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SUMMARY Contextual classification of multispectral
image data in remote sensing is discussed and concretely two
improved contextual classifiers are proposed. The first is the
extended adaptive classifier which partitions an image successive-
ly into homogeneously distributed square regions and applies a
collective classification decision to each region. The second is
the accelerated probabilistic relaxation which updates a
classification result fast by adopting a pixelwise stopping rule.
The evaluation experiment with a pseudo LANDSAT
multispectral image shows that the proposed methods give higher
classification accuracies than the compound decision method
known as a standard contextual classifier.

key words: contextual classification, multispectral image,
remote sensing, probabilistic relaxation

1. Introduction

In remote sensing, classification of multispectral image
data has been widely used ds a powerful means to
extract various kinds of informations concerning the
earth environment [6]. Classification is based on
reflection spectrum characteristics of objects in a
multispectral image. Pixelwise classifiers, such as the
maximum likelihood method, that perform
classification on a single pixel base have been widely
used so far, but they cannot attain a higher
classification accuracy. Therefore, contextual
classifiers that utilize spatial contextual informations
among neighboring pixels have attracted attention and
have been studied [2], [5], [7], [9].

In this paper, we propose two improved contex-
tual classifiers. The first is the extended adaptive
classifier which is an improved method of the adaptive
classifier [8]. In the method, an image is partitioned
successively into homogeneously distributed regions
and a collective classification decision is applied to
each region. A region has a square shape and it is
repeatedly partitioned into four square regions of the
same size until the resulting regions are homogeneous.
When a successful classification is not realized even at
a 2X2 (pixels) square region, a consecutive procedure
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of three classifications is applied. @ They are a
classification using four-pixels regions, a classification
using three-pixels regions and a pixelwise
classification.

The second is the accelerated probabilistic relaxa-
tion. A probabilistic relaxation [3], [4] is an iterative
processing which updates a classification result of each
pixel so that it is consistent with the context of neigh-
borhood. The traditional probabilistic relaxations
may attain a high classification accuracy, but they have
two serious problems. One is that they are heavy time
consumers and the other is that their updating effects
are limited only at the early iterations. To overcome
the problems, we propose an acceleration method of
probabilistic relaxations that uses a pixelwise stopping
rule in iterations. Introducing this rule, we can drasti-
cally reduce a CPU time of relaxation processing and
simultaneously avoid the obstacle that a classification
accuracy degenerates as an iteration goes on.

We have made an experiment with a pseudo
LANDSAT multispectral image to evaluate the
proposed methods objectively. Consequently, both the
proposed methods gave higher classification accuracies
than the compound decision method [1], [5] known as
a standard method of statistical contextual
classification. The compound decision is such a
method as minimizes an expected loss of classification
under utilizing the neighboring pixels and the details
are given in Refs. [9] and [10]. Moreover, it is shown
that the pixelwise stopping rule made a drastic acceler-
ation of relaxation processing.

2. Extended Adaptive Classification

In a multispectral image, let us denote the set of pattern
classes by 2={1, 2, ---, m} and a feature vector of pixel
by x, where m is the number of classes.

In the adaptive classifier [8], the image is par-
titioned successively into homogeneously distributed
regions and each region is classified collectively into a
single class. Each partitioned region has a square
shape of 2*Xx2* pixels (k=1) and it is repeatedly
partitioned into four square regions of the same size
until the resulting regions are homogeneous. If a
successful classification is not realized even at a 2X2
square region, the maximum likelihood method of
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(a) Four pixels.

(b) Three pixels.

Fig. 1 Block patterns of four pixels and three pixels in extended
adaptive classifier.

pixelwise classification is applied.

The adaptive classifier has the problem that most
of the pixels at the boundary and line part in the image
are classified pixelwise and its classification accuracy
may not be so high. To improve this, we present a new
classifier, called the extended adaptive classifier.

The procedure of the extended adaptive classifier
is shown in the following.

step 1: Partition the image into initial square
regions of a specified size.

step 2: Choose a square region and apply the two
judgments, described later, to the region. If both the
judgments return YES’s, classify all the pixels in the
region to the candidate class. If not so, partition the
region into four squares of the same size.

step 3: Iterate step 2 as long as there remains an
unclassified square region.

step 4: If the partitioning proceeds down to a
pixel, classify the pixel as follows.

(4.1) Among eight kinds of four-pixels regions
with the pixel as the center, as are shown in Fig. 1(a),
select one with the minimum variance and apply the
two judgments, described below, to it. If both the
judgments return YES’s, classify the pixel to the candi-
date class. If not so, go to (4.2).

(4.2) Among arbitrary three-pixels regions with
the pixel as the center, (there are 28 such patterns as are
reduced to the prototypes shown in Fig. 1(b)), select
one with the minimum variance and apply the two
judgments to it. If both the judgments return YES’s,
classify the pixel to the candidate class. If not so,
classify the pixel pixelwise by the maximum likelihood
method.

The following two judgments are used to classify
each region.

[Judgment 1] (judgment by mean vector)

Let M be the number of pixels in the region and X be
the mean vector of pixels {x;, xz, -+, xu} in the region.
The distance like the Maharanobis one between X and
Mo 1s defined by

dM(CU)=M(f_ﬂw)TSw—l(f_ﬂw), (1)
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where y, is the mean vector for class w = .2 and S, is
the covariance matrix for class w. We select the class
w that minimizes

du (w) +1og| Sw| (2)
in 2. If @ satisfies
du (@) £ 1y, (3)

then YES is returned and w is set as the candidate
class, where 7y is a threshold. If not so, NO is returned.
[Judgment 2] (judgment by sum)

For the candidate class w in the judgment 1, the sum of
the Maharanobis distances between x; and g, is
defined by

Dur(@) = 2 05— ) ™S (55— f10). (4)
We select the class @ that minimizes

Dy (w) +1og|Swl (5)
in Q. If @ satisfies

Dy (w) < t, (6)

then YES is returned, where #y is a threshold. If not
s0, NO is returned.

Consider the hypothesis H: “All pixels in a region
to be classified are random samples from the ensemble
with normal distribution N(gw, S,).” Under the
hypothesis H, dy(w) and Dy(w) follow x*
distributions with degrees of freedom » and »aM,
respectively. Then, using the significance levels (upper
probabilities) ay and By, we can define the thresholds
ry and ty from the relations

PIOb[dM(C{)) >rM|H]=0/M (7)

Prob[ Dy (w) > tu|H]= Bu, (8)
where the suitable values of @y and S must be deter-
mined based on experiments.

3. Accelerated Probabilistic Relaxation

Let x; be a feature vector of i-th pixel and s; (@) be the
likelihood of x; belonging to class w. A membership
vector s;=[s;(1), 5:(2), -+, 5: (m) ]satisfies the follow-
ing two relations

0<s:(w) =1 9
2 si(w) =1 (10)

In a probabilistic relaxation, a vector s; is updated
to be consistent with the context of neighborhood. In
this paper, we discuss the following two relaxations to
update a vector s;%, where s/ denotes the altered vector
of s; at the k-th iteration.

[Rosenfeld’s Relaxation] [3]
We denote by §; the true class membership of i-th pixel
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x; and consider it as a random variable. Then, s5* is
updated by

s#(w) (1+¢#(w))

SikH(w):w;gSik(w) (1+qi"(a))) (11)
q*= 2 dy(w) 3 ri(w, o) s (@) (12)
JEN: wER

ri(w, o) =clog{p(:=w|Gi=0a") [p(6;i=w)},
(13)

where ; is the set of neighbor pixels for i-th pixel. p
(8:=w) is the a priori probability that i-th pixel takes
class w and p(6;=w|8;=w’) is the conditional proba-
bility that i-th pixel takes class w, given that j-th
neighbor pixel takes class w’. d;; is a nonnegative
weight and ¢ is a constant value. The value of r; is
clipped in the range [ — 1, 1] when it exceeds the range.
[Peleg’s Relaxation] [4]

s is updated by

k+1 _ ] s (w) Qijk(w)
& w) _jg}v,-cj wzelgsik (0) Qz'jk (@) (14)

0 (0) = 31w, o) s (@) (15)

e
ri(w, @) =p(li=w|b;=w) p(bi=w), (16)

where ¢; is a nonnegative weight. In this case, 7;(w,
«’) takes a value in the range [0, o).
The initial vector s;° is chosen by

° (@) =p(bi=w|x.), (17)

where p(0;=w|x;) is the posteriori probability that
i-th pixel takes class w, given that its feature vector is
x;. The classification decision of x; at the k-th itera-
tion results in the selection of the class @& Q2 maximiz-
ing s*(w).

The above traditional relaxations may attain a
higher classification accuracy than pixelwise classifiers,
but they have two serious problems. One is that they
are heavy time consumers and the other is that their
updating effects are limited only at the early iterations.
The latter is prominent in the Peleg’s relaxation, and
this may throw a question to the validity of conver-
gence in relaxation. To overcome these problems, we
introduce a pixelwise stopping rule given as follows.
[Pixelwise Stopping Rule]

We assume that at the k-th iteration the most probable
class of x; is w, namely,

s#(w) =max{s* (0" }. (18)
W' ELR

If, at the next (k+1)-th iteration, we have the follow-
ing two relations

s* () =Ir,123;{&1”1(w')}>sik(a)) (19)
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st @) =5 (0) (o' F ), (20)
then we rewrite the vector s*** as follows:
1 (o'=w)
s @) ={ 1)
0 (0'*w).

The above rewriting is justified because Egs. (19) and
(20) mean that classifying x; to class @ is supported by
the neiborhood and the likelihood s;(@’) would be
increased only for w’= @ through the following itera-
tions. Therefore, the rewritten s**' should not be
altered afterwards, that is, we assume the following
relations

SHU (o) =522 () =+ (22)

for all w'E02.

The stopping rule may reduce a total processing
time of relaxation considerably, because pixels to be
updated are monotonously decreased as an iteation
goes on. Also the validity problem of convergence
may be improved by the stopping rule. The reason is
as follows. As the exact estimation of 7;(w, @’) is
difficult, an update introduces a little uncertainty
unavoidably. Therefore, a relaxation brings simultane-
ously an improvement of contextual adjustment and a
diffusion of uncertainty, and consequently the
classification accuracy fluctuates as an iteation goes on.
At the early iterations, the class supported by the
neighborhood can be considered to be reliable,
because it is less blotted in uncertainty. Therefore,
fixing the vector s; of the supported pixel in early
stages, we can suppress the diffusion of uncertainty and
consequently prevent the degeneration of classification
accuracy in relaxation processing.

4. Experiment and Discussion
4.1 Image Data Used in Experiment

As long as an actual image data is used as a test data
in evaluation experiment of classifiers, it is difficult to
get an objective evaluation. The reason is that it is
hard to specify training areas appropriately in the
image and a subjective specification through human
recognition is inevitable. Therefore, we used a pseudo
LANDSAT MSS image as a test data in the experi-
ment.

The pseudo image data was constructed as fol-
lows. First, we partitioned the 1/25,000 map (Mori-
oka) of the National Geographical Institute into
meshes of 50 meters’ step and made a landuse map
(6.4 kmXx 6.4 km, 128X 128 pixels) by specifying the
landcover class of each mesh, where there are such
eight classes as residential area, urban area, road, bare
soil, rice field, field, forest and water area. Second,
using the actual LANDSAT MSS image data contain-
ing the corresponding areas (photographically taken
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August 6, 1983, with bands 5 and 6), we estimated the
average vector y, and the covariance matrix S, for
each class w. For each mesh of the landuse map, we
generated the two-dimensional random numbers fol-
lowing the normal distribution N{(ue, S,) and
obtained the pseudo LANDSAT MSS image. This
pseudo image was originally used in Ref. [9]. If a
reader want to get more information about it, he
should go into the reference.

We used the following definition to represent a
classification accuracy:

(class recognition rate)
= (number of correctly recognized pixels) /
(total number of pixels in the class)

Class mean recognition rate is the simple average of
class recognition rates and total recognition rate is the
weighted average of them with class area ratios.

4.2 Results of Extended Adaptive Classification

In the extended adaptive classification, a pixel
classified by utilizing the neighboring pixels is called a
blocked pixel and the ratio of blocked pixels to all the
pixels is called a blocking rate. Figure2 shows a
relationship between significance level and blocking
rate, where the curve marked with nXn pixels (#
pixels) indicates the ratio of the blocked pixels that are
classified by utilizing the regions of the size of nXn
pixels (n pixels) and more pixels. From this, we can
see that the number of pixelwise classified pixels
increases as a significance level comes near to one.
Especially, it should be noted that the ratio of the
pixels classified with the regions of four pixels and
three pixels occupies 30 to 50 percent of all the pixels
at the significance level from 0.1 to 0.25. These pixels
have been classified pixelwise in the traditional
adaptive classifier.

Figure 3 shows a relationship between significance
level and total recognition rate. The curve marked
with 2X2 pixels corresponds to the traditional
adaptive classifier and the curve marked with 3 pixels
does to the extended adaptive classifier. The curve
marked with 4 pixels shows the total recognition rate
of the extended adaptive classifier when it uses only the
four-pixels regions without employing the three-pixels
regions in step 4. From this, we can see that the total
recognition rate got the maximum value at the
significance level of 0.25 and that the extended
adaptive classifier improved about five percent of rec-
ognition rate compared with the traditional adaptive
classifier.

The processing time of the extended adaptive
classifier increased a little than the traditional one.
Thus, we can conclude that the extended adaptive
classifier makes a more adaptive classification than the
traditional classifier and gives a fair improvement on
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Fig.2 Bolcking rate in extended adaptive classifier.
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Fig. 3 Classification accuracies of adaptive classifier and
extended adaptive classifier.

classification accuracy.
4.3 Results of Probabilistic Relaxations

The neighborhood type was of 3X 3 pixels and di;=c¢;
=1/8 were chosen in the experiment. ¢ was set to 0.2
because it gave the highest recognition rate among
some tested values. The values of p(f;=w) and p(6;
=wl|f,=w’) were newly estimated at each iteration
from the classification result, where each pixel was
classified to the class @ maximizing s/* (w). Especially,
at the first iteration k=0, the classification result with
the Bayesian decision was used, where the value of p
(f:=w) was estimated from the classification result
with the maximum likelihood method.

Figure 4 shows the total recognition rates of the
Rosenfeld’s relaxation, where the modified case indi-
cates the relaxation using the stopping rule and the
original case does the relaxation without the stopping
rule. In the figure ¢=0.2 was selected and for the
different values of ¢ the original case did not surpass
the modified case. Similarly, Fig. 5 shows the total
recognition rates of the Peleg’s relaxation. From these,
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we can see that the stopping rule dissolved the problem
that the classification accuracy degenerates as an itera-
tion goes on.

Figure 6 shows the CPU time consumed in the
Rosenfeld’s relaxation and Fig. 7 does that in the
Peleg’s relaxation. From these results, we can see that
the stopping rule accelerated the relaxation processing
dramatically.

Lastly, we show the classification accuracies of the
tested classifiers in Table 1, where for each relaxation
the best of accuracies at iterations is filled in. In the
table, the classifiers of the extended adaptive classifica-
tion and the two accelerated relaxations got higher

100

Accuracy (25)

70 L . L : L . L :

¢ 3 6 9 12 15 18 21 24 27
Iteration

Fig. 4 Classification accuracy of Rosenfeld’s relaxation.
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Fig. 5 Classification accuracy of Peleg’s relaxation.
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classification accuracies than the compound decision
method. The extended adaptive classification showed
a little lower accuracy than both of the accelerated
relaxations, but the former is superior to the latters in
CPU time and memory storage. Therefore, it can be
said that in practical use the extended adaptive
classification is more. convenient than the accelerated
relaxations.
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Fig. 6 CPU time used in Rosenfeld’s relaxation.
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Fig.7 CPU time used in Peleg’s relaxation.

Table 1 Classification accuracies of the tested classifiers.

Maximum Bayes Compound Adaptive Extended | Rosenfeld Accel. Peleg Accel.
Adaptive Rosenfeld Peleg
Likelihood | Decision Decision | Classifier| Classifier | Relaxation| Relaxation| Relaxation | Relaxation
Class-Mean
Recognition 73.64 64.91 84.33 81.45 86.15 87.66 86.83 88.52 87.74
Rate
Total
Recognition| 70.83 78.92 84.99 81.79 86.43 87.96 88.10 87.52 88.19
Rate
|
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5. Conclusion

In this paper, we discussed the contextual classifiers
that utilize the spatial-contextual informations among
neighbor pixels to get a higher classification accuracy
than pixelwise classifiers. Actually, we proposed the
two contextual classifiers of the extended adaptive
classification and the accelerated probabilistic relaxa-
tion. To evaluate the proposed methods, we have
made an experiment using a pseudo LANDSAT
multispectral image data. Consequently, the experi-
mental results showed that both the proposed methods
got higher classification accuracies than the compound
decision method known as a standard contextual
classifier. Also, compared with the traditional
probabilistic relaxations, the accelerated probabilistic
relaxations could reduce the CPU time dramatically.
Therefore, it is expected that the proposed methods
would be widely used as convenient contextual
classifiers.
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