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The constant-NVT Monte Carlo simulation is performed for model Cg¢y molecules interacting via the
Girifalco potential and a full free-energy analysis is made to predict the high-temperature phase
diagram. The repulsive part of the Cgy potential is very steep and the attractive. part is relatively
short-ranged. For such a system accurate computations of the virial pressure are difficult in
simulations and it is argued that the discrepancies among the previous results for the phase diagram
of Cgq can partly be attributed to the uncertainties of the virial pressure involved in simulations. To
avoid this difficulty we take the energy route to calculate equation of state (EOS), in which the
absolute (Helmholtz) free energy is obtained by performing isochoric integration of the excess
internal energy. A difficulty of the energy route in the high-temperature limit is resolved by the aid
of an analytic method. The exact second and third virial coefficients are also used in the analysis of
the fluid EOS. The pressure route is taken to calculate the EOS of the solid phase, in which the virial
pressure is numerically more stable than in the fluid phase. The resulting high-temperature phase
diagram of Cgj is quite systematic and free from uncertainties, and the liquid—vapor critical point is
found at T.,=1980K and p.,=0.44nm™3, whereas the triple point at T,=1880 and p,

=0.74nm"™

3, confirming the existence of a stable liquid phase over the range of ~100 K. © 1999

American Institute of Physics. [S0021-9606(99)51137-9]

1. INTRODUCTION

In an early theoretical work on colloidal suspensions,
Gast ez al.! observed that for systems with sufficiently short-
ranged attractive potentials the sublimation line passes above
the liquid—vapor critical temperature T, in the T-p
(temperature—density) plane, and hence the liquid phase is
thermodynamically unstable. More recently, bulk Cg, has at-
tracted great attention as a possible candidate for such a
substance,? and several simulations and theoretical calcula-
tions have been performed. Hagen et al.®> and Cheng et al.*
were the first to have performed such simulations and
reached different conclusions; the former used a Gibbs-
ensemble Monte Carlo (GEMC) method and found that Cg
bhas no liquid phase, whereas the latter used a molecular dy-
‘namic (MD) method and predicted the existence of a stable
Tliquid phase between ~1800 K and ~1900 K. Both of these
“authors used the same intermolecular potential proposed by
Girifalco,’ but in the GEMC simulation of Hagen et al. this
potentlal was truncated at r =20, where o is the diameter of
the Cq; molecule. The effect of such a truncation was
thought to be minute, but later theoretical investigation®
‘based on a density-function theory (DFT) of freezing re-
vealed that the effect is substantial and the inclusion of the

truncated part of the potential could lead to a different con- -

clusion as to the existence of a stable liquid phase. We also
note that the MD simulation results of Cheng et al. are sub-
ject to large uncertainties and quantitatively not very definite.

The GEMC method was also used in the simulation
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study of Caccamo et al.” and the liquid—vapor critical point
was found at 7,=1920-1940K and p,=0.39-0.42 nm™3
depending on the number of molecules in the simulation cell.
They supplemented these simulation data by the freezing line
from other sources and concluded that stable liquid phase
exists in agreement with the MD results of Cheng et al*
However, the location of the triple point estimated by Cac-
camo et al. was indefinite because the freezing line used in
this estimation was phenomenological or subject to large un-
certainty.

Broughton et al.® took a somewhat different approach in
their MD simulation study. They employed a shell model in
which the radius of each Cgy molecule was allowed to be a
dynamical variable. The intermolecular potential was ob-
tained by taking a numerical average over 120 randomly
chosen relative orientations of a pair of Cg molecules. The
resulting potential was very similar to, but not the same as
the Girifalco potential. The phase diagram obtained for th15
model was similar to the GEMC result of Hagen et al.?
the sublimation line passes ~40 K above the liquid—vapor
critical point in the T—p plane and the liquid phase is ther-
modynamically unstable everywhere. However, this com-
parison should not be taken seriously because of the different
models employed.

In addition to these simulation studies, theoretical pre-
dictions of the phase diagram of Cgy have also been made
using the integral equation method,® the DFT of freezing,5!°
the thermodynamic perturbation theory11 and these
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~ combination. The integral equation method provides us
with a powerful means of calculating the EOS of the fluid
phase and is useful in the study of the liquid-vapor phase
transition.'® Of the various versions the Zerah—Hansen (often
referred to as HMSA) and the modified hypernetted-chain
(MHNC) theories have been used for the fluid Cg and
yielded T,~2050K (Ref. 4) and T,~1920K,? respectively,
for the critical temperature, the latter being in better agree-
ment with the simulations.*” More extensive study has been
made by Hasegawa and Ohno!® using the generalized
MWDA (GMWDA), a version of the DFT of freezing.'* The
GMWDA is an extension of the MWDA (Ref. 15) (modified
weighted-density-approximation) and works for most
systems.!® In this theory the EOS of a uniform fluid was
calculated using the MHNC theory and the result for the
liquid—vapor coexistence was similar to that of Caccamo’
obtained by essentially the same method. The triple point
predicted by the GMWDA falls slightly (~20 K) below the
critical point and the liquid phase was found to exist in quali-
tative agreement with the MD result of Cheng et al.*

The work of Mederos and Navascués!? was based on the
SPWDA, a simplified version of the perturbation weighted-
density approximation (PWDA), and yielded 7,~2200K
and T,~1930 K. For a uniform fluid this theory reduces to a
thermodynamic perturbation theory. Such a theory works
quite well for the Lennard-Jones (LJ) fluid,'”® but yields too
high critical temperature for Cg compared with the results of
more accurate integral equation methods.!!

Finally, Tau et al.’® took a somewhat different approach
to explore the phase diagram of Cgy. They used the so-called
hierarchical reference theory (HRT) which has been devised
to deal with long-wavelength fluctuations using a basic con-
cept of the renormalization group (RG) theory. At present,
the RG theory is only the way to properly treat unusual fluid
behavior near the critical point.”° The HRT result for T, was
2138 K, which is higher than the HMSA and the MHNC
results by ~90 K and ~200 K, respectively. This result of
high T, is possibly due to the perturbative treatment of the
long-range part of the intermolecular potential in the HRT as
actually it is in the thermodynamic perturbation
theories.} 11218

The results for Cgp have led to more systematic investi-
gations on the relation between the nature of intermolecular
potential and the phase behavior. These investigations are
twofold; the first is concerned with the disappearance of
stable liquid phase,?*? and the second with the isostructural
solid—solid transition which occurs in systems with an ex-
tremely short-ranged potential.'®*3-% The previous investi-
gations on these subjects are summarized in Ref. 18.

In the present work we performed extensive MC simu-
lations for both fluid and solid phases of Cgy and made a full
free-energy analysis to explore the high-temperature phase
diagram. As we have discussed above the previous simula-
tions have yielded different results for the phase diagram of
Cep, Which is in contrast to the case of the LJ system for
which the most extensive simulation studies have been made.
This difference may be explained by the nature of the inter-
molecular potential of Cg, i.e., the strong repulsion at short
range and the relatively short-ranged attractive part. Simula-
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tions for such a system are generally less efficient in the
sense that the equilibration time is relatively long and a large
number of steps are required in order to achieve numerical
stability of any physical quantity of interest. We find that the
strong repulsion at short range prevents us to make an accu-
rate computation of the virial pressure and is the major
source of uncertainty in simulations. In the case of constant-
pressure simulations, either MC or MD, the uncertainty of
the virial pressure inevitably leads to that of the volume. This
difficulty can partly be avoided by taking the energy route in
which the excess (Helmholtz) free energy is obtained by per-
forming isochoric integration of the internal energy. The ex-
cess internal energy of the fluid Cq, obtained in the MC
simulations is numerically much more stable than the virial
pressure and the resulting free energy is also less uncertain
than that obtained by integrating the virial pressure in the
pressure route. The energy route is also useful to calculate
the EOS on the high-density side of the liquid-vapor coex-
istence region. The MC result for the virial pressure is rela-
tively stable for the solid phase and the pressure route may
safely be used.

In the next section we present the outline of the MC
method employed in the present study. We then present, in
Sec. III, the results of our simulations and the methods of
analyses used to obtain the phase diagram. The final section
is devoted to the summary and concluding remarks.

Il. OUTLINE OF THE MC SIMULATIONS

We used the Girifalco potential® as the intermolecular
potential of Cgo. This potential has been obtained by assum-
ing free rotation of rigid Cgy and the LJ potential as the
interaction for a pair of carbon atoms on different C4o mol-
ecules. The result is given by

_ 1 1 2
$(r)=-4 s(s—1)3 + s(s+1)3 5%

1 2
+B[s(s—1)9+s(s+l)9 STS}’ @

where s=r/o, o being the diameter of the Cg4y molecule
(0=0.71 nm). The parameters A and B in Eq. (1) have been
determined empirically® and given by A=74.94X 10" Perg
and B=135.95X% 10" ¥ erg. The Girifalco potential is useful
for the orientationally disordered phase at high temperature
and, as we have discussed in the previous section, has been
used in most simulations and theoretical calculations for the
high-temperature phase diagram of Cgy. The constant-NVT
ensemble MC method was employed in the present work
and, unless otherwise stated, the simulations were performed
using the particle number of N=256 in the cubic cell of
volume V subject to the periodic boundary condition.

A. Fluid phase

We took the energy route for calculating the free energy -
of fluid. In this method the excess free energy F,, is calcu-
lated as

Fe(p,T) _ Fex(p,Ty)
NkgT NkgTy

T Ugl(p,T') AT’
1, NkgT' T'°

2



J. Chem. Phys., Vol. 111, No. 18, 1 October 1999

where p=N/V, the particle number density, and U,, is the
excess internal energy, i.e., the thermal average of the inter-
-action energy,

Uex(p,r>=< gj ¢(r.-,—)>. 3)

In Eq. (2) T is taken to be large enough that the correspond-
ing free energy can easily be calculated or obtained exactly.
Here we used the limit 79— as we discuss below.

Another way of calculating the free energy is to take the
pressure route, in which F,, is calculated as

Fex(p’T) - Fex(posT) p p(p’:T) dp’ (4)
NkgT NkgT ool P ksT PY

where p is the virial pressure directly obtained in simulation,

1 d ri;

P(P,T)":PkBT[ 1‘ﬁ<i§j "ij%zﬂ, (5)
with 8= 1/kpT. We have Fg,(po.T)=0 in the limit py—0
and this limit can be used to calculate F.(p,T) above the
liquid—vapor critical temperature, 7., and on the low-
density side of the two-phase region. The integration in Eq.
(4) cannot be performed across the two-phase region, at least
in principle, and the use of the energy route must be supple-
mented to calculate F.(p,T) on the high-density side.

The energy route was consistently used to calculate the
EOS of the fluid phase, although the pressure route was also
used for comparisons and for testing the internal consistency
where possible. In the limit, To—%, F(p,Ty) does not
vanish in the -case of Cg, but approaches the hard-sphere
(HS) result since ¢(r) diverges at r=c¢. We may use the
Carnahan—Starling?® (CS) EOS for the HS system,

Felp.T) _m(1=37)
NkpT (1-7)?*"

where 7 is the packing fraction defined by 7= (m/6)po~. At
p=1 nm™>, nearly the highest fluid density of interest, we
have 7=0.1874. The above CS result is virtually exact at this
and smaller values of 7. Then, Eq. (2) is conveniently writ-
ten as

- (1=3q) (B . a8"
prato D=5 [ Bunto S @)

where fo,=Fex/N and u=Ug/N.

The integral in Eq. (7) cannot directly be performed us-
ing simulation data of u., since the integrand is singular in
the limit 8’—0. We can easily see this singularity using the
expression for u.,,

BualpT)=2mp | P8 9I8(rp TN, @
where g(r) is the radial distribution function. In the limit,
B'—0, g(r) may be approximated as?’

g(rip, T )=gus(r!o; myexpl— B’ H(r)], ©)

gus being the HS radial distribution function. Noting that,
for the Girifalco model in Eq. (1), ¢(r)~B/s(s—1)° in the

©) .
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vicinity of s=r/c=1 and that this behavior of ¢(r) yields
the leading contribution to the integral of Eq. (8) in the limit
B'—0, we have

B'uep,B')—2mpogus(1;m)

([ B'B B'B
X l(s__—l)gexp[—(s—_'i?]ds
B 1)1/9
=12"78HS(1§7I)%19: (10)

where, according to the CS result,2®

(Lim)= 2 (11)
8HS ’77_(1_7]) ’
and
I,,=f x~Ure=xdx, (12)
0

with I3=1.077 77. We note that Eq. (10) is exact in the limit
B'—0 and the integrand in Eq. (7) diverges as g’ ~%°.

In Eq. (7) the integration over the range of small 8’ can
conveniently be performed using a new dimensionless vari-
able, y=(8'/Br)"=(Tx/T")'®, Ty being the reference
temperature introduced for convenience and taken to be T
=1000K, i.e.,

A ap’
BAfex(p,T)= J;) B'ue(p, T’ 'B_l

Ay dy
=9J'0 B,uex(p’T’)?’ (13)

where Ay=(Ap/8z)"° and, for brevity, ﬂ'(_'= BrY’) is e-
tained in the integrand. Using Eq. (10) we have, in the limit
B'—0 (y—0),

"u.{p,T' 4

%’p)—’ 3 ngns(1; 7)(BrB)I5, (14)
and this result can be used to perform the integration in Eq.
(13). As we actually show later, the MC data for B'u.,/y at
finite y extrapolate quite well to the limiting value given by
Eq. (14). The integration in Eq. (7) over the remaining inter-
val, AB<pB'<p, can directly be performed using simulation
data fOr ey . :

B. Solid phase

For the solid phaée we took the pressure route and cal-

_culated the free energy using Eqs.fg@) and (5). The simula-

tion results for the virial pressure are relatively stable for the
solid phase and the thermodynamic integration in Eq. (4) is
limited to -a narrow range of the density if we choose an
appropriate density p, within the solid phase. The absolute
free energy at py was calculated using a coupling-constant
method in which we used the classical Einstein solid consist-
ing of the particles with the same mass as that of Ceo. 2
Using a linear path connecting the Cqy and Einstein solids-
whose potential energies are denoted as U and Ug, respec-
tively, we have
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1
Flpo D =Felpo D+ | ax(u=-vgh, (1s)

where Fz is the free energy of the Einstein solid and {---),
represents the thermal average in the system with the Hamil-

tonian,

Hg being the Hamiltonian of the Einstein solid. The free
energy of the Einstein solid per particle is given by

B 3 3A°%
Bf (o, T) = Puo(po)+ 51n 2D,

= Bug(po) + Bfia(po,T)+1
3
" Eln[z’"'l?o <(Ar)2>E}’ (17)

where uq is the potential energy per particle of the static
crystal, A is the thermal de Broglie wavelength, ((Ar)%)g
=((Ar)?),—¢ is the mean-square-displacement (MSD) of
the pure Einstein solid, and fiy is the ideal-gas free energy,
Bfia(po, T)=In(pgA3)—1. The MSD, {(Ar)?)g, character-
izes the Einstein model and its optimal choice may be®®

((Ar)Hg=((Ar)?), (18)

where ((Ar)2)=((Ar)?),-, is the MSD of the true system
and obtained by simulations.

The term (U), in the integrand of Eq. (15) diverges in
the limit A—0 and the integration cannot be performed using
numerical data. However, by an appropriate choice of
((Ar)*)g such as in Eq. (18), the singularity can be elnm
nated for an ordinary potential diverging at zero separatlon
It is not immediately obvious if it is also the case for the
Girifalco potential which diverges at r=o, and it may be
useful to explicitly show that the singularity can also be
eliminated for Cgo. To this end we note that u,=(U), /N
can be written as

= | an [ arpstrm 0 IE LR,
(19

where p, and g, are, respectively, the density distribution
and the pair correlation function of the system with the
Hamiltonian given by Eq. (16). In the limit A—0, p,(r) is
nothing but the density distribution in the Einstein solid and
given by the superposition of the Gaussians centered on lat-
tice sites,

o 372
px(r>=(;;) 3 expl-a(r—R)%, (20)

l

where R; is the ith lattice site of a given crystal structure and
"1—3((Ar)2)5/2 {(Ar)?)g being given by Eq. (18) in the

present choice. For the purpose of estimating an order of

magnitude of (U}, we may use an approximation,

ax(ry,rp)~exp[—ABo(r)], (21)
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which reduces to g,(r;,r;)=1 in the limit A—0, in agree-
ment with the result for the Einstein solid. Using Egs.. (20)
and (21) into Eq. (19) we have?

1 «

12 N
ﬁuw;(;;) 20 R, f dr rB(r)expl—\B(r)]

R#0
@ a
X[ex_p[ — -2—(r—-Rj)2] —-exp[ - 5—(r+Rj)2H

1 1/2N 3

Xexp

(24 .
- g(r—Rl)Z], (22)

where R; and N ; are, respectively, the distance and the num-
ber of the jth nearest-neighbor lattice sites, and only the lead-
ing term is retained in the second step. The omitted terms in
Eq. (22) are extremely small since a is very large as actually
it is. Using an analysis similar to that leading to Eq. (10), we
have

1 (8B

1{a*\ 12N, a*
: R*exp——(l RI) _Am—lg' (23)

Pz \aa
showing that u, strongly diverges as A%, In Eq. (23),
a*=ac?, R¥=R,/0o, and I, is defined by Eq. (12). The

above result is somewhat different from that for a potential
which diverges at zero separation. For a typical example of

- the LT potential, ¢(r)=4e[(o-/r)12-—(0'/r)6], we have

BRES
4

where I, is again defined by Eq. (12), and o* and R} are
now defined in terms of the LJ potential parameter, o. With
a proper choice of ((Ar)2)z as in Eq. (18) the singular be-
havior of u, in Eq. (24) contributes very little to the integral
in Eq. (15) owing to the vanishingly small prefactor,
exp(—a*Rf/2), in other words, small overlap of the densities
associated with the neighboring lattice sites.?® The present
case of Eq. (23) is apparently different, but the prefactor
exp[—a*(1—R})%2] is also vanishingly small as we actually
demonstrate in the next section and the singular behavior of
u, in the vicinity of A=0 can be ignored.

) (4Be)™
2

*\1/2 1 2
Bu,—2a* Cp Njexp| — = a*R]

lli. RESULTS AND DISCUSSION

Figure 1 shows the MC simulation results for the inte-
grand in Eq. (13). The upper bound of the integral, Ay
=(0.01)"®=0.5995, corresponds to T=1X10°K with the
choice Tr=1000K, about 50 times higher than the tempera-
tures of interest for Cgy. The values of Bu,./y at finite y
extrapolate quite well to the limiting value given by Eq. (14),
confirming the consistency between the theoretical analysis
and the simulations. The HS term in Eq. (7) and the high-
temperature contribution given by Eq. (13) are the same or-
der of magnitude, and together account for the substantial
part of the excess free energy at temperatures of interest
(~2000 K). Figure 2 illustrates the simulation results for the
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FIG. 1. MC simulation results for the integrand in Eq. (13). The values at
y=0 were obtained from Eq. (14) and the parameter labeling each curve
represents the density in unit of nm™>. The upper bound of the integral in
Eq. (13), Ay=(0.01)""=0.5995, corresponds to T=1Xx10°K

excess internal energy in the low-temperature range, 7'<<1
X 10° K. At a temperature below ~2000 K depending on the
density, SBu., begins to show a large fluctuation or a drastic
change, suggesting that the system becomes unstable against
the phase separation. We should note that we can locate nei-
ther the liquid—vapor nor the solid—vapor phase boundary
using such a instability observed in constant-volume simula-
tions for a finite number of particles. In such a simulation the
system remains uniform and stable until it reaches a point
deep inside the frue coexistence region since the formation
of interface is energitically unfavorable. Abramo and
Coppolino® disregarded this feature and were completely
wrong in the interpretation of their MD simulation results for
C60 .

Figure 3 shows the typical examples of the excess free
energy obtained from Eqs. (7) and (13) using the simulation
data for Bu., as shown in Figs. 1 and 2. In the present analy-
sis to obtain the phase diagram these MC results of the ex-
cess free energy were fitted to a-polynomial,

1 1 Ll 1 )] 1

2500 2000
i [

-4

-6

-8

0.2 0.4 0.6 0.8
1000K/T

FIG. 2. MC simulation results for the excess internal epergy. The parameter
labelling each curve represents the density in uit of nm™>,
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’ -3
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FIG. 3. The isotherms of the excess fiee energy obtained from the present
MC simulations through Eq. (7) (filled circles) and from the low-order virial
expansion (dotted curves), Bfo(p.T)=A,p+A;p?, with the exact A,=B,
and A;=B,/2. The full curves are the least-mean-square fit to the MC re-
sults (see the text).

Bfex(p.T)=Ap+Asp*+Ap*++A,p"" 1. (242)
The corresponding pressure is given by
:Bfex
+
p= pkBT( I+p—— ’
=pkpT(1+Byp+B3p%+Bup3+---+B,.p™ 1), (25)

where B,=(n—1)A,. In this fitting procedure we used the
exact virial coefficients for B,=A, and B3=2A 3, which can
easily be calculated as®’

By(T)=-27 f :rzf(r)dr (26)
and j
gar? [ ®
Bs(T)=“Tj0 drlrlf(rl)fo dryraf(ry)
X flrl+r2|dr3r3f(r3), 27
ry=rl

where f(r) is the Mayer function defined by f(r
=exp[—B@(r)]—1. The remaining coefficients, A;— in
Eq. (24a) were determined by the least-mean-square ﬁt and

- we found that m=7 yields a very accurate fitting. The use of

the exact B, and B; eliminates the arbitrariness of the fitting
procedure and the resulting low-order coefficients, possibly
B, and Bs, may be interpreted as the approximate virial
coefficients. We note, however, that the coefficients B,, with
n>3 of the truncated expansion inevitably contain more or
less the effect of high-order terms in the virial expansion. In
Fig. 3 we find that the simulation results of Bf., at low
densities are in good agreement with those obtained from the
low-order virial expansion, Bf.(p,T)=A,p+A; p?, with .
A;=B, and A;=B3/2, suggesting the accuracy of the
present simulation results.



5960 J. Chem. Phys., Vol. 111, No. 13, 1 Gctober 1999
100—————————— 16 ————————r—
p | P
(MPa) | (a) T = 2500K 1(MPa) [ (b) T = 2000K 1
80- ] 12l i
60 - i
i | ]
40f g I 1/‘
L /f'- al 7 i
20f -
B0 02 04 0608 10 90 02 04 06 08 1.0
p(nm®) p(hm™)
12 ————————rpr 12—
p : P
(MPa) [ (¢) 7=1900K '(MPa)a_ (d) T=1700K
8. N
[ ] -
al. ] [ ]
~. Y 0-" .
i ™. f Ny, .
0 — [ \ = 1
N -4} \ =, .
\v} )_ \\ o° J
al s gl o N
00 02 04 0.63 08 1.0 00 02 04 06 08 1.0
p(nm™) p(nm'a)

FIG. 4. Comparisons of the pressure from the present MC simulations
through Eq. (25) (full curves), the virial pressure directly obtained in the
MC simulations through Eq. (5) (open circles), and the low-order virial
expansion, p=pkpT(1+B,p+Bsp?), with the exact B, and B; (dotted
curves),

Figure 4 illustrates the typical examples of the pressure
obtained from Eg. (25) and their comparisons with the virial
pressure directly obtained in the simulations through Eq. (5).
These results of the two routes are’ generally in agreement
with each other at high temperatures. However, as tempera-
ture decreases the fluctuation of the virial pressure becomes
large, which makes it difficult to obtain accurate EOS. We
note that the simulation resuits for the virial pressure in Fig.
4 were obtained using an ensemble of 3X10*MC steps
(7.68X 106 steps), whereas 1% 10* MC steps were sufficient
to yield accurate excess internal energy in the energy route.

Next, we proceed to the simulation results for the solid
phase. Following the previous simulations®* and theoretical
calculations,>'%? we assumed a face-centered-cubic (fcc)
structure. The recent MD simulations have shown that the
model Cgq at high temperatures actually freezes into a fcc
structure as the density increases,>® in agreement with the
present assumption. The absolute free energies of the solid
were calculated using the prescriptions given in the previous
section. Figures 5 and 6 illustrate the process of such calcu-
lations. For a typical solid Cg at T=2000K and p=1.25
nm >, we have a*=ac?~133 from the simulations and
hence exp[— a*(1—R})%/2]~4.85% 1077, which implies that
the singular behavior of (U), in the vicinity of A=0 can
safely be ignored in performing the integration in Eq. (15)
and we may assume a smooth function for (U), . We actu-

ally fitted (U}, to a third-order polynomial of A with the

coefficients determined by the simulation data at A=0.025,
0.05, 0.75, and 0.1. The value of (U),_q in Fig. 5 is the
result obtained in this way. Figure 6 shows the typical ex-
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FIG. 5. MC simulation results for the integrand in Eq. (15). The value of
(U)y at A=0 was obtained using a third-order polynomial of A with the
coefficients determined by the values at finite \ (see the text for detail).

amples of the simulation data for the virial pressure. In con-
trast to the case of the fluid phase, the fluctuation of the data
becomes less serious as temperature decreases, which seems
to reflect that the solid is more stable at lower temperatures.

In the calculation of the phase diagram these results for
the pressure of solid phase were fitted to a function of the
form,

p=pkpT[1+bo+by(p—po)+b2(p—pp)?], (28)

using the least-mean-square method. The corresponding ex-
cess free energy is given by

Bfex(p, T)= Bfex(po,T) +bo(p— po) + 3b1(p— po)*
+3b,(p—po)’, ' 29)
where Bf.(pg.T) was-calculated by the method given in the
previous section and illustrated in Fig. 5.
Finally, Figs. 7 and 8 show the high-temperature phase
diagram of Cg determined- using all the results for the abso-
lute free energy and the pressure of both phases. We first

note that the resulting phase boundaries are quite systematic.
It is difficult to estimate error bars in our calculations, but
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FIG. 6. MC simulation results for the virial pressure of the solid phase;
(filled circles) and the least-mean-square fit (full curves) to the MC data.
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FIG. 7. High-temperature phase diagram of Cg, in the T—p plane obtained
in the present MC simulations; the filled circles represent the stable phase
boundary, the open circles the metastable liquid—vapor binodal points, the
open triangles the mean density of the coexisting liquid and vapor, and the
cross the estimated the liquid—vapor critical point. The dotted curve is the
smooth interpolation of the GEMC (Ref. 7) results for N=1500.

they are possibly no larger than the size of circles used to
locate the phase boundaries. The liquid—vapor critical point
was determined by assuming a law,

Ap=(T.—T)5, (30)

where Ap=p,;—p,, the difference between the densities of
the coexisting liquid and vapor, T, is the critical temperature,
and Bthe critical exponent (not the inverse temperature). We
used the values of Ap at 1900 K, 1925 K, and 1950 K to
determine 7, and B and found that T.~1980K and
S~=0.439. In this determination we avoided the-use of Ap at
the topmost temperature, 1975 K, which is somewhat uncer-
tain. Using the above results and the rectilinear law we ob-
tained p,~0.440 nm ™ for the critical density.

In Fig. 7 the present result for the liquid—vapor binodal
line is compared with the GEME result of Caccamo et al.’
obtained for N=1500, the largest system studied by them.
We find that both are in good agreement with each other
except in the critical region. In this comparison we should
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FIG. 8. High-temperature pliase diagram of Cg, in the p—T plane; the filled
circles represent the present MC simulation results, the fall lines their
smooth interpolation, and the cross the estimated liquid—vapor critical point.
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note that the GEMC results show some size-dependence and
the agreement is worse for smaller N and that the nonclassi-
cal exponent,” 8=0.32, was used in the analysis of the
GEMC data. The latter point will be discussed below in more
detail. To see the N-dependence of the binodal line we also
performed MC simulations for a larger system of N=500
and found that the result was almost indistinguishable from
that for N=256 below ~1900 K. Above 1900 K we found
small differences but they are almost invisible on the scale of
Fig. 7; more explicitly, we obtained T.=1976 K, =0.436,
and p.=0.445 for N=500 using the data of Ap at 1900 K,
1925 K, and 1950 K as in the case of N=256. These results
suggest that 7. has a tendency to lower with increasing N in
contrast to the GEMC results of Caccamo et al.” However,
the N-dependence predicted in our approach might be within
the numerical uncertainty and could be marginal. To see the
N-dependence more clearly we need to perform systematic
simulations for larger N, which are computationally too
heavy to perform within a reasonable computer time.

A more detailed inspection of the liquid-vapor coexist-
ence shows that the present result for the critical exponent,
B~0.44, is large compared with the accepted nonclassical
value, B=0.32, and rather close to the classical value,
B=0.50, which is responsible for the sharpness of the bin-
odal line obtained in our simulations. The mean-field-like
theories and most perturbation theories are known to give the
classical exponent,'”® which is the consequence of the im-
proper treatment of the long-wavelength density fluctuation.
Simulation studies also inevitably suffer from a similar limi-
tation and, to avoid this difficulty, the critical point is usually
located by using the nonclassical exponent, 8=0.32, together
with the data of Ap at subcritical temperatures. Caccamo
et al.” actually followed this method and located the critical
point using their data of Ap below ~1900 K, the highest
temperature at which binodal points were available in their
GEMC simulations. For comparisons, we also assumed
B=0.32 and obtained T .~ 1954 K, which is very close to the
GEMC results, T~ 1940 K, for N=1500. In this estimation
we used the MC data of Ap at 1875 K and 1900 K with the
expectation that these data are not much affected by the criti-
cal fluctuation and by a possible finite-size effect, which is
also the largest in the critical region. The above comparison,
however, should not be taken seriously since we have no
criterion to choose the data of Ap.

The triple point was found at 7,=1880K and p,
=0.74nm"™? from the present MC simulations. As we have
discussed above, we may expect that at temperatures below
~1900 K the present MC data for the fluid EOS are almost
free form the critical fluctuation and the finite-size effect,
suggesting that the resulting triple point is rather definite and
a stable liquid phase certainly exists in the substantial range
of temperature above 1880 K.

Finally, the present results for the critical and triple point
are compared in Table I with those of the previous simula-
tions and theoretical calculations. These comparisons show
that all the simulations and the MHNC results for T, and p,
based on the same Girifalco potential are in the range 1900—
2000 K and 0.39-0.56 nm ™, respectively. We note that the
MHNC theory was also used to calculate the fluid EOS in the
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TABLE I. Parameters of the critical and triple point of Cg obtained in the present work and their comparisons
with those of the previous simulations and theoretical calculations. Note that the GEMC (Ref. 3) and the MD
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(Ref. 8) results are based on the truncated potential and on a different model, respectively (see the text),

Present work

GEMC GEMC MD MD  MHNC GMWDA
N=256 N=500 (Ref.7) (Ref.3) (Ref.4) (Ref.8) (Ref.9) (Ref. 10)
TAK) 1980 1976  1924-194i® 1798 1900100 1850 1910 1960
1954°
p(om™?) 0439 0445  0.39-0.42° 0.56+0.06  0.51 0.43 0.41
0.444°
T(K) 1880 - 1875° ~1774 No 1940
p(om™3 074 0.73¢ ~0.944 No 0.53

*Obtained by assuming the nonclassical critical exponent, 8=0.32, and using the data for the binodal points at -

1900 X and 1875 K.
bThe results for N=300—1500 in this order.

‘Estimated from the intersection of the GEMC binodal line for N=1500 and the freezing line (after extrapo-

lation) of the present work (see Fig. 7).

GMWDA of Ref. 10. As we have already pointed out, the
results of Hagen et al.®> and Broughton et al.® do not serve as
the direct comparisons with others since the former used a
truncated Girifalco potential, whereas the latter employed a
similar but somewhat different model.

IV. SUMMARY AND CONCLUSIONS

We have presented the results of extensive MC simula-
tions for the high-temperature phase diagram of the model
Cgo- The present study has been motivated by the previous
simulations for Cgy performed in an attempt to give an an-
swer to the question of whether this substance has a stable
liquid phase or not. These simulations were generally subject
to large uncertainties and yielded quantitatively or even
qualitatively different results depending on the techniques
employed or the treatments of the model, and the above an-
swer has been inconclusive. In the present study, to avoid the
difficulty inherent in these simulations, we consistently took
the energy route to calculate the absolute free energy of the
fluid phase. This route is computationally more demanding
but enables us to make accurate calculations of the absolute
free energy of the fluid phase at any relevant point-in the
T—p plane.- This method actually yielded numerically more
stable results than that utilizing the virial pressure. For the
solid Cgg the above difficulty is less serious and we took the
pressure route in which the free energy is obtained by inte-
grating the virial pressure. We have also presented the de-
tailed accounts of resolving some practical difficulties in the
calculation of the free energy using simulation data. The
general accounts of these practices might have been implicit
in the previous simulation studies for the phase diagram®®
but not ready for an immediate application to a particular
case of Cgg.

The resulting phase diagram is in fact quite systematic
and free from large uncertainty. The most difficult problem
in determining the phase diagram is how to treat the effect of
large density fluctuation in the liquid—vapor critical region.
The constant-NVT ensemble simulations are certainly not
adequate for exploring this problem and seem to yield a clas-
sical result for the critical exponent, which is responsible for
the sharpness of the binodal line obtained in the present

work. We have bypassed this problem by using the data at
subcritical temperatures and assuming the nonclassical criti-
cal exponent. The critical temperature estimated in this way
was certainly above 1950 K, whilst the triple point was
found at 7,=1880K, supporting the claim that the model
Cep has a thermodynamically stable liquid phase.

We have made no systematic investigation for the finite-
size effect on the location of the critical point, which requires
substantial amount of computer time. For this problem we
refer to the previous GEMC study for Cgy which has shown
that both T, and p, have a tendency to. become higher with
increasing particle number in the simulation box,’” which-is
in contradiction to the present nonsystematic -analysis. We
also note that the present free-energy analysis seems to suffer
much less from the finite-size effect.

The final point to note is the experimental feasibility of
testing simulations and theoretical calculations for the model
Cgo- The recent ab initio MD simulations®' have predicted
that an isolated Cg molecule is stable against fragmentation
up to ~4500 K and a model of rigid Cgq could be valid in the
low-density vapor phase. However, experiments suggest that
Csp molecules in the solid phase are unstable -against
polymerization®> or decompose into an amorphous
carbon®3—> well below the temperatures (~2000 K) of inter-
est. These results prevent us to think that the present and
previous studies on the phase behavior of Cgq are of partical
importance. Nevertheless, this model itself is theoretically
quite interesting as a typical example showing a unusual
phase behavior which is an intermediate between those of
ordinary atomic substances and systems of mesoscopic par-
ticles such as colloids.
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