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We have developed a semiempirical method to obtain interlayer binding energy of graphite in the previous
work �M. Hasegawa and K. Nishidate, Phys. Rev. B 70, 205431 �2004��. In the present paper, we revisit this
approach and develop an improved method, in which ab initio calculations based on the density functional
theory �DFT� are also corrected through an empirical atom-atom van der Waals �vdW� interaction. The local
density approximation �LDA� and generalized gradient approximation �GGA� are used in the DFT calculations.
The parametrized damping function introduced to modify the asymptotic atom-atom vdW interaction is more
flexible than the previous ones and covers a wider range of possibility in correcting for the approximate DFT
calculations. The damping function is determined empirically by imposing the condition that the experimental
interlayer spacing, in-plane lattice constant, and c-axis elastic constant are reproduced. We also require con-
sistency between the LDA- and GGA-based methods �LDA+vdW, GGA+vdW� as the theoretically motivated
necessary condition. The interlayer binding energy obtained by this method is 60.4 meV/atom at T=0 K. The
result of �54 meV/atom at room temperature corrected by the thermal effect is consistent with the most recent
experiment, 52±5 eV/atom �R. Zacharia et al., Phys. Rev. B 69, 155406 �2004��. The atom-atom vdW inter-
action obtained by the present semiempirical method favorably corrects for the overbinding and underbinding
nature of the LDA and GGA, respectively, in the in-plane energetics of graphite. That interaction also provides
a useful starting point for the studies of energetics of other graphitic systems such as fullerenes and carbon
nanotubes.
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I. INTRODUCTION

Graphite is a typical solid of layered structure and is char-
acterized by a relatively weak interlayer binding compared to
a rather strong binding within the layers. The covalent bond-
ing due to the threefold sp2 hybridized orbital is responsible
for the strong binding within the layers, and the resulting
hexagonal network of carbon atoms provides a useful start-
ing point in the studies of other graphitic systems such as
fullerenes and carbon nanotubes.1 The weak interlayer bind-
ing is supposed to arise from the dispersion or van der Waals
�vdW� interaction and the overlap of partially occupied 2pz
orbitals perpendicular to the graphitic planes. In general, the
vdW interaction has only a minor effect on the bulk proper-
ties of dense and hard matter but plays a crucial role for the
structure and dynamics of systems with sparse electron dis-
tribution. Binding energetics in graphitic structures is one of
such typical examples and has been attracting much theoret-
ical attention as a basic issue.2

Three types of theoretical methods have been used to in-
vestigate the energetics of interlayer binding in graphite. The
first method is based on the model potential, mostly
Lennard-Jones �LJ� potential, whose parameters are usually
determined empirically. This empirical method has been suc-
cessful in providing a unified, consistent description of the
properties that depend on the weak interactions in graphitic
systems.3–5 The second ab initio method has most often been
based on the density functional theory �DFT�,6,7 and in these
DFT calculations, the local density approximation �LDA�7

and generalized density-gradient approximation �GGA� with
various flavors �e.g., Refs. 8–13� have been used as the stan-

dard approximations. Many authors have performed such
calculations for graphite and found that LDA yields better
results for the c-axis lattice constant and interlayer binding
energy �i.e., exfoliation energy� than GGA.14–25 Earlier re-
sults of these calculations are summarized in Ref. 24. The
vdW interaction or dispersive interaction may be taken into
account to some extent in these local and semilocal approxi-
mations at short and intermediate distances where the over-
lap of electron density is appreciable, but certainly cannot be
captured at large separation where the overlap is negligible.
The relation between the empirical and ab initio DFT meth-
ods and the apparent success of LDA for graphitic systems
have been discussed in some detail by Girifalco and Hodak.2

In an attempt among several challenges to fully incorporate
vdW interaction in the DFT �e.g., references cited in Refs. 26
and 27�, Rydberg et al. have developed a tractable vdW den-
sity functional �vdW-DF� for planar geometry26 and applied
it with moderate success to graphite, boron nitride �BN�, and
molybdenum sulfide of layered structures.27,28 More recently,
they developed an vdW-DF for general geometry and applied
it with better success to the bilayer graphene sheets and ad-
sorption energetics of organic molecules on a graphitic
surface.29,30 The implementation of these vdW-DF methods
requires heavy computational cost, and their accuracy is still
not fully satisfactory, as we see for graphite. The theoretical
and practical limitations of DFT calculations and the ad hoc
nature of empirical methods have led to the third method as
a compromise between the two, and several attempts have
been made for graphite and other systems.24,31–38 In this
semiempirical method, results of ab initio DFT calculations
are supplemented with an empirical atom-atom vdW interac-
tion modified by a damping function. This modification is
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intended to correct for the r−6 singular behavior at short dis-
tances and, though not necessarily accepted commonly, to
take care of the possible situation that the vdW interaction at
short and intermediate distances is already taken into account
to some extent in the DFT calculations.24 That extent inevi-
tably would depend on the DFT approximations to be used.
We are concerned with this viewpoint in the present work.

The interlayer binding energy of graphite is also difficult
to extract from experiments, and we find only three experi-
ments in the literature. These results are 43 meV/atom from
a heat-of-wetting experiment by Girifalco and Lad3 �see also
Ref. 24�, 35−10

+15 meV/atom from a microscopic analysis of
collapsed carbon nanotubes,39 and 52±5 meV/atom from the
experiments on the thermal deposition of polyaromatic hy-
drocarbons from a graphitic surface.40 All these experiments
are indirect in obtaining the interlayer binding energy, and
the scattered results imply some uncertainties other than
those explicitly shown.

In the present work, we revisit the previous semiempirical
approach24 and explore an improved method of obtaining the
interlayer binding energy of graphite. The method is similar
to the previous one, but the treatment of the atom-atom vdW
interaction is more flexible and covers a wider range of pos-
sibility. In this approach, we are also concerned with the
development of a useful method that can conveniently be
used to study the energetics of other graphitic systems such
as carbon nanotubes.

In the next section, we will show for completeness the
results of DFT calculations repeated in the standard approxi-
mations. In Sec. III, we provide the details of our semiempir-
ical method, which consists of combining those DFT results
with an empirical vdW interaction. The results and discus-
sion are given in Sec. IV. The final section is devoted to the
conclusions.

II. DENSITY FUNCTIONAL THEORY CALCULATIONS

We considered the most stable phase of graphite with
ABAB stacking and repeated DFT total-energy calculations
in the LDA and GGA approximations using the Vienna ab
initio simulation package �VASP�41,42 with the projector-
augmented wave method43 to describe interaction between
electrons and nuclei. We used the exchange-correlation en-
ergy functionals of Ceperley and Alder44 as parametrized by
Perdew and Zunger45 for the LDA and of Perdew et al.13 for
the GGA. The k-space integration was made using the
Monkhorst-Pack method46 with 56 special k points in the
irreducible Brillouin zone generated from uniform 12�12
�4 mesh. The cutoff energy limiting the plane-wave basis
set was chosen to be 500 eV in both the LDA and GGA
calculations. The present DFT calculations are expected to be
more accurate than the previous ones24 obtained by using
ultrasoft pseudopotential,47 the GGA energy functional of
Perdew and Wang �PW91�,9,12 and the energy cutoff of
358.2 eV. The calculated total energy, EDFT�a ,d�, as a func-
tion of the in-plane lattice constant a and interlayer distance
d=c /2 may be written as EDFT�a ,d�=EDFT

0 �a�+UDFT�a ,d�,
where EDFT

0 �a�=EDFT�a ,�� is the total energy of the isolated
graphene sheet and UDFT�a ,d� is the interlayer contribution.

The present DFT calculations for the lattice constants, total
cohesive energy Ecoh=−EDFT�a ,d�, interlayer cohesive en-
ergy Ucoh=−UDFT�a ,d�, and c-axis elastic constant c33 are
summarized and compared to other calculations and experi-
ments in Table I. Here, Ucoh is the energy �per atom� required
to separate graphite into layers an infinite distance apart. We
used the atomic ground-state energy obtained by spin-
polarized DFT calculations in extracting EDFT�a ,d� from the
calculated total energy, including atomic contribution.

The present results for a, d, and c33 are in good agreement
with the similar calculations by Mounet and Marzari25 �Table
I�. These results also agree to varying degrees with earlier
calculations, which are summarized in Ref. 24. The experi-
mental lattice parameters at room temperature obtained by
several authors48,50–53 are consistent with one another. The
in-plane negative thermal expansion at low temperatures25,54

implies that the zero-temperature value of a is at most
0.001 Å larger than the room-temperature one and a
�2.462–2.464 Å. These values are slightly larger and pos-
sibly more accurate than that of Baskin and Meyer48 �Table
I�. However, here and hereafter, we use the latter as the ex-
perimental zero-temperature value of a for consistency with
the previous calculations.24 We find that such a small differ-
ence of a brings about only a marginal influence on the final
results. As for the experimental interlayer distance, the zero-
and room-temperature values are consistent if we take into
account the c-axis thermal expansion.54 We confirm in Table
I that the GGA yields an in-plane lattice constant in an al-
most complete agreement with experiment but badly fails in
predicting interlayer characteristics including d, Ucoh, and
c33. In contrast, the agreements between the LDA calcula-
tions and experiments for all these interlayer characteristics
are much better, with an almost perfect agreement for d. We
also find that the vdW-DF yields a much better result for
Ucoh than LDA and GGA, but predicts too large d, and there
is still room for improvement. The present LDA result for
Ucoh is qualitatively similar to the previous ones, which are
in the range 20–30 meV/atom,16–18,22,24,38 with some
exceptions.15,19 Alfè and Gillan56 have reported quantum
Monte Carlo calculations of the surface formation energy for
the MgO surface, which also support the accuracy of LDA
for this case. These results suggest that the superiority of
LDA to GGA is a general feature for the energetics of lay-
ered structure and surface, in which sparse electron distribu-
tions are involved.

Following the previous work,24 we performed DFT calcu-
lations for the interlayer interaction energy �per atom�,
UDFT�a ,d�, of graphite in the wide range of d up to d
=7.5 Å. In these calculations, the in-plane lattice constant
was assumed to be independent of d and set equal to the
experimental value,48 aexpt=2.460 Å, as we have discussed
earlier. Hereafter, the a dependence of UDFT�a ,d� is not ex-
plicitly shown unless otherwise stated. For the present pur-
pose, it suffices to know UDFT�d� as a function of d, but it
may be useful in applications to other graphitic systems to
assume an atom-atom interaction, �DFT�r�, giving rise to the
calculated UDFT�d�. In this treatment, we employ as before24

the continuum model conveniently used in such
applications.57 Then, the interaction energy between an atom
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in one layer at z=0 and all the atoms in another layer at z
= ld �l= ±1, ±2, . . . � is given by

VDFT�ld� = �
0

�

�DFT���ld�2 + r2�2��rdr

= 2���
	l	d

�

�DFT�r�rdr , �1�

where � is the atomic number density in the layer, �
=4/ ��3a2�. Using the interlayer interaction energy given by
Eq. �1�, UDFT�d� can be written as

UDFT�d� =
1

2 

l=−�

�

�VDFT�ld� = 

l=1

�

VDFT�ld� , �2�

where the prime on the summation implies the exclusion of
the l=0 term. We note that �DFT�r� is treated as the interac-
tion between atoms in different layers and cannot be used for
describing the atomic interaction within layers. This point is
important in some cases as it is in the application to the
radial deformation of carbon nanotubes.57

In such applications to other graphitic systems, it is also
useful to parametrize �DFT�r�, and we found that it was well
represented by a Morse potential,24,57

�DFT�r� = −
M0

�2 − �1
��2 exp�− �1�x − 1��

− �1 exp�− �2�x − 1��� , �3a�

with x=r /dM and �2��1. We have fitted the four parameters
in the above potential to the calculated UDFT�d� over the

range up to d=7.5 Å by the least-mean-square method and
have found that the limiting case, �2→�1=�, provides the
best fit to the LDA results. In this limit, Eq. �3a� reduces to

�DFT�r� = − M0�1 + ��x − 1��exp�− ��x − 1�� . �3b�

Both forms of �DFT�r� in Eqs. �3a� and �3b� have the mini-
mum at r=dM with the depth of M0. The fitted parameters
are summarized in Table II. As we will show later, UDFT�d�
rapidly saturates for large d, suggesting that VDFT�ld� virtu-
ally vanishes beyond neighboring separation �l�2� even for
d as small as 3 Å and UDFT�d��VDFT�d�. These results
clearly indicate that the long-range part of the vdW interac-
tion is not accounted for at all in both the LDA and GGA
calculations, although it might have been obvious, from the
outset, from their local and semilocal nature.

III. SEMIEMPIRICAL METHOD

In our semiempirical method, we assume as before24 that
the interlayer interaction energy �per atom� is given by the

TABLE I. Present results of the DFT calculations for the in-plane lattice constants a, interlayer spacing
d=c /2, total cohesive energy Ecoh �in eV/atom�, interlayer cohesive energy Ucoh=−U�d� �in eV/atom�, and
c-axis elastic constant c33 of graphite with ABAB stacking, and their comparisons with other calculations and
experiments.

a
�Å�

d
�Å� Ecoh Ucoh

c33

�GPa�

LDA Present 2.442 3.337 8.86 23.8 29.4

MMa 2.440 3.342 29

GGA Present 2.461 4.9 7.81 2.0 0.3

MMa 2.461 4.24 2.4

vdW-DFb 3.6 48

Expt. �0 K 2.46c 3.336c 7.37d 40.7e

�300 K 2.461–2.463f 3.354–3.356c,f 52±5g 36.5e,h–38.7i

aMounet and Marzari �Ref. 25�.
bReference 30.
cReference 48.
dL. Brewer �unpublished� �as cited in Ref. 14�.
eReference 49.
fReferences 50–53.
gReference 40.
hReference 55.
iReference 53.

TABLE II. Parameters of the C-C interaction potentials in Eqs.
�3b� and �3a� fitted to the LDA and GGA results, respectively, for
the interlayer interaction energy.

M0

�meV�
dM

�Å� ��=�1� 	��=�2−�1�

LDA 2.427 3.702 10.02 0

GGA 0.054 5.167 3.453 14.73
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sum of the DFT result and the additional vdW contribution
UvdW�d� missed in the approximate DFT calculations,

U�d� = UDFT�d� + UvdW�d� . �4�

Here, we further assume that UvdW�d� is given by the sum of
the interlayer atom-atom vdW interaction �vdW�r�. Then,
again, using the continuum model as in the case of VDFT�ld�
in Eq. �1�, the layer-layer vdW interaction can be written as

VvdW�ld� = 2���
	l	d

�

�vdW�r�rdr . �5�

Using this result, we have

UvdW�d� =
1

2 

l=−�

�

�VvdW�ld� = 

l=1

�

VvdW�ld� . �6�

Strictly speaking, the additional contribution cannot neces-
sarily be given in terms of atom-atom interaction, but we
may expect, as usual, that such contributions can effectively
be incorporated in that form through the empirical determi-
nation of �vdW�r�, which we describe in the following. This
assumption may be accepted as a good approximation for
molecular solids including graphite, in which the main body
of the interaction is, in fact, given in that form.

The asymptotic form of �vdW�r� obtained by the long-
range multipole expansion may be given by −C6 /r6, but this
form is certainly invalid at short distances. The common
practice to overcome this deficiency has been to modify the
asymptotic form as58

�vdW�r� = −
C6

r6 fdamp�r� , �7�

where fdamp�r� is usually called damping function and is cho-
sen to endure the nonsingular behavior of �vdW�r� in the
limit r→0 and to recover the asymptotic form at large r. The
damping function in Eq. �7� is usually treated as a universal
function independent of atoms or molecules involved.58 One
of such functions used in the previous studies is of the
form33,37

fdamp�r� → fnm�r� = �1 − exp�− 
0�r/DW�n��m, �8�

where DW is an appropriately chosen scaling length, and we
require nm�6 to endure the nonsingular behavior of �vdW�r�
in the limit r→0. As we will see later, we have difficulty in
using this type of damping function for our purpose. After
several trials, we found that one of the appropriate forms of
fdamp�r� is given by

fdamp�r� = �1 − 
2 exp�− 
1�r/DW�k��fnm�r� , �9�

which contains four parameters �
0, 
1, 
2, and k� once n, m,
and DW are fixed. The short-range behavior of this function
is controlled by the prefactor, which is unity, i.e., fdamp�r�
= fnm�r�, if 
2=0 and changes sign at some separation if 
2

�1, as actually happens to the LDA-based method. In this
way, the form of fdamp�r� in Eq. �9� covers the ordinary ones
with a monotonic behavior and is more flexible with a wider
range of possibility. A more explicit motivation to assume
that form will be discussed later.

Using Eq. �7� in Eq. �5�, Vvdw�ld� �l�0� can be calculated
as

VvdW�ld� = − 2��C6�
ld

� 1

r5 fdamp�r�dr

= − 2��C6�
ld

� 1

r5dr − �
ld

� 1

r5 �1 − fdamp�r��dr�
= −

��C6

2d4 �1/l4 − 4Jl�d�� , �10�

where

Jl�d� = �
l

�

�1 − fdamp�yd��y−5dy . �11�

Then, using Eq. �10� in Eq. �6�, we have

UvdW�d� = −
��C6

2d4 ��4� − 4

l=1

lmax

Jl�d�� , �12�

where ��4�=�4 /90, ��n� being Riemann’s zeta function de-
fined by ��n�=1+1/2n+1/3n+¯, and Jl�d� virtually van-
ishes for l� lmax=3–4.

The parameters of fdamp�r� in Eq. �9� are determined by
requiring the following physical and theoretically motivated
conditions. �i� First, the interlayer interaction energy U�d�,
given by Eq. �4�, should be consistent with the experimental
interlayer spacing at T=0 K, i.e., U��dexpt�=UDFT� �dexpt�
+Uvdw� �dexpt�=0, with dexpt=3.336 Å.48 �ii� Similarly, the
c-axis elastic constant at T=0 K is reproduced, i.e., c33
=�dexptU��dexpt�=40.7 GPA.49 �iii� The experimental in-
plane lattice constant, aexpt=2.460 Å,48 is also reproduced,
i.e., �E�a ,dexpt� /�a=0 at a=aexpt. Here, E�a ,d� is the total
energy of graphite and is given by E�a ,d�=EDFT�a ,d�
+Evdw�a ,d�, with EDFT�a ,d� and Evdw�a ,d� being the result
of DFT calculation and the supplemented vdW contribution,
respectively. Evdw�a ,d� is given by the sum of Uvdw�d� and
the in-plane vdW contribution, Evdw

0 �a�=Evdw�a ,d→��. We
may assume that the interlayer and in-plane atom-atom vdW
interactions are the same. Then, again, using the continuum
model to be consistent with the calculation of Uvdw�d�, the
in-plane vdW contribution can easily be calculated as

EvdW
0 �a� =

1

2
�

0

�

�vdW�r�2��rdr

= − ��C6�
0

Rmax 1

r5 fdamp�r�dr +
1

4Rmax
4 � ,

�13�

where Rmax� lmaxd and fdamp�r� virtually vanishes for r
�Rmax as before. �iv� The final requirement is that the LDA-
and GGA-based methods �LDA+vdW, GGA+vdW� yield
the same U�dexpt� with the assumption that fnm�r� in Eq. �9�
is a universal function independent of DFT approximation.
At this point, we note again that the vdW term, Uvdw�d�, is
assumed to be the correction to the approximate DFT calcu-
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lations. Hence, if such a correction is properly made, the
combined result, U�d�, should be the same irrespective of the
underlying DFT approximation. The final requirement is
nothing but the consequence of this theoretically motivated
necessary condition.

Here, we come back to the damping function given by Eq.
�9� and clarify the practical motivation leading us to that
form. From Eqs. �4�, �6�, and �10�, we have

U��d� = UDFT� �d� +
2��C6

d5 

l=1

�
1

l4 fdamp�ld� . �14�

If we use the LDA result �DFT→LDA�, ULDA� �dexpt��0
since LDA almost perfectly predicts the interlayer spacing
�see Table I�, implying that the second term on the right-hand
side of Eq. �14� must also vanish in order that U�d� satisfies
the first requirement, U��dexpt�=0. More specifically,
fdamp�dexpt� must be negative since fdamp�ldexpt� with l�1
would be positive and nearly equal to unity. The ordinary
damping functions, such as that in Eq. �8�, certainly show no
such behavior. This difficulty of the LDA-based route
�LDA+vdW� was the reason why we took a different ap-
proach in the previous work.24 In that approach the layer-
layer interaction energies, VDFT�ld� and Vvdw�ld� �with
fdamp�ld�=1�, were interpolated using a Fermi function with
two parameters, which were determined by the first and sec-
ond requirements discussed earlier. This interpolation
scheme was similar to that used by Pacheco and Ramalho59

and Hasegawa et al.60 in their calculations of the intermo-
lecular potential in C60 solids. We have no such difficulty in
using the GGA calculations, and this is probably the reason
why Ortmann et al.37,38 did not use the LDA result in their
semiempirical approach but concentrated only on the GGA-
based method �i.e., GGA+vdW�. The modification of
fdamp�r� in Eq. �9� was motivated by this practical difficulty,
thereby enabling us to make a systematic, consistent treat-
ment of the LDA and GGA calculations.

IV. RESULTS AND DISCUSSION

We used the vdW constant, C6=16.34 eV Å6, obtained by
Wu and Yang33 in their analyses of the interatomic vdW
interactions as an appropriate value for the carbon atoms in
the sp2 bonding state. We also employed f32�r� used by them
�n=3 and m=2� for fnm�r� in Eq. �9�, in which the sum of the
atomic vdW radii is used as the scaling length, i.e., DW
=2RW with RW=1.70 Å for carbon atoms.61 With this choice
of the scaling length, the present damping function fdamp�r�

given by Eq. �9� is expected to be universal; i.e., its param-
eters �
0, 
1, 
2, and k� are independent of atoms involved.
However, it is difficult to confirm this universality at this
stage because it requires detailed experimental data for other
systems. The procedure to determine the parameters of
fdamp�r� is as follows. For a given value of 
0 in f32�r�, the
remaining parameters of fdamp�r� are determined by the
physical requirements, �i�–�iii�, described in the previous
section. Figure 1 shows the resulting interlayer interaction
energy U�dexpt� as functions of 
0 obtained in this way. We
find that the LDA-based result �LDA+vdW� for U�dexpt�
shows a large variation with 
0, while the GGA-based result
�GGA+vdW� is almost constant �slightly decreasing with

0�. Both results coincide with each other at 
0=5.467,
thereby satisfying the theoretically motivated final require-
ment. This value of 
0 is in between those originally used by
Mooij et al.62 �
0=7.19� to simulate the damping function of
Ahlrichs et al.63 and later corrected by Wu and Yang33

�
0=3.54�, which simulates more likely that function. How-
ever, these damping functions cannot directly be compared to
the present f32�r�, which is treated as the intrinsic part of the
damping function and assumed to be independent of the DFT
approximation.

The parameters of fdamp�r� for the above value of 
0 are
summarized in Table III, and the corresponding results for
U�d� as functions of d are illustrated in Fig. 2. The LDA- and
GGA-based results �LDA+vdW, GGA+vdW� for U�d�,
U��d�, and U��d� are the same at d=dexpt by construction.
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FIG. 1. �Color online� Interlayer interaction energies U�d� at the
experimental interlayer spacing, d=dexpt, as functions of 
0 �the
parameter of f32�r��. For each 
0, U�d� was determined by the
physical conditions, �i�–�iii�, described in the text. Both results for
U�d� �LDA+vdW and GGA+vdW� coincide with each other at

0=5.467, thereby satisfying the theoretically motivated require-
ment �iv�, and is equal to −60.4 meV/atom.

TABLE III. Parameters of the damping function in Eq. �9�, with the Wu-Yang type of fnm�r� �n=3, m
=2�, determined by imposing the conditions described in the text. Also included are the in-plane and inter-
layer vdW contributions �EvdW

0 and UvdW, respectively, in units of eV/atom� to the total energy of graphite at
the experimental lattice constants.


0 
1 
2 � EvdW
0 UvdW

LDA+vdW 5.467 0.591 1.882 3.315 0.511 −0.037

GGA+vdW 5.467 0.909 0.983 7.139 −0.071 −0.075
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Both routes also yield quite similar results over the wide
range of d, which is the favorable feature coming out without
any additional requirement and enforces our confidence in
the validity as well as the usefulness of the present semi-
empirical approach. The interlayer cohesive energy
Ucoh=−U�dexpt� obtained in this way is 60.4 meV/atom,
which is close to the previous semiempirical results24

�60.7 meV/atom for LDA+vdW and 57.4 meV/atom for
GGA+vdW� and somewhat larger than the empirical one
obtained with the use of LJ potential �55.5 meV/atom�. We
note that in our previous semiempirical method,24 we have
not required that the two routes �LDA+vdW and GGA
+vdW� should yield the same U�dexpt�. Ortmann et al.38 ob-
tained a somewhat larger value of Ucoh=80.2 meV/atom by
their method �GGA+vdW� using f81�r� �n=8, m=1� as the
damping function. They determined its parameter for graph-
ite only by the first requirement, U��dexpt�=0, and treated
f81�r�, as usual, as a universal function applicable to any
system. Their result suggests that such a simple treatment of
the damping function overestimates Ucoh. At room tempera-
ture, Ucoh is lowered by �6.5 meV/atom by the thermal ef-
fect compared to that at T=0 K and reduces to

�54 meV/atom.24 This result is consistent with the most re-
cent experiment by Zacharia et al.,40 52±5 meV/atom, al-
though uncertainties in experimental results are unavoidable,
as we have discussed earlier.

The damping functions with the parameters summarized
in Table III are illustrated in Fig. 3. As we have anticipated
beforehand, fdamp�r� for the LDA-based method �LDA
+vdW� is negative in the short range, r3.5 Å, and, as a
consequence, �vdW�r� is large and positive in that range, as
illustrated in Fig. 4, quite in contrast to the ordinary ones. On
the other hand, the GGA-based route �GGA+vdW� yields
the results of fdamp�r� and �vdW�r� similar to the ordinary
ones, although their magnitudes in the short range are much
reduced. As we have already discussed, the short-range part
of the present �vdW�r� is interpreted as containing, in addi-
tion to the ordinary vdW interaction, the contribution cor-
recting for the approximate DFT calculations and inevitably
depends on the underlying DFT approximation as actually
visualized for the LDA and GGA. Figure 5 illustrates the
C-C interactions �DFT�r� given by Eq. �3a� or �3b� fitted to
the LDA and GGA results for UDFT�d� �see Eq. �2�� and the

-0.5

0.0

0.5

1.0

0 2 4 6 8
r (Å)

FIG. 3. �Color online� Damping functions fdamp�r� given by Eq.
�9� �with the parameters in Table III� in the LDA+vdW �solid line�
and GGA+vdW �dashed line� methods. Also shown is the intrinsic
part, f32�r� �dotted line�.
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FIG. 4. �Color online� C-C vdW interaction potentials �vdW�r�
given by Eq. �7� in the LDA+vdW �solid line� and GGA+vdW
�dashed line� methods. Also shown are −�C6 /r6�f32�r� �dotted line�
and the asymptotic form −C6 /r6 �dash-dot line�. In �b�, the vertical
scale is expanded 50 times.
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FIG. 2. �Color online� Interlayer interaction energies as func-
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methods, LDA+vdW �solid line� and GGA+vdW �dashed line�,
both being almost indistinguishable from each other.
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FIG. 5. �Color online� Interlayer C-C interaction potentials
�DFT�r� fitted to the calculated UDFT�d� in the LDA �closed circles�
and GGA �open circles� and the total potential, ��r�=�DFT�r�
+�vdW�r�, obtained by the LDA+vdW �solid line� and GGA
+vdW �dashed line� methods, both being almost indistinguishable
from each other. Also shown is the asymptotic form −C6 /r6 �dotted
line�.
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corresponding total C-C interactions, ��r�=�DFT�r�
+�vdW�r�. These results provide a useful means to investi-
gate the energetics of the radial deformation of carbon
nanotubes,57 where �DFT�r� and �vdW�r� are conveniently
treated separately. These results for ��r� may also be directly
applicable to the calculations of the wall-wall interaction in
multiwall carbon nanotubes and the interaction between
nanotubes in bundles.

The short-range part of �vdW�r� �rd� has no direct in-
fluence on the interlayer interaction itself but has a substan-
tial effect on the in-plane energetics in the case of LDA. In
fact, with the inclusion of the vdW interaction, the LDA total
cohesive energy �see Table I�, Ecoh, at experimental lattice
constants lowers by 0.47 eV/atom with 0.51 and
−0.04 eV/atom as the in-plane and interlayer contributions,
respectively �see Table III� and reduces to
Ecoh=8.39 eV/atom. On the other hand, Ecoh in the GGA is
increased by 0.146 eV/atom with comparable in-plane and
interlayer contributions �0.071 and 0.075 eV/atom, respec-
tively�, and we have Ecoh=7.96 eV/atom. These results indi-
cate that the supplemented vdW interactions favorably cor-
rect for the overbinding and underbinding nature of LDA and
GGA, respectively, thereby providing further confidence in
the present method characterized by the damping function in
Eq. �9�. The corrected results of Ecoh in the LDA and GGA
are still different by �0.43 eV/atom. This difference may
partly be ascribed to the so-called multiconfiguration correc-
tion in the atomic ground-state energy calculations, which
amounts to �1.4 eV in the Hartree-Fock calculations64 and
could be substantially different between LDA and GGA.

All these results were obtained for the damping function
fdamp�r�, with f32�r� as the intrinsic part. We also tried f42�r�
and f81�r� in place of f32�r�, with f81�r� being the damping
function used by Ortmann et al.,37,38 and found that the re-
sults for U�d� are almost indistinguishable from those ob-
tained by using f32�r�. The vdW interactions �vdW�r� corre-
sponding to f42�r� and f81�r� vanish at r=0 and are different
from that for f32�r� in the short range, but this difference is
minimal in the physically relevant range, r�rCC=1.42 Å,
where rCC is the C-C bond length in the layer. We also note
that the continuum model used in the present approach
makes the implementation of our semiempirical method
quite simple without sacrificing quantitative accuracy. This
model is much more useful in applications of the present
results to other graphitic systems,57 for which the discrete-
atom model brings about formidable complexities in imple-
mentations with little quantitative advantage.

V. CONCLUSIONS

We have revisited the previous semiempirical approach24

and developed an improved method of calculating the inter-
layer binding energy of graphite. This method is motivated
by the basic idea that the supplemented atom-atom interac-
tion, typically vdW interaction, should contain all the contri-
butions that approximate DFT calculations fail to take into
account. In accordance with this viewpoint, we introduced a
flexible damping function for the atom-atom vdW interac-
tion, which covers a wider range of possibility and inevitably
depends on the underlying DFT approximations. We also
successfully aimed at a consistent treatment of the supple-
mented vdW interaction in the LDA- and GGA-based
method and obtained Ucoh=60.4 meV/atom as the interlayer
cohesive energy at T=0 K. This result is, if corrected by the
thermal effect, consistent with the most resent experiment.40

The present semiempirical result for Ucoh may be the most
plausible among others owing to the imposed necessary con-
ditions, although it is not much different from the previous
ones obtained by the empirical,3–5,24 semiempirical,24 and
vdW-DF30 methods. The C-C vdW interaction �vdW�r� in-
volved in the present method differs from the previous ones
and provides a useful insight into the failure and limitation of
the standard DFT approximations for systems with sparse
electron distribution. We actually confirmed that the supple-
mented vdW interaction favorably corrects for the overbind-
ing and underbinding nature of LDA and GGA, respectively,
in the in-plane energetics of graphite. Besides our original
scope for the interlayer binding in graphite, the present
method may also provide a useful starting point for studying
the energetics of other graphitic systems. In fact, using the
atom-atom interactions, �DFT�r� and �vdW�r�, for graphite
obtained by our method, we have already developed a simple
theory for the radial deformation of single-walled carbon
nanotubes.57 These results can also be directly applicable to
the calculations of the wall-wall interaction in multiwalled
carbon nanotubes and the interaction between nanotubes in
bundles.
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