高デンプン飼料給与時の乳牛の血中およびルーメン液中
D/L乳酸、アンモニア濃度の推移

岡田啓司 古川岳大 安田 準 内藤善久
岩手大学農学部（〒020-8550 岩手県盛岡市上田3-18-8）
（2002年10月21日受付、2003年4月11日受理）

要　　約

飼料のデンプン濃度とルーメン液および血液乳酸濃度の関係を検討した。ホルスタイン種乳牛3頭に3週間、オーチャードグラス乾草を飼料とした後、乾物中デンプン濃度34％の飼料を3週間給与した。採取は短時飼料間食の2時間後
に行行った。ルーメン液pHは3頭とも低下した。ルーメン液原虫数は小型オフリスコレックスを中心に1日目以降顕著
に増加した。ルーメン液D-乳酸とL-乳酸濃度、アンモニア濃度に変化はなかった。血中D-乳酸濃度は8日以降急激
に増加した。L-乳酸とアンモニア濃度に変化はなかった。ルーメン液pHとルーメン液L-乳酸濃度、ルーメン液D-乳
酸濃度とL-乳酸濃度、ルーメン液と血液のD-乳酸とL-乳酸比にはおおおの正の相関、ルーメン液アンモニア数とルーメ
ン液L-乳酸濃度には負の相関があった。以上より血中D-乳酸濃度は高デンプン飼料給与を反映することが認められ
た。 ——キーワード：アンモニア、血液乳酸、乳酸、ルーメン液、飼料デンプン。

材料および方法

臨床的に健康な乾乳期のホルスタイン種乳牛3頭を
用いた。供試牛は断乳後として3週間以上オーチャー
ドグラス乾草のみを飼料として、3週間でわたって飼
料給与試験を実施した。

粗飼料成分は近赤外線法で分析し、NRC飼養標準

表1 供試牛と飼料給与

<table>
<thead>
<tr>
<th></th>
<th>乾乳期</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均体重（kg）</td>
<td>667±29</td>
</tr>
<tr>
<td>乳 期</td>
<td></td>
</tr>
<tr>
<td>給与飼料量（kg/日）</td>
<td></td>
</tr>
<tr>
<td>乾草a）</td>
<td>60±0.5</td>
</tr>
<tr>
<td>大麦b）</td>
<td>30±0.2</td>
</tr>
<tr>
<td>コーンc）</td>
<td>30±0.2</td>
</tr>
<tr>
<td>成分充足率（％）</td>
<td></td>
</tr>
<tr>
<td>DM1）</td>
<td>100.0±35</td>
</tr>
<tr>
<td>TDN2）</td>
<td>105.3±29</td>
</tr>
<tr>
<td>CP3）</td>
<td>104.7±23</td>
</tr>
<tr>
<td>乾物中養分分量（％）</td>
<td></td>
</tr>
<tr>
<td>TDN</td>
<td>61.1±17</td>
</tr>
<tr>
<td>CP</td>
<td>115±12</td>
</tr>
<tr>
<td>デンプン</td>
<td>34.0±0.0</td>
</tr>
</tbody>
</table>

a）乾草：オーチャードグラス、b）大麦：大麦圧片
c）コーン：トウモロコシ圧片
1）DM：乾物量、2）TDN：可消化養分総量、3）CP：粗タンパク質

† 達総責任者：岡田啓司（岩手大学農学部附属畜産研究所）
〒020-8550 岩手県盛岡市上田3-18-8 ☏ FAX 019-621-6237

日畜会誌 56 450～454 (2003)
図1 濃厚鉄剤投与2時間後におけるルーメン液pH
0日は鉄剤のみの投与のため、鉄剤投与後数日
印の個体は急性骨髄障のため14日までで中止

図2 ルーメン液中総虫数の推移
■ダシトリク・イソトリク □小物オフリオスコレックス
△大・中オフリオスコレックス

成績

ルーメン液成分・性状の経時的変化：ルーメン液pHの推移を図1に示した。試験開始後、3個体とも徐々に低下し、各採材日間に5％未満の危険率で有意差が認められた。

ルーメン液中総虫数の推移を図2に示した。ルーメン液中の総虫数は7日より著しく増加し、各採材日間に5％未満の危険率で有意差が認められた。いずれの原虫数も増加傾向を示し、特に小型オフリオスコレックスには各採材日間に5％未満の危険率で有意差が認められた。原虫の運動性に変化が認められなかった。D-乳酸濃度およびL-乳酸濃度は、3頭中2頭で低下し1頭は変動が少なく、有意差はなかった。アンモニア濃度（図3）に有意な変化は認められなかった。

血液成分の経時的変化：試験開始後各個体の血中D-乳酸濃度の推移を図3に示した。7日で各変動に一定の傾向はなかったが、その後増加に増加し、各採材日間に5％未満の危険率で有意差が認められた。L-乳酸濃度およびアンモニア濃度に有意な変化は認められなかった。

ルーメン液成分・性状および血液成分の相関：ルーメン液成分・性状および血液成分の相関を表2に示した。ルーメン液pH、ルーメン液中総虫数および血中D-乳酸濃度の間に負の相関が、ルーメン液中L-乳酸濃度との間に正の相関がそれぞれ認められた。ルーメン液中アンモニア濃度とルーメン液中L-乳酸濃度との間に負の相関が認められた。ルーメン液中D-乳酸濃度とルーメン液中L-乳酸濃度との間に正の相関が認められた。ルーメン液中D-乳酸とL-乳酸の比（D-乳酸/L-乳酸）と、血中D-乳酸/乳酸同の間に正の相関が認められた。
表 2 ルーメン液成分・性状および血液成分の相関

<table>
<thead>
<tr>
<th>ルーメン液</th>
<th>△5%</th>
<th>5%</th>
<th>△5%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>—</td>
<td>5%</td>
<td>△5%</td>
<td>—</td>
</tr>
<tr>
<td>ルーメン液中</td>
<td>—</td>
<td>△5%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>水原卵数</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ルーメン液中</td>
<td>5%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D-乳酸</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ルーメン液中</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>L-乳酸</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ルーメン液中</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>アンモニア</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>血中</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D-乳酸</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>血中</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>L-乳酸</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>血中</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>アンモニア</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

△：の相関
5%：5%以下の危険率で有意な相関あり
—：相関なし

図3 ルーメン液中および血中乳酸濃度・アンモニア濃度
a：P<0.05, A, B, C, D：P<0.01 同一グラフ内の同文字間に有意差あり

れた（図4）。その他の項目間において相関は認められなかった。

考 慮

本研究では、乳牛への高デンプン飼料給与時のルーメ
ン液成分・性状および血液成分を調べることにより、乳
牛のルーメンコンディションがどの程度血中乳酸濃度に
反映するかについて検討した。

ルーメン液pHは試験開始後に低下し、同時にルーメ
ン液中水原卵数の急激な増加がみられた。ルーメン液
pHはルーメン内細菌の種類や増殖速度、および細菌の
生成する発酵生成物などに影響されると同時に、それらに
影響を与える [11, 20, 22]。その結果、ルーメン液
pHの変化とルーメン微生物叢の変化が繰り返される
[19]。本試験においてもルーメン液pHが低下し続けた
ことから、高デンプン飼料への変更により微生物叢の連
続的な変化が生じていたものと考えられた。デンプン含
有量の多い飼料の摂食によりルーメン液pHはしばしば
6.0以下に低下する [10] ので、本試験をさらに延長すれば、そのような現象を確認できたかもしれません。
一方で、大量の飼料料を与えた牛に対して濃厚飼料や関節に与えても、1.5kgまでは濃厚飼料中のデンプンなどの可溶性炭水化物が制限基質として働いるため濃厚飼料量に比逆比例してルーメン中乳酸が増加する [1, 10]。しかし乳酸数は、飼料の2/3あるいは維持エネルギー量の1.8倍の給餌量で増加が停止し、3.9倍の水準を超えた濃厚飼料を与えると乳酸数は急速に減少し、始終消減する [10]

本試験において試験開始前にオーナーのグラス乾燥のみを給食させるという飼養条件であり、試験開始前の総乳酸数が健康乳牛の10～20%/ml [2] と比較して少ないことから、デンプンがルーメン内微生物増殖のための制限基質となっていったために試験開始後に増加したと考えられた。

ルーメン中乳酸数の推移では、大型オフィブスクレックスやイネトリコなどの大型の乳酸は合成が低くなっていた傾向がみられた。これらは乳酸の数とルーメン液pHは正の相関がある [7] ことから、大型乳酸の増殖が他の乳酸人に抑制されることがわかった。

ルーメン液中D-乳酸およびL-乳酸濃度は、ルーメン液pHの低下に伴い3頭中2頭で低下したが、1頭では変動が少なかった。乳酸を産生するルーメン内微生物は乳酸発酵菌とイシトリア科の乳酸であり、これらは高いpH域での乳酸産生を持っている。つまり、乳酸発酵菌のエキゾ乳酸（3.0〜6.5pH）では、乳酸はルーメン内で急速に消耗されておらず、乳酸発酵が盛んなpHは5.5以下であり、主な乳酸発酵菌が発酵できないpHは5.0以下と非常に低い [6]。このように比較的高いルーメン液pHでも乳酸の産生は行われているが、過度の乳酸液pHの低下が起こらないかぎりルーメン液中には乳酸の蓄積が起こらないようにルーメン内微生物腐食は作用している。また、ルーメン液は唾液の持つ乳酸および亜硝酸の緩衝作用などにより、恒常性が保たれている [15]。本試験ではルーメン液pHは6.0前後まで低下したが、ルーメンでの乳酸の蓄積が起こるようなpH域にはならなかった。強酸性中性料の逆導の給与によりルーメン内微生物群が変化して乳酸の産生量は増加しているが、それらは延長分解されるために乳酸濃度は変化せず、その分解産物であるプロピオン酸等の増加によりルーメン液pHの低下だけが認められたものと考えられた。

ところで、乳酸のルーメン壁からの吸収速度は、pHが弱く乳酸濃度が高いほど速い [23]。すなわち、ルーメン液中乳酸濃度が変化しなくても、ルーメン液pHが低下すれば血中乳酸濃度の増加する可能性がある。血中L-乳酸にはルーメン液由来の他の筋肉細胞の解離系での代謝物質やルーメン壁上皮細胞のプロピオン酸吸収の際の代謝物としての内因性L-乳酸が存在するので、血中L-乳酸の割合が高くなる [16]。乳酸の吸収速度は飼料乳酸の1/8以下でないと [23]、血中乳酸濃度がルーメン環境を反映するまでには時間を要するものと考えられた。また、L-乳酸の血中での半減期は22分と短く、D-乳酸は血中で蓄積しやすい [22]。本試験では、試験の経過とともにルーメン液pHは低下し、血中D-乳酸濃度が増加した。また、ルーメン液中のD-乳酸/L-乳酸比は、血中D-乳酸/L-乳酸比と相関がみられた。これらのことにより、ルーメン液pHの低下に伴ってルーメン壁からの乳酸の吸収速度が速くなり、血中D-乳酸濃度はその代謝速度の遅さから徐々に増加したと考えられた。血中乳酸の光活性異性体組成については、採血時を供試牛の筋肉は無く血中L-乳酸濃度が安定していたことより、内因性のL-乳酸の変動はわずかであり、ルーメン液由来の乳酸の変動を反映していると考えられた。

ルーメン内細胞が産生する乳酸の光学異性体の存在割合は、個体の持つルーメン内微生物菌叢により異なる [21]。いっぽう、ルーメン液中には乳酸をそれぞれの光活性体及び不活性体と変換する乳酸ラセマーゼが存在する [8]。そのため、ルーメン液中のD-乳酸とL-乳酸濃度の正の相関が認められたものと考えられた。

以上より、血中D-乳酸濃度はルーメン液pHの低下に関連して変動し、高酸性中性料に与える影響が認められた。今回は乾乳牛を用いた試験を目的として、デンプンの給与量は下限値を超えておらず、乳酸の蓄積が起こらなかったため、ルーメンに乳酸の蓄積が生じるまでルーメン液pHを低下させることができなかった。牛群検診で頻繁に見られる、牛群としての血中L-乳酸濃度の高値の原因を確認するためには、乾乳牛を用いてさらに長期間の高酸性中性料給与の試験を行う必要があると考えられた。
Changes in D/L-lactic Acid and Ammonia in Blood and Rumen Fluid of Cows Fed a High-starch Diet

Keiji OKADA†*, Takehiro FURUKAWA, Jun YASUDA, and Yoshihisa NAITO

*Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan

SUMMARY

We investigated the relation between diet starch content and lactic-acid levels in bovine rumen fluid and blood. Three Holstein dairy cows were fed orchard grass abundantly for 3 weeks. They were then fed a diet containing 34% starch (dry weight) for another 3 weeks. Specimens were collected two hours after ingestion of the concentrate. Rumen-fluid pH decreased in all three animals. Protozoa (mainly small Ophryoscolex species) increased markedly 7 days after the change in diet. No changes were observed in D- and L-lactic or ammonia concentrations in the rumen fluid. Blood concentrations of D-lactic acid increased rapidly on the eighth day and thereafter. Blood concentrations of L-lactic acid and ammonia, on the other hand, remained unchanged. Positive correlation was observed in relations between pH and L-lactic acid levels in the rumen fluid, between D- and L-lactic acid levels in the rumen fluid, and between the ratio of D- and L-lactic acids in the rumen fluid and in the blood. Negative correlation was observed between total numbers of protozoa and L-lactic-acid levels in the rumen fluid. These results indicate that blood levels of D-lactic acid reflect high-starch feed. — Key words: ammonia, hemodiagnosis, lactic acid, rumen fluid dietary starch.

† Correspondence to: Keiji OKADA (Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University)
3-18-8 Ueda, Morioka, 020-8550, Japan TEL: FAX 019-621-6237