On the Minimal Covering of 3-dimensional Hamming Scheme

Minoru Numata*
(Received May 28, 1992)

1. Introduction

R, S, and T are finite sets, and we put $R = \{1, 2, \ldots, r\}$, $S = \{1, 2, \ldots, s\}$, and $T = \{1, 2, \ldots, t\}$. Elements of R, S, and T are called row numbers, column numbers, and vertical numbers, respectively.

A subset F of the Cartesian product $R \times S \times T$ of three sets R, S, and T is a covering of $R \times S \times T$ when F satisfies the following condition; for each element (i, j, k) of $R \times S \times T$, there is the element (e, f, g) of F such that $i-e$ and $j-f$, or $j-f$ and $k=g$, or $i=e$ and $k=g$. In other words F is a covering of 3-dimensional Hamming scheme $R \times S \times T$.

A subset J of $R \times S \times T$ is a 3-directed covering of $R \times S \times T$ when J satisfies the following condition; for each element (i, j, k) of $R \times S \times T$, there are $e, f,$ and g such that (e, j, k), (i, f, k), and (i, j, g) are the elements of J. The number of elements of J is at least $\max\{rs, st, tr\}$.

Let A be the set of the element (i, j, k) of $R \times S \times T$ which satisfies the condition that $i+j+k \equiv 0 \mod (\min\{r, s, t\})$. Then A is 3-directed covering of $R \times S \times T$, and the number of elements of A is equal to $\max\{rs, st, tr\}$.

Let A be the minimal 3-directed covering of $R \times S \times T$ when A is 3-directed covering of $R \times S \times T$, and when the number of elements of A is equal to $\max\{rs, st, tr\}$.

We shall call A as minimal 3-directed covering of $R \times S \times T$ when A is 3-directed covering of $R \times S \times T$, and when the number of elements of A is equal to $\max\{rs, st, tr\}$.

Let R be the disjoint union of subsets R_1 and R_2 of R, S be the disjoint union of subsets S_1 and S_2 of S, T be the disjoint union of subsets T_1 and T_2 of T. Let I_1 be a 3-directed covering of $R_1 \times S_1 \times T_1$, and I_2 be a 3-directed covering of $R_2 \times S_2 \times T_2$. Then the union of I_1 and I_2 is a covering of $R \times S \times T$.

Hereafter we assure $r \leq s \leq t$. We put

$$|R_1| = |S_1| = x, \quad |T_1| = t-r+x.$$

Let I_1 be the minimal 3-directed covering of $R_1 \times S_1 \times T_1$, and I_2 be the minimal 3-
directed coverings of $R_xS\times T$. Then the number of elements of the union of I_1 and I_2 is

$$x(t-r+x)+(r-x)(s-x)=2\left(x-\frac{2r+s-t}{4}\right)^2+rs-\frac{(2r+s-t)^2}{8}.$$

If $2r+s-t\geq 0$, for integer x the minimum of the above quadratic form is equal to

$$rs-\left\lfloor\frac{(2r+s-t)^2}{8}\right\rfloor.$$

Thus we have the following conjecture.

Conjecture. Let I' be a covering of $R\times S\times T$ where $|R|=r$, $|S|=s$, and $|T|=t$; $r\leq s\leq t$. Then the number of elements of I' is at least

$$rs-\left\lfloor\frac{(2r+s-t)^2}{8}\right\rfloor$$

if $2r+s\geq t+2$ and

$$rs-\left\lceil\frac{(2r+s-t)^2}{8}\right\rceil$$

if $2r+s<t+2$.

When $2r+s\geq t+2$ and the number of elements of I' is equal to just

$$rs-\left\lfloor\frac{(2r+s-t)^2}{8}\right\rfloor,$$

then I' is the union of two 3-directed coverings as the mentioned above, except few examples.

When $r=s$, we can prove this conjecture.

Theorem. Let V and T be finite sets, where $V=\{1,2,\ldots,v\}$ and $T=\{1,2,\ldots,t\}$, and $v\leq t\leq 3v-2$. Let I' be a covering of $V\times V\times T$. Then

$$|I'|\geq v^2-\left\lfloor\frac{(3v-t)^2}{8}\right\rfloor.$$

When the equality holds, except the unique example of the case $v=4$ and $t=6$, and the examples of the case $t=v+2$, I' is constructed as follows.

I' is the union of I_1 and I_2 such that I_1 is a minimal 3-directed covering of $V_1\times V_1\times T_1$, and I_2 is a minimal 3-directed covering of $V_2\times V_2\times T_2$, where V and T are the disjoint union of V_1 and V_2, T_1 and T_2, respectively.

Furthermore $|V_1|=|T_1|=d$ where

$$d=v-j$$

if $3v-t=4j$

$$d=v-j$$

if $3v-t=4j+1$

$$d=v-j\text{ or } v-j-1$$

if $3v-t=4j+2$

$$d=v-j-1$$

if $3v-t=4j+3$

Four examples of minimal coverings of type $4\times 4\times 6$

(the digits show the height of elements of I')
Let \mathcal{G} be a covering of $V \times V \times T$, and we put

$$a_{ij} = \# \{(i, j, k) \in \mathcal{G} | 1 \leq k \leq t\}, \quad x_i = \sum_{k=1}^{v} a_{ik}, \quad y_j = \sum_{m=1}^{v} a_{mj}.$$

Then we have

if $a_{ij} = 0$, then $x_i + y_j \geq t$.

We shall prove the following lemma.

Lemma. Let a_{ij} be non-negative integer; $1 \leq i, j \leq v$. We assume that $\{a_{ij}\}$ satisfies the following condition * for an integer t; $v \leq t \leq 3v$.

if $a_{ij} = 0$, then $x_i + y_j \geq t$.

Then

$$\sum_{i,j=1}^{v} a_{ij} \geq v^2 - \left[\frac{(3v-t)^2}{8} \right].$$

Hereafter we shall denote $\sum a_{ij}$ as the abbreviation of $\sum_{i,j=1}^{v} a_{ij}$.

When the equality holds, for the case I which $x_i + y_j \geq t$ for all i and all j, we have that
for any \(i \); for the case II which \(x_i + y_j < t \) for some \(i \) and some \(j \), we have that by the suitable replacement of row numbers and column numbers

\[
\begin{align*}
 a_{ij} &= 1 & \text{for } 1 \leq i, j \leq d \\
 a_{ij} &= 0 & \text{for } 1 \leq i \leq d, \; d+1 \leq j \leq d \\
 a_{ij} &= 0 & \text{for } d+1 \leq i \leq v, \; 1 \leq j \leq d \\
\end{align*}
\]

where

\[
\begin{align*}
 d &= v-p & \text{if } 3v-t=4p \\
 d &= v-p & \text{if } 3v-t=4p+1 \\
 d &= v-p \text{ or } v-p-1 & \text{if } 3v-t=4p+2 \\
 d &= v-p-1 & \text{if } 3v-t=4p+3.
\end{align*}
\]

Furthermore

\[
\begin{align*}
 x_i + y_j &= t & \text{for } 1 \leq i \leq d, \; d+1 \leq j \leq d \\
 x_i + y_j &= t & \text{for } d+1 \leq i \leq v, \; 1 \leq j \leq d.
\end{align*}
\]

2. Proof of Lemma

Choose a minimal arrangement \(\{a_{ij}\} \), that is, \(\Sigma a_{ij} \) is minimum in the arrangement satisfying the condition \(*\). Then we have

\[
\Sigma a_{ij} \leq v^2 - \left[\frac{(3v-t)^2}{8} \right].
\]

We shall denote the transformation of \(\{a_{ij}\} \) by Trans. I which transforms the left arrangement to the right arrangement, as below. Trans. I fix \(\Sigma a_{ij}, \; x_i, \) and \(y_j \) for all \(i \)

\[
\begin{align*}
 \cdots \cdots \cdots & \Rightarrow \cdots \cdots \cdots \\
 u \cdots w & \Rightarrow u+1 \cdots w-1 \\
 \cdots \cdots \cdots & \Rightarrow \cdots \cdots \cdots \\
 v \cdots x & \Rightarrow v-1 \cdots x+1 \\
 \cdots \cdots \cdots & \Rightarrow \cdots \cdots \cdots \\
\end{align*}
\]

Similarly we shall denote the transformation of \(\{a_{ij}\} \) by Trans. II which transforms the left arrangement to the right arrangement, as below. Trans. II fix \(\Sigma a_{ij} \), but does not always fix \(x_i \) and \(y_j \).

\[
\begin{align*}
 \cdots \cdots \cdots & \Rightarrow \cdots \cdots \cdots \\
 u \cdots w & \Rightarrow u+1 \cdots w-1 \\
 \cdots \cdots \cdots & \Rightarrow \cdots \cdots \cdots \\
 \cdots \cdots \cdots & \Rightarrow \cdots \cdots \cdots \\
\end{align*}
\]
Let A be the set of the minimal arrangements $\{a_{ij}\}$. We put

\[m = \min \{ \# \{(i, j) | a_{ij} = 0\}, \{a_{ij}\} \in A \} \]

\[M = \{ \{a_{ij}\} \in A | m = \# \{(i, j) | a_{ij} = 0\} \} \]

\[n = \max \{ \sum_{a_{ij} = 0} (x_i + y_j) | \{a_{ij}\} \in M \} \]

\[N = \{ \{a_{ij}\} \in M | \sum_{a_{ij} = 0} (x_i + y_j) = n \}. \]

Now from this time we assume that $\{a_{ij}\}$ is an element of N.

1) When $a_{ij} = 0$, each component of i-th row is equal to 0 or 1, or each component of j-th column is equal to 0 or 1.

Proof. Assume that a_{ik} and a_{mj} are larger than one for some k and m. Change $a_{ij} + 1$ for a_{ij}, $a_{ik} - 1$ for a_{ik}, $a_{mj} - 1$ for a_{mj}, and $a_{mk} + 1$ for a_{mk}, then the new arrangement satisfies the condition of Lemma, and the number of the 0-components in this new arrangement is smaller than that of $\{a_{ij}\}$. This is contrary to the choice of $\{a_{ij}\}$.

2) When $a_{ij} \geq 2$, there are h and k where $a_{ih} = 0$ and $a_{hk} = 0$.

Proof. If all components of i-th row and j-th column are positive, we may change $a_{ij} - 1$ for a_{ij} with the condition of Lemma. This is contrary to the minimality of $\sum a_{ij}$.

Next assume that all components of j-th column are positive, and $a_{ik} = 0$ for some k. Change $a_{ij} - 1$ for a_{ij}, and change $a_{ik} + 1$ for a_{ik}. Then the new arrangement satisfies the condition of Lemma, and the number of 0-components of this arrangement is smaller than that of $\{a_{ij}\}$. This is contrary to the choice of $\{a_{ij}\}$.

3) When $a_{ij} \geq 2$, $a_{ik} = 0$, a_{hj} and $x_h + y_j \geq t$, then $a_{hh} = 0$

Proof. Assume $a_{hh} \geq 1$. Change $a_{ij} - 1$ for a_{ij}, $a_{ih} + 1$ for a_{ih}, $a_{hj} + 1$ for a_{hj}, and $a_{hh} - 1$ for a_{hh}, then the new arrangement satisfies the condition of Lemma, and the number of 0-components of this arrangement is smaller than that of $\{a_{ij}\}$. This is contrary to the choice of $\{a_{ij}\}$.

4) If $x_i + y_j < t$, then $a_{ij} = 1$.

Proof. If $a_{ij} \geq 2$, then $a_{ik} = 0$ for some k from (2), and each component of k-th column is equal to 0 or 1 from (1). Furthermore $y_k > y_j$, because $x_i + y_k \geq t$ and $x_i + y_j < t$. Therefore $a_{hh} = 1$ and $a_{hj} = 0$ for some h. Since $x_h + y_j \geq t$ and $x_i + y_j < t$, $x_h > x_i$. Thus we have $x_h + y_k > x_i + y_k \geq t$. This is contrary to (3).

Hereafter we set $x_1 \leq x_2 \leq \ldots \leq x_v$, and $y_1 \leq y_2 \leq \ldots \leq y_v$ by the suitable replacement of row numbers and column numbers.
(5) If \(a_{i\varphi} \neq 1 \) and \(a_{i\varphi} = 0 \), then \(k < q \).

Proof. Assume \(y_k = y_\varphi \), since all components of \(k \)-th column are 0 or 1, \(a_{u\varphi} = 1 \) and \(a_{u\varphi} = 0 \) for some \(u \). This is contrary to (3), because \(x_u + y_k \geq x_u + y_\varphi \geq t \).

(6) If \(x_i + y_j < t \), then \(a_{ij} = 1 \).

Proof. Assume \(a_{ij} = 1 \) for some \(q \). Then from (3), \(a_{ih} = a_{h\varphi} = 0 \) for some \(k \) and \(h \). We have \(y_k < y_\varphi \) from (5). Since \(x_i + y_j < t \), we have \(y_i < y_k \). Since all components of \(k \)-th column are 0 or 1, \(a_{ih} = 1 \) for some \(k \) larger than \(y_i \). Therefore for some \(u \) smaller than \(u_i \), \(a_{ui} = 0 \). Thus \(t \leq x_u + y_i \leq x_u + y_1 \). Also since \(x_u + y_k > x_u + y_1 \geq t \), \(a_{i\varphi} = 1 \), \(a_{i\varphi} = 0 \), and \(a_{u\varphi} = 1 \), we have \(a_{i\varphi} = 1 \) from (3).

Change \(a_{i\varphi} = 1 \) for \(a_{ij} = 1 \), \(a_{ik} = 1 \) for \(a_{uk} = 1 \), and \(a_{u\varphi} = 1 \) for \(a_{u\varphi} = 1 \). Then the new arrangement satisfies the condition of Lemma. Since \(x_i + y_j < t \), \(a_{ij} = 1 \), \(a_{ik} = 1 \), and \(a_{u\varphi} = 1 \), we have \(a_{ij} = 1 \) for all \(p \).

(7) Proof of Lemma.

Proof of Case I. Assume that \(x_i + y_j \geq t \) for all \(i \) and \(j \).

\[
2v \sum a_{ij} = \sum (x_i + y_j) \geq vt.
\]

Therefore \(\sum a_{ij} \geq vt/2 \). So

\[
v^2 - \left[\frac{(3v-t)^2}{8} \right] \geq \sum a_{ij} \geq \frac{vt}{2} = v^2 - \frac{(3v-t)^2}{8} + \frac{(t-v)^2}{8}.
\]

When \(t > v \), then \(t = v+1 \) or \(v+2 \), and the equality holds. Since \(\sum a_{ij} = \sum x_i = \sum y_i = vt/2 \), and \(x_i + y_j \geq t \) for all \(i \) and \(j \), we have \(x_i = y_i = t/2 \) for all \(i \).

When \(t = v \)

\[
v^2 - \left[\frac{v^2}{2} \right] \geq \sum a_{ij} \geq \frac{v^2}{2}.
\]

If \(v \) is even, the equality holds, and we can similarly prove Lemma. When \(v = 2k+1 \),

\[
(2k+1)^2 - \left[\frac{(2k+1)^2}{2} \right] = 2k^2 + 2k + 1 \geq \sum a_{ij}.
\]

Therefore we may assume that \(x_i \leq k \) for some \(i \). Since \(x_i + y_j \geq 2k+1 \), \(y_j \geq k + 1 \) for all \(j \). Thus \(2k^2 + 2k + 1 \geq \sum a_{ij} = \sum y_j \geq v(k+1) = 2k^2 + 3k + 1 \). This is a contradiction.

Proof of Case II. Assume that \(x_i + y_j < t \) for some \(i \) and some \(j \),

\[
d = x_1 \leq x_2 \leq \cdots \leq x_v, \quad e = y_1 \leq y_2 \cdots \leq y_v, \quad \text{and} \quad d \leq e.
\]

From (6), we have
Therefore all equalities hold, that is,

\[\sum_{a_{ik} = l} y_k = d^2, \quad y_k = d \text{ for all } k \text{ where } a_{ik} = 1. \]

Similarly,

\[x_m = d \text{ for all } m \text{ where } a_{ml} = 1. \]

Since \(x_i + y_k = 2d < t \), we have \(a_{ik} = 1 \) from (4) for all \(m \) and \(k \) where \(a_{ml} = 1 \) and \(a_{lk} = 1. \)

Thus by the suitable replacement of row numbers and column numbers we can obtain the arrangement \(\{a_{ij}\} \) satisfying the assertions of Lemma. For this arrangement, Trans. I and Trans. II can occur in the row numbers and the column numbers larger than \(d \), and cannot occur in others. Thus we can prove that all of the minimal arrangements satisfy the assertions of Lemma.

3. Proof of Theorem

Assume \(\Gamma \) be a minimal covering of \(V \times V \times T \). Then we have

\[|\Gamma| \leq v^2 - \left[\frac{(3v-t)^2}{8} \right]. \]

Let \(\{a_{ij}\} \) be the arrangement induced by \(\Gamma \) where

\[a_{ij} = \#(i, j, k) \in |\Gamma| \mid 1 \leq k \leq t). \]

The arrangement \(\{a_{ij}\} \) satisfies the condition of Lemma, and \(\sum_{a_{ij} = 1} v = |\Gamma| \leq v^2 - \left[\frac{(3v-t)^2}{8} \right]. \)

Therefore from Lemma, \(|\Gamma| = v^2 - \left[\frac{(3v-t)^2}{8} \right] \), and \(\{a_{ij}\} \) is a minimal arrangement.

Thus we can conclude that \(\{a_{ij}\} \) satisfies the assertions of Lemma by the suitable replacement of row numbers and column numbers. This arrangement \(\{a_{ij}\} \) is induced by the corresponding replacement of row numbers and column numbers of \(V \times V \times T \).

Now we set the subsets of \(T \) for \(u ; 1 \leq u \leq v \), as follows.

\[R_u = \{z \mid (u, y, z) \in \Gamma \}, \quad C_u = \{z \mid (x, u, z) \in \Gamma \}. \]

First we shall investigate \(\Gamma \) when \(\{a_{ij}\} \) is case II of Lemma. Since \(a_{ij} = 0 \) and \(x_i + y_j = t \) for \(1 \leq i \leq d, \quad d + 1 \leq j \leq v \), we have
And $R_i = \{1, 2, \ldots, t\} \setminus C_i$ for any i; $1 \leq i \leq d$, and $C_j = \{1, 2, \ldots, t\} \setminus R_j$ for any j; $d + 1 \leq j \leq v$. Therefore if (i, j, k) is the element of Γ then $1 \leq i$, $j \leq d$ and $k \in R_i$, or $d + 1 \leq i$, $j \leq v$ and $k \in C_v$. Thus we can prove that Γ is the union of two 3-directed coverings.

Next we shall investigate Γ when $\{a_{ij}\}$ is the case 1 of Lemma.

(1) When $a_{ij} = a_{ki} = a_{ik} = 0$, then $a_{hk} = 0$.
Proof. Since $a_{ij} = 0$ and $x_i + y_j = t$

$R_i \cup C_j = \{1, 2, \ldots, t\}$, $R_i \cap C_j = \phi$.

Similarly

$R_h \cup C_i = \{1, 2, \ldots, t\}$, $R_h \cap C_i = \phi$,

$R_i \cup C_h = \{1, 2, \ldots, t\}$, $R_i \cap C_h = \phi$.

So $R_h = R_i$, $C_h = C_i$. Therefore $R_h \cap C_h = R_i \cap C_i = \phi$. Thus we have that $a_{hk} = 0$.

(2) When $t = v = 2k$, we have the following arrangement by the suitable replacement of row numbers and column numbers from (1) and $x_i = y_i = \frac{t}{2}$ for all i.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, \ldots, 1</td>
<td>0, \ldots, 0</td>
</tr>
<tr>
<td>\ldots, \ldots, \ldots</td>
<td>\ldots, \ldots, \ldots</td>
</tr>
<tr>
<td>1, \ldots, 1</td>
<td>0, \ldots, 0</td>
</tr>
<tr>
<td>0, \ldots, 0</td>
<td>1, \ldots, 1</td>
</tr>
<tr>
<td>\ldots, \ldots, \ldots</td>
<td>\ldots, \ldots, \ldots</td>
</tr>
<tr>
<td>0, \ldots, 0</td>
<td>1, \ldots, 1</td>
</tr>
</tbody>
</table>

There exists the covering corresponding to the above arrangement, and this covering satisfies the conditions of Theorem.

(3) When $t = v + 1$ and $a_{ij} \leq 1$ for all i and j, we have the following arrangement by the suitable replacement of row numbers and column numbers.
If \(x = 1 \), then \(t = \frac{(v+1)}{2} = v \), that is, \(v = 1 \) and \(t = 2 \). This is a trivial covering. If \(x = 0 \), then \(t = \frac{(v+1)}{2} = v - 1 \), that is, \(v = 3 \) and \(t = 4 \). For this case, we have the following arrangement:

\[
\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
\end{array}
\]

But we can not construct the covering corresponding to the above arrangement.

(4) When \(t = v+1 \) and \(k_{i,j} \geq 2 \) for some \(i \) and \(j \), we have the following arrangement by the suitable replacement of row numbers and column numbers.

\[
\begin{array}{ccc}
2, 1, & , , , , , , , , , , 1 & 0, , , , , , , , , , 0 \\
1, 2, & , , , , , , , , , , 1 & , , , , , , , , , , \\
, , , , , , , , , , , , , , , , & , , , , , , , , , , \\
1, , , , , , , , , , , , , , , , & 2, 1, , , , , , , , , , \\
1, , , , , , , , , , , , , , , , & 1, 2, , , , , , , , , , \\
0, , , , , , , , , , , , , , , , & 0, , , , , , , , , , \\
, , , , , , , , , , , , , , , , & , , , , , , , , , , \\
, , , , , , , , , , , , , , , , & , , , , , , , , , , \\
0, , , , , , , , , , , , , , , , & 0, , , , , , , , , , \\
\end{array}
\]
There exists the covering corresponding to the above arrangement, and this covering satisfies the conditions of Theorem.

(5) When \(t = v + 2 \) and \(a_{ij} \leq 1 \) for any \(i \) and \(j \), we have the following arrangement by the suitable replacement of row numbers and column numbers.

\[
\begin{array}{cccc}
1, \ldots, 1 & 1, 1 & 0, \ldots, 0 & 0, \ldots, 0 \\
\ldots & \ldots & \ldots & \ldots \\
1, \ldots, 1 & 1, 1 & 0, \ldots, 0 & \ldots, 0 \\
1, \ldots, 1 & w, x & 1, \ldots, 1 & 1, \ldots, 1 \\
1, \ldots, 1 & y, z & 1, \ldots, 1 & 1, \ldots, 1 \\
0, \ldots, 0 & 1, 1 & 1, \ldots, 1 & 1, \ldots, 1 \\
0, \ldots, 0 & 1, 1 & 1, \ldots, 1 & 1, \ldots, 1 \\
\end{array}
\]

If \(w + x = 2 \), then \(\frac{t}{2} = 1 + \frac{v}{2} = v \), that is, \(v = 2 \) and \(t = 4 \). There exist the trivial coverings corresponding to this arrangement.

If \(w + x = 1 \), then \(\frac{t}{2} = 1 + \frac{v}{2} = v - 1 \), that is, \(v = 4 \) and \(t = 6 \). For this case, we have the following arrangement.

\[
\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
\end{array}
\]

We can construct the exceptional covering of Theorem corresponding to the above arrangement.

If \(w + x = 0 \), then \(t = 1 + \frac{v}{2} = v - 2 \), that is, \(v = 6 \) and \(t = 8 \). For this case, we have the following arrangement. But we can not construct the covering corresponding to this arrangement.
(6) When \(t = v + 2 \) and \(a_{ij} \geq 2 \) for some \(i \) and \(j \), we have three types of arrangements by the suitable replacement of row numbers and column numbers from (1).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

If \(x = 1 \), then \(t = \frac{(v + 2)}{2} = v \), that is, \(v = 2 \) and \(t = 4 \). This is impossible. If \(x = 0 \), then \(t = \frac{(v + 2)}{2} = v - 1 \), that is, \(v = 4 \) and \(t = 6 \). For this case, we have the following arrangement.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
But we can not construct the covering corresponding to the above arrangement.

\[
\begin{array}{ccc}
\frac{v}{2} & \frac{v}{2} & \frac{v}{2} \\
2, 1, \ldots, 1 & 0, \ldots, 0 & 0, \ldots, 0 \\
1, 2, \ldots, 1 & \ldots, \ldots, \ldots & \ldots, \ldots, \ldots \\
\ldots, \ldots, 1 & \ldots, \ldots, \ldots & \ldots, \ldots, \ldots \\
1, \ldots, 2, 1 & 0, \ldots, 0 & 0, \ldots, 0 \\
1, \ldots, 1, 2 & \ldots, \ldots, \ldots & \ldots, \ldots, \ldots \\
0, \ldots, 0, 0 & \ldots, \ldots, \ldots & \ldots, \ldots, \ldots \\
\end{array}
\]

\(\Gamma\) is the union of two 3-directed covering of type \(\frac{v}{2} \times \frac{v}{2} \times \frac{(v+2)}{2}\).

\[
\begin{array}{ccc}
\frac{(v-2)}{2} & \frac{(v+2)}{2} & \frac{(v-2)}{2} \\
\ast, \ldots, \ldots, \ast & 0, \ldots, 0 & 0, \ldots, 0 \\
\ldots, \ldots, \ldots & \ldots, \ldots, \ldots & \ldots, \ldots, \ldots \\
\ast, \ldots, \ldots, \ast & 0, \ldots, 0 & 0, \ldots, 0 \\
0, \ldots, 0, 0 & \ldots, \ldots, \ldots & \ldots, \ldots, \ldots \\
\end{array}
\]

\(\Gamma\) is the union of 3-directed coverings of type \(\frac{v+2}{2} \times \frac{v+2}{2} \times \frac{v+2}{2}\) and type \(\frac{v-2}{2} \times \frac{v-2}{2} \times \frac{v+2}{2}\), and this covering satisfies the conditions of Theorem.