SEMIGROUPS IN WHICH ANY PARTITION IS DECOMPOSITION

MORIO SASAKI

任意の分割が分解となる単群について
佐々木盛男

When a set M is divided into the class-sum of some disjoint subsets:
$$
M = \bigcup_i M_i, \quad M_i \cap M_j = \emptyset \quad (i \neq j),
$$
this is called a partition of the set M. When a semigroup S is divided into the
class-sum of some disjoint subsets such that
$$
S = \bigcup_{x \in T} S_x, \quad S_x \cap S_y = \emptyset \quad (x \neq y),
$$
and for $x, y \in T$, there is $z \in T: S_x S_y \subseteq S_z$, then this is called a decomposition of
the semigroup S.

Now we should like to present the following problem: What is a semigroup S
eq
every partition of which is a decomposition?

Such a semigroup shall be called a \mathfrak{p}-semigroup. The purpose of this short note
is to determine the structure of \mathfrak{p}-semigroups. The semigroups of order ≤ 2 are the
trivial cases of \mathfrak{p}-semigroups. Hereafter let S be an infinite or finite \mathfrak{p}-semigroup of
order ≥ 3.

We shall proceed to discuss about the two cases: the first in which S has at
least a non-idempotent, the second in which S is idempotent. We shall use the
notation $\Delta(a_1, \ldots, a_k)$ which represents the partition of S which is divided into two
classes:
$$
S = \{a_1, \ldots, a_k\} \cup (S - \{a_1, \ldots, a_k\}).
$$

1. In the case where S has a non-idempotent a.

Let $b = a^2 \neq a$. Consider the partition $\Delta(b)$ of S. Since $\Delta(b)$ is a decomposition
of S, referring $a^2 = b$ and $a \neq b$, we have
$$
xy = b \quad \text{for any } x \neq b, \ y \neq b;
$$
especially
$$
x^2 = b \quad \text{for all } x \neq b.
$$

Take any two distinct elements u and v which are both different from b. This
is possible as the order has been assumed to be ≥ 3.

Making two decompositions $\Delta(u, v)$ and $\Delta(v, u)$, from $u^2 = b$ and $v^2 = b$ because of
(2), it follows that $b^2 \in \{b, u\} \cap \{b, v\}$
and hence we get
$$
b^2 = b.
$$

*) $\{a_1, \ldots, a_k\}$ denotes the set which consists of the elements a_1, \ldots, a_k.

*) $\{a_1, \ldots, a_k\}$ denotes the set which consists of the elements a_1, \ldots, a_k.

By (1) we have
\[u(S - \{b, u\}) = (S - \{b, u\})u = v(S - \{b, v\}) = (S - \{b, v\})v = \{b\}. \]

Utilizing this formula we obtain easily
\[
(4) \quad b(S - \{b, u\}) \subseteq \{b, u\}, \quad (4') \quad (S - \{b, u\})b \subseteq \{b, u\}, \\
(5) \quad b(S - \{b, v\}) \subseteq \{b, v\}, \quad (5') \quad (S - \{b, v\})b \subseteq \{b, v\}.
\]

Immediately we have
\[
(6) \quad bx = b \quad \text{for all } x \in S - \{b, u, v\}.
\]

Further by (4) and (5) with \(u \in S - \{b, v\}, \ v \in S - \{b, u\} \), we arrive at
\[
(7) \quad bu = b \text{ or } v, \\
(8) \quad bv = b \text{ or } u.
\]

On the other hand, suppose
\[
(9) \quad bu = v,
\]
then by (3) we have
\[
(10) \quad bu = bv = b \text{ or } u, \text{ contradicting (9)}.
\]

Therefore
\[
(11) \quad bu = b.
\]

Similarly
\[
(12) \quad bv = b.
\]

By (3), (6), (11), (12), \(b \) must be a left zero i.e.
\[
(13) \quad bx = b \quad \text{for all } x \in S.
\]

Similarly, from (4'), (5'), we get
\[
(14) \quad xb = b \quad \text{for all } x \in S.
\]

Gathering (1), (13) and (14) together, it is concluded that if \(S \) has a non-idempotent \(a \), then \(S \) is a semigroup defined as
\[
xy = a^2 \quad \text{for all } x, y \in S.
\]

2. In the case where \(S \) is idempotent.

Let \(a, b \) be any two distinct elements of \(S \) and make a decomposition \(\Delta_{(a,b)} \).

Since \(a^2 = a \), \(ab = a \) or \(b \). If \(ab = a \), then
\[
(15) \quad xb = b \quad \text{for } x \neq b
\]
because of \(\Delta_{(a)} \); and using \(b^2 = b \) and \(\Delta_{(a,b)} \) where \(x \neq a, \ x \neq b \), it is derived that
\[
x = b \text{ or } x, \text{ and by (15)}
\]
\[
x = b \quad \text{for } x \neq a, \ x \neq b.
\]

Since \(ab = a \) and \(b^2 = b \), we get
\[
xb = x \quad \text{for all } x \in S.
\]
Such a semigroup S is called left singular. If $ab = b$, then we have
\[ax = x \quad \text{for all } x \in S \]
in the similar way. Such an S is called right singular.

Conversely we see easily that the semigroups of three types, a zero-semigroup defined as $xy = 0$ (for all x, y), a right singular semigroup, and a left singular semigroup are \mathfrak{p}-semigroups.

Thus we have

Theorem. A non-trivial \mathfrak{p}-semigroup is one of the following semigroups.
1. a zero-semigroup defined as $xy = 0$ for all x, y.
2. a right singular semigroup.
3. a left singular semigroup.

From the above theorem we have immediately that a subsemigroup of a \mathfrak{p}-semigroup is a \mathfrak{p}-semigroup and the homomorphic image of a \mathfrak{p}-semigroup is also a \mathfrak{p}-semigroup.

As we have stated, we used only the partitions of type
\begin{equation}
S = A \cup B \text{ where } A \text{ consists of one or two elements.}
\end{equation}

Accordingly \mathfrak{p}-semigroup is characterized by a weakened condition:

A semigroup whose all partitions of type (16) are decompositions.

We express many thanks to Prof. T. Tamura for his kind guidances regarding the present paper.

IWATE UNIVERSITY,
MORIOKA, JAPAN.