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Mathematical treatment for the oscillation of the

solution of the equation for Foucault’s pendulum

Fumio Nakajima ∗

1 Introduction

We shall consider the 4-dimensional non-linear system

ẋ = Ax + f(x) (1)

where x = x(t) is the 4-dimensional vector-valued function of t, x = (xk(t)),

1 ≤ k ≤ 4, ẋ =
� d

dt
xk(t)

�
, 1 ≤ k ≤ 4, |x| the norm of x, for example

|x| =
4�

k=1

|xk|, f(x) is differential with respect to x,

|f(x)| = o(|x|) as |x| → 0 (2)

and moreover A is the constant 4 × 4 matrix, A = (aij)
1≤i≤4
1≤j≤4, and |A| the

operator norm with respect to |x|. As is stated in the below, the equation
for Foucault’s pendulum may be written in the form of (1) and (2), and
furthermore the following assertion is made in the arguments of its physics

If every eigenvalue of A is not a real number and if |x(0)| is sufficiently
small and not zero, then each component xk(t) of solution x(t) oscillates.
Although this assertion is seemed in the physics to be treated with no prob-
lem, we propose to investigate it from the view of mathematics.

Now, the equation for Foucault’s pendulum is the following

�
ẍ + ax = bẏ − x

l2
v

ÿ + ay = −bẋ − cż − y
l2

v
(3)

where t is time, x and y are functions of t, · denotes the derivative with
respect to t, v is defined by (4)

�
v = ẋ2 + ẏ2 + ż2 + b(xẏ − ẋy) + c(ẏz − yż) − clẏ − gz

z = l −
�

l2 − x2 − y2 , ż = xẋ+yẏ
l−z

(4)
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and g is the gravitational constant, l the length of the string of the pendulum,
a = g

l , b and c are positive constants determined from the latitude on the
earth to the position of the supporting point of the pendulum. Our initial
condition is that x(0) �= 0 and x(0) = y(0) = ẏ(0) = 0, and it is a feature
that y(t) begins to oscillate as t goes on, which exhibits the rotation of the
earth.

When we set that x = (x, ẋ, y, ẏ), the linear part of (3) may be written
in the following system

ẋ = Ax (5)

where

A =




0 0 1 0
−a 0 0 b
0 0 0 1
0 −b −a 0


 (6)

and f(x) comes from v.
The assertion made in the arguments of physics is the following : (3) is
reduced to (5) by the neglect of higher order terms of x

l and y
l when x

l and
y
l are sufficiently small, and since every eigenvalue of A of (6) is distinct
and pure imaginary number, x(t) and y(t) of non-identically zero solutions
of (5) oscillate. Therefore x(t) and y(t) of non-identically zero solutions of
(3) with small initial value oscillate ( see [3], [4], [5], [6] ).

We think that the oscillations of solutions of (5) do not necessarily im-
ply the oscillations of solutions of (3) with small initial value, and as our
conclusion of the investigation that we additionally require the stability for
identically zero solution of (3), which may guarantee for the above reduction
to hold for all t > 0 and result the infinitely many times oscillations of x(t)
and y(t), respectively.

We shall state our results of Theorems 1, 2 and 3 in below, whose proofs
will be shown in the section 2, respectively. Through this paper we may
assume that A satisfy the following conditions (i) and (ii) :

(i) every eigenvalue of A is not a real number

(ii) A cannot be taken to the following form by any permutation of 1 ≤ i,
j ≤ 4

A =

�
A1 0
A2 A3

�

where A1, A2, A3 and O are 2 × 2 matrices and O is the zero matrix.

Theorem 1
Let u(t) = eAtu(0) , where u(0) is the 4-dimensional nonzero vector. Then
each component uk(t) of u(t), 1 ≤ k ≤ 4, is not identically zero and oscillates
infinitely many times in the manner such that uk(t) changes its sign on the
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interval [nT, (n + 1)T ], where T is a positive constant and n is any positive
number, that is, there exist at least two numbers t1 and t2, nT ≤ t1 ≤ t2 ≤
(n + 1)T , such that

uk(t1)uk(t2) < 0 (7)

Remark 1
In the proof of Theorem 1, two kind of T ’s are given depending on the
multiplicity of eigenvalues of A.

Theorem 2
Let x(t) be a solution of (1) with initial condition x(0) which is not zero and
sufficiently small. Then each component xk(t) of x(t) for 1 ≤ k ≤ 4, changes
its sign on the interval 0 ≤ t ≤ T , where T is the constant of Theorem 1,
that is , there exist at least two numbers t1 and t2, 0 ≤ t1 ≤ t2 ≤ T , such
that

xk(t1)xk(t2) < 0 (8)

Moreover, if the identically zero solution of (1) is stable, then each com-
ponent xk(t) of x(t) oscillates infinitely many times in the manner as in
(7).

Remark 2
The stability of identically zero solution of (1) is not seemed to be known
because the eigenvalues of A of (6) are purely imaginary numbers.

Next we shall treat the damped case of (3) such that

ẍ + kẋ + ax = bẏ − x
l2

v
ÿ + kẏ + ay = −bẋ − cż − y

l2
v

(9)

where k is a positive constant.

Theorem 3
Assume that (10) and (11) hold

a < 4 (10)

k2 >

�
K2 + a(4 − a)(2a + b)2 − K

4 − a
(11)

where K = 2a + 2b2 − ab2 − 2a2. Then the identically zero solution of (9) is
asymptotically stable. Consequently if |x(0)|+ |ẋ(0)|+ |y(0)|+ |ẏ(0)| is not
zero and sufficiently small, then the both of x(t) and y(t) oscillate infinitely
many times in manner of (7), respectively.

Remark 3
Since a = g

l , (10) means that l is sufficiently large compared with g.
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2 Proofs of Theorem 1, 2 and 3

2.1 Proof of Theorem 1

Clearly u(t) satisfies
u̇(t) = Au(t)

which may be written in the following such that for 1 ≤ k ≤ 4,

u̇k(t) =
4�

j=1

akjuj(t) (12)

Now we shall prove that

uk(t) �≡ 0 for 1 ≤ k ≤ 4 (13)

On the contrary suppose that some componentof u(t) is identically zero, say

u1(t) ≡ 0 (14)

If a12 = a13 = a14 = 0, then a11 must be the real eigenvalue of A, and hence
a1k is not zero for some 2 ≤ k ≤ 4, which may be written by a permutation
of {1, 2, 3, 4} that

a12 �= 0 (15)

and moreover by a suitable choice of the unit of t that

a12 = 1 (16)

It follow from (12) that

u2 = −a13u3 − a14u4 (17)

and moreover that u3 and u4 satisfy the 2-dimensional system
�

u̇3

u̇4

�
= B

�
u3

u4

�
(18)

where B is the 2 × 2 matrix, B = (bij)
1≤i≤2
1≤j≤2, and

b11 = a33 − a32a13 b12 = a34 − a32a14

b21 = a43 − a42a13 b22 = a44 − a42a14

Now we shall show that

u3 ≡ u4 ≡ 0 (19)

If (19) does not hold, then the two eigenvalues of B are not real numbers.
In fact, in the case of (i) where eigenvalues of A are simple complex numbers,
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we may write these eigenvalues in form such that λ1 = α1 + iβ1 and λ2 =
α2+iβ2, where α1, α2, β1 and β2 are real numbers, β1 �= 0, β2 �= 0 and either
α1 �= α2 or β1 �= β2. Therefore the argument of the Jordan canonical form
of A shows that u3(t) and u4(t) take the form such that

uk(t) = eα1t(Ck1 cosβ1t+Dk1 sinβ1t)+ eα2t(Ck2 cosβ2t+Dk2 sinβ2t) (20)

where Ck1, Ck2, Dk1 and Dk2 are constants for k = 3 and for k = 4. On the
other hand, in the case of (ii) where eigenvalues of A are double and complex
numbers, we may write these eigenvalues in the form such that λ = α + iβ,
where α and β are real numbers and β �= 0, and u3(t) and u4(t) take the
form such that

uk(t) = eαt{(Ck1 + tCk2) cosβt + (Dk1 + tDk2) sinβt} (21)

where Ck1, Ck2, Dk1 and Dk2 are constants for k = 3 and for k = 4. In order
that (18) has the solution of the form of either (20) or (21), eigenvalues of
B must be complex conjugate numbers, say λ = α + iβ, where α and β are
real numbers and β �= 0. Therefore both (20) and (21) are reduced to the
form such that

uk(t) = eαt(Ck cosβt + Dk sinβt) (22)

where Ck and Dk are constants for k = 3 and for k = 4. We shall show that
u3(t) ≡ 0. From (18) it follows that

u̇3(t) = b11u3(t) + b12u4(t) (23)

and hence substituting (22) into the right hand side of (23) we obtain that

u̇3(t) = eαt(E1 cosβt + E2 sinβt) (24)

where E1 = b11C3 + b12C4 and E2 = b11D3 + b12D4. On the other hand, it
follows from the direct differentiation of u3(t) of (22) that

u̇3(t) = eαt{(αC3 + βD3) cosβt + (αD3 − βC3) sinβt} (25)

Equating the both of the right hand sides of (24) and (25) we may obtain
the equation such that

αC3 + βD3 = E1

αD3 − βC3 = E2
(26)

Since (26) must hold if β is replaced by −β, it follows that

αC3 − βD3 = E1

αD3 + βC3 = E2
(27)

(26) and (27) implies that
C3 = D3 = 0 (28)
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which implies that u3 ≡ 0. Similarly we may show that u4 ≡ 0. Above all
we obtain that u3 ≡ u4 ≡ 0, which contradicts to our assumption such that
(19) does not hold.

Next we shall show that (7) holds. If (7) does not hold, then we may
assume that

uk(t) ≥ 0 for nT ≤ t ≤ (n + 1)T (29)

for some k, 1 ≤ k ≤ 4, and for some positive number n. Firstly we shall teat
the case where eigenvalues of A are simple, and hence uk(t) takes the form
of (20). In this case we set T to be any number such that

T >
π

β1
+

π

β2
(30)

where both of β1 and β2 in (20) are assumed to be positive. Now we consider
the function w(t) such that

w(t) = e−α1tuk(t) (31)

that is

w(t) = Ck1 cosβ1t + Dk1 sinβ1t + e(α2−α1)t(Ck2 cosβ2t + Dk2 sinβ2t)

(29) and (31) imply that

w(t) ≥ 0 for nT ≤ t ≤ (n + 1)T (32)

Moreover we see that

w(t) + w
�
t +

π

β1

�
= e(α2−α1)tz(t) (33)

that is

z(t) = Ck2 cosβ2t+Dk2 sinβ2t+e
(α2−α1)

π
β1 {Ck2 cos(β2t+

β2

β1
π)+Dk2 sin(β2t+

β2

β1
π)}

where (32)implies that

z(t) ≥ 0 for nT ≤ t ≤ nT + T − π

β1
(34)

Since
z(t) + z

�
t +

π

β2

�
≡ 0 (35)

it follows from (34) that

z(t) ≡ 0 for nT ≤ t ≤ nT + T − π

β1
− π

β2
(36)
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Therefore (33) implies that

w(t) + w
�
t +

π

β1

�
≡ 0 for nT ≤ t ≤ nT + T − π

β1
− π

β2
(37)

and hence (32) that

w(t) ≡ 0 for nT ≤ t ≤ nT + T − π

β1
− π

β2
(38)

which implies together with (31) that

uk(t) ≡ 0 for nT ≤ t ≤ nT + T − π

β1
− π

β2
(39)

Since uk(t) is analytic for t and T > π
β1

+ π
β2

, (39) implies that

uk(t) ≡ 0 (40)

which contradicts to our first assertion of Theorem 1.
Secondly we shall treat the case of (i) where eigenvalue of A are double

complex numbers, and hence uk(t) takes the form of (21). In this case, we
set T to be any number such that

T >
π

β
(41)

where β is the number of (21) and positive. Now we consider

w(t) = e−αtuk(t) (42)

this is
w(t) = (Ck1 + tCk2) cosβt + (Dk1 + tDk2) sinβt (43)

(29) and (42) imply that

w(t) ≥ 0 for nT ≤ t ≤ (n + 1)T (44)

Since
w(t) + w

�
t +

π

β

�
≡ 0 (45)

it follows from (44) that

w(t) ≡ 0 for nT ≤ t ≤ nT + T − π

β
(46)

and hence from (42) that

uk(t) ≡ 0 for nT ≤ t ≤ nT + T − π

β
(47)

Since uk(t) is analytic for t and T > π
β , we may see that

uk(t) ≡ 0

which is a contradiction. Thus the proof of Theorem 1 is completed.
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2.2 Proof of Theorem 2

Firstly we shall prove the first part of our assertion such that each component
xk(t) changes its sign on the interval [0, T ] when |x(0)| is not zero and
sufficiently small.

On the contrary suppose that this does not holds, and hence that

xk(t) ≥ 0 for 0 ≤ t ≤ T (48)

Setting m to be the number such that

m = max
0≤t≤T

|x(t)|

which is positive, we may see from the continuity of solutions of (1) with
respect to its initial value x(0) that

m → 0 as |x(0)| → 0

and from (2) that
|f(x(t))|

m
→ 0 (49)

uniformly for 0 ≤ t ≤ T as |x(0)| → 0. Setting

u(t) =
x(t)

m

we may obtain the following

u̇(t) = Au(t) +
f(x(t))

m
(50)

|u(t)| ≤ 1 for 0 ≤ t ≤ T (51)

|u(s)| = 1 for some s, 0 ≤ s ≤ T (52)

We may obtain from (50) that

|u̇(t)| < |A| + 1 for 0 ≤ t ≤ T (53)

when |x(0)| is sufficiently small. Since (51) and (53) imply that the fam-
ily {u(t)}, where m is sufficiently small, is uniformly bounded and equi-
continuous on [0, T ], and hence we may assume by Ascoli-Arzera’s theorem
that {u(t)} converges uniformly on [0, T ] as |x(0)| → 0. Therefore we may
set

w(t) = lim
x(0)→0

u(t) (54)

and hence it follows from (49) and (50) that

ẇ(t) = Aw(t) (55)
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where (52) implies that |w(σ)| = 1 for some σ, 0 ≤ σ ≤ T and (48) implies
that

wk(t) ≥ 0 for 0 ≤ t ≤ T (56)

These contradict to the conclusion of Theorem 1, and hence the first part of
our assertion is proved. The second part is proved similarly. In fact, since
the identically zero solution of (1) is stable, we may assume that x(t) is
sufficiently small for all t > 0 when x(0) is sufficiently small. Therefore the
argument of our first holds for [nT, (n+1)T ] for any positive number n, and
hence each component xk(t) changes its sign on [nT, (n+1)T ], which shows
the second part of our assertion. Thus the proof of Theorem 2 is completed.

2.3 Proof of Theorem 3

We shall prove that identically zero solution of (9) is asymptotically stable.
The linear part of (9) is the following

ẍ + kẋ + ax = bẏ
ÿ + kẏ + ay = −bẋ

(57)

which has the characteristic equation such that

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0 (58)

where
a1 = 2k, a2 = k2 + b2 + 2a, a3 = 2ak, a4 = a2 (59)

It follows from [Routh-Hurwitz problem, 2] that generally every root of (58)
has a negative real part if and only if

a1 > 0, a2 > 0, a3(a1a2 − a3) > a22a4 (60)

which is equal to the following in the case of (59)

(4 − a)k4 + 2Kk2 − a(4 − a)(2a + b)2 > 0 (61)

Since (10) and (11) implies (60), every root of (58) with (59) has a negative
real part. Therefore [Theorem 1.1, 1] guarantees that the identically zero
solution of (9) is asymptotically stable, and hence the proof is completed.
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