IEICE TRANS. COMMUN., VOL.E92-B, NO.4 APRIL 2009

1119

[PAPER Special Section on Internet Technology and its Architecture for Ambient Information Systems |

An Automatic Unpacking Method for Computer Virus Effective in
the Virus Filter Based on Paul Graham’s Bayesian Theorem

Dengfeng ZHANG ', Nonmember, Naoshi NAKAYA®, Yuuji KOUI', Members,

SUMMARY Recently, the appearance frequency of computer virus
variants has increased. Updates to virus information using the normal pat-
tern matching method are increasingly unable to keep up with the speed
at which viruses occur, since it takes time to extract the characteristic pat-
terns for each virus. Therefore, a rapid, automatic virus detection algo-
rithm using static code analysis is necessary. However, recent computer
viruses are almost always compressed and obfuscated. It is difficult to de-
termine the characteristics of the binary code from the obfuscated com-
puter viruses. Therefore, this paper proposes a method that unpacks com-
pressed computer viruses automatically independent of the compression
format. The proposed method unpacks the common compression formats
accurately 80% of the time, while unknown compression formats can also
be unpacked. The proposed method is effective against unknown viruses
by combining it with the existing known virus detection system like Paul
Graham'’s Bayesian Virus Filter etc.

key words: virus, obfuscate, compression, unpacking, Bayesian virus filter

1. Introduction

Damage due to computer viruses, which will be referred to
simply as viruses, has become a serious problem, since per-
sonal computers are widely used in universities, research or-
ganizations, and enterprises, as well as at home. According
to information provided by the Information-technology Pro-
motion Agency of Japan (IPA) on the occurrence of viruses
in Japan, in 2007, there were 166 new types of viruses,
which is more than the total number of viruses reported in
2006 (156 types), [1]. Of these 166 virus types, 46 of them
were reported for the first time. In addition, the appearance
frequency of virus variants has increased steadily*. Due to
this increase in the appearance frequency of virus variants,
the updates for antivirus software have had difficulties in
providing up-to-date patches, since it takes time to deter-
mine the characteristic pattern (signature) of a new virus.
Because the damage caused by viruses spreads rapidly in a
short period of time, it is very important to detect unknown
viruses.

To detect unknown viruses, the following techniques
are available: static code analysis techniques, which analyze
the virus at the assembler level [2]; techniques that analyze
the behavior of the virus at the network level by running the

Manuscript received July 28, 2008.
Manuscript revised November 17, 2008.
"The authors are with Engineering Graduate Course, Iwate
University, Morioka-shi, 020-8551 Japan.
""The author is with Super Computing and Information Sci-
ences Center, Iwate University, Morioka-shi, 020-8550 Japan.
a) E-mail: zhang@mn.cis.iwate-u.ac.jp
DOI: 10.1587/transcom.E92.B.1119

and Hitoaki YOSHIDA ™", Nonmember

virus [3]; and techniques that detect an unknown virus using
the naive Bayes learning algorithm [4], [5].

Analyzing a virus statically can detect an unknown
virus quickly. Strings, which are the characteristic points
in the virus binary files, are used well in static virus anal-
ysis. The Strings are the data of the printable characters in
the binary file, which can be extracted from a virus binary
file, including the Dynamic Link Library (DLL) name and
the Application Program Interface (API) that are used by
the virus, the words that are used in the body of the mail
in a virus that has a mail transmitting function, the path of
the file or the registry keys in the virus file, and the ASCII
strings that appear at random in the virus file. The charac-
teristic points of the virus can be obtained by extracting the
Strings from a virus binary file.

Recently, however, virus files are often compressed us-
ing some compression tools. The virus file is compressed
in such a way that it decompresses itself into the memory at
runtime. Since the virus code is compressed and obfuscated,
it is difficult to analyze the virus file statically and extract the
characteristic points from a compressed virus binary file [5].
Thus, in order to efficiently detect the unknown virus, it is
necessary to automatically unpack it first.

Recently, new compression tools have been rapidly cre-
ated. Since some compression tools are published as open
source by the authors, the deformation of the compression
tools is publicly available. Under such conditions, the de-
velopment of a decompression tool cannot catch up with the
development of the compression tool. Thus, an unpack tech-
nique that is independent of the compression type is neces-
sary to quickly detect a computer virus.

In this paper, an automatic unpack technique for a com-
pressed computer virus, using the decompression routine of
the compression tool itself, is proposed. Concretely, the

-virus is forced to act in Microsoft Windows, on which the

virtual machine environment VMWare has been installed,
which controls the compression tool in the debug mode and,
then, dumps the memory images of the virus at the end of
the decompression routine.

Section 2 will present the compression conditions of
the present computer virus, while Sect. 3 will describe the
proposed technique. Section 4 will consider a Bayesian an-
tivirus filter, which uses Paul Graham’s Bayesian learning

* A variant of W32/Sober that first appeared in November 2005
had more than 70 types in only 2 months.

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers

1120

algorithm to detect the unknown virus. Section 5 will give
the result of experiments and an evaluation of the proposed
technique. Finally, Sect. 6 will summarize the results of this

paper.

2. Compression Conditions of Current Computer
Viruses

The Microsoft Win32 executable file always follows the -

Windows PE-format [6]. Figure 1 shows the algorithm fol-
lowed by the PE-format, where the compression tool com-
presses and obfuscates each section of the executable file,
with a decompression routine at the head of the compressed
data. This becomes a new executable file that follows the
Windows PE-format. When the compressed executable file
is run, the decompression routine is executed first, and it de-

IEICE TRANS. COMMUN., VOL.E92-B, NO.4 APRIL 2009

known that the characteristic points of the virus cannot be
extracted from the compressed virus file.

2.1 The Need for Unpacking

As previously mentioned, the characteristic points of the
original virus file are hidden by compression. The paper
[5] shows that, using Paul Graham’s Bayesian Virus Filter,
a compressed nonvirus file will be classified as a virus file,
since the extracted features will be the characteristic points
of the compressed file and not that of the original uncom-
pressed file.

In order to determine the characteristics of viruses, the
data provided by the Information Sciences Center, Iwate

Table 1 Number of successfully extracted features with or without
compresses the compressed data to the memory. Next, the compression.
poiqter is moved to the Original Entry Point, and the original T e
file is executed, _ Windows AP | 173 8 7%
The size of the compressed virus becomes small and Strings 208 74 1.5%
easy to distribute through the network. As well, it becomes
difficult to extract the virus characteristic points (Windows
API, Strings etc.) from the compressed virus file. For com- Table2 Virus compression types.
parison’s sake, Windows’s Notepad 5.1 was compressed us- Compression Type ratio(%)
ing UPX2.0, and then Strings were extracted, and the Win- UPX 36%
dows API was determined using the GNU command Strings, iescl‘)’:clia“ }3;‘;
which works on UNIX. Table 1 shows the results. The num- FSG 10%
ber of Windows APIs and Strings that can be extracted from PEX 8%
the compression is less than the number that can be extracted Morphine 6%
before compression. However, there were only three com- RN 6%
mon Windows APIs between the before-and-after compres- g(;?:rs PR iZZ
sion files. Thus, the three APIs are the minimum necessary Uncompressed 5%
for the compression tool. As mentioned above, it is well
Memory
Memory
Decompress
Orignal Compressed . code
executable executable e 5 BTy JUMP
code
.code Decompress
code | | fTTmeealll &
Hota Load o Com:r:essed ___)execute eade lcz):tgr;n:i)im
rdata Compressed - Jidata
data
.reloc _,-"' \“ rdata
— S
‘\\ reloc

Fig.1 The memory conditions when the compressed file is executed.

ZHANG et al.: AN AUTOMATIC UNPACKING METHOD FOR COMPUTER VIRUS EFFECTIVE IN THE VIRUS FILTER

University, in 2005 using the antivirus tool F-Prot [7] were
examined. Table 2 shows the results of comparing the differ-
ent types of compression used for the viruses. The compres-
sion types were obtained using the compression type dis-
tinction tool PEiD [8].

In addition, it should be noted that over 90% of all
viruses were compressed. Thus, it can be concluded that
an unpack technique is necessary for virus detection.

3. Unpack Techniques
3.1 Summary

A compressed virus must first be unpacked before it can be
analyzed. Currently, various techniques are available for un-
packing a virus. For example, a technique that unpacks a
virus by using a suitable decompression algorithm for an-
alyzing the compression type of the compressed virus was
proposed in [9]. However, this technique only unpacks the
viruses that are compressed by well-known compression al-
gorithms such as LZ77 or LZW. As'well, this method cannot
unpack a virus that has been obfuscated. Another unpack
technique, proposed in [10], executes the virus and dumps
the main module of the virus process from memory by enu-
merating and comparing the system process list. However,
recent viruses usually create more than one process when
they are executed. As well, viruses hide their processes so
that the processes cannot be enumerated using Windows’s
APIL For example, when W32/Bagle is run, it displays an
alert window, and it does not create any virus processes
until the alert window is closed. On the other hand, the
W32/Warezove virus first executes the standard Windows
application Notepad.exe when it is run, which makes the
virus’s own process creation timing change dynamically.
For such viruses, it is difficult to dump the virus process
because the virus process cannot be obtained.

In this paper, an unpack technique using a compres-
sion tool’s own decompression routine is proposed. When
a compressed virus is run, the decompression routine that
is created by the compression tool is first executed. Then,
the decompression routine decompresses the virus to mem-
ory. By the end of the decompression routine, it jumps to
the Original Entry Point and the virus begins to run.

Since the proposed technique uses the compression
tool’s own decompression routine, the compression algo-
rithm of the virus is irrelevant. Of note, the proposed tech-
nique works by controlling the compression tool, not the
virus. Furthermore, since the proposed technique stops be-
fore the virus is executed, virus antidetection is also irrele-
vant. For example, if the virus monitors the VM machine
or the time, virus execution will be stopped. This does not
influence the proposed technique, even though the proposed
technique works on the VM machine.

In the proposed technique, the virus is executed in Win-
dows Debug mode and is controlled with the one-step mode
using Breakpoints. At the end of the decompression rou-
tine, the processes are stopped and the decompressed mem-

1121

Create Process on debug mode

Y

Set BreakPoint at StartAddress

Y

Get number of API
the number is over 15?

Set single breakpoint

Is original entry point?

Dump the memory image

> End

Fig.2 The operation flow of the automatic unpacking system.

ory image is dumped from memory. The dumped memory
image contains all the characteristic points of the original
virus file. Figure 2 describes the flow of the proposed tech-
nique.

At first, the virus process is created in the Windows
Debug mode. A breakpoint is then set at the StartAddress,
which is the begin address of the process. When the process
jumps to the Original Entry Point, this process is stopped,
and a memory dump is performed.

Since the address of the Original Entry Point is dif-
ferent in each compression type, it is important to find the
Original Entry Point in the automatic unpack technique.
However, because some viruses are multiplex compressed,
it is insufficient to judge whether the compression is decom-
pressed completely with the Original Entry Point only. A

- new indicator is necessary to judge whether or not the com-

pressed virus is completely decompressed.

Recently, some compression tools have an antidebug
function using the Structured Exception Handling (SEH)
[11],[12], which makes it more difficult to debug the com-
pressed virus. A solution to this problem is presented later
in this section.

3.2 Determining the Original Entry Point

In the automatic unpacking system, it is important to de-
termine the Original Entry Point to dump the memory im-

1122

100000

10000 -

Length of Jump

'
Aspack2.12 UPX2.0 FSG2.0

Fig.3 Top ten jumps in compressed files.

age based on the point of the executable file. When the de-
compression routine of the compression tool expands com-
pressed data into memory, it has to expand the compressed
data in different segments from itself, since the Windows op-
erating system allocates memory by page [13]. Therefore,
the jump from the decompression routine code to the orig-
inal entry point is a over segment jump, which will be re-
ferred to as a “big jump.” The presence of a “big jump” can
be used to determine whether or not all of the compressed
data has been decompressed.

Notepad Ver.5.1 that was compressed with UPX2.0,
Aspack2.12, and FSG2.0 was analyzed using the assembler
level analyzing debugger OllyDbg [14]. The top ten jumps
in each compressed file are shown in Fig. 3, where the nu-
meric value of the y-axis shows the jump steps. Obviously,
a “big jump” occurs in every compressed file when the pro-
cess jumps to the Original Entry Point. This implies that the
compress tool has unpacked the original file data to a dif-
ferent segment from itself. The Original Entry Point can be
determined by finding the “big jump” in the virus process.

3.3 Judging the End of the Decompression Routine

To judge whether the compression data are completely de-
compressed, a test was performed using the following data:

Compressed Virus The viruses that were compressed by
some compression tools, such as UPX, ASPack, or
FSG. In 2005, there were 53 virus types in the virus
database created by the Information Sciences Center,
Iwate University.

Uncompressed Virus The viruses that were not com-
pressed. In 2005, there were three uncompressed virus
types in the virus database created by the Information
Sciences Center, Iwate University.

Compressed Executable File The Win32 executable files
that were compressed using the compression tools.
In this experiment, Notepad.exe and telnet.exe were
compressed using seven different types of compression
tools.

Uncompressed Executable File The general Win32 exe-

IEICE TRANS. COMMUN., VOL.E92-B, NO.4 APRIL 2009

T
compressed files ! o
uncompressed files X

25

20

Total of files
&

X

L] ° ° X
L] X KRR K
5 A L] : ; : X . wa XXI<
7] 10 15 30 50 100 300 500

Total of apis

Fig.4 Number of extracted APIs from compressed and uncompressed
files.

cutable files that were not compressed. In this exper-
iment, 40 types of uncompressed executable files were
randomly chosen from Windows.

Thus, there was a total of 100 different patterns from which
Strings were extracted and the number of Windows API
were counted. Figure 4 shows the number of extracted APIs
from the compressed and uncompressed files.

As Figure 4 shows, the Windows APIs are barely ex-
tracted from the compressed executable files. The Windows
APIs that are extracted are the API associated with the de-
compression routine of the compression tool. By compar-
ison, more than 100 Windows APIs are extracted from the
uncompressed executable file. However, there were no com-
pressed executable files with more than 15 APIs. There-
fore, it is possible to determine whether an executable file is
compressed by counting the number of Windows APIs that
can be extracted from it. The threshold number of Windows
APIs was set at 15 in the proposed technique.

3.4 SEH Processing

Structured Exception Handling (SEH) is an exception pro-
cessing service that is provided by the Windows operat-
ing system. Usually, exception processing code is only de-
scribed in the program with _try/_except. An exception man-
agement structure and call-back function are formed auto-
matically by the compiler. The exception processing is run
when an exception occurs in the program.

Figure 5 is the structure diagram of SEH. When an ex-
ecutable file is run in Windows, the thread information will
be saved in the Thread Environment Block (TEB) structure.
The address of TEB is always stored in the Segment Regis-
ter (FS). The SEH structured exception processing is stored
as a chain in the memory, where the address of SEH is the
first element of the TEB (FS:[0]). In passing, the value of
FS:[30h] is the linear address of Process Environment Block
(PEB) which will be used in Sect. 3.6.

When an exception occurs in a program, Windows runs
the exception processing in the following algorithm:

ZHANG et al.: AN AUTOMATIC UNPACKING METHOD FOR COMPUTER VIRUS EFFECTIVE IN THE VIRUS FILTER

1123

Thread Environment Block

EXCEPTION_REGISTRATION

_except_handler(...)

EXCEPTION_REGISTRATION (FS:[0])—

{
prev // Except code

}

Linear address of
Process Environment Block

handler
Callback pointer

(PEB) (FS:[30h])

Other Fields...

EXCEPTION_REGISTRATION

_except_handler{...)

{

prev // Except code
}

handler
Callback pointer

>

Fig.5 Detailed specifications of SEH processing.

1. The OS gets the address of the SEH structure chain
from the FS register of the current process (thread).
The SEH structure has two members: one is the ad-
dress of the next SEH structure in the chain, and the
other is the address of its exception processing.

2. The OS looks for the suitable exception processing
along the SEH structure chain.

3. If suitable exception processing is found, it will be pro-
cessed.

4. The OS runs the default exception processing if suit-
able exception processing cannot be found.

5. By the end of exception processing, the code with the
exception will be run again.

SEH is used to prevent debugging by many compres-
sion tools. The compression tool makes exception interrup-
tion occur forcibly by accessing an illegal address intention-
ally or doing zero division and adding another decompres-
sion code or antidebug code in the corresponding SEH ex-
ception processing area. When analyzing a virus in debug
mode, such an exception cannot be predicted, which makes
it difficult to debug the virus.

In the proposed technique, by managing the break-
points that are set by the unpacking program itself, the ex-
ception processing of the debugged program is run when
an exception occurs that is not specified. Therefore, the
unpacking program will not be stopped at an unexpected
breakpoint.

Since the detailed specifications of SEH processing,
such as the convolution operation of the stack when an ex-
ception interruption handle is started in chains, have not
been made publicly available by Microsoft, new techniques
that abuse SEH keep appearing. Thus, measures against
compression tools that have this antidebugging function us-
ing SEH will be tackled in the future.

3.5 System Call Processing

The Win32 executable file works by calling the Windows
API (System Call). The Windows API library (DLL file)
will be loaded into the system block in memory, and the
program code will be loaded into the user block in memory.
In general, a program calls Windows API functions us-
ing a CALL command, but the compression tool scans the
memory or analyzes the Export Table of the DLL file to get
the address of an API function, and it calls an API function
using a JUMP command to hide the calling Windows API
function action. Thus, it is impossible to determine the pro-
gram’s system call by statically analyzing the program code.
The automatic unpacking program spends time in the
one-step mode during the system call, because it is unsafe
to set a breakpoint in system memory. The return address is
obtained from the system’s stack when the compressed pro-
gram runs in the system’s memory block, and the unpacking
program sets a breakpoint at the return address that is in the
user memory block. Therefore, to determine a system call,
it is not necessary to analyze the program code; all that is
required to set a breakpoint in the user memory block.

3.6 Antidebugging

- Recently, antidebugging technology has been implemented

by many compression tools. The effective and commonly
used antidebug technique is as follows:

1. Check the process of some debug tools that are com-
monly used, such as Ollydbg or SoftICE.

2. Use the IsDebuggerPresent function of the KER-
NEL32.DLL library, or check the value of the second
byte in the Process Environment Block (PEB)

The former technique does not correspond to the automatic
unpacking program. As mentioned in Sect. 3.4, when an ex-
ecutable file is run in Windows, the value of FS:[30h] refers

1124

to the address of the process’s PEB. The second byte in the
PEB will be set by the system when the process is debugged.
The system function IsDebuggerPresent works by checking
this field.

Thus, the automatic unpacking program fools antide-
buggers that use the IsDebugger Present function by setting
the second byte in the PEB to zero during the creation of a
thread. This field can be reset to zero without consequences
for the execution of the program [15].

3.7 Failures in the Automatic Unpacking Program

The automatic unpacking program enumerates the process
list of the system before loading a virus file to get the virus
process handle by comparing the processes before and after
the virus is executed. When the automatic unpacking pro-
gram fails, such as failure on setting a breakpoint, the main
module of the virus process will be dumped from the mem-
ory.

4. Paul Graham’s Bayesian Virus Filter

The Paul Graham’s Bayesian Virus Filter [5] detects an un-
known virus by using Paul Graham’s Bayesian theorem.
Paul Graham’s Bayesian theorem was originally developed
for a spam mail filter [16], but it has been adapted to the de-
tection of unknown viruses by changing some of the param-
eters. It contains a learning module and a detection module.

4.1 Learning Module

The learning module learns the well-known virus in the fol-
lowing manner:

1. Determine whether a given file is a virus file using an-
tivirus software.

2. Extract the Strings that are the characteristic points
from the virus files and the no virus files.

3. Calculate the probability P(s) that a certain character-
istic point s is a component of a virus.

The total number of virus files is 1,44, the total number
of no virus files is 74,4, the number of times that a cer-
tain characteristic point s appeared in the virus files is b,
the number of times that a certain characteristic point s ap-
peared in the no virus files is g, and the probability P(s) is
calculated as follows:

b/npeq

. S
29/ngood + b/ npaa

)

Equation (1) is the original equation [16] used to calcu-
late the probability of each characteristic point. In Eq. (1),
all the parameters with subscript “good” are doubled to bias
the probabilities slightly to avoid false positives. The prob-
ability P(s) of a characteristic point that only appears in the
virus file is initialized at 0.99, while it is initialized to 0.01
for a characteristic point that only appears in a no virus file.

IEICE TRANS. COMMUN., VOL.E92-B, NO.4 APRIL 2009

All the probabilities of the characteristic points form the sig-
nature database.

4.2 Detection Module

The detection module detects an unknown virus as follows:

1. Extract the characteristic points from a target exe-
cutable file.

2. Get the virus probability of each characteristic point
from the signature database. Initialize the default virus
probability as 0.4 if a characteristics point does not ex-
ist in the signature database.

3. The largest 15 virus probabilities form the base proba-
bility Pj.s- Based on the virus probabilities, the target
executable file’s characteristic points are chosen to cal-
culate the target executable file’s virus probability P,.
The target executable file will be judged to be a virus if
P, is greater than 0.9.

In this paper, Pp,s. is initialized to 0.499.

The virus probabilities that are chosen are defined as P;, and

the virus probability of the target executable file P, is calcu-

lated using the following formula:
i1 Pi

[12, P + 11,2, - Py

2

v

5. Experiment and Evaluation
5.1 The Experimental Environment

The automatic unpacking technique proposed in this paper
was tested on a persorial computer running WindowsXP
Professional SP2 with an isolated VMWare 5.0 system.
Since the experiment is run on an isolated computer, virus
spreading is not an issue. Furthermore, since the experiment
is run on VMWare, it is easy to recover the Windows system
even if it is infected by a virus. Thus, it can be assumed that
all of the experiments are run in the same environment.

5.2 The Experimental Data

In the experiment, all of the 56 virus types that were marked
by the Information Sciences Center, Iwate University, in
2005 were used as the experimental data. Of these types,
42 types were compressed using a compression tool, such as
UPX, ASPack, FSG, or Morphine, eleven types were com-
pressed by unknown compression tools and the remaining
three types were not compressed.

5.3 The Experimental Results and Evaluation

Table 3 shows the results of the experiment. Of the com-
pressed viruses, 83.9%, or 47 types, were successfully un-
packed.

ZHANG et al.: AN AUTOMATIC UNPACKING METHOD FOR COMPUTER VIRUS EFFECTIVE IN THE VIRUS FILTER

Table 3 Virus unpacking conditions in the proposed technique.
Number of APIs

Virus Name Compress type time before after
Bagle.J UPX 0.89 1m26s |6 61
Bagle.K UPX 0.89 Im31s |7 55
Bagle M UPX 0.89 1m32s |7 86
Bagle.N UPX 0.89 1m45s |7 86
Bagle.Y UPX 0.89 1m53s |7 81
Bagle.Z UPX 0.89 1m23s |7 81
Bagle.AB UPX 0.89 Im21s |7 81
Bagle.AF UPX 0.89 Im25s |8 91
Bagle ALAM,APAQ PEX - 7 15
Bagle BA,BC,BK unknown - 6 13
Dumaru.A UPX 0.89 Om44s |4 50
Buchon.B UPX 0.89 14m02s | 4 32
Buchon.F UPX 0.89 Tm27s |4 19
Bugbear.B UPX 0.89 9m25s |6 95
Klez.H uncompressed - - -
Erkez.B FSG 1.33 Om59s |2 38
Erkez.D FSG 2.0 Om53s |3 38
Explet.A FSG 1.33 1m10s |6 24
Lovgate.R ASPack 2.12 27m53s | 7 24
Lovgate. X ASPack 2.12 32m21s | 12 24
Lovgate.Y ASPack 2.12 33ml6s | 8 24
Lovgate. AC ASPack 2.12 - 29mO03s | 12 24
Lovgate.AD ASPack 2.12 29m4l1s |12 24
Maslan.C uncompressed - - -
Mydoom.L upx 0.89 Im28s |5 70
Mydoom.M upx 0.89 Im36s |5 70
Mydoom.Q upx 0.89 2ml2s |6 101
Mydoom.BO Morphine 1.4-1.7 3m45s |2 i)
Mydoom.BQ Morphine d.4-1.7 7mlls |2 i
Mydoom.BT PESpin 0.3x-0.4x x X X
Mytob.B FSG 1.33 3ml9s |2 112
Mytob.C yoda’s Protector 1.3 - 2 116
Mytob.M Morphine 1.4-2.7 x X X
Mytob.V unknown 38m55s |2 224
Mytob.AG unknown 36m31s |2 113
Mytob.AH MEW11 1.2 45mSls |2 115
Mytob.AP unknown 34m51s |2 114
Mytob.AS unknown 2m53s |2 124
Mytob.BB unknown 34m53s |2 114
Mytob.BM unknown 34m51s |2 114
Mytob.BV MEWI11 1.2 26m33s | 2 84
Mytob.CH MEWI11 1.2 31m40s | 2 77
Mytob.DH PECompact 2.x Oml7s |4 116
Netsky N,X tElock 0.96 X X X
Netsky P,Q FSG 1.0 X X X
Netsky.S unknow 1m55s |6 i
Netsky. T unknow 1m57s |6 73
Netsky. W UPX 0.96 3m84s |5 74
Swen.A uncompressed - - -

The number of APIs that are extracted from the un-
packed virus file that had been compressed using compres-
sion tools, such as UPX, ASPack, FSG1.33, FSG2.0, and
MEW11, increases from the original virus file. As well, in
viruses that are compressed using Morphine, some can be
unpacked, while others cannot be unpacked, because, since
the source code for Morphine is publicly available, the virus
authors can modify the code themselves.

A similar problem occurs for the compression tool
UPX. For most viruses, it takes only 1 minute to unpack
such a virus, while for the Buchon series viruses, it takes
on average 10 minutes to unpack the viruses. This can be

1125

Table 4 Bagle series virus detection conditions using Paul Graham’s
Bayesian Filter (original).

input
Y

signature
bagle_j
bagle k
bagle_n
bagle_o
bagle_y
bagle_z
bagle_ab
bagle_ae

N
>
o}
>
les]

SN ANENENENENENANES
SNENENENENENENENES
S RNENENENENANENE
N ESENENENENANEN e

NV ANENENENEN
SSENESENENEN
LY RNENENENES
NESEYASENAN

attributed to the fact that the UPX tool’s code is publicly
available.

In the experiment, seven of the 11 unknown compres-
sion type viruses were unpacked. Thus, it can be said that
the proposed technique is effective in identifying unknown
compressed viruses.

5.4 The Experimental Evaluation Using the Bayesian
Virus Filter

The Bagle virus series that was unpacked in the above exper-
iments was tested using Paul Graham’s Bayesian Virus Fil-
ter to determine the practical performance of the proposed
technique.

Table 4 shows the original Bagle virus series detection
conditions as given by [5]. These results will be referred to
as the original detection conditions.

Two hundred virus files of the specific variants were
entered to each signature. A v'is used to show that the vari-
ants were properly detected. The detection conditions of
the Bagle virus series, which was unpacked by the proposed
technique, is shown in Table 5. It is obvious that the current
results match the original detection rates. In the original
study, only viruses that could be unpacked were detected
by the decompression tools. However, using the automatic
unpacking technique, more variants of the viruses were de-
tected.

6. Conclusions
In this paper, a new unpacking technique that can be used to

overcome the recent explosion of compressed viruses is pro-
posed. This technique uses the compression tools’ own de-

" compression routine running in Windows debug mode. The

original virus’s characteristic points can be extracted using
the proposed technique, making it possible to detect the un-
known virus in real time by combining the unpacking tech-
nique with current learning-type virus filters and avoiding
the need to spend time determining the original virus’s sig-
nature.

However, many compression tools have public source
code that can be modified by the virus author to defeat or in-
terfere with the above mechanisms. Future work will there-
fore focus on decreasing the unpacking time and providing
more advanced functions.

IEICE TRANS. COMMUN., VOL.E92-B, NO.4 APRIL 2009

1126
Table 5 Bagle series virus detection conditions using Paul Graham’s Bayesian Filter (unpacked by
the proposed technique).
input
signature | j k |m| n y z |ab | ae | af | ai [am | ap | aq | ba | bc | bk | by | nonvirus

bagle_j VIV |Iv|Vv VIV IV I|IVvIVvI VIV |V]V v

bagle k vViv|iv]|vVv AR AR Eardarar v

baglem | v |V |V IV |V |V I IV IV IV I|IVI|V |V IV I IV IV I|VI|V v

bagle_n ViV ivIVvIVvIVIVIVIVIVIVIVIVIVIVI]IVIVY v

bagle_y VivivivIiIvIiviIivIiIvIiVv|IiIVI|Vv | VI IiVvI VIV I|VvI|V v

bagle_z VI iIVvIiIVvIiIVvIVIVI VIV IV v

bagleab | v | vV |V [V |V |V |V |V |V IV |V |V I IV IV IV |V |V v

bagleae | v | v | V ViV v |v |V v

bagleaf | vV |V |V |V |V IV IV IV I IV IV IV I|IVIVI IV IV |V |V v

bagleai | vV | vV |V |V |V |V |V VI ivI|IiIv IV IiVviIiv |V |V |V v

bagleam | v |V |V |V |V |V |V AR raradarEararar v

bagleap | v |V |V |V |V |V | V VIV IiIVvI|IVvI| VI IVvIiIVvIVv |V v

bagleaq | vV |V |V [V |V |V |V VIV IV |IVI|IVvIiVvI|IVv |V |V v

bagleba | vV | vV |V |V |V |V |V ViviI|iIvI IiIvIvIivI|Iv |V |V v

baglebc | vV | vV |V |V |V |V |V AFdAEEAaAdrariararar: v

baglebk | v |V |V |V |V |V |V dEPAEAEAEAEAEdAFarE v

bagleby | vV |V |V |V |V |V |V VivIiIVv | IVIVvIVvI|IVIVv |V v
Dengfeng Zhang received his B.Eng. and
References M.Eng. degrees from Iwate University in 2005
and 2007, where he is currently registered as
[11 IPA, “The computer virus report conditions of 2007,” report, doctoral student since 2007 to the present. He is

(2]

(3]

[4]

[5]

[6]

(7
[8]
9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]

Information-technology Promotion Agency Japan, 1 2006.

M. Christodorescu and S. Jha, “Static analysis of executables to de-
tect malicious patterns,” 12th USENIX Security Symposium, p.169,
2003.

N. Nakaya, R. Koike, Y. Koui, and H. Yoshida, “The network sys-
tem defended from infection of unknown e-mail viruses (network
security) (special issue computer security and privacy protection),”
Trans. IPSJ, vol.45, no.8, pp.1908-1920, 2004.

M.G. Schultz, E. Eskin, E. Zadok, and S.J. Stolfo, “Data mining
methods for detection of new malicious executables,” Security and
Privacy, pp.38—49, IEEE, Oakland, CA, USA, May 2001.

R. Koike, N. Nakaya, Y. Hagihara, Y. Koui, H. Takakuba, and
H. Yoshida, “The unknown viruses detection method using bayes
learning algorithm,” Trans. IPSJ, vol.46, no.8, pp.1984-1996, 2005.
Microsoft Corporation, “Visual studio,microsoft portable executable
and common object file format specification,” Windows Hardware
Developer Central, 2006.

Frisk Software International, “F-prot.” http://www.f-prot.com

PEid. http://peid.has.it/

M. Vnuk and P. navrat, “Decompression of run-time compressed pe-
files,” Studies in Informatics and Control J., vol.15, no.2, pp.169—
180, 2006.

A. Mori, T. Sawada, T. Izhumida, and T. Inoue, “Detection un-
known computer viruses— A new approach,” Review of the Na-
tional Institute of Information and Communications Technology,
vol.51, no.1/2, pp.73-88, March 2005.

M. Pietrek, “A crash course on the depths of win32 structured
exception handling,” Microsoft System J., vol.12, no.l, http://
www.microsoft.com/ms;j/0197/Exception/Exception.aspx, 1977.

J. Richter, Programming Applications for Microsoft Windows
Fourth Edition, Microsoft Press, 1999.

M.E. Russinovich and D.A. Solomon, “Microsoft windows inter-
nals: Microsoft Windows Server 2003, Windows XP, and Windows
2000 (pro-developer),” Microsoft Pr, 2005.

OllyDbg. http://www.ollydbg.de/

N. Falliere, “Windows anti-debug reference” http://www. security-
focus.com/infocus/1893, 2007.

G. Paul, “A plan for spam.” http://www.paulgraham.com /spam.html,
2002.

currently researching network systems and net-
work security.

Naoshi Nakaya received his B.Eng., M.Eng.
and Ph.D. degrees from Saitama University in
1994, 1996 and 1999, respectively. He is a re-
search associate in the Department of Computer
and Information Sciences at Iwate University
and researching network systems, network se-
curity and evolutionary algorithms.

Yuuji Koui graduated from the Science Uni-
versity of Tokyo. He joined Mitsubishi Electric
Corporation in 1970, and engaged in the design
and development of communication systems.
He work at Audio-Visual Information Tech-
nology Department in Information Technology
R&D Center of Mitsubishi Electric Corporation.
He received the Ph.D. degree in telecommuni-
cation engineering from Tohoku University in
1998. He is a professor in the Faculty of En-
gineering and Graduate School of Engineering

Iwate University and is researching of network systems and network secu-
rity. He is a member of IEEE and the Information Processing Society of
Japan.

ZHANG et al.: AN AUTOMATIC UNPACKING METHOD FOR COMPUTER VIRUS EFFECTIVE IN THE VIRUS FILTER
1127

Hitoaki Yoshida graduated from Tohoku
University. He received his doctoral degree in
science from Tohoku University in 1987. He
worked at Department of Chemistry in Univer-
sity of Tsukuba from 1987 to 1991. He is an as-
sociate professor of Iwate University and work-
ing on the research of Complex System, Online
Communication and Information Security. He is
amember of the Information Processing Society
of Japan, the Society of Instrument and Control
Engineers, and Council for Improvement of Ed-
ucation through Computers.

