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Electronic excitations in a nonparabolic conduction band
of an n-type narrow-gap semiconductor
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Taking full account of nonparabolicity of a conduction-band dispersion, we investigate those electronic
excitations in the conduction band of artype narrow-gap semiconductor which are coupled with polar
phonons. By incorporating the nonparabolic dispersion obtainedkbyanethod in a complete manner into
the random-phase approximation, we calculate the energy dispersion and the energy-loss intensity of two
coupled plasmon-phonon modes and a longitudinal optical-phonon mode partially screened by carriers. The
results are compared with those of two simplified treatments, namely, one with the spin-orbit splitting ne-
glected and the other assuming a parabolic dispersion of the conduction band with its effective mass modified.
This comparison asserts that complete treatment of the nonparabolic dispersion is indispensible to quantitative
analysis of the plasmonlike mode at higher carrier concentrations. Simultaneously, it elucidates limitations and
shortcomings of the simplified schemes. The complete treatment of the nonparabolicity leads to an excellent
agreement with the experiment on the carrier-concentration dependence of an intensity-vanishing point in the
infrared-reflection spectrum.
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[. INTRODUCTION single-particle excitatioqSPB continuum originate from the
PL-PH coupling. The coupled mode on each of these two
Electronic excitations in a conduction band pftype  branches decays away when it approaches or enters the SPE
compound semiconductors, such m&aAs, n-InP, n-InAs, continuum. Another one of the three branches continues flat
and n-InSb, are in an energy regime of several tens to ghrough the SPE continuum out to the largeside of the
hundred meV, and mode energies of these excitations deped@me continuum. This branch can be identified as longitudi-
upon doping level. The above electronic excitations ard@! optical-phonon modes that undergo a screening effect of
coupled with polar optical phonons, when these two kinds of@riers. We can examine the structure of coupled excitation
excitations lie in the same energy regime. The coupled plagl©des on each branch by decomposing the induced charge
mon (PL)-phonon(PH) modes can be observed by infrared- den§|ty into a carrier component due.tq carrier dens!ty ﬂuc-
reflection measurements and Raman-scatterind4ation and a phonon component arising from longitudinal
measurements? The infrared-reflection spectrum is related honon polarization. In Ref. 10, this decpmpqsmg anaIyS|.s
. -~ has shown how the mode structure varies with change in
to the angular-frequencyw) dependence of the dielectric

function at wave numbeg=0. In the Raman measurements carrier concentration.
uncti wave numbey=?o. u ' The conduction band of a compound semiconductor

with change in incident laser f_requepcy and scattering angIeGaAs, InP, InAs, or InSb is appreciably or highly nonpara-
we can observe the energy dlsper§|on of the coupled_PL-PHoHC, though almost isotropié:1® Especially, a narrow-gap
modes. In such an-type polar semiconductor as mentioned semjiconductor InAs or InSb has a remarkably nonparabolic
above, combination of an extremely small effective mass andgnduction band. When this semiconductomnisloped, the
a large dielectric constant gives a large effective Bohr radiusaonparabolicity exerts a significant influence on electronic
Accordingly, increasing the doping level readily produces aexcitations in the conduction band. There are several theo-
carrier system of high effective density. In this case, theretical schemes to incorporate the effects of the nonparabo-
random-phase approximati¢RPA)® gives a quantitative de- licity into the RPA. The simplest one of these schemes is to
scription of the dynamical response of this carrierassume a parabolic dispersion with its effective mass
system-24~13To examine coupling of electronic excitations modified%*® From now on, we call this scheme a modified
and polar phonons, the RPA is combined with theparabolic(MP) one. In this scheme, the effective mass is so
Lorentzian-oscillator model that describes the phonoradjusted that the mode energies at wave numjse® coin-
polarization®?4~*3This combined scheme has been successeide with those obtained by accurate treatment of the nonpa-
fully applied to analysis of experimental data, especially therabolicity. This scheme gives a good description of excitation
Raman measurements. The intensity of the energy loss immodes only in a small range. The second one is to repre-
volved in the dynamical response of our system is describedent the nonparabolic dispersion by a linear combination of
by the energy-loss function. This function plays a central rolek?, k*, andk® terms with their coefficients adjustéd®Here
in representing the Raman-scattering cross seften, e.g., the symbolk is used to denote a wave number of each
Eq. (75 in Ref. 1 or EQ.(2.96 in Ref. 2]. conduction-band state, whitgto stand for a wave number of
There exist three dispersion branches of coupled excitaeach excitation mode. This scheme functions effectively for
tion modeqsee, e.g., Figs. 6 and 18 in Rel. Two of these  GaAs and InP> with considerable band gaps where the non-
branches that lie on the smaller wave numfmgrside of the  parabolicity is not so significant. However, the above poly-
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nomial form cannot adequately describe such a highly nontion band and three branches of the valence band. Because of
parabolic dispersion as in InAs and InSb where an initialtwo possible spin orientations, each energy level on one of
parabolic rise evolves into a linearlike increase with increas¢hese four branches involves two degenerate eigenstates,
in k. A more advanced scheme is to employ a nonparaboligvhich are labeled bjy=1 and 2. The energf (k) of the
dispersion and a set of eigenfunctions obtained by-p  conduction band can be obtained by taking the largest solu-
method with the spin-orbit splitting neglect&dHereafter, tion of an algebraic equation fd&'[ = E(k) — #2k?/2mg]:

we refer to this scheme as a simplified nonparab@itiP

one. This simplified scheme facilitates evaluation of the nonE’(E' +Eg)(E’' +Eg+Ago) — P?k*(E' +Eg+2A5¢3)=0,
parabolic conduction-band dispersion, an overlap factor of 2

eigenfunctions, and a numerical integral in the susceptibilithhereEG andA s signify the band-gap energy and the spin-

of the carriers. , orbit splitting, respectively. The coefficieft can be deter-
In the present work, we adopt a further improved schemeinaq by

to incorporate into the RPA a nonparabolic dispersion and a

set of eigenfunctions that are obtained in a complete manner 3 1 1

by ak-p method including the spin-orbit splitting. We term Pz:ﬁﬁz( ) /
this scheme a complete nonparabdl@NP) one. As far as
we know, this work is the first to attempt the CNP SCheme.\Nith the band-edge effective mals% . If we take az axis in

As an example for calculation, we taketype InSb that has  the direction ofk, the cell-periodic functionsiy, (r) in the
a remarkably nonparabolic conduction band. For several caggnduction band can be written as

rier concentrations, we calculate the dispersion relation and

the energy-loss intensity of each of the three branches by Uk (N =ayliS] )+ b [(X=i1Y) 1) V2+c|Z]), (4
means of the CNP, SNP, and MP schemes, and compare the
results among the three schemes. This comparative analy$$
clarifies limitations and shortcomings of the two simplified . .
schemes, the SNP and MP ones.g:n relation to thepexperi- Ua(r) = ay[iST) + by = (X+iY) )IV2+eiZT), ()
ment, we calculate the carrier-concentration dependence @f terms of three real coefficients

an intensity-vanishing point in the infrared-reflection spec-

2 N 1 3
Ec EgtAso’ ®

mg Mg

trum. We compare the calculated results in the CNP and SNP a,=Pk(E’' +Eg+2Asd3)/N, (6)
schemes with the experimental results at various carrier con-
centrations. The present work is closely connected with the b,=(vV2As43)E’/N, (7)

Raman-scattering measurements. However, there seem to be
no Raman data fon-InAs or n-InSb with a highly nonpara- and
bolic conduction band. We anticipate such Raman data as

can be compared with our calculations. ck=E'(E"+Eg+2Asd3)/N. ®
In Egs. (4) and (5), capitalsS X, Y, and Z designate the
Il. THEORY symmetry of the basis functions, and arrows indicate the spin

orientation. When the wave vectkris not in thez direction,
each basis function in a ket must be rotated in such a way
j{hat the newz axis is oriented toward thk direction. The
solutionE’ of Eq. (2) corresponding to the conduction band
is substituted into Eqg6)—(8). The quantityN is a normal-
izing factor defined by the square root of the sum of the
squares of the numerators.
Based upon the conduction-band states obtained above,
we calculate those electronic excitations in the nonparabolic
p? 3 conduction band which are coupled with polar phonons. In
=—— +V(r)+ —k-p+Hgo|U(r)=E" (K)u(r), our n-type polar semiconductors with large effective Bohr
2mg mq N . . . .
(1) radii, increasing the dop|.ng level read_lly crgates such a high
effective density of carriers that an impurity band due to
with E’ (k) =E (k) —#2k?/2m,. The symbolsmy, p, V(r), donors merges into the conduction band. In this case, ionized
Hso, andE(k) denote the free-electron mass, the momendonors can be smeared out into a uniform distribution of
tum operator, a periodic potential, the spin-orbit coupling,positive charges. Our system is composed of the carriers in
and the energy dispersion of each band, respectively. As the conduction band and a polarizable polar background. As
basis set for representing,,(r), we take ans-ssymmetry mentioned in Sec. I, we employ the RPA combined with the
function and thregp-symmetry ones with both spin orienta- Lorentzian-oscillator model. We consider the dynamical
tions for each function. These functions are given as soluresponse of our system to a periodic and oscillatory ex-
tions of Eq.(1) for k=0 in the absence dfiso. Then, Eq. ternal potential with wave vectay and angular frequency.
(1) can be reduced to an eigenvalue problem of an88 This response can be described by the following dielectric
matrix, which results in one dispersion branch of the conducfunction:

In this section, we describe a theoretical framework for
our following analysis. First, we briefly explain how one-
electron eigenstates and the dispersion relation of the co
duction band can be obtained by virtue of Kane's thébry.
We pay attention to the cell-periodic factag,(r) of each
Bloch function ¢y, (r) [ =exp(k-r)u,(r)] with wave vec-
tor k and spin orientation.. The Schrdinger equation for
Ui, (1) is expressed as
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e(q,0)=ep w)— (47e%q?) x(0, ). 9

The dielectric functiorep(w) to describe the phonon and

background polarization can be expressed as

2
(e0— &) w70
epH( @)=t ———5——
Wi~ W T lYyw

: (10

where wtg is the transverse optical-phonon frequeney,

andeg are the high-frequency and static dielectric constant
in the absence of carriers, respectively, ani$ the phonon
relaxation-rate constant. This local response scheme for oﬁ
tical phonons is a good approximation for our excitation
modes whose wavelength is much longer than lattice con
stants. The susceptibility(q,w) to describe the response of
the carriers can be written in terms of Bloch functions

b (1) as follows:

1
x(q,w>=\,—02 >

k,\ k’,}\’

f(k")—f(K)
E(k)—E(K) +ho+ihy

xf d3rf d3r" exp(—iqg-r)expig-r')

X (1) i (1) dicr o (1) i (1)

1 f(k")—f(K)
Vo & E(K)—E(K)+hw+ihy

X

2
f d3r exp(—iq-r) ., (N (1)
11

wheref(k), Vg, and » denote the Fermi—Dirac distribution
function, the system volume, and a small positive constant,

respectively. Substitutingpy, (r) =exp(k-r)uy,(r) in Eq.
(12), using the periodicity ofu,(r), and converting the
sum into ak integral, we obtaitf'!’

3

d3k I
x(q,w>=2f PEERL o

E(k)—E(k+Qq)+ho+iky

Ik,qu
* E(k)—E(k—q)—ﬁw—iﬁn}’ (12)

where the overlap integra) . is defined by

1
|k,k':§E f Ugry s (MU (1) d3r
NN

2

13

After a straightforward calculation with the aid of Edg)
and(5), the integrall ,» can be expressed s

| K.k’ = {akakr + (bkbk’ + Cka,)Cosﬁk'k,}z
+( 1/2){bkbkr V2— (bka/ + Ckbkr)}z sir? Hk’k, ,
14

where 6, ,» designates the angle betwe&nand k’. The
energyE(k) in Eg. (12) and the coefficients, , b, , andc,
in Eq. (14) can be obtained from Eq2) and Eqs.(6)—(8),
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respectively. The chemical potentid@ermi leve) w for car-
rier concentratiom, given can be determined by the relation

d3k
ZJWf(k)=no, (15)

with E(k) incorporated inf (k). We rewrite thek integral in
Eqg. (12) in terms of spherical polar coordinates, and perform

& numerical calculation of the resulting integral.

Next, we consider the energy loss involved in the re-
ponse of our system to the external poteritlét, w). The
energy loss per unit volume and per unit time can be ex-
pressed as

_q2w ) 1
W—E|U(q,w)| Im T @) (16)

where Im stands for the imaginary part. In view of this ex-
pression, we define the energy-loss functig(y, w) by

F(a,0)=Im[—1/e(q,0)]. 17

Here, we pay attention to the dependence of(q,w) atq
=0. We take the limit offj— 0 and ignore the relaxation-rate
constantsy and 7. In this condition, the susceptibility
x(q,w) can be expanded in powers ofwl/and its expres-
sion up to the second order is given by

2 d3k
X(Q,0)~ %J' (ZT)sf(k)(lk,k+q_|k,k7q)

2 d3k
+ (ﬁw)zjWf(k)[lk,k+q{E(|k+q|)—E(k)}

+lik—glE(lk=al) = E(K)}]. (18

Here, the functiorf (k) and the energi(k) are expressed as
f(k) and E(k) (k=]k|), respectively, to emphasize that
these quantities depend not on the directiok diut only on
the magnitude ok. In view of the denominaton? in Eq. (9),

we calculatey(q,w) up to the second order ig. For sim-
plicity of calculation, we take the axis in the direction

of g. The overlap integral, .4 and the energy spacing
E(|k=qg|)—E(k) can be expanded up to the second order in
g, as follows:

2 2_ 2
Z

i@ }qi, (19

Ik,k+q~1—{e<k>(f

Eolks £l Lk dE 1[1dE [d’E 1dE

(kxah—EB~*1 G %+ 3| gkt de & ak
k 2

X f }q? (20)

The coefficients5(k) andH (k) in Eq. (19) are expressed in
terms ofa,, by, andc,. We do not need their explicit ex-
pressions in this calculation. We should note that the
g linear term vanishes in the expansion|gf;.,. Substi-
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TABLE |. Parameter values of InSb used in the present calculation.

Eg 0.1677 eV(Ref. 20 Band-gap energy at=300 K

Aso 0.850 eV(Ref. 2) Spin-orbit splitting

mg /mq 0.01359(Refs. 22,23 Band-edge effective mass in units
of the free-electron mass

€0 15.68(Ref. 29 High-frequency dielectric constant

gg 17.88(Ref. 29 Static dielectric constant

hoto 22.90 meV(Ref. 29 Transverse optical-phonon energy

Yhy) 0.007 wrp (0.16 meV (Ref. 29 Phonon relaxation-rate constant

7(hn) 3x 10 s (1.97 meV Relaxation-rate constant for

electronic transitions

tuting Eqgs.(19) and(20) into Eq.(18) and performing angu- This is the SNP scheme, as named in Sec. I. In the other of
lar integration, we can obtain the following simple expres-the two simplified schemes, we assume a parabolic disper-
sion ofe(q=0,w): sion of the conduction band with the effective mass$ in

Eq. (22). The parabolic dispersion witm* leads to the same

(So—sw)w%_ 47nge? expression ok (q=0,0) as in Eq.(21). Accordingly, even

£(q=0w) =&+ w2 o— w2 o @D the parabolic scheme can give the same energy values of
) . ] excitation modes afj=0 as the CNP scheme, if we employ
where the effective mass” is defined by the effective massn* defined by Eq.(22) with E(k) ob-
1 . dE(K) |2 tained by the CNP scheme. The parabolic disper&ifk)
1r__ B 12 _ v =#2k2/2m* is substituted into Eq(12), and the overlap in-
¥ 777 dkkf(k)[1—f(k)] . (22 . : ; ;
m* 37N Jo dk tegrall i 4 is set to unity. We refer to this parabolic scheme

In Eq. (22) we employ the energy dispersid(k) obtained with the effective mass modified as the MP one.

from Eq.(2). The symbolg is defined byB=1/kgT in terms
of the Boltzmann constarkg and the absolute temperature [ll. RESULTS AND DISCUSSION
T. We should note that the effective mas$ in Eq. (22) is

determined from the energy dispersion around the Fermi By_means of the theor_encallfra_mewgrk in Sec. I, we
level u, because the factdi(k)[1—f(k)] becomes appre- Investigate those electronic excitations in the nonparabolic

ciable around a wave numbér corresponding tou. The conduction band which are coupled with polar phonons. As
mode energies a=0 can be obtained from(q¥0w) an example for calculation, we adaptype InSb whose con-
—0, and thew dependence of(q=0,0) is related to, the duction band is highly nonparabolic. In the following calcu-
infrared-reflect onpspectrum a="> lations, we use parameter values tabulated in Taffle’fWe
The nonparabolicity of the conduction band is treated in atake room temperature=300 K. The band gafi depends

complete manner in the above-mentioned scheme. As statétfon T significanty, and theEg value used is forT

gy 20 : .
in Sec. |, we call this scheme the CNP one. We compare the 300 K" By virtue of the Lyddane—Sachs—Teller relation,

results of this scheme with those of two simplified schemesV® obtain the longitudinal optical-phonon energy of long

In one of these two schemes, we neglect the spin-orbit splitVavelength ashw o= eo/e.iwro=24.45meV. In our

ting of the valence bant?°The conduction-band dispersion calculations, we employ a small and specific valuepf

_ 21 _ H
E(k) is given by the larger solution of an algebraic equation@Mely, 7=3x 10" s (h7=1.97 meV). As shown in
for E: Table | of Ref. 25, the relaxation time of carriers is esti-

mated to be remarkably long intype InSb even at room

E(1+ «E)=h2Kk?2m¥ (23)  temperature. As the carrier concentratigpiincreases from

3.5x 10 cm 2 to 4.0x10* cm™3, the estimated value of

wherea is defined bya=1/E¢ . The overlap integrdly . is 7~ varies from 2. 102 s ! to 3.8x10'2s™ 1. The above
expressed as value of » used in our calculations is located in the middle of
this 7~ range. The conspicuously long relaxation time is

ek = (@@ + CiCir COSBY )2, (24 responsible for the fact that the infrared-reflection spectrum
in terms of _obser\_/ec215 exhibits a sharp minimum with negligible
intensity:
1+ aE(k) |2 Figure 1 shows the energy dispersion of the conduction
= m} (25  band in the CNP schentitull curve), that in the SNP scheme
(dash-dotted curyethat in the MP scheméroken curve,
and and the paraboli¢P) dispersion with the band-edge effective
" massmg (dotted curve The CNP curve and the SNP one are
o aE(k) } (26  Obtained from Eqs(2) and (23), respectively. With an in-
K71+ 2aE(K) crease irk, the CNP curve and the SNP one start to deviate
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0.4

"« experiment

0.3r

< 3
=02 £
w 2
0.1r
%
k(10® cm™)
FIG. 1. Energy dispersion of the conduction band of InSB at FIG. 2. Carrier-concentration dependence of the higher one of

=300 K obtained by the complete nonparab¢@iNP) schemefull the two energy values satisfying(q=0,0)=1 for n-type InSb at
curve), the simplified nonparabolicSNP one (dash-dotted curye =~ T=300 K. The calculated results in the CNP scheffiudi curve),

and the modified paraboli®P) one(broken curvg in comparison  the SNP ongdash-dotted curye and the parabolic one with the
with the parabolidP) dispersion with the band-edge effective massband-edge effective masgdotted curvg are compared with
(dotted curve The dispersion curve in the MP scheme is for carrierintensity-vanishing points in observed infrared-reflection spectra
concentratiomo=4.0x 10 cm™3. (five dots.

; ; .o EQ.(21) is replaced bymg . In this analysis, the MP scheme
from the P curve remarkably, and evolve into a linearlike is equivalent to the CNP one. As displayed in Fig. 2, the

increase. This remarkable deviation indicates a high nonpd

rabolicity. The SNP curve lies somewhat below the CNP one-NerYy values in the CNP scheme are in excellent agreement

: . . _Wwith the experimental ones, and the energy values in the SNP
Although this departure looks small, in the below anaIyS|s,Scheme are appreciably lower than those in the CNP scheme

we will find a considerable difference in excitations betweenin a highern, region. Equation22) implies thatm* is de-
ok ; : . Mermined by thek derivative ofE around the Fermi levek.
ploy the modified effective mass* that is obtained from T5pje || compiles the: andm* values in the CNP, SNP, and
Eq. (22) at carrier concentrationo=4.0x10'®cm™®. Be-  \p schemes for four carrier concentrations. The Fermi level
cause of the high nonparabolicity, the MP curve is unrealisfor eachn, value can be located in the conduction-band dis-
tically below the CNP curve. However, as seen from thepersion of Fig. 1. At higher carrier concentrations, khee-
below-mentioned analysis, the important point is thatkhe rivative aroundu becomes appreciably lower in the SNP
derivative of the MP curve around its Fermi level  scheme than in the CNP scheme, and consequently the effec-
=179 meV is almost the same as that of the CNP curvaive massm* in the SNP scheme becomes larger than that in
aroundu =278 meV. the CNP scheme. This explains why the energy at the
Here, following Ref. 12, we pay attention to an intensity- intensity-vanishing point in the SNP scheme is appreciably
vanishing point in the infrared-reflection spectryendeep lower than that in the CNP scheme in a highgrrange.
minimum with negligible intensity The » dependence of ~ We can obtain the energy dispersion of each excitation
£(q=0,w) is related to this spectrum, and energy valfies  mode by locating the corresponding peakvidependence of
satisfying e(q=0,0)=1 correspond to the intensity- F atvariousqvalues. Figure 3 displays the energy-dispersion
vanishing points in the spectrum. The dielectric functiondiagrams of excitation modes a=4.0x10¥ cm™ 3 (a),
e(q=0,0) is given by Eq.(21). Figure 2 exhibits the,  1.0x10¥cm 2 (b), 0.5x10¥cm™2® (c), and 0.1
dependence of the higher eneryy of e(q=0,0)=1 inthe  x10'® cm™2 (d). Full curves, dash-dotted ones, and broken
CNP scheme(full curve), the SNP schemédash-dotted ones correspond to the CNP scheme, the SNP one, and the
curve, and the parabolic scheme with the band-edge effecMP one, respectively. At each, value, there exist three
tive massm; (dotted curvg in comparison with the experi- dispersion branches, which we nadgeB, andC. In (a), (b),
mental result(five dot.?° In the CNP(SNP scheme, the or (c), the curves of the brand in the three schemes coin-
effective massn* in Eq. (22) is calculated by using(k) in cide with one another, and look like one curve. In each panel,
the CNP(SNP scheme, and in the parabolic schemm, in the curves of the branc@ in the three schemes also agree

TABLE II. Carrier-concentration dependence of the Fermi lexeheasured from the conduction-band
bottom and the effective mass* defined by Eq(22) in the CNP, SNP, and MP schemes.

No(10'* cm™3) 0.1 0.5 1.0 4.0

w(meV) in CNP 23.2 96.2 142.1 277.7
w(meV) in SNP 20.9 90.9 133.8 256.6
w(meV) in MP 9.6 65.8 96.4 178.8

m*/mg in CNP 0.0248 0.0308 0.0356 0.0505
m*/mg in SNP 0.0266 0.0335 0.0391 0.0574
m*/mg in MP 0.0248 0.0308 0.0356 0.0505
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200 . 150
n,=4.0x 10"%m (@) n,=0.5x 10'%em™ ()

150 FIG. 3. Energy-dispersion dia-
= E 100 grams of excitation modes of
2 100 ] 3 n-type InSb atT=300 K for car-

3 = - rier  concentration ny=4.0
= 50l A 22 =, x10¥ cm 2 (@), 1.0x10®¥ cm™3
50 8 z (b), 0.5<10"® cm™2 (c), and 0.1
he o x10®¥ cm 2 (d). Full curves,
/ dash-dotted ones, and broken ones
00 5 10 5 20 25 Oo 5 1'0 1l5 20 correspond to the CNP, SNP, and
a (106%™ q(10%m™") MP schemes, respectively. At each
200 . 100, - ny value, there exist three disper-
., (b)) .7 0. 1% 106%™ (d) . sion branche#, B, andC. Each of
n,=1.0x10%cm o ng=0. 1x 107w the three curvefull, dash-dotted,
. 150 ’ - and broken starting from the ori-
E E gin marks the boundary of the
3 100 3 50 single-particle  excitation con-
-~ = tinuum in the corresponding
scheme af'=0 K. The resonance
50 hw intensity decays away on a broken
part of the branctC.
L S T R TR TR % 5 10 i5
q(10%m™") q(10%em™)
with one another. AfT=0 K, the SPE continuum in each 1.4 14

scheme has a definite boundary, and it extends on the righ 1 (b)

side of the corresponding one of the three curves starting 1}

1.2¢

from the origin. This boundary curve fdr=0K helpsusto 0.8 0.8
realize around where the Landau damping begins to operate 0.6 0.6
though we calculate excitation modesTat 300 K, and the 0.4 0.4
boundary becomes blurred to a certain extent then. At a %2 . 0.2r \
highern, value, the boundary curve in the S2P) scheme Y ) th(?“ev)'wO 120 % 60 80 100 120 140
begins to deviate downwartupward conspicuously from e _ ‘h“’("'fw ‘
that in the CNP scheme with increasednThis deviation " lg=10 % 105n™ © =12 x 105 (@)
originates from the difference in the conduction-band disper- 1 .l A | 0.8 / 1
sion among the three schemeee Fig. 1. Figures 4, 5, and 0.8 ; 0.6 ,'1
6 show thew dependence df at each of various values for 0.6 o l‘| A
the branchA with ny=4.0x 10 cm™2 [see Fig. 8], the 0.4 !
branchB (and A) with ny=0.1x 10" cm™2 [see Fig. &d)], 0.2 7 AN .l NS
and the brancIC with ny=1.0x 10'® cm 3 [see Fig. )], O = T 080 V00 120 140160
respectively. Anw range at a value specified in each panel how (meV) fie (meV)
can be located in Fig. 3. As in Fig. 3, full curves, dash-dotted 0.4 ‘ ‘ ‘ ‘
ones, and broken ones correspond to the CNP, SNP, and M 22 x 10 (©
schemes, respectively. 03¢ i 1
The branchA is the upper one of the coupled plasmon w 0.9l "n A
(PL)-phonon (PH) modes. As the branch descends toward P!
hw| o (=24.45 meV with decrease imy, the PL-like modes 0.1t i
evolve into the PH-like ones. On the other hand, the branch I
B is the lower one of the coupled PL-PH modes. As the foo 150 140 160 780 200
branch falls further belowh wro with decrease img, the hw (V)

coupled modes involving strong cancellation in amplitude

between the PL and PH components in the induced-charge rig. 4. o dependence of the energy-loss functibrat q=1

density change into the PL-like modes. The remarkablec1gp cm™! (a), 5x1C cm ! (b), 10x10°cm ! (), 12

variation in the mode structure with changenp is exam-  x10° cm™? (d), and 22<10° cm™* (e) for the branchA of n-type

ined closely in Ref. 10. INSb at ng=4.0x 10 cm™2 and T=300 K. Full curves, dash-
Here, we examine the difference in the dispersion of thelotted ones, and broken ones correspond to the CNP, SNP, and MP

branchA or B among the three schemes. In the braAclwe  schemes, respectively.
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w8 o hwmh:,f’.'t?” 0,08 hiw‘w - 02— ‘hiwv“’ .
= 51
a=1x10%m™ 0.61 g=2x10%m™" . {b) g=10x 10%cm™ (a) ;q—15x10 om (b)
0.6; 0.06f 0.15;
w 0.4} W uw 0,04} - 0-1[ C
0.2l B 0.02+ 0. 05‘
0 . ‘ 0 e — %0 21 22 23 24 25 26 27 28 20021 22 23 24 25 26 27 28
10 15 20 25 30 10 15 20 25 30
hew (meV) hw (meV) few (meV) e meV)
hw
0.5 04— ‘iLP ——
4=20 % 10%cm™’ (©)
0.4 0.3}
0.3 c
[T w 0.2-
0.2t
o1l 0.1}
0 . e 0 P —]
15 20 25 30 35 20 21 22 23 24 25 26 27 28
haw (meV) fw (meV)
_ ~1 _
FIG. 5. w dependence off at q=1x1C° cm™! (a), 2 FIG. 6. w dependence off at q=10x1C° cm ! (a), 15

x10° cm* (b), and 3<1C° cm™* (c) for the branctB (andA) of  x10° cm™* (b), and 20< 10° cm* (¢) for the branchC of n-type
ntype InSb atn,=0.1x 10 cm™* and T=300 K. Organized in  InSb atny=1.0x10" cm ® and T=300 K. Laid out in the same
the same manner as Fig. 4. fashion as Fig. 4.

find a greater difference among the three schemes at a higher
ny value, while, in the branctB, we notice a perceivable 0=22x10° cm !, the former peak decays away into the
difference only at the lowesi, value. We pay attention to weak extending intensity due to the SPEse Fig. 4e)].
the branchA at ng=4.0x 10'® cm 2 in Fig. 3@ where the This indicates that the Landau damping comes into play at
difference among the three schemes is most obvious. Theonsiderably smalleq values in the MP scheme than in the
branch in the SNP schentdash-dotted curydies consider- CNP scheme.
ably below that in the CNP schenféull curve) over the Here, we turn our attention to the energy dispersion and
whole g range. With an increase iy this deviation becomes the energy-loss intensity of the brand with ny=0.1
larger, and the mode in the SNP scheme approaches the10'® cm™2in Fig. 3(d) and Fig. 5, respectively. The differ-
boundary of the SPE continuum at largewalues than the ence among the three schemes in the brahdh similar to
mode in the CNP scheme. In Fig. 4, we can follow the variathat in the brancth, though the former is not so evident as
tion in the resonance peak of the mode on the branahthe  the latter. As displayed in Fig.(8), the branch in the SNP
samen, value with change irg. Whenq=<12x10° cm !,  scheme lies somewhat below that in the CNP scheme, and
there is no substantial difference in height and width of thewith increase ing, the branch in the MP scheme starts to
resonance peak between the CNP and SNP sché¢sees Sshow a small upward deviation from that in the CNP scheme.
Figs. 4a)—4(d)]. At q=22x10° cm %, however, the reso- As exhibited in Fig. 5, the Landau damping in the S(NFP)
nance peak in the CNP scheme becomes appreciably brosgtheme begins to operate at largemalle) g values than
though that in the SNP scheme shows no substantial broadhat in the CNP scheme. The Landau damping at smgller
ening. This implies that the Landau damping begins to opervalues in the MP scheme seems to be inconsistent with the
ate at smalleq values in the CNP scheme than in the SNPfact that the mode on this branch gets close to the boundary
scheme. This is consistent with the above-mentioned apf the SPE continuum at largervalues in this schemisee
proach to the boundary of the SPE continuum at diffegent Fig. 3(d)]. However, we should note that the value of
values. In passing, an extending tail on the lower-energy sidé=9.6 meV) measured from the conduction-band bottom
of each resonance peak in Figeparises from the SPEs.  (see Table N is considerably lower thakgT (=25.9 meV,
Next, we analyze the difference in the brankibetween and that the carrier system begins to acquire classical-gas
the CNP and MP schemes. As exhibited in Figg)3with an  character. This is considered to account for the fact that the
increase irg, the branch in the MP scheme starts to deviatd-andau damping comes into play at smalievalues in the
upward from that in the CNP scheme, and this deviationMP scheme. Incidentally, in the branch at the samen,
becomes larger. The mode in the MP scheme reaches tiv@lue as well, we can find a similar quick damping in the MP
boundary of the SPE continuum at smalievalues than the scheme(see Fig. 5.
mode in the CNP scheme. Whgre5x 10° cm™ 1, the reso- Next, we investigate the bran&hthat lies flat just below
nance peak in the MP scheme accords completely or aimoétw, o (=24.45 meV. As shown in Fig. 3, at any of the four
completely with that in the CNP scherfgee Figs. éa) and  ng values, there is no difference in the energy dispersion
4(b)]. With further increase im, however, the former peak among the three schemes. With decreasg, e resonance
departs from the latter peak to the higher-energy side, antiitensity declines, and decays away on a broken part of the
begins to broaden at smallgivalues than the latter peak. At dispersion curve. Figure 6 exhibits the variation in the reso-
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nance peak aty=1.0x 10*® cm~2 with change ing. In this  0.35, when n, decreases from 4:010%cm 3 to 0.1
branch, the longitudinal optical-phonon polarization plays ax 10'® cm2. Accordingly, ther* value remains consider-
major role, and the carriers have a screening effect on thgply Jower than unity in the whole, range analyzed here.

phonon polarization. The carriers operate against the phonomhs indicates that the XC effect is quite small in our carrier
polarization to reduce the energy-loss intenSitps dis- system of high effective density.

played in Fig. 6a), atq=10x10° cm !, the reduced reso-
nance intensity forms a declining peak in the extending in- IV. SUMMARY
tensity due to the SPEs. As the screening effect becomes less ) ) ) ) )
powerful with increase im, the mode energy asymptotically Incorporating a nonparaboll_c co_ndu_ctlon-band dispersion
approaches the value éfw, o, and the resonance intensity INto the random-phase approximation in a complete manner,
of F increases toward that in the absence of carriers. we have examined those electronic excitations in the nonpa-
As shown in Fig. 1, the conduction-band dispersion has &&bolic conduction band of an-type narrow-gap semicon-
somewhat smallek derivative aroungs in the SNP scheme duptor which are coupled wlth polar phonons. Our results of
than in the CNP scheme. This smaller derivative operates th)iS complete nonparaboli€NP) scheme have been com-
enhance the screening effect, and consequently, to suppred@red with those of two simplified schemes, namely, a sim-
the energy-loss intensity. In the MP scheme, the overlap inPlified nonparaboliSNP scheme with the spin-orbit split-
tegral I, .4 i Set to unity, though, in the CNP or SNP ting pgglected e}nd a modified parabc(li_dP) scheme using a
scheme. it can be less than unity in a largeregion. No modified effective mass. Our analysis has shown that the
decrease in the overlap integral in the MP scheme acts te°mplete treatment of the nonparabolicity as in the CNP
overestimate the screening effect, and as a consequence,e€Me is essential to accurate evaluation of the energy dis-
reduce the energy-loss intensity. These two effects of th@€rsion, the energy-loss intensity, and the Landau damping
energy dispersion and the overlap integral explain why th&f the. plasmonllke mode at higher carrier concentrations.
resonance intensity in the SNP or MP scheme is somewhdihe dispersion branch of this mode in the SNP scheme lies
weaker than that in the CNP scheme. considerably below that in the CNP scheme, and with in-
Finally, we mention the validity of the RPA in our calcu- €réase in wave numbe, the dispersion branch in the MP
lations. We can evaluate the exchange-correlatiXc) scheme begins to deviate quard from that in the CNP
effect by means of the so-called local-field correcf®A’ Scheme. The Landau damping starts to operate at larger
The XC effect operates to weaken the upward PL dis{smalley g values in the SNPMP) scheme than in the CNP
persion without making any energy changaat0. The XC scheme. We have obtained an excellent agreement between
effect has no influence on the mode energieg=ad and the the CNP _scheme and the ex_perlm_ent on t_he carrier-
intensity-vanishing point in the infrared-reflection spectrum.concentration dependence of an intensity-vanishing point in
The above effect of lowering the PL energy in a largerthe infrared-reflection spectrum.
g region depends upon the effective electron density sig-
nificantly. Using m*/mg in the CNP scheme in Table Il
ande, in Table |, we can estimate the effective Bohr radius  part of the numerical calculations in the present work
ag and the effective density parametef defined by were performed at the Computer Center of lwate University
(4m3)(r¥ag)®ny=1. Ther? value varies from 0.21 to and the Information Synergy Center of Tohoku University.
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