property. For a long time, there
exists an argument that whether similarity should be treated as a sym-
metric or asymmetric relation Tversky, 1977. As an example of asymmet-
ric methods, Hausdorff distance Huttenlocher, Klanderman, Rucklidge, et
al., 1993 takes the largest distance of all the distances from a point in
one set to the closest point in the other set as the output. Formally,
max(dmax(P, Q),dmax(Q, P)), where function dmax(P, Q) calculates the
largest directed distance which starts from P. As an example of symmetric
methods, Best-Buddies similarity (BBS) Dekel et al., 2015 finds that a pair
of points plays an important role in matching if each point is the nearest
neighbor of the other. Formally, 5 >, bb(p, q), where function bb(p, q)
"equals to 1 if point p and ¢ are each other the nearest neighbor, and oth-
erwise equals to 0. Either symmetric way or asymmetric way reveals an
important principle that when estimating the similarity between P and @,
quantifying point-wise relationship usually yields better performance than
taking a distance measurement after extracting feature of whole P and @

separately.

Problems in conventional methods: However, most of the conventional
methods burden with manual designed matching mechanisms. The draw-
back is obvious because for all kinds of foreground models, there is only
one predetermined method can be used to estimate the similarity, which is

difficult to be redesigned when confronted with failure.

Our contributions: We propose a data-driven method called two-side
agreement learning (TAL) based on the assumption that to each specific
combination of foreground and background in the template, there underlies
an appropriate matching mechanism. With a given matching exemplar, we
extract a single positive sample and a large number of negative samples for

learning. The contributions can be concluded as follows:
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We design a symmetrically tree-structured model which contains two

randomized clustering tree (RCT) as shown in Figure 5.1.

e We propose a new unsupervised quality measurement method for
node splitting of RCT, which is formulated in Equation 5.11.

e A cost function is proposed for model selection, which is formulated
in Equation 5.13.

e Based on the above model, a data-driven distance estimation method

is proposed, which is formulated in Equation 5.2.

e The effectiveness of the proposed method is proved both with syn-

thetic data and real images.

5.3 Related Work )

In this section, we mainly review the related works from two points of view.
In Section 2.1, similarity estimation methods with respect to template
matching are reviewed including parametric and non-parametric ways. In
Section 2.2, similarity learning techniques are reviewed which may easy to
be confused with the proposed method, and the difference is also described.

Similarity Estimation for Template Matching

Paramatric matching: Classical methods, based on such as SAD, SSD,
NCC, and ZNCC have been widely applied Lucas, Kanade, et al., 1981,
Zhang and Akashi, 2015; Di Stefano, Mattoccia, and Tombari, 2005. Lu-
cas, et al. Lucas, Kanade, et al., 1981 proposed parametric optical flow
to estimate inliers between a template and a target. Further developed
by feature-based methods, Lucas and Kanade’s framework has become an
essential approach in many matching problems. C. Zhang and T. Akashi
Zhang and Akashi, 2015 proposed-a stochastic method to search the 2D
affine parameters efficiently with a fitness function of SAD. D. J. Tan, et
al. Tan et al., 2014 modelled 2D deformation with the cubic B-Splines.
Larger number of control points are required if more complex deformation
want to be matched. Most of the parametric methods can hardly be ap-
plied to “wild” images which may contain incalculable and unpredictable

deformation.

Non-parametric matching: As a common solution, histogram match-
ing (HM) Swain and Ballard, 1991; Ullah and Kaneko, 2004; Comanici-
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u, Ramesh, and Meer, 2000 plays an important role in non-parametric
template matching. HM can deal with deformable matching problem by
disregarding the geometric relationship between pixels. In addition to men-
tioned methods Huttenlocher, Klanderman, Rucklidge, et al., 1993; Dekel
et al., 2015, Y. Rubner et al. Rubner, Tomasi, and Guibas, 2000 introduced
a function named Earth Mover’s Distance (EMD) to measure the minimum
cost that must be paid from one point set to another. EMD allows partial
matches, which means it is robust with occlusion and clutter. D. Simakov
et al. Simakov et al., 2008 proposed bidirectional similarity (BDS). BDS
considers two point sets are similar if all points of set P are contained in

set () and vice versa.

Similarity Learning

Instead of using predefined metrics such as Bhattacharyya coefficient, Kullback-
Leibler divergence, a majority of similarity learning methods focus on learn-
ing metrics based on Mahalanobis distance or bilinear similarity Davis et
al., 2007; Chechik et al., 2010. Differently with metric learning methods,
our method attempts to learn a measurement over each data point in-
stead of each feature channel. For d-dimensional points, metric learning
requires to estimate O(d?) parameters which become much harder in high-
dimensional situation without considering dimension reduction methods.
In the case of template matching, a typical 3 x 3 image patch with RGB
feature yields 27-dimensional feature vector and thus 729 parameters are
required to be estimated. On the other hand, the number of matching ex-
emplars for training are usually limited in template matching. Similarly in
the case of ranking metric learning, supervised predefined order is needed
for training and it is hard to learn from only a single positive sample and
a large number of negative samples. Besides metric learning, Shrivastava
et al. Shrivastava et al., 2011 use linear SVM to learn data-driven “u-
‘niqueness” from a single positive sample and a very large negative set of
samples. The uniqueness is than used to quantify the similarity. However,
it is hard to be applied on template matching since it only works based
on the precondition that each pair of image patches is roughly spatially

consistent.
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Figure 5.1: Example of symmetrically structured randomized clustering
tree (RCT). Two RCTs are exactly the same and connected by the leaf
nodes. Point sets P and @ are input from left root node and right root
node respectively. Points are assigned to different leaf nodes and two-side
agreements are constructed between each pair of leaf nodes in alignment.

5.4 Methodology

Problem Setting

If we treat a patch of an image as a multi-dimensional point, and a template
as a point set which includes multiple points, then the template matching
problem can be converted to general P — Q form: P = {p;}}, and Q =
{g;}}L,, where p;,q; € R* and M is the number of patches a template
can be divided. The number of feature dimension d is proportional to
the patch size. For a pz X pz image patch with RGB feature, d = 3 X
pz X pz. For clarity, we only use color feature in this paper to concentrate
on the analysis of matching mechanisms. Under exhaustive slide-window-

detection framework, the goal of our approach can be formulated as:

Q = argmaxTAD(P, Q). (5.1)
erturg(-f

Where P is the template extracted from a reference image and () is the
candidate area within each search window of the target image. Distance

function TAD will be introduced in the next section.

Two-side Agreement Distance

The basic form of TAD can be presented as:

1P|

TAD(P,Q) = B2 Zd i, Q (5.2)
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Where function d is an asymmetric distance measurement function based

on two-side agreements, which can be specifically defined as:

1, 3g; € Q st (lpf — I3 =0) A (0§ = ¢F)

d(pi, @) = ¢ (5-3)

e (V4 € @, Ipf — a7l # 0)
AN3g; € Q st pf = ¢f)

\

Where L denotes the spatial location of each image patch with respect to
the image coordinate, C denotes which leaf node an image patch reaches.
pf equals to ¢§ when the two nodes that p; and ¢; reach can be connected
by a two-side agreement. ¢; is randomly selected from the candidates which
meet the conditions when d(p;, @) = 1/||pF — ¢F||} because either of them
has the possibility to be matched with p;. In the right part of Figure 5.1,
some examples of calculating d(p;, @) have been shown. The combination of
leaf nodes can also be seen as a number of compact clusters. The remained
problem turns out to be how to assign each image patch s into each leaf node
such that TAD of positive sample and negative sample can be distinguished
at the most. We wish to learn a function with input s and an output of

reached leaf cluster:
f(s) iR — Nt : 5 59 (5.4)
and extend f to a symmetric model:

ff(P,Q) : R™IPI RXICI s R: P Q+— TAD(P,Q). (5.5)

Two-side Agreement Learning

As mentioned in Section 5.2, we take both the advantages of tree designs of
density forest Criminisi, Shotton, and Konukoglu, 2011 and random forest
Breiman, 2001 to model function f with randomized clustering tree (RCT).
Positive sample and negative samples are sampled from the foreground and
background models of the training image respectively. Similar with ranking
metric learning, the template is known to be more similar with the positive
sample than the negative samples. The tree construction process is based
on the binary random tree Breiman, 2001. The difference is, we redesign
the information gain (Equation 5.11) which can use unlabelled samples to

determine a hyperplane (Equation 5.12) for node splitting.
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Node splitting: RCT is a full binary tree with each internal node initial-
ized with a set of N random tests ¢ = {(¢;,6;) }X_,. Each random test can
be treated as a candidate hyper-plane that can divide the data of the node
into two parts. Specifically, '

L7 S¢i Z 91

. 5.6
R: 5¢i < 9i ( )

se S m= {
Where S™ denotes a sample set of a certain node. ST and S represent
the sample sets that belong to a left child node and a right child node
respectively. A best splitting hyper-plane (qgi, 9:) is selected according to a
quality measurement. For labelled samples, entropy or Gini index are usual
choices for the quality measurement. However, in our case, although P, Q)
are labelled as positive or negative, image patches p;, g; are not labelled.
This requires us to define an unsupervised quality measurement to select a

suitable hyper-plane.

Unsupervised quality measurement: The density forest provides an
unsupervised quality measurement method under the assumption that the
data in each node distributes with Gaussian distribution Criminisi, Shot-
ton, and Konukoglu, 2011. The general information gain with respect to a

node’s sample set S and a random test is defined as:

Sm -

165, 460,00) = 1)~ 3 Dolagsm) (57)
meL,R I |

As the extension of information entropy, general differential entropy is de-

fined as:

H(S) = — /S o(z) log g()dz. (5.8)

Where g(z) is a general distribution function. With the assumption that
the data in the sample set S obey a multi-variate Gaussian distribution,

the above equation can then be rewritten by replacing g(z) with Gaussian:

H(S) = é—log((Qwe)ddet(E(S)))
1 (5.9)
= §logdet(2(5)) +c.

Where c is a constant number equals to 1log(2me)®. The differential of

multi-variate Gaussian entropy H is then defined by the determinant of the
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Reference image Target image (test image)
[ : Matching result

[ ]: Ground truth

Training image

[__—_J : Template El : Positive sample
. d : Negative samples

Figure 5.2: Example of sampling from training image. Training image (i.e.
matching exemplar) is given alone and different with reference and target
images. A single positive sample and a large number of negative samples
can be extracted from the training image.

covariance matrix ¥ € R%¢, which can be seen as the volume of the hyper-
ellipsoid that bounds the uncertainty of the data distribution. Substituting
Equation 5.9 into Equation 5.7, we can get:

15™|

Bl

I(S,{(¢:,6:) = %log det(2(9)) — % Z log det(X(S™)).  (5.10)

Since the value of first term 1 log det(3(S)) is fixed as long as the sample
set S of a node is fixed, it is not needed when maximizing I for selecting
a best random test with respect to a given node. Note that X(5) is the
covariance matrix calculated from observation (real data), and the real data
can distribute in a more complex way. It has been pointed in Pei, Kim,
and Zha, 2013 that such measurement has the problem of rank-deficiency,
and suggests to use the trace of covariance matrix instead of determinant.
Although it has been argued in Sim and Roy, 2005 that trace is not suitable
for covariance based metric due to the lack of invariance to scales and
sensitiveness to the parameters, it is not the problem in our case because
the RGB color feature is naturally well scaled by itself. In addition, we
add two penalty terms to avoid splitting off degenerate clusters and ensure
a full binary tree can be built. Based on the above discussion, Equation

5.10 can be rewritten as:

5™

(S, (66)) = =5 3 T loatr(2(S™)
o (122157
e (e I

||centroid(S*) — centroid (S%)||

Y me(r,ry MaXsesm [|s — centroid(S™) loo

+A2
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Where function centroid(:) returns the centroid of input sample set, \;
and A, are constant numbers. The first weighted penalty term avoids an
internal node to generate hyper-planes that split off extremely unbalanced
child nodes. This is important for RCT since every node other than the
leaf nodes should has two child nodes. The second penalty term is similar
with Pei, Kim, and Zha, 2013, it increases as the centroid of two child
nodes get apart and samples in each child node distribute closely with the
centroid. With unsupervised quality measurement defined, we can select a
best hyper-plane by maximizing the I
(¢;,6;) = argmax I'(S, ¢;, 6;). (5.12)
(¢i,0:)€p
Sampling: Besides reference image and target image, we additionally use
a matching exemplar (training iymage) to provide positive sample set IP%°
(where |IP°¢] = 1 in our template matching application) and negative sam-
ple set I™9, [I"*9) = A/, and N > 1. Each image sample @ € IP° U [
has M image patches. As shown in Figure 5.2, positive sample is defined as
the ground truth manually annotated. Negative samples are selected ran-
domly from the entire training image and do not overlap with the positive
sample. '

Cost function for tree selection: Slide-window search leads to dense
matching which requires efficient similarity estimation. Considering the
computational cost, we select a best symmetric RCT model from candi-
date model set {ff*}~, instead of performing weighted combination of
each independent model’s result. Given positive sample set SP* and neg-
ative sample set S™9, the cost function is defined and the tree model with

minimum cost function value is selected for matching:

. |179%| 3 o gnes TAD(P, Q)
ff= argmin + A TAD(P,Q)*.
free{rryl, IIneg] z:QGIPOS TAD(P> Q) Q;eg

(5.13)

Where a L2 regularization term weighted by A is added to avoid the situ-
ation that } e mes TAD(P, Q) and o pos TAD
(P, Q) are both too small.

Analysis
The central point of this section is to generate synthetic numerical samples

from two different mathematical distributions (Gaussian distributions) and
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Figure 5.3: Visualization of matching results under two different 2D back-
ground models. a) Positive samples are drawn from distribution A and
negative samples are drawn from distribution B. Template is also drawn
from A and kept fixed during matching. b) One positive sample and one
negative sample are drawn from A and B respectively for test. ¢) Matching
result of TAL. Result points (p;, g;) are drawn as long as d(p;, @) = 1. d)
Matching result of BBS. Result points are drawn as long as bb(p;, g;) = 1.
e) Template and positive samples are the same with (a). Instead of B, dis-
tribution C is used to draw negative samples. (f~h) Similar with (b~d).

Table 5.1: Number of correctly distinguished pairs of test. A pair of test
is correctly distinguished if positive sample has higher score than negative
sample.

Number of
test pairs 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000

Method
BBS (background B) | 100 | 200 | 300 | 400 500 600 700 800 | 900 | 1000
TAL (background B) | 100 | 200 300 | 400 | 500 600 700 800 | 900 | 1000
BBS (background C) 61 125 199 247 | 349 | 410 | 474 544 | 618 692
TAL (background C) 76 | 147 | 226 | 300 | 375 | 455 | 533 | 615 | 694 | TT2

check whether two samples drawn from the same distribution has higher
similarity score then the two samples which are drawn from two different
distributions. We first visualize the matching results in 2D case (d=2) and
then calculate the matching expectation of TAL with 1D case (d = 1). The

state-of-the-art alternative Dekel et al., 2015 is compared in both cases.

2D case: Points of positive samples (foreground) and negative samples
(background) are drawn from two different multivariate Gaussian distri-
bution N(u,X) respectively. Each sample and template consists of 50
2D data points. We prepare 3 kinds of distributions for generating da-
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ta: for distribution A, u = (4,3), ¥ = (2,-1;-1,2); for distribution B,
p=(3,-3), = (1,0;0,4); for distribution C, u = (4,3), X = (3,0;0,3).
Distribution B and C are both used to draw background points, the differ-
ence is, since C has the same p with A, the background points are much
more mixed with the points of foreground generated by A comparing with
B. Figure 5.3 visualizes the matching results. As we can see, the match-
ing results of TAL (Figure 5.3c and 5.3g) does not contain any points of
negative sample, this indicates that negative samples can be sensitively
distinguished from positive samples by TAL even the background is mixed
with the foreground (Figure 5.3f). On the other hand, although BBS can
less rule out the points of positive sample (Figure 5.3d), it confuses with
mixed background (Figure 5.3h). Furthermore, we randomly generate more
pairs of test data to validate two methods’ distinguish ability between pos-
itive and negative sample, the statistical result is shown in Table 5.1. As
we can see, in the case of generating background with distribution B, both
TAL and BBS can distinguish between positive and negative sample well.
When it comes to the case of distribution C, TAL has better distinguish

performance.

1D case: To prove TAL as a better method, we have to show that 1)
the expectation of two data points to be matched is highest when two
points are sampled from the same distribution. Conversely, the expecta-
tion drops when two points are sampled from two different distributions;
2) Expectation of TAL drops more sharply when two distributions leave
each other. At first, we génerate a point set P under normal distribution
N(0,0.1), |P| = 1000. Similarly, we generate @) under N(u,0), where u
ranges from 0 to 2 at intervals of 0.05, o ranges from 0.1 to 1 at intervals
of 0.01, and |Q| = 1000. We calculate BBS(P, Q)/1000 to approximate
E(BBS(ps,q;)), TAL(P,Q)/1000 to approximate E(TAL(p;,q;)). As we
can observe from Figure 5.4, 1) in both (b) and (c), higher expectation
can be observed when parameters (u,0) are closer with (0, 0.1); 2) In (b),
the expectation drops faster than (c) when (u, o) increase. These two ob-
servations show that TAL is more sensitive with the difference between
distributions and thus results in better performance.

Influence of the number of negative samples: In general, the num-
ber of negative samples affects our algorithm from two perspectives: 1)

With more negative samples, the clustering ability of RCT tree increases
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Figure 5.4: Expectation of a pair of points (p;,¢;) to be matched. P is
sampled from N(0,0.1) and Q is sampled from N(u,o). Parameters u and
o are dynamically increased to plot each pixel in the heat maps (b) and
(c). a) Probability density function of each distribution. b) Heat map of
expectation generated by TAL. c) Heat map of expectation generated by
BBS Dekel et al., 2015.
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as information gain can be more reasonably calculated from more sufficient
data for node splitting. 2) With more negative samples, the cost function
can be calculated from more samples thus contributes to selecting a better
model. However, increasing the number of negative samples can not always
improve the performance of algorithm. With shallow depth of RCT tree,
the number of internal hyperplanes is not enough to divide the data into
“pure” clusters and the number of leaf nodes is also not enough to hold
all kinds of clusters. In this condition, increasing the number of negative
samples will conversely reduce the performance. We visually show how the
number of negative samples affect the whole performance of our algorithm
in 1D Gaussian case, which is shown in Figure 5.5. Under ideal conditions,
highest expectation should be observed at top left, where p = 0,0 = 0.1.
As we can observe from Figure 5.5, when the number of negative samples is
1, the high values of expectation do not gather on the top left area. When
the number of negative samples increases to 100, the high values gather
most closely on the top left area. However, further increasing the num-
ber of negative samples can not make the high values gather more closely
due to the limitation of tree depth. This observation well supports our

explanation on the influence of the number of negative samples.

Implementation and Complexity
In this section, we analyze the complexity of our algorithm, which can theo-

retically reflect the processing speed and memory cost. Instead of constant
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Figure 5.5: Influence of the number of negative samples. The number of
negative samples varies from 1 to 1000. The number of positive samples is
set to 1, the tree depth is set to 3 and the dimensionality of each sample is
set to 100. Heat maps of the matching expectation are shown. Each heat
map is generated by models with different number of negative samples.

Target i 1mage and
final result (red BB)
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Figure 5.6: Influence of the tree depth. With the increase of tree depth,
the red and yellow regions gradually shrink and the blue region expands.
This observation indicates that deeper RCT has higher distinguish ability
between positive sample and negative sample.

number, TAL dynamically determines patch size pz according to the size
of template (ranges from 2 to 5 pixel in the experiment). The influence of
pz and template size can be concluded as: in case of small template, large
pz will lead to insufficient patches for training a reliable model. In case of
large template, small pz will make each patch feature-less and burden with
high computational cost in training stage. The stride of sliding-window-
detection is set to the size of single image patch. Besides, calculating TAD
over each detection window independently will result in redundant compu-
tation since detection windows always share image patches with each other.
To improve the efficiency, we construct a buffer vector C where C; = ¢“
to assign each non-overlapped image patch of the target image to the ac-

cording cluster in advance. The size of P and ) depend on the size of
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template, the patch size pz, and the stride parameter of detection window.
Assuming that a target image can be divided into £ x &k non-overlapped
image patches, and a template can be divided into &’ x &’ image patches,
by using buffering vector, the complexity reduces from O(k?(k — k')?) to
O(k?).

Each splitting operation with hyper-plane has complexity of O(d), we ran-
domly select 5 channels from the patch feature instead of full d-dimensional
feature to construct each hyper-plane. With depth of tree given by D, the
main complexity for matching a target image is O(Ddk?). The D is set
to 9 during the comparative experiment. On the other hand, BBS is a
symmetric matching method and it needs to compute full d-dimensional
Euclidean distance between each patch in the template and each patch in
the target image, thus it has complexity of O(dk"2k?) using buffer matrix,
which is larger than TAL.

5.5 Experiments

Qualitative Evaluation

Influence of hyper-parameters: Main hyper-parameters of TAL include
tree depth, number of trees, number of random tests, and number of feature
channels for splitting. In Figure 5.6, we take an example of matching and
plot the according likelihood map to analyse the influence of tree depth.
We can see that when the depth is small, multiple local optimums can be
observed. With increase of the tree depth, the number of negative local
optimums decrease while the positive optimum remains. As a conclusion,
we state that deeper structured tree can better distinguish between positive
and negative sample. Based on the matching example shown in Figure 5.6,
Figure 5.7 shows the change of cost function value with respect to the tree
depth and the number of candidate trees respectively. As we can see, both
increasing the tree depth and number of candidate trees can reduce the cost
function value and thus contribute to selecting a better model. Considering
the computational cost, we set tree depth as 9 and the number of candidate

trees as 100 in the experiment.

Robustness with multi-view geometry: In real-world applications of
non-parametric template matching (e.g. 3D reconstruction, product in-
spection), the key, characteristic expected by users is the ability to handle

matching tasks that not limited to ideal geometry models. We use the
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- Figure 5.7: Curves to show the relationship between hyper-parameters (tree
depth and number of trees) and cost function value based on the test exam-
ple shown in Figure 5.6. The cost function is defined in Equation 13. Lower
cost function value means that a selected model can distinguish between
positive and negative samples better.

famous multi-view sequence Graffiti ! to evaluate this characteristic and
plot the results of TAL, BBS and SSD in Figure 5.8. ‘As we can see, both
TAL and BBS can deal with template matching under multi-view envi-
ronment. However, in the case of the last target image, which exist large
deformation caused by drastic view point change, BBS fails in matching
while our method can still keep successful. As a baseline method, classical

SSD cannot deal with multi-view situation well.

Quantitative Evaluation

We use the benchmark built by Dekel et al., 2015 to evaluate our method
quantitatively. This benchmark is inherited from online tracking bench-
mark Wu, Lim, and Yang, 2013. In this benchmark, various difficulties
in real scenes have been taken into account (e.g. illumination variation,
occlusion, deformation, background clutter), and it is more challenging for
global template matching task than ROI based online tracking task. There
are 105 pairs of template and target image in this benchmark in various
sizes. Each pair consists frame ¢t and ¢ + 20 of a sequence as template and
target image respectively, and ¢ is randomly selected. Additional training
frame for TAL is selected from [¢+15, ¢+19]U[t+21,t+25] randomly. Only
one kind of random seed is used throughout the experiment. The ground
truth bounding boxes are annotated manually with a semantic foreground
defined.

We use the overlap rate to judge whether a matching result is successful by

Ihttp:/ /www.robots.ox.ac.uk/ vgg/data/data-aff. html
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Figure 5.8: Qualitative comparison on Graffiti sequence. Between any two
frames of the sequence, the camera’s view point is changed. An object
(comic person) is predetermined on this sequence. Each frame is manually
annotated, and the center of the ground truth (GT) is kept as the object’s
center. Numbers within parentheses represent overlap rate.

referring to the ground truth. Specifically, the criteria used by PASCAL

challenge Everingham et al., 2010 is applied to calculate the overlap rate:

area(BB,. N BBy,)
area(BBye U BBy,)

overlap rate = (5.14)

Where BB, represents bounding box of result and BBy represents bound-
ing box of ground truth. area(:) is a function to count number of pixels
within the input area. Based on the overlap rate, we can obtain the answer
about whether a matching result is correct or wrong by setting a threshold.

Specifically,

Answer — { 1 if overlap rate > threshold ‘ (5.15)

0 otherwise
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Finally, success ratio = #{answer|answer = 1} / #tests is taken as the ac-
curacy criterion. All the experiments have been done on a PC equipped
with Intel Core-i7 2.9GHz and 16 GB RAM.

We compare our method with both classical methods and state-of-the-art
methods. Classical methods such as SAD, SSD, HM and NCC have been
comprehensively studied in Ouyang et al., 2012. Among recent methods,
BBSDekel et al., 2015, LRCZhang, Haitian, and Akashi, 2016, BDSSimakov
et al., 2008 are patch based similarity measurements, which are closest to
our method. Other methods include EMDRubner, Tomasi, and Guibas,
2000 and HOG Dalal and Triggs, 2005. HOG is extracted as a dense feature
and combined with SSD during the comparison. Figure 5.9a illustrates
the comparative result of accuracy at a glance. The threshold of overlap
rate is dynamically changed and each threshold corresponds to a success
ratio. Each curve represents a method’s result. We can observe from
Figure 5.9a that the curve of TAL outperforms the other methods overall.
Especially, when threshold equals to 0.5, which is a widely-used criteria in
detection or matching tasks, TAL nearly improves the accuracy by 6% and
3% comparing against BBS and LRC respectively. When threshold equals
to 0.6, TAL nearly improves the accuracy by 9% and 4.5% comparing
against BBS and LRC respectively. Also, we plot the overlap rate of TAL
and BBS case by case in Figure 5.9b. We can see that in most of the
cases, TAL can improve the performance comparing against BBS. Figure
5.10 shows some matching results on the benchmark. The likelihood maps
generated by TAL converge on the ground truth more than ones generated
by BBS.

5.6 Conclusion

In this chapter, we introduced a new method called Two-side agreement
learning (TAL) to improve the accuracy of non-parametric template match-
ing with a single matching exemplar for training. We compare our method
against several widely used methods on public benchmark and show the
effectiveness. TAL can work well under real-world scenes and make user
easier to define the “similarity” since a matching exemplar is allowed to be

provided.

Our method can fail when extreme changes occur between template and

target image as well as other methods do. For example, drastic scaling
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Figure 5.9: Comparative result. Average success ratio of each method is
shown after the according legend. Average success ratio is the mean of non-
zero sample points on each curve. a) Success ratio curves with threshold of
overlap rate is changed from 0 to 1. b) Case-by-case comparison with BB.
TAL improves the overlap rate on many test cases in the benchmark.

change, illumination change, occlusion, etc. Part of the reasons are that we
only use RGB color feature rather than many state-of-the-art features such
as SIFT, HOG, etc. After TAL has been proved as effective, integrating
such features can further improve the accuracy and contribute to many

computer vision tasks which may benefit from object localization.
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Chapter 6

HIGH-SPEED AND LOCAL-CHANGES INVARIANT
IMAGE MATCHING

6.1 Summary

In recent years, many variants of key point based image descriptors have
been designed for the image matching, and they have achieved remarkable
performances. However, to some images, local features appear to be inap-
plicable. Since theses images usually have many local changes around key
points compared with a normal image, we define this special image catego-
ry as the image with local changes (IL). An IL pair (ILP) refers to an image
pair which contains a normal image and its IL. ILP usually loses local visual
similarities between two images while still holding global visual similarity.
When an IL is given as a query image, the purpose of this work is to match
the corresponding ILP in a large scale image set. As a solution, we use
a compressed HOG feature descriptor to extract global visual similarity.
For the nearest neighbor search problem, we propose random projection
indexed KD-tree forests (rKDFs) to match ILP efficiently instead of ex-
haustive linear search. rKDFs is built with large scale low-dimensional
KD-trees. Each KD-tree is built in a random projection indexed subspace
and contributes to the final result equally through a voting mechanism.
We evaluated our method by a benchmark which contains 35,000 candi-
date images and 5,000 query images. The results show that our method is

efficient for solving local-changes invariant image matching problems.

6.2 Introduction

During the last decade, image matching and retrieval technology have been
widely studied. At the same time, with the development of internet and
image editing technology, images are showing more and more diversity in
our daily life. The explosion of image data requires image descriptors to
be not only lighter but also more discriminative for matching and retrieval
tasks. SIFT David G. Lowe, 2004 feature and other key point based image
features well solved this problem and are now becoming one of the most
popular research branches. However, key point based frameworks have

become less effective against images with local changes (IL). IL can not be
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Figure 6.1: Examples of ILP. In this figure, we use SURF feature to match
the key points detected in the image pairs. Because of the local changes
occurred in the right column images, the key points can not be matched
well. Our task is to grasp the visual similarity in ILP when such local
changes exist.

defined by a single image since “changes” exist with respect to a normal
image. IL is an image in an IL pair (ILP). An ILP includes two images: a

normal image and its IL.

Main reasons for why local features are less effective in matching ILP can
be concluded as : 1) In some IL, detection of corner points is difficult. 2)
An ILP may contains many local changes (e.g. an ILP contains two photos
which are taken at same place but in different seasons). 3) Multiple similar
regions may exist in an IL. An ILP can be image with image, image with
sketch, image with noise image, image with painting, image with synthetic
image, image with blur image, image with edge image, etc. Figure 6.1
shows some examples of ILP. As we can see, various local changes can be
considered such as changes of illumination, color, edge, shape, texture. The
SURF Bay, Tuytelaars, and Van Gool, 2006 descriptor failed in matching
with each key point, which will lead to a failure of matching the whole

image.

Image matching is a basic research topic for various applications of com-
puter vision, such as near-duplicate image detection (NDID), content-based
image retrieval (CBIR), texture classification. The task is to search a large
database of candidate images with a query image and then finds the result
which matches to the query image. In our problem, there is one query as

the input and one image as the output. The input and output are exactly
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the same despite the local changes. Most of the image matching problem-
s are studied from two points of view: 1) image feature presentation 2)

nearest neighbor (NN) search technique.

Low-level features, such as histogram based gradient features and key point
based features, usually have trade-off problem between the number of di-
mensions and the discriminative ability. In other words, features composed
of more dimensions usually have stronger ability to present an image’s
visual similarity. Although higher-level features learned by sparse cod-
ing/deep learning can surely present image’s visual similarity well with less
dimensions, the coding process is time consuming. In our research, the
original high—dimensional HOG feature is projected onto a low-dimensional
subspace while trying to keep discriminative ability based on Achlioptas,
2003. According to the compressive sensing theory, a small number of
randomly generated linear measurements can preserve most of the salient
information. The projection processing does not cost much time when the

projection matrix is very sparse.

On the other hand, most of the current data structures for effective NN
search can only index data points in low-dimensional feature space. These
data structures become less efficient with the growing of dimension num-
- ber due to the curse of dimensionality. The difficult point is that it is
hard to solve the exact NN problem efficiently in high-dimensional feature
space while the accuracy is low when solving the exact NN problem in
low-dimension feature space. In this chapter, our solution is to find numer-
ous approximate nearest neighbors (ANN) in thousands of low-dimension
feature spaces and then vote for the best ANN as the final output. By
doing this, we can accelerate the matching procedure while achieve satis-
factory matching accuracy. To the best of our knowledge, there is little
study on image matching problem with various types of local changes. Our
method builds a huge number of subspaces to reduce noise’s effect brought
by local changes, and finally grasps the global similarity between query and

candidate images.

6.3 Related Work
Feature Descriptors for Visual Similarity Evaluation
Among recent state-of-art works, local feature descriptors for quantifying

images’ visual similarity have been proved to be very effective. SIFT David
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G. Lowe, 2004 and its variants are representative. Furthermore, D. C.
Hauagge et al. Hauagge and Snavely, 2012 proposed a local feature déscrip~
tor which based on detecting and representing local symmetries for match-
ing pairs of photos taken at urban scenes. K. Grauman et al. Grauman
and Darrell, 2005 proposed a technique that compares images by matching
their distributions of local invariant features.

On the other hand, global feature descriptors are also used for evaluating
the visual similarity. A. Oliva et al. Oliva and Torralba, 2006 noted the
global image features play an important role on scene perception. S. Lazeb-
nik et al. Lazebnik, Schmid, and Ponce, 2006 noted that a global feature
representation can be surprisingly effective for identifying the overall scene.
P. Liet al. Li et al., 2012 proposed a method to enrich the discriminative
ability of local feature with global information. They noted that the cur-
rent local descriptors will fail to match when an image has multiple similar
regions. C. Zhang et al Zhang and Akashi, 2015 proposed a compressed
HOG descriptor for IL image matching. They used random projection to
compress the high-dimensional HOG feature into low—dimensional'feature.
However, in matching procedure, only a simple brute-force method with

L1 distance measure is applied.

Image Matching and NN Search

NN search problem for image matching has been widely studied. For exact
image matching, brute-force is an efficient method especially the number of
feature dimension is large. A. Torralba et al. Torralba, Fergus, and Weiss,
2008 applied brute-force search to match imagés which are converted into
binary code from GIST descriptor. When the number of feature dimension
is small, many data structures can be applied for image matching such as
Kd-tree, R-tree, Ball tree, SR-tree. C. Silpa et al. Silpa-Anan and Hartley,
2008 introduced an optimized Kd-tree Friedman, Bentley, and Finkel, 1977
algorithm which is used to match SIFT descriptors. On the other hand,
instead of finding the nearest image to the query image, approximate image
matching aims to find images which are within a certain distance threshold
to query image, such as image retrieval. ANN search can deal with the
high-dimensional feature effectively by reducing the dependency on dimen-
sionality. Y. Ke et al. Ke, Sukthankar, and Huston, 2004 employed local
sensitive hashing (LSH) to index the local descriptors for near-duplicate

detection. LSH also applied the random projection for searching ANNs
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over high-dimensional data. P. Wu et al. Wu et al., 2011 used multiple
randomly projected kd-trees to search ANN. Each kd-tree search the AN-
N in a random projected low-dimensional space and rank the results by

distance at last.

Image Matching with IL

To the best of our knowledge, there are few chapters for studying all type-
‘s of IL. Sketches and paintings are most studied problems belong to ILP
matching. A. Shrivastava et al. Shrivastava et al., 2011 defined IL as
cross-domain images, the authors mainly considered the matching task for
sketches, paintings and photos taken in different seasons which are all in-
cluded in the definition of IL. They learned the weights for each HOG
feature’s dimension with single positive query image and a very large set of
negative images by SVM. The training process is very time consuming and
hard to be finished within query time. Other similar chapters include Eitz
et al., 2011 for matching sketches with photographs, Russell et al., 2011 for
matching paintings with photographs, Chong, Gortler, and Zickler, 2008
for matching images under different illumination conditions. Furthermore,
Zhang and Akashi, 2015 used a compressed HOG desériptor and brute-
force NN search to match the ILP. In this chapter, the dimension number
of original HOG descriptor is reduced from 6384 to 500 in order to reduce
the burden of matching time. However, after projection with a single ran-
dom sparse matrix, the original feature lost original information naturally.
The balance between matching accuracy and matching time is still not be

solved well in this chapter.

Our work is mainly based on work Zhang and Akashi, 2015; Wu et al.,
2011. We use the feature descriptor proposed in Zhang and Akashi, 2015
and enhance the ANN method proposed in Wu et al., 2011 for high-speed
exact ILP matching.

6.4 Methodology

Problem Setting

We have a set P, of n pre-processed candidate image feature vectors {pi, p2
sy Pn}, Where p, € R™. m is the number of compressed feature vector’s
dimension. Given an arbitrary query feature vector q,, € R™ from query
set P, return p,, which is closest to q, under the distance measurement

function. In the following sections, we will first introduce how to generate
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set P, and P, from candidate image set I, and query IL set I, and then we

will introduce how to find p,, by using random projection indexed KD-tree
forests (tKDFs).

Feature Compression

HOG feature Dalal and Triggs, 2005 counts occurrences of gradient ori-
entations in cells/blocks/windows and merge them into one feature vector
p’ € R", n is the dimension number of original HOG feature. In this chap-
ter, we treat the whole image as a single window, and construct grid-like
structure for extracting feature with units called block and cell. We define
R as a m x n random measurement matrix, and r;; = R(4,5). R(3,J) de-
notes the entry in row 4, column j of matrix R. Each r;; is independent
with others and decided by the following probability distribution,

1
+1  with probability %

1
Tij = Vs X 0  with probability 1 - > (6.1)

1
—1  with probability %

Achlioptas et al. Achlioptas, 2003 state that when the s = 1 or 3, R satis-
fies the Johnson-Lindenstrauss lemma. Such kind of matrices can achieve
favorable compression performance. The method of Wu et.al., 2011 also
uses s = 3 to generate the random measurement matrix. When s = 3, only
1/3 data need to be processed. However, when the size of candidate image
set I, is very large, the procedure of pre-processing becomes time consum-
ing. For each query image, although compression operation only needs to
be performed once, we hope to avoid large amount of numerical calcula-
tion in order to reduce query time as much as possible. Fortunately, this
random sparse matrix has been proved to be effective even s > 3 Zhang,
Yamagata, and Akashi, 2015. In this chapter, we set s > n/2. Therefore,
only 2/n data need to be processed at most. Parameter s is determined by
rule of thumb. For example, in both Zhang, Yamagata, and Akashi, 2015
and Zhang and Akashi, 2015, s is set as n/4 for efficient compression pro-
cedure. In addition, since no floating-point arithmetic is needed expect a
square root operation, the compression process needs little computational
cost. Also, this random measurement matrix only needs to be generated

once during the pre-processing procedure.

The process of compression can be seen as a projection from the high-

38



P = Z]j'l:o "Nij)

Figure 6.2: Compressing HOG feature from m-dimension to n-dimension.
The dimensions of p’ are randomly selected for generating p.

dimensional space to low-dimensional space. We define p’ as high-dimensional
HOG feature (p’ € R"), p as low-dimensional compressed feature (p € R™).
For the sparse random projection, n > m. The compression procedure can
be presented as,

p(mxl) — R(mxn)p/(nxl)‘ (6.2)

This quick and simple matrix multiplication complies our requirements for
computing speed. However, with larger s, the loss of feature’s information
will be unavoidable. We apply multiple random matrices to remedy this
problem. We use p;; to denote the feature vector of image I; which is com-
pressed by random matrix R;. As a result, each image will be presented
by v compressed feature vectors in total instead of a single vector. Al-
though dimension number of each p;; is much smaller than the descriptor
proposed in Zhang and Akashi, 2015, the combination of all the p;; can
hold more information. Furthermore, lower-dimensional p;; is much easier

to be processed by KD-tree.

The theoretical foundation of why such a simple matrix can do data com-
pression well is proved in Baraniuk et al., 2007. R.Baraniuk et al. give a
simple proof that R satisfies the restricted isometry property. At the same
time R satisfies the Johnson-Lindenstrauss lemma, thus it has high prob-
ability to reconstruct p’ from p with minimum error. Figure 6.2 shows
the feature compression procedure. R is created with Equation 1, black

squares represent positive entries, and the white squares represent negative
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Algorithm 4 Feature extraction and compression.

Require: Candidate image set : I,
Require: Query image set : I,
Require: Compressed feature set of candidate images: F.
Require: Compressed feature set of query images : F,
Require: Gaussian blur kernel size : &k
Require: Number of random matrices : v
Require: Parameter : s
1: for ¢ from 1 to v do

2: Generate projection matrix R; with Equation 1 and s
3: end for

4: for each image I; in I, U I, do
5 I; = gaussianBlur(/;, k)

6:  p’ = extractHOG(I;)

7: for j from 1 to v do

8: pi; = compress(p’, R;)
9: lo = normalize(p;;)

10: if I, € I, then

11: Push p;; to F;

12: else

13: Push p;; to F,

14: end if

15: end for

16: end for

17: Return P, and B,

entries. In order to calculate i th dimension’s value p(;, dimensions of p’

are randomly selected and combined according to R.

The whole compression procedure can also be considered as a procedure to
improve the original HOG’s feature level. The problem of HOG feature is
that it is not clear which dimension of p’ performs a more important role
in further application, which dimension of p’ is useless. After compression,
each dimension of p is calculated from multiple dimensions of p’, thus more
information is included in p’s single dimension than p’. As we all know
that with higher level features, less dimensions are needed to hold the same
discriminative ability. From this point of view, we can also understand why
the random projection works for feature dimension reduction with less loss

of discriminative ability.

The preprocessing algorithm can be concluded with Algorithm 4.
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Figure 6.3: The main process of our modified image retrieval algorithm

Random Projection Indexed KD-tree Forests

KD-tree Robinson, 1981 is a widely used tree structure for searching ANN
in multi-dimensional data space. It is a binary tree with each node has
a hyper-plane (typically one dimension) to divide the data space into t-
wo subspaces. The feature vectors which are left to the hyper-plane will
be assigned to left child node, and the feature vectors which are right to
the hyper-plane will be assigned to right child node. As one of the ANN
algorithms, KD-tree works effectively when dealing with low-dimensional
data. However, KD-tree works poorly especially the number of feature
vector’s dimension is large since it will degrade to linear search Gionis,
Indyk, Motwani, et al., 1999. In our matching problem, KD-tree seems
to be inapplicable because the dimension number of HOG feature is large.
By using the compression method mentioned above, dimension number of
HOG feature can be reduced. In our condition, we set compressed feature
vector’s dimension extremely small to build KD-tree in an effective way
(e.g., n = 6384, m = 10). Such KD-tree is very light both in memory and
search time. However, much information on the original feature vectors will
be lost naturally and ANN of query ICL becomes hard to search by single
KD-tree. To solve this problem, our idea is to build a large scale KD-tree
forests (e.g., @ = 8,000) with each tree indexed by a random matrix. Each
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Algorithm 5 Build rKDFs.

Require: Compressed feature set of candidate images: P,
Require: Number of random matrices : -y
Require: Number of trees in one group : ¢
Require: Maximum depth of one tree: A
Ensure: |P,| >0
1: for j from 1 to v do
2: for ¢ from 1 to § do
Initialize KD-tree KT with root node n and data F;
while depth(n) < X do
splitNode(n)
n = findLeaf(KT)
end while
Push KT into tree group KG;
9: end for
10: end for
11: Return KD-tree groups KG

tree in tTKDF's is built with different input compressed data sets which are
generated by different random matrices. “indexed” in tKDFs means that
we use one random matrix to discriminate a certain tree from others. ANN
results returned by a single KD-tree in rKDFs are very inaccurate but bet-
ter than random guesses, because the compressed feature space’s dimension
is too small to reflect the original feature space’s data distribution. We vote
with ANNs provided by each tree by a histogram and at last select the AN-
N which is most voted as the final output. Figure 6.3 illustrates the whole
processing. P,; denotes a compressed feature set which is compressed via

random matrix R;.

We now introduce how to build rKDFs. P, includes 7 feature subspaces
which are returned by Algorithm 4. We build § trees in one subspace in
parallel. § trees in one subspace form a tree group. For each tree, data in
the according subspace is partitioned recursively from the root node to leaf
nodes. In initialization process, dimensions with large variance are selected
as candidate dimensions to partition the data (e.g., five dimensions). At
each node, we first randomly select a dimension for splitting and then
calculate the median value of this dimension. After that, all the feature
vectors in the node will be split into two child nodes according to the
median value. The split operation will stop until the depth of the tree
reaches to the depth threshold A. In order to store all the trees, we need
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space complexity about O(am X | F;|). The building algorithm is concluded
in Algorithm 5.

We now introduce how to search with rKDFs. To find the best ANN
of a given feature vector p € F,, we need to search with v x ¢ trees.
After preprocessing, p has already been projected into « subspaces. In
each subspace, we search ANNs of p with a tree group which is returned
by Algorithm 5. However, these ANNs are very inaccurate since each is
outputted by a single tree. In order to boost the accuracy, ANNs searched
by a tree group are ranked by distance and output best § ANNs for voting
the final NN. The voting mechanism is established under this assumption:
exact NN of a query image has higher probability to appear in the ANNs of
each sub feature space. We need time complexity about O(an xlog |P.]) to
search with one query. The searching algorithm is concluded in Algorithm
6.

The differences between our matching method and Wu et al., 2011 can
be concluded as following. 1) We introduced randomized kd-tree forests
Vedaldi and Fulkerson, 2010 to divide tress into groups according to dif-
ferent subspaces. 2) Method of Wu et al., 2011 uses only about 20 trees
to search ANNS, in our condition, number of trees is 8,000 and more. 3)
Method in Wu et al., 2011 ranked all the ANNs by distance and treat the
top rank which is closest to the query in subspace as the final NN. This
~ method will become less effective when the dimension number of original
feature vector is very large like the HOG feature. Because the distance
measurement in subspace can not well reflect the distance in the original
feature space. Our method vote with all the ANNs to determine the final
NN which appeared most frequently as an ANN. 4) Our method compress-
es feature dimension from thousands to 10 while method of Wu et al., 2011
compresses feature dimension from hundreds to 10. Random projection
is a random method which does not depend on any training data, thus
building large number of KD-trees in a same subspace is risky and unwar-
ranted. Our method disperses the risk to each subspace and achieve better

performance overall.
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Algorithm 6 Search with rKDFs.

Require: Compressed feature set of query images : F,
Require: Compressed feature set of candidate images : P,
Require: Number of random matrices : 7
Require: KD-tree groups KG
Require: Number of ANNs outputted by a single KD-tree group:
Ensure: |P,| >0 and |F:| >0

1: for ¢ from 1 to |P,| do

2. initialize histogram with |F,| bins

3: for j from 1 to v do
4: ANN = search(K G}, pij, B)
5 vote(histogram, ANN)
6: end for
7: Return arg max bin,
1<0<|P|
8: end for

6.5 Experiment

Experiment Environment

We use the benchmark used in Zhang and Akashi, 2015 to evaluate our
method. It is a challenging benchmark which contains 5,000 query images
and 35,000 candidate images. 5,000 query images are modified with local
changes based on normal images which are randomly selected from 35,000
candidate images. Width of ifnages is between 454 pixels to 1272 pixels,
the of images is between 482 pixels to 1024 pixels. Many types of IL are
included in the query set, and the local changes can be mainly conclud-
ed into three categories: changes of color-texture information, changes of
edge-gradient information, and changes with special filters. Color-texture
information can be changed by the adding of text and scribbling, illumi-
nation changes, image binarization, etc. Edge-gradient information can be
changed by image rotation, local deformation, text adding, scribbling, etc.
Special image filters will largely change image’s local feature and keep glob-
al similarity like crayon drawing, oil paint, pencil drawing, pixel explosion,
stained glass, etc. This benchmark is an one-to-one matching task bench-
mark, a query image and its ground truth are exactly the same despite the
local changes. To the best of our knowledge, there are few similar bench-
marks for one-to-one image matching task involving various types of local
- changes. ‘

We did all the experiments with a PC equipped with Intel Core-i5 2.5GHz
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Table 6.1: Parameter setting for each experiment. Parameter value with
“~” is variable during the according experiment. Results are summarized
in Figure 6.5 (shown in last page).

Sub figure No. o S s d k nom

(a) - 10 6000 35000 31 6384 10
(b) 400 - 6000 35000 31 6384 10
(c) 400 10 - 35000 31 6384 10
(d) 8000 10 6000 - 31 6384 10
(e) 8000 10 2000 35000 - 2700 10
(f) 400 10 6000 35000 31 6384 -

CPU and 6 GB RAM.

Effect of parameters

In this section, we systematically report the experimental results for study-
ing how each parameter affects the performance of our matching method.
In this chapter, some parameters are fixed to reduce complexity of experi-
ment. We set the number of trees § = 4 in each tree group, image size as
320x 240, gradient angle’s range as [0°,180°], o, of Gaussian blur as 8 and
o, of Gaussian blur as 6. Figure 6.5 (shown in last page) summarizes the
effects of various parameters. Experimental conditions for each sub figure
are given out in Table 6.1. Two evaluation criteria are observed during ex-
periments: error rate and matching time per query image in milliseconds.

Error rate is defined as follows,

> match(p, P.)

pEF,

error rate = 1.0 — (6.3)

| F| ’
match function returns 1 if a query image can be approximately matched

according to ground truth, returns O if not.

As Figure 6.5(a) shows, increasing the number of trees a of trKDFs im-
proves the performance significantly. Error rate stops decreasing from a
certain value of @. The matching time per query image increases linearly
as « increases. As Figure 6.5(b) shows, when the number of ANNs out-
putted by each tree group is increased, the voting process appears to be
more accurate. As Figure 6.5(c) shows, with the increase of s, error rate
declines in a stepwise fashion. Larger s leads the algorithm to generate a

more sparse random matrix to compress the original HOG feature vector.
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Table 6.2: Example of parameter settings for extracting HOG feature. n
is the dimension number of HOG feature. To calculate the error rate, we
set a = 8000, B8 = 10, d = 35000, k£ =31, m = 10.

n error rate  block  block stride cell bin S
1836 0.149 (64,64) (16,16) (64,64) 9 1000
2396 0.099 (32,32) (16,16) (32,32) 9 2000
2700 0.066 (16,16) (16,16) (16,16) 9 2000
5508 0.110 (64,64) (16,22)  (32,32) 9 5000
6384 0.076 (32,32) (16,16) (16,16) 6 6000
9576 0.071 (32,32)  (16,16) (16,16) 9 6000

12768 0.080 (32,32) (16,16) (16,16) 12 6000
29376 0.087 (64,64) (16,16) (16,16) 9 6000
35964 0.092 (32,32) (8,8) (16,16) 9 6000

In our method, larger s shows to be a more appropriate choice. As one
of the possible reasons, excessive compression may cause bad influence on
calculating the visual similarity of IL conversely. As Figure 6.5(d) shows,
with the increase of candidate images, error rate maintains. This can ex-
plain that our method is robust in change of search space. We can also find
that the processing time increase linearly with the increase of d, this is very
important for practical applications. From Figure 6.5(e) and (f), we can
find that there exists minimum error rate while increasing k& and m step by
step. We can tune both the parameters by a validation set. Furthermore,
the dimension number of original HOG feature vector n also plays an im-
portant role. Some parameter tuning examples are shown in Table 6.2. We
found out that parameter setting with 9 bins performs better than 6 bins,
the best accuracy is achieved when block size, cell size, block stride are all
set to (16,16). After tuning on a validation data set, we report the lowest

error rate in the next section.

Comparison

We compare our method with others from two aspects for the differen-
t needs of practical applications, 1) Considering accuracy as priority, 2)
considering matching time as priority. The compared methods are listed
below: ' .

— N-BoF-SIFT: In experiment, we combine BoF with SIFT David G.
Lowe, 2004. The visual vocabulary is built by randomly sampled images

from the candidate dataset and each packaged feature is finally normalized.
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We extract 128 dimension SIFT descriptors for all the detected key points
and then use K-means clustering method, which is usually used in many
BoF implementations, to cluster visual words. Initial centroid positions of
K-means are chosen according to Arthur and Vassilvitskii, 2007. For the
assignment task, we use fast approximate nearest neighbor (FLANN) Muja
and David G Lowe, 2009 to assign the novel features to the closest terms in
the vocabulary. After normalization, we use the packaged feature to match
the data set by L1 distance.

- RP-HOG: The method in Zhang and Akashi, 2015 compresses the HOG
feature with random projection and then match the NN by brute-force with
L1 distance measurement.

— N-HOG: Original HOG features Dalal and Triggs, 2005 are extracted
from each image and then normalized by L2 norm. We use brute-force
method to match the NN with L1 distance measurement.

— GIST: Gist feature Oliva and Torralba, 2006 is a global image feature
which convolves a gradient filter to encode the amount and strength of
edges. After Gist is extracted, we use brute-force method to match the NN
with L1 distance measurement.

— Fisher Vector: GMM is used to construct a visual word dictionary at
first. We extract SIFT feature as the local feature of each image. Fisher
Vector is encoded by the SIFT feature and the prior obtained GMM, and
finally normalized by L2 norm.

— VLAD: VLAD can be seen as the simplification of Fisher Vector. In
experiment, K-Means is used instead of GMM for visual word generating,
and KD-tree is used for vector quantization. It is also normalized by L2

norm at last.

Table 6.3 and 6.4 show the comparison results. From Table 6.3 we can
see that SIFT appears to be very ineffective even the visual words are set
to 10,000. By this point we can prove the effectiveness of our dataset for
evaluating the KF images. Furthermore, our method is about 54% faster
than N-HOG at a same accuracy level. We successfully converted a high-
dimensional feature matching problem into a low-dimensional matching
problem and improved the accuracy. From Table 6.4 we can see that our
method is about 74% faster than RP-HOG at a same accuracy level and
outperforms other methods both in accuracy and time. Although Fisher

Vector and VLAD can perform very well in standard image retrieval tasks,
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Figure 6.4: Examples of comparison with method Zhang and Akashi, 2015

Table 6.3: Comparison results considering accuracy as priority. Dimension
number of descriptors are shown after according method’s name.

method error rate  matching time per query image (ms)
our-method-accurate 0.061 134.3
BOW-SIFT-10000 Csurka et al., 2004 0.426 541.2
RP-HOG-3000 Zhang and Akashi, 2015 0.135 128.5
N-HOG-6384 Dalal and Triggs, 2005 0.067 294.6
GIST-6400 Oliva and Torralba, 2006 0.211 295.3
Fisher-Vector-7680 Perronnin and Dance, 2007 0.637 352.1
VLAD-6400 Delhumeau et al., 2013 0.66 294.9

it can not perform well in our problem. The main reason can be concluded
as: both of the methods are developed based on the local features such as
SIFT, the matching error brought by local features can be further expand-
ed during the transformation of features. As a conclusion, our method can
match ILP in high-speed with large scale candidate database, at the same
time, accuracy is satisfactory. Dense sampling methods such as SIFT Flow
Liu, Yuen, and Torralba, 2011 is recently showing the effectiveness. How-
ever, to compute a 128-dimensional SIFT feature for each pixel is very time
consuming and impractical. With the increase of data base’s size, both the

time and space complexity grow dramatically.

Figure 6.4 intuitively shows some matching examples comparing to Zhang
and Akashi, 2015. A synthesized image example and a distorted image
example are shown to be mismatched by Zhang and Akashi, 2015 while

our method can still match correctly.

6.6 Conclusion

This chapter presented a problem which aims to match a special catego-
ry of images called IL. The proposed method applied a compressed HOG
descriptor for extraction and introduced rKDFs for high-speed NN search.

98



Table 6.4: Comparison results considering matching time as priority. Di-
mension number of descriptors are shown after according method’s name.

method error rate  matching time per query image (ms)
our-method-fast 0.159 5.5
BOW-SIFT-500 Csurka et al., 2004 0.584 92.6
RP-HOG-500 Zhang and Akashi, 2015 0.151 21.3
N-HOG-1836 Dalal and Triggs, 2005 0.187 88.6
GIST-512 Oliva and Torralba, 2006 0.362 23.7
Fisher-Vector-1280 Perronnin and Dance, 2007 0.630 57.4
VLAD-1280 Delhumeau et al., 2013 0.560 57.9

There still exist some limitations in practical applications. The main lim-
itation is that compressed HOG descriptor is not rotation invariant, thus
IL presented in different rotation angles will fail in matching. Further-
more, our method will fail in matching when multiple candidate images in
a candidate data set appear to be visually similar (e.g., successive frames
in video). Our method will also fail in matching when both images showing

a same basic geometric shape (e.g., an image of sun and an image of ball).

In the future, we plan to develop rotation invariant descriptor which can
also grasp global visual similarity in order to solve the problems mentioned
above. Furthermore, since each tree can perform matching independently,
the matching process can be further accelerated by GPU.
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Chapter 7

ROBUST VISUAL TRACKING VIA COUPLED
RANDOMNESS

7.1 Summary

Tracking algorithms for arbitrary objects are widely researched in the field
of computer vision. At the beginning, an initialized bounding box is given
as the input. After that, the algorithms are required to track the objective
in the later frames on-the-fly. Tracking-by-detection is one of the main
research branches of online tracking. However, there still exist two issues
in order to improve the performance. 1) The limited processing time re-
quires the model to extract low-dimensional and discriminative features
from the training samples. 2) The model is required to be able to bal-
ance both the prior and new ijectives’ appearance information in order
to maintain the relocation ability and avoid the drifting problem. In this
chapter, we propose a real-time tracking algorithm called coupled random-
ness tracking (CRT) which focuses on dealing with these two issues. One
randomness represents random projection, and the other randomness rep-
resents online random forests (ORFs). In CRT, the gray-scale feature is
“compressed by a sparse measurement matrix, and ORFs are used to train
the sample sequence online. During the training procedure, we introduce
a tree discarding strategy which helps the ORFs to adapt fast appearance
changes caused by illumination, occlusion, etc. Our method can constantly
adapt to the objective’s latest appearance changes while keeping the prior
appearance information. The experimental results show that our algorith-
m performs robustly with many publicly available benchmark videos and
outperforms several state-of-the-art algorithms. Additionally, our algorith-

m can be easily utilized into a parallel program.

7.2 Introduction

Visual tracking without depth information has become an important re-
search area of computer vision. A typical real-world application is video
surveillance Akashi et al., 2007. We have to deal with many problem-
s when tracking one objective with a single camera, such as illumination,

occlusion, scale variation, deformation, motion blur, in-plane rotation, out-
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of-plane rotation, etc. Many of the current tracking methods depend on
the training data collected in advance. By comparison with such methods,
a tracking task for an arbitrary objective without prior knowledge is more
difficult, because the appearance of the objective will be changed due to
various conditions during the tracking process. There is a question which
may seem contradictory, of whether new information should be incorpo-
rated for prediction purposes while the prior information should be saved
for relocation. In the past decades, many tracking algorithms have been
proposed with better and better performance. In many comprehensive sur-
veys Yilmaz, Javed, and Shah, 2006; Li et al., 2013; Wu, Lim, and Yang,
2013, various object tracking methods have been investigated. We will in-
troduce the state-of-the-art surrounding feature dimension reduction and

online learning based on the last decade’s chapters.

Feature Dimension Reduction

Before an appearance model is built, feature extraction is usually the first
step. No matter whether the feature is global or local, it should be low-
dimensional in order to reduce the entire processing time. In recent years,
sparse presentation and compressive sensing theories have attracted a lot of
theoretical and applied research interest. As one of the various techniques,
principal component analysis (PCA) and its variations are widely applied
in online tracking. The method in Ross et al., 2008 proposes an online algo-
rithm that incrementally learns and adapts a low dimensional eigenspace
representation to reflect the appearance changes of the objective. The
method in Kwon and Lee, 2010 proposes a tracking model which can be
decomposed into several basic observation models. Each decomposed mod-
el can be seen as a feature template that is constructed by sparse principal
component analysis (SPCA). All the observation models are combined to
cover a specific appearance of the objective. The method in Kwon and Lee,
2011 builds a high-level tracker selecting framework which focuses on the
novel point that the trackers should be adapted or constructed depending
on the current situation. Among different models, SPCA is used to build

the appearance model.

It is also possible to use sparse presentation (SP) to code feature with low
dimension. For instance, Jia, Lu, and Yang, 2012 develops a structural
local sparse appearance model. Unlike the traditional SP based trackers

which only consider the holistic presentation, this chapter addresses the
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Figure 7.1: Compressing rectangular gray-scale feature from m-dimension
to n-dimension.

importance of partial and spatial information. The method in Bao et al.,
2012 improves the performance of L1 tracker by adding a ¢ norm regular-
ization on the coefficients associated with the templates. Most of the L1
trackers and their variations model the target appearance by a sparse linear
combination of templates. The method in T. Zhang et al., 2012 models the
particles as linear combinations of dictionary templates under the particle
filter framework. Since each template is updated dynamically, the combi-
nation can adapt the latest target’s appearance. Since the information of
the high-dimensional feature can be preserved based on the compressive
sensing theory, compressive sensing can also be used for feature reduction.
The method in K. Zhang, L. Zhang, and Yang, 2012 uses a very sparse
measurement matrix to compress high-dimensional Haar-like features to a

low-dimensional domain.

Online Learning

Online learning has recently become more and more popular due to the
successful application of machine learning algorithms in the field of object
detection. A tracking-by-detection concept is proposed and many online
learning methods are derived from their off-line versions. Most of the on-
line learning methods are based on the support vector machine (SVM) or
boosting. For SVM group, the method in Avidan, 2004 integrates the SVM
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classifier into a tracking algorithm in an optical flow framework. This chap-
ter tries to maximize the SVM classification score, instead of minimizing
an intensity difference function between successive frames. This idea ex-
emplifies the tracking-by-detection concept. The method in Hare, Saffari,
and Torr, 2011 develops a new SVM algorithm called kernelized structured
output SVM, which does not use labelled samples to update the classifier.
The method in Bai and Tang, 2012 treats the tracking problem as a ranking
problem which uses the ranking SVM to rank the samples extracted from
the next frame. For the boosting group, the method in H. Grabner, M.
Grabner, and Bischof, 2006 proposes an online AdaBoost feature selection
algorithm for the tracking problem. The method in H. Grabner, Leist-
ner, and Bischof, 2008 introduces a semi-supervised learning scheme into
the online boosting classifier. By doing this, update errors caused by each
learning sample are limited. The method in Babenko, Yang, and Belongie,
2009 proposes a multiple instance learning method instead of traditional
sampling methods. However, relatively few researchers pay attention to
solving online tracking problems under the original Random Forests (RFs)
framework Breiman, 2001; Saffari et al., 2009.

It is that RFs have an overfitting problem, especially when the data to
be trained has large noise information or is structured in high-dimensions.
However, it is also worth pointing out that RFs have the advantage of fast
convergence. On the other hand, they can be easily implemented and can
handle parallel processing with GPGPU naturally, since every tree is in-
dependent from the others. These are very potential features for real-time
tracking, since the current machine learning research is more and more
inseparable from the development of GPU. In order to overcome the short-
comings of the RFs, our method runs online random forests (ORFs) with
only 50-dimensional training data and a shallow decision tree structure.
By doing this, we can limit the disadvantages of RFs and achieve favor-
able tracking results. We apply similar ideas from the work K. Zhang, L.
Zhang, and Yang, 2012 for feature dimension reduction and introduce a
tree discarding strategy into the ORFs framework Saffari et al., 2009. We
find the ORFs perform well with compressed features and the whole model

becomes more robust by periodically discarding trees.
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7.3 Feature Compression

Gray-scale feature and random projection

In this section, we will introduce the basic definitions of the gray-scale
feature and random projection. The rectangular gray-scale feature can
be defined as the sum of each pixel’s gray value inside a rectangle. The
rectangle can be any size at any position inside a bounding box (bb) area.
The gray-scale feature is a little different from Haar-like feature since it
does not need to calculate the difference between multiple rectangles in
the feature extraction step. It can be simply calculated by using integral
image Viola and Jones, 2001. We define a rectangle as H;. For each H;, we
extract the gray-scale feature, which is denoted by z;, where 0 < i < m.
m is the number of rectangles extracted in one bbh. A feature vector X is
defined by combing every element z;. The left part of Figure 7.1 shows
the feature extraction procedure intuitively. Let R™*™ be a very sparse

measurement matrix generated by equation 7.1.

+1  with probability %
s
1
ri; =vsx< 0  with probability 1— = (7.1)
—1  with probability 2—15

In this probability distribution, ri; = R(2,7). R(i,7) denotes the entry
in row 4, column j of matrix R. r;; are all independent from each other.
Generating this random matrix is totally independent from the data, with
only one parameter s having to be tuned considering the balance between
the feature’s discriminative ability and computational cost. Not limited to
1 or 3 in real applications, s can be a larger number. It has been proved
that the compression can be efficient even when s = m/4 in work K. Zhang,
L. Zhang, and Yang, 2012. In this chapter, we set s = m/4. We found that
only 4/m of the data needs to be processed during the projection procedure
with such a sparse measurement matrix. Since no floating-point arithmetic
is needed in addition to a square root operation, the compression process
needs little computational cost. Also, this distribution only needs to be
calculated once at the first frame and kept fixed until end. To be robust
with scale variation in the tracking problem, H; should be selected in multi-
scales. The width of a rectangle Wy, should be in the range [1, Wp] and
the height of a rectangle Hy, should be in the range [1, Hy|. Wy, with Hy,
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being the width and height of bb. Wy, and Hy, are all integers. Therefore,
we can generate Wy, X Hy, types of rectangles in a certain bb. Then for
every pixel in the bb area (W, x Hy, pixels in sum), we extract all types

of rectangles for feature extraction. The final feature vector X’s dimension
is (Wbb X be)z.

Feature compression
In this section, we will introduce how to compress the gray-scale feature
in a given bb. The compression procedure is a projection procedure which

can be expressed as Equation 7.2.

X' = RX. (7.2)

(-)" indicates the compression operation. For example, X' indicates the
compressed feature vector. The right part of Figure 7.1 shows the feature
compression procedure intuitively. Although R is created with quite large
randomness, it is able to preserve the original information stably during
tracking. There is a theoretical basis Achlioptas, 2003 which states when
the m is suitably high, the distances between the points in a vector space
can be preserved with high probability. Our setting satisfies this theoretical
basis since m is between 106 and 10°. On the other hand, during the pro-
jection procedure, the weighted sum or difference between z; is calculated
due to /s and —/s in the distribution.

The projection can also be considered as a procedure to improve the level
of the gray-scale feature. The compressed feature vector is very similar to
the N-rectangle Haar-like feature. However, they are obviously different
because the compressed feature is calculated based on a huge number of
rectangles. It is well known that with higher level features, less dimensions
are needed to hold the same discriminative ability. From this view point, it
is clear why the random projection works for feature dimension reduction
with less loss of discriminative ability.

7.4 Tracking by detection

Problem setting

In this section, we will define some symbols to illustrate the tracking prob-
lem after we have explained how to calculate X' in section 7.3. The main

purpose of our algorithm is to estimate the objective’s position (represented
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by bb) continuously which has been specified in the first frame Iy. Sam-
ple X¥ is defined by the gray-scale feature of an image patch extracted
from a bb area with certain position P. There are three types of sam-
ples: positive samples XpP € X,, negative samples XE € X,, candidate
samples XY € X.. X,, X, and X, are sets composed by according samples.
The corresponding compressed feature can be expressed as (Xg)/ € X;,,
(XPY € x,, (XE)" € .. Then in each frame I;,i > 0, our classifier’s pur-
pose can be expressed as C' = sign(h(X)), where h: X, = R. C € {1, -1},
in which 1 means positive label, and -1 means negative label. In our al-
gorithm, A(X) is the function to solve the average probability density of
positive labels. 1 — A(X) is the average probability density of negative la-
bels. When training the classifier with X and X, every sample’s label C
has been determined. And lastly, the main purpose of our algorithm can
be expressed as Equation 7.3. Xy(;) denotes the tracking result of frame I;.

Xy is selected from X’c.

Xig) = arg max h(X). (7.3)
xXeX,

Preparing samples

In this section, we will introduce how we sample X,, and X,, from the pre-
vious frame I;_; and sample X. from the current frame I;. With the use
of Euclidean distance, we can extract samples with the following equation
7.4.

Xe = {Xc| [|P(Xe) = P(Xi) || < 7}
Xp = {Xp| [1P(Xp) — P(Xl(i-l))” <a},

(7.4)
Xn = {Xa| 6 < ||P(Xys) - P(Xl(i—l))]l < B o< d< B}

Distance threshold v, a, § and § are all positive real numbers which indi-
rectly determine the number of samples. P(X) is the function to return
the 2D position of certain uncompressed sample or compressed sample in
the image. This is quite a direct way to extract samples, since we assume
that between two continuous frames, only a small amount of displacement
of the objective can be observed. Figure 7.2 illustrates how we do sampling
during tracking by drawing bb of each sample. These bbs are drawn with
the parameters which are used for experimental evaluation. This allows us

to visually discover the learning and detection scope of CRT.

109



[ Result bb of #1
(@) (b) (©) (d) (e)

Positive samples @Negative samples Candidate samples

[] Result bb of #2

Figure 7.2: Sampling operation between two successive frames. a) Result
bb of frame #1 is determined by the previous prediction. b) About 45
positive samples are selected from frame #1 for online training. ¢) About
80 negative samples are selected from frame #1 for online training. d)
About 1900 candidate samples are selected from frame #2 for prediction.
e) A candidate sample with highest classification score is determined as
frame #2’s tracking result.

Online random forests

Sample arrival

We denote ORFs with o = {t1, ..., t7}, whereas T is an integer that indicates
the number of trees in the entire forest. In our experiment, T is set to 100.
In the non-parallel program, we consider the sample arrives sequentially
at ORFs. A sample will be the input of the classifier only if the previous
sample has been learned or predicted. Every sample will be trained K times
from its arrival, and K is determined by a poisson distribution Poisson(fy)
referring to work Oza, 2005. In our experiment, 6 is set to 1. For those
samples which K = 0, will not be used for training. The samples which are
not included during the training procedure are called out-of-bag (OOB)
samples. Considering computational consumption, we do not use these
OOB samples to compute the out-of-bag-error (OOBE). The reason is low
that a OOBE sometimes does not mean that the objective is being tracked
well. Especially after background or obstacles are wrongly learned as the
positive feature for a certain time, the OOBE cannot reflect the tracking

result’s quality.

Training

For the random binary decision trees in ORFs, training is the procedure of
splitting each node from top to bottom. We can simply use the attributes
of the feature to split the nodes. However, it is time consuming to measure
every attribute’s quality by entropy or Gini coefficient. Instead of that,
we use test functions to split each node Saffari et al., 2009. A random

test is defined as a pair (test(X'),0). o is a real number threshold, and
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it determines whether the according sample should be split into left child
node or right child node. When test(X') > o, X will fall into the right
child node, otherwise it will fall into the left node. Each ¢ is randomly
selected from a numerical range which is determined in advance. This
specified range’s lower limit is the sum of the minimum value on each
feature dimension, and its upper limit is the sum of the max value on each
feature dimension. Both limits should be specified in a rational range. If
we have a large number of training samples and feature dimensions, the
absolute value of the limit will be a relatively larger number. Test function
test(X') = X'MT, where each dimension’s value of M is a real number

randomly generated between 0 and 1.

For every node in the random trees, we generate a certain number of
random tests. We denote a random test set included by a node as S =
{(test;(X), 01),

.., (testy(X),on)...}. Tt is a trade-off relationship between the number of
random tests and accuracy performance. For every random test, we use a
normalized information gain (IG) to evaluate its quality. The one with the
highest normalized IG is selected to split the current node. Node n contains
a set of samples. The calculation of IG for random test s in node n can
be denoted in Equation 7.5. Split Entropy (SpE), Prior Entropy (PrE),
Posterior Entropy (PoE) are calculated respectively in Equation 7.6. PR
is the number of positive samples which are assigned to the right child node
from the current node. NR is the number of negative samples which are
assigned to the right child node from the current node. PL is the num-
ber of positive samples which are assigned to the left child node from the
current node. NL is the number of negative samples which are assigned
to the.left child node from the current node. SU is the total number of
samples in the current node. Before being split, n must meet other two
additional conditions which are proposed as non-recursive strategy Saffari
et al., 2009. 1) The number of samples in node n must be larger than 6;.
2) The value of information gain for the split must be larger than 6;. 3)
The depth of the node n must be smaller than 03. After being split, the
left child node and right child node will keep the parent node’s samples,

thus it can be used to calculate the probability density for classification.

_ PrE— PoE

1G0ns) = 55w 5E

(7.5)
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PR=|{X|X €x,,X €n,testy(X) > on},
NR=|{X'|X" e x,,X €n,testy(X)>on}l,
PL=|{X'|X €x,X €n,testn(X) <on}l,
NL=[{X'|X" e X, X en,testy(X) < on}l,

R _ (PR+NR) _ (PL+NL)
(PR + PL) (NR+ NL) PR (7.6)
P3=——7F""P4~ — o7 P55 = T55n T ooy
SU SU (PR+ NR)
NR PL PL

Ps = m,w = m,ps = m:
|  SpE=—lnp, ~lnp,

PrE = —lInps; —lnpy,

PoE = (~Inps —Inps) X p1 + (—=Inpr — Inps) X pa.

Discarding

Discarding trees is a very necessary step for tracking. Without discarding,
the entire ORF's cannot track the objective adaptively throughout the time.
A common method Leistner et al., 2009 is to discard a certain random tree
by measuring its OOBE. Specifically, a random tree with a higher OOBE
has a higher probability of being discarded. This strategy can surely deal
with slow illumination changes or occlusion changes. However, it can hardly
deal with drastic illumination changes or occlusion changes. Taking Figure
7.3 as an example, aa the singer is suddenly exposed to light, the OOBE
instantaneously becomes large. If we use the strategy mentioned above,
most of the trees will be discarded in order to incorporate the new feature
caused by shining light. This strategy can temporarily hold the changes,
however it will lose the original information of the objective. This will
cause the loss of relocation ability.

Our discarding strategy is to discard and retrain half of the trees peri-
odically while the other half of the trees continue to be updated with the
initial appearance information of the objective. Improving the performance
of Random Forests by discarding trees is a widely used technology. For ex-
ample, Robnik-Sikonja, 2004 discards trees with negative margin, which is
decided by a voting mechanism. The difference is, our strategy discards

trees with “time”, while Robnik-Sikonja, 2004 discards trees with “voting
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b)

Figure 7.3: Comparison of tracking results on Shaking sequence. (a) ORFs
with our discarding strategy. (b) ORFs without discarding strategy.

mechanism”. Since we discard the trees according to frequency, we will
introduce how the frame rate affects our method. At first, the discarding
parameter will not be affected with the frame rate, because this frequency
parameter is determined in advance. Secondly, the training procedure will
not be affected with the sequence’s frame rate, because we train the entire
ORFs every frame. Then, the effect of the discarding operation can be af-
fected by the sequence’s frame rate. With a lower frame rate sequence, our
discarding method can improve the performance of the ORFs accordingly,
and with a higher frame rate sequence, although we cannot improve the
performance of the ORFs, the performance will not be reduced. Lastly, the
tracking performance will be affected by the frame rate in the same way
as most of the online tracking algorithms. In the experiment, we discard
the first half of the trees every two frames. By doing this, our classifier can
deal with intense illumination changes and occlusions while keeping the
objective’s original information. If we discard the trees every five frames
or ten frames, when sudden environment changes occur in the low frame
rate sequence, the tracker will lose the target objective more easily. In
Figure 7.3, (a) shows the tracking results without this discarding strategy
and (b) shows the tracking results with this discarding strategy. In (b),
the classifier prevent the bb drifting from the objective when the light dims

again.

Predicting

Figure 7.4 illustrates the prediction procedure with a certain bb’s com-
pressed feature X_. The arrows in 1st and T'th random tree illustrate how
a X falls from the root node to a-certain leaf node. Each arrow is deter-

mined by the selected random test on each node. At the leaf node which X,
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Figure 7.4: Prediction with online random forests.

falls, the probability density of both the positive label and negative label
will be calculated. The final average probability density can be calculated

by averaging the statistical results of all the trees.

The entire algorithm of CRT is depicted in Algorithm 7.

7.5 Experiments

Evaluation settings

In recent years, many sequences for tracking evaluation have been publicly
available. However at the same time, one sequence may have several ver-
sions of annotation data which are edited by different people. In order to

ensure comparative experiments to be fair and accurate, we selected 20 se-

114



quences with their original annotation data. Animal, Shaking from Kwon
and Lee, 2010, Box from Santner et al., 2'010, Kitesurf, Biker, Bolt, Skiing
from K. Zhang, L. Zhang, and Yang, 2012, others from Babenko, Yang,
and Belongie, 2009, etc. These 20 sequences can reflect the 9 attributes
defined in Wu, Lim, and Yang, 2013. We compared our results with the
best experimental results reported in K. Zhang, L. Zhang, and Yang, 2012
to avoid tuning other algorithm parameters. The trackers to be compared
include the compressive tracker (CT) K. Zhang, L. Zhang, and Yang, 2012,
the fragment tracker (Frag) Adam, Rivlin, and Shimshoni, 2006, the on-
line AdaBoost tracker (OAB) H. Grabner, M. Grabner, and Bischof, 2006,
the semi-supervised tracker (SemiB) H. Grabner, Leistner, and Bischof,
2008, the MILTrack algorithm (MIL) Babenko, Yang, and Belongie, 2009,
the £1-tracker (¢;-T) Mei and Ling, 2011, the TLD tracker (TLD) Kalal,
Matas, and Mikolajczyk, 2010, and the Struck algorithm (Struck) Hare,
Saffari, and Torr, 2011. Since most of the tracking algorithms run with
randomness, the experiniental results’ accuracy fluctuates within a certain
range of accuracy. In order to objectively evaluate the performance of the
algorithm, we repeated the experiment 10 times and calculated the average

value for each result.

We use the overlap rate as the criteria to judge whether a tracking result
is successful or not. The overlap rate is calculated with a tracking result
bb (BBj) and a ground truth BB(BBy). Specifically, we employ the
PASCAL Everingham et al., 2010 measure, which states that the overlap
rate between successful BB;, and BBy should exceed 50%. This widely
used criteria is shown in Equation 7.7. Based on this criterion, the success
rate is calculated with the total number of bbs and the number of succeeded

bbs.
area(BBy,) Narea(BBgy)

area(BBy,) U area(BBgy)

We also evaluate the center location error (CLE) with ground truth data.

> 0.5. (7.7)

First we calculate the sum of the distance between each BB, ’s center
and BBy’s center. Then we compute the average distance based on each
sequence’s frame number. Note that the CLE will be largely influenced
by drifting. If the tracker completely loses the objective at a certain time
during the tracking, the CLE will become very large. Although most of
the trackers have the ability to relocate, when the detecting bb drifts away
from the objective, it is very hard for online tracers to relocate (global
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Table 7.1: Sequences used in the experiment.

Sequence Resolution Initial BB #Frames
Animal 704 x 400 300, 5, 100, 70 71
Box 640 x 480 | 476, 143, 86, 112 1161
Coupon book 320 x 240 142, 62, 62, 98 327
Cliff bar 320 x 240 | 138, 120, 38, 59 329
David indoor 320 x 240 122, 58, 75, 97 462 |
Girl 320 x 240 | 128, 46, 104, 127 502
Occluded face 2 | 320 x 240 | 112, 50, 92, 116 812
Sylvester 320 x 240 121, 58, 51, 50 1345
Shaking 624 x 352 | 225, 135, 60, 70 365
Soccer 640 x 360 | 302, 135, 66, 80 392
Twinings 320 x 240 | 126, 165, 73, 53 472
Tiger 1 320 x 240 116, 44, 38, 42 354
Tiger 2 320 x 240 16, 30, 34, 39 365
Panda 312 x 233 58, 100, 27, 22 1014
Jumping 352 x 288 | 147, 110, 33, 32 313
Kitesurf 480 x 270 201, 40, 30, 32 84
Biker 640 x 360 254, 92, 33, 42 180
Bolt 480 x 270 265, 70, 42, 74 293
Walking 768 x 576 | 692, 439, 24, 79 412
Skiing 640 x 360 | 454, 190, 48, 47 67

exploration is needed). Therefore, there is less value in evaluating the CLE
when a tracker cannot continuously keep tracking the objective. We do not
show the CLE of the TLD tracker during the sequences in which the TLD

tracker can easily lose the objective completely.

Experimental results ,

Combined with low-dimensional feature (compressed by random projec-
tion) and tree structure classifier (ORFs), the running efficiency of the
CRT is trustworthy. In fact, the CRT runs at an average 18 FPS on an
Intel Core-i7 3.4 GHz CPU with a 8 GB RAM. It’s slower than the CT
but outperforms the other compared trackers in processing time. Table
7.2 shows the SR estimated with 9 trackers. The top 3 results are shown
in bold font. The rank of each result is shown in the parentheses. Our
tracker CRT achieved the most 1st-ranks among 13 sequences. The CRT
got the highest average rank among 9 trackers. Especially with sequences
Tigerl and Tiger2, the CRT outperformed other trackers by 15% to 80%
and 30% to 80%. The robustness of the CRT is highlighted in the Tigerl
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Figure 7.5: Examples of results comparing with CT on several sequences.

and Tiger2 sequences from many aspects such as fast motion, occlusion, ro-
tation, illumination change, etc. In the Shaking sequence, the CRT adapts
the drastic illumination change better than other trackers. In the Animal
sequence, our tracker can catch up with the fast motion of a deer. Other
appearance changes can also be well maintained such as the Girl (in-plane
and out-of-plane rotation), the Cliff bar and the Coupon book (background
clutters), etc. However, in the soccer and box sequences, we obtained an SR,
below 50%. In both of the video sequences, the CRT easily fails in tracking
when heavy prolonged occlusions occur. For heavy prolonged occlusions,
our classifier continues learning from the wrong appearance information
and changes the probability density in each leaf node. When the objective
appears again, the CRT tends to track the obstructions. Table 7.3 shows
the CLE achieved by 9 trackers on 13 sequences. Although the CRT did
not achieve the best Average CLE Rank, it outperforms many trackers in
many sequences with CLE. It is worth pointing out that the CLE of the
Soccer and Box sequences is relatively high because the CRE easily fail in
these two sequences due to heavy prolonged occlusion and the result bb
usually drifts away from the objective. Figure 7.5 shows some examples on
different sequences while comparing with CT for clarity. From the results
of our experiments, we can see that for practical use, our method tends
to perform well on the sequences without prolonged occlusion and out of
view frames. For the other sequences, our tracking algorithm can perform

satisfactorily.
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7.6 Conclusion

In this chapter, we applied random projection to reduce the gray-scale fea-
ture’s dimension and realize real-time tracking under the online random
forests framework. The feature level is upgraded after compression with
the dimension reduced. Random projection fits the random forests well by
reducing the risk of overfitting. We also discovered that discarding trees
periodically effectively solved the problem of balancing the new appear-
ance information of the objective for adaptive tracking and the original
appearance information of the objective for relocation. The results of the
experiments show that our method performed robustly with many bench-
mark sequences and outperformed many state-of-the-art trackers. On the
other hand, it also showed that in some sequences, the proposed method
tends to perform poorly due to prolonged occlusion, as mentioned in Section
4.2. Future plans include trying to overcome this problem by introducing
an obstacle detection mechanism. If our tracker can refuse to learn the

feature of the obstacles, we believe performance can be further improved.

Table 7.2: Evaluationl: Success Rate(SR). The rank of each result is shown

in the parentheses. The top 3 results are shown in bold font.

Sequence CRT CT Struck MILT TLD OAB £,-T SemiB Frag
Animal 99(1) | 76(3) | 97(2) | 73() | 5@ | 15(7) 5(8) | 47(6) | 3(9)
Box 29(4) | 89(2) | 92(1) | 65(3) | 92(1) | 13(7) 5(8) | 38(5) | 16(6)
Coupon book | 100(1) | 100(1) | 99(2) | 99(2) | 16(6) | 98(3) | 100(1) | 37(4) | 27(5)
CHft bar 91(1) | 89(2) | 70(3) | 65(5) | 67(4) | 23(7) | 38(6) | 65(5) | 22(8)
David indoor 76(3) | 89(2) | 98(1) | 68(4) | 98(1) | 31(7) | 41(6) | 46(5) | 8(8)
Girl 100(1) | 78(d) | 99(2) | 50(8) | 57(7) | 71(5) | 90(3) | 50(8) | 68(6)
Occluded Tace2 | 100(1) | 100(1) | 78(4) | 99(2) | 46(7) | 47(6) | 84(3) | 40(8) | 52(5)
Sylvester 78() | 75(6) | 87(2) | 80(3) | 94(1) | 70(4) | 46(6) | 68(5) | 34(7)
Shaking 97(1) | 92(2) 1(9) | 85(3) | 16(7) | 40(4) T0(8) | 31(5) | 28(6)
Soccer 18(3) | 78(1) | 14(5) | 17(4) | 10(7) | 8(9) 13(6) 9(8) | 27(2)
Twinings 95(2) | 89(3) | 98(1) | 72(5) | 46(7) | 98(1) | 83(4) | 23(8) | 69(6)
Tiger 1 93(1) | 78(2) | 73(3) | 39(5) | 65(4) | 24(7) 13(9) | 28(6) | 19(8)
Tiger 2 92(1) | 60(2) | 22(6) | 45(3) | 41(4) | 37(5) 12(0) | 17(7) | 13(8)
Panda 93(1) | 81(2) | 13(8) | 75(3) | 29(7) | 69(4) | 56(6) | 67(5) | 7(9)
Jumping 100(1) | 100(1) 8(6) | 99(2) | 99(2) | 86(3) 9(7) | 84(4) | 36(5)
Kitesurf 94(1) | 68(3) | 40(6) | 90(2) | 65(5) | 31(7) | 31(7) | 67(4) | 10(8)
Biker 88(1) | 75(2) | 35(5) | 21(8) | 42(d) | 42(4) | 31(6) | 62(3) | 26(7)
Bolt 60(3) | 79(2) 10(6) | 83(1) | 1(3) | 1(8) 207) | 16(5) | 39(4)
Walking 100(1) | 89(3) | 100(1) | 32(6) | 55(5) | 86(3) | 98(2) | 8L(4) | 32(6)
Skiing T00(1) | 70(3) | 80(2) | 42(6) | 59(5) | 69(4) 10(7) | 69(4) | 7(8)
Ave. SR Rank 1.65 2.30 3.75 4.00 4.80 5.25 5.95 5.45 6.55
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Table 7.3: Evaluation2: Center Location Error(CLE). The rank of each
result is shown in the parentheses. The top 3 results are shown in bold
font.

Sequence CRT CT | Struck | MILT | TLD | OAB | ¢,-T | SemiB | Frag
Animal 14(1) | 17(2) | 17(2) | 32(4) | —(0) | 62(5) | 155(7) | 25(3) | 99(6)
Box 152(5) | 14(2) | 11(1) | 14(2) | —(0) | 74(3) | 196(7) | 119(4) | 160(6)
Coupon book 17(5) | 4(1) | 104 | 6(2) | - | 9(3) | 6(2) | 74(7) | 63(6)
Chiff bar 12(2) | 7(1) | 20(3) | 7(1) | —(0) | 33(@) | 35(6) | 56(7) | 34(5)
David indoor 26(5) | 16(3) | 9(1) | 19(4) | 12(2) | 57(8) | 42(7) | 37(6) | 73(9)
Girl 20(3) | 21(4) | 10(1) | 25(6) | —(—) | 23(5) | 13(2) | 50(8) | 26(7)
Occluded face 2 | 16(2) | 10(1) | 25(4) | 16(2) | —(-) | 36(5) | 19(3) | 39(6) | 58(7)
Sylvester TI(4) | 9(2) | 9(2) | 10(3) | 7(1) | 12(5) | 42(7) | 14(6) | 47(3)
Shaking 10(2) | 9(1) | 166(7) | 12(3) | —(0) | 22(4) | 192(8) | 133(5) | 134(6)
Soccer 119(6) | 16(1) | 95(4) | 64(3) | —(—) | 96(5) | 189(8) | 135(7) | 54(2)
Twinings 12(3) | 9(2) | 7(1) | 14(4) | 15(5) | 7(1) | 10(3) | 70(6) | 15(5)
Tiger 1 9(1) | 10(2) | 12(3) | 27(4) | —() | 42(6) | 48(7) | 39(5) | 39(5)
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- Algorithm 7 Coupled Randomness Tracking.

Require: Image Sequence [

Require: Number of trees in ORFs T’

Require: Parameter number of Poisson distribution 6y
Require: Minimum number of samples for split 8y
Require: Minimum value of information gain for split 6,
Require: Maximum depth of every random tree 63

1: frame number i + 0
2: Draw initial bb
i1+ 1
4: while I; exists and 7 > 0 do
5: if i1%2 is 0 then
6: for m from 1 to T/2 do
7: discardTree(t,)
8: end for t
9: end if
10: Do Sampling by Equation 7.4 with I;_; and I;
11: Do Feature compression by Equation 7.2
12: for j th decision tree from 1 to T do
13: for every X' in X;, and X, do
14: K <« Poisson(fp)
15: if K > 0 then
16: for k from 1 to K do
17: n = findLeaf(X')
18: updateNode(n, (X', C))
19: if |n| > 6, and 3s € S : IG(n,s) > 6 and depth(n) < 03
then
20 $n = argmax IG(n, s)
sES
21 split(n,s,)
22 end if
23: end for
24: end if
25: end for

26: end for
2T for every X' in X, do
28: Calculate p(C = —1]X') and p(C = 1|X)
29: end for
30: Xig) = argmax p(C = 11X
X' eX,
31: draw bb with P(Xy)
32: 1141
33: end while
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Chapter 8

CONCLUSION

In this dissertation, many matching tasks are studied following the proce-
dures: 1) feature selection, ’2) similarity measure, and 3) search strategy
design. These tasks can be mainly categorized as: Parametric (geomet-
ric model based) tasks and non-parametric (non-geometric model based)
tasks. Parametric methods are very limited in application because a pre-
determined geometric is needed in order to do the matching. One the
other hand, non-parametric methods can be more widely applied and ro-
bust against the appearance change. In Chapter 2 and 3, as an example of
parametric matching, affine and projective model based template match-
ing tasks are studied respectively. In Chapter 4 and 5, for the tasks that
parametric methods cannot be applied, non-parametric template matching
methods are studied which do not assume any specific deformation mod-
els. In Chapter 6, non-parametric image matching problem with modified
query image is studied. In Chapter 7, non-parametric online visual tracking

problem is studied.

As the future work, we plan to apply the research results to real-world
scenes and contribute to the industry. Although many template matching
applications have been developed last decades, we believe that our methods,
which are more robust with the object’s geometric changes and object’s
appearance changes, can help improve the existing industry systems toward

a more practical level.

123



