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Electronic excitations in a nonparabolic conduction band
of an n-type narrow-gap semiconductor

Mitsutaka Yamaguchi,* Takeshi Inaoka,† and Masayuki Hasegawa
Department of Materials Science and Technology, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551

~Received 29 May 2001; revised manuscript received 6 September 2001; published 8 February 2002!

Taking full account of nonparabolicity of a conduction-band dispersion, we investigate those electronic
excitations in the conduction band of ann-type narrow-gap semiconductor which are coupled with polar
phonons. By incorporating the nonparabolic dispersion obtained by ak•p method in a complete manner into
the random-phase approximation, we calculate the energy dispersion and the energy-loss intensity of two
coupled plasmon-phonon modes and a longitudinal optical-phonon mode partially screened by carriers. The
results are compared with those of two simplified treatments, namely, one with the spin-orbit splitting ne-
glected and the other assuming a parabolic dispersion of the conduction band with its effective mass modified.
This comparison asserts that complete treatment of the nonparabolic dispersion is indispensible to quantitative
analysis of the plasmonlike mode at higher carrier concentrations. Simultaneously, it elucidates limitations and
shortcomings of the simplified schemes. The complete treatment of the nonparabolicity leads to an excellent
agreement with the experiment on the carrier-concentration dependence of an intensity-vanishing point in the
infrared-reflection spectrum.
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I. INTRODUCTION

Electronic excitations in a conduction band ofn-type
compound semiconductors, such asn-GaAs, n-InP, n-InAs,
and n-InSb, are in an energy regime of several tens to
hundred meV, and mode energies of these excitations de
upon doping level. The above electronic excitations
coupled with polar optical phonons, when these two kinds
excitations lie in the same energy regime. The coupled p
mon ~PL!-phonon~PH! modes can be observed by infrare
reflection measurements and Raman-scatte
measurements.1,2 The infrared-reflection spectrum is relate
to the angular-frequency~v! dependence of the dielectri
function at wave numberq50. In the Raman measuremen
with change in incident laser frequency and scattering an
we can observe the energy dispersion of the coupled PL
modes. In such ann-type polar semiconductor as mention
above, combination of an extremely small effective mass
a large dielectric constant gives a large effective Bohr rad
Accordingly, increasing the doping level readily produce
carrier system of high effective density. In this case,
random-phase approximation~RPA!3 gives a quantitative de
scription of the dynamical response of this carr
system.1,2,4–13To examine coupling of electronic excitation
and polar phonons, the RPA is combined with t
Lorentzian-oscillator model that describes the phon
polarization.1,2,4–13This combined scheme has been succe
fully applied to analysis of experimental data, especially
Raman measurements. The intensity of the energy loss
volved in the dynamical response of our system is descri
by the energy-loss function. This function plays a central r
in representing the Raman-scattering cross section@see, e.g.,
Eq. ~75! in Ref. 1 or Eq.~2.96! in Ref. 2#.

There exist three dispersion branches of coupled exc
tion modes@see, e.g., Figs. 6 and 18 in Ref. 1#. Two of these
branches that lie on the smaller wave number~q! side of the
0163-1829/2002/65~8!/085207~9!/$20.00 65 0852
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single-particle excitation~SPE! continuum originate from the
PL-PH coupling. The coupled mode on each of these t
branches decays away when it approaches or enters the
continuum. Another one of the three branches continues
through the SPE continuum out to the larger-q side of the
same continuum. This branch can be identified as longitu
nal optical-phonon modes that undergo a screening effec
carriers. We can examine the structure of coupled excita
modes on each branch by decomposing the induced ch
density into a carrier component due to carrier density fl
tuation and a phonon component arising from longitudi
phonon polarization. In Ref. 10, this decomposing analy
has shown how the mode structure varies with change
carrier concentration.

The conduction band of a compound semiconduc
GaAs, InP, InAs, or InSb is appreciably or highly nonpar
bolic, though almost isotropic.14,15 Especially, a narrow-gap
semiconductor InAs or InSb has a remarkably nonparab
conduction band. When this semiconductor isn doped, the
nonparabolicity exerts a significant influence on electro
excitations in the conduction band. There are several th
retical schemes to incorporate the effects of the nonpara
licity into the RPA. The simplest one of these schemes is
assume a parabolic dispersion with its effective m
modified.10,16 From now on, we call this scheme a modifie
parabolic~MP! one. In this scheme, the effective mass is
adjusted that the mode energies at wave numberq50 coin-
cide with those obtained by accurate treatment of the non
rabolicity. This scheme gives a good description of excitat
modes only in a smallq range. The second one is to repr
sent the nonparabolic dispersion by a linear combination
k2, k4, andk6 terms with their coefficients adjusted.9,13 Here
the symbolk is used to denote a wave number of ea
conduction-band state, whileq to stand for a wave number o
each excitation mode. This scheme functions effectively
GaAs9 and InP13 with considerable band gaps where the no
parabolicity is not so significant. However, the above po
©2002 The American Physical Society07-1
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nomial form cannot adequately describe such a highly n
parabolic dispersion as in InAs and InSb where an ini
parabolic rise evolves into a linearlike increase with incre
in k. A more advanced scheme is to employ a nonparab
dispersion and a set of eigenfunctions obtained by ak•p
method with the spin-orbit splitting neglected.12 Hereafter,
we refer to this scheme as a simplified nonparabolic~SNP!
one. This simplified scheme facilitates evaluation of the n
parabolic conduction-band dispersion, an overlap factor
eigenfunctions, and a numerical integral in the susceptib
of the carriers.

In the present work, we adopt a further improved sche
to incorporate into the RPA a nonparabolic dispersion an
set of eigenfunctions that are obtained in a complete man
by a k•p method including the spin-orbit splitting. We term
this scheme a complete nonparabolic~CNP! one. As far as
we know, this work is the first to attempt the CNP schem
As an example for calculation, we taken-type InSb that has
a remarkably nonparabolic conduction band. For several
rier concentrations, we calculate the dispersion relation
the energy-loss intensity of each of the three branches
means of the CNP, SNP, and MP schemes, and compar
results among the three schemes. This comparative ana
clarifies limitations and shortcomings of the two simplifie
schemes, the SNP and MP ones. In relation to the exp
ment, we calculate the carrier-concentration dependenc
an intensity-vanishing point in the infrared-reflection spe
trum. We compare the calculated results in the CNP and S
schemes with the experimental results at various carrier c
centrations. The present work is closely connected with
Raman-scattering measurements. However, there seem
no Raman data forn-InAs or n-InSb with a highly nonpara-
bolic conduction band. We anticipate such Raman data
can be compared with our calculations.

II. THEORY

In this section, we describe a theoretical framework
our following analysis. First, we briefly explain how on
electron eigenstates and the dispersion relation of the
duction band can be obtained by virtue of Kane’s theor14

We pay attention to the cell-periodic factorukl(r ) of each
Bloch functionfkl(r ) @5exp(ik•r )ukl(r )# with wave vec-
tor k and spin orientationl. The Schro¨dinger equation for
ukl(r ) is expressed as

F p2

2m0
1V~r !1

\

m0
k•p1HSOGukl~r !5E8~k!ukl~r !,

~1!

with E8(k)5E(k)2\2k2/2m0 . The symbolsm0 , p, V(r ),
HSO, andE(k) denote the free-electron mass, the mom
tum operator, a periodic potential, the spin-orbit couplin
and the energy dispersion of each band, respectively. A
basis set for representingukl(r ), we take ans-symmetry
function and threep-symmetry ones with both spin orienta
tions for each function. These functions are given as so
tions of Eq.~1! for k50 in the absence ofHSO. Then, Eq.
~1! can be reduced to an eigenvalue problem of an 838
matrix, which results in one dispersion branch of the cond
08520
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tion band and three branches of the valence band. Becau
two possible spin orientations, each energy level on one
these four branches involves two degenerate eigenst
which are labeled byl51 and 2. The energyE(k) of the
conduction band can be obtained by taking the largest s
tion of an algebraic equation forE8@5E(k)2\2k2/2m0#:

E8~E81EG!~E81EG1DSO!2P2k2~E81EG12DSO/3!50,
~2!

whereEG andDSO signify the band-gap energy and the spi
orbit splitting, respectively. The coefficientP can be deter-
mined by

P25
3

2
\2S 1

m0*
2

1

m0
D Y S 2

EG
1

1

EG1DSO
D , ~3!

with the band-edge effective massm0* . If we take az axis in
the direction ofk, the cell-periodic functionsukl(r ) in the
conduction band can be written as

uk1~r !5aku iS↓&1bku~X2 iY!↑&/&1ckuZ↓&, ~4!

and

uk2~r !5aku iS↑&1bku2~X1 iY!↓&/&1ckuZ↑&, ~5!

in terms of three real coefficients

ak5Pk~E81EG12DSO/3!/N, ~6!

bk5~&DSO/3!E8/N, ~7!

and

ck5E8~E81EG12DSO/3!/N. ~8!

In Eqs. ~4! and ~5!, capitalsS, X, Y, and Z designate the
symmetry of the basis functions, and arrows indicate the s
orientation. When the wave vectork is not in thez direction,
each basis function in a ket must be rotated in such a w
that the newz axis is oriented toward thek direction. The
solutionE8 of Eq. ~2! corresponding to the conduction ban
is substituted into Eqs.~6!–~8!. The quantityN is a normal-
izing factor defined by the square root of the sum of t
squares of the numerators.

Based upon the conduction-band states obtained ab
we calculate those electronic excitations in the nonparab
conduction band which are coupled with polar phonons.
our n-type polar semiconductors with large effective Bo
radii, increasing the doping level readily creates such a h
effective density of carriers that an impurity band due
donors merges into the conduction band. In this case, ion
donors can be smeared out into a uniform distribution
positive charges. Our system is composed of the carrier
the conduction band and a polarizable polar background
mentioned in Sec. I, we employ the RPA combined with t
Lorentzian-oscillator model. We consider the dynamic
response of our system to a periodic and oscillatory
ternal potential with wave vectorq and angular frequencyv.
This response can be described by the following dielec
function:
7-2
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«~q,v!5«PH~v!2~4pe2/q2!x~q,v!. ~9!

The dielectric function«PH(v) to describe the phonon an
background polarization can be expressed as

«PH~v!5«`1
~«02«`!vTO

2

vTO
2 2v22 igv

, ~10!

where vTO is the transverse optical-phonon frequency,«`

and«0 are the high-frequency and static dielectric consta
in the absence of carriers, respectively, andg is the phonon
relaxation-rate constant. This local response scheme for
tical phonons is a good approximation for our excitati
modes whose wavelength is much longer than lattice c
stants. The susceptibilityx(q,v) to describe the response o
the carriers can be written in terms of Bloch functio
fkl(r ) as follows:

x~q,v!5
1

V0
(
k,l

(
k8,l8

f ~k8!2 f ~k!

E~k8!2E~k!1\v1 i\h

3E d3rE d3r 8 exp~2 iq•r !exp~ iq•r 8!

3fkl* ~r 8!fk8l8~r 8!fk8l8
* ~r !fkl~r !

5
1

V0
(
k,l

(
k8,l8

f ~k8!2 f ~k!

E~k8!2E~k!1\v1 i\h

3U E d3r exp~2 iq•r !fk8l8
* ~r !fkl~r !U2

,

~11!

where f (k), V0 , andh denote the Fermi–Dirac distributio
function, the system volume, and a small positive const
respectively. Substitutingfkl(r )5exp(ik•r )ukl(r ) in Eq.
~11!, using the periodicity ofukl(r ), and converting thek
sum into ak integral, we obtain12,17

x~q,v!52E d3k

~2p!3 f ~k!F I k,k1q

E~k!2E~k1q!1\v1 i\h

1
I k,k2q

E~k!2E~k2q!2\v2 i\hG , ~12!

where the overlap integralI k,k8 is defined by

I k,k85
1

2 (
l,l8

U E uk8l8
* ~r !ukl~r !d3rU2

. ~13!

After a straightforward calculation with the aid of Eqs.~4!
and ~5!, the integralI k,k8 can be expressed as18

I k,k85$akak81~bkbk81ckck8!cosuk,k8%
2

1~1/2!$bkbk8 /&2~bkck81ckbk8!%
2 sin2 uk,k8 ,

~14!

where uk,k8 designates the angle betweenk and k8. The
energyE(k) in Eq. ~12! and the coefficientsak , bk , andck
in Eq. ~14! can be obtained from Eq.~2! and Eqs.~6!–~8!,
08520
ts

p-

n-

t,

respectively. The chemical potential~Fermi level! m for car-
rier concentrationn0 given can be determined by the relatio

2E d3k

~2p!3 f ~k!5n0 , ~15!

with E(k) incorporated inf (k). We rewrite thek integral in
Eq. ~12! in terms of spherical polar coordinates, and perfo
a numerical calculation of the resulting integral.

Next, we consider the energy loss involved in the
sponse of our system to the external potentialU(q,v). The
energy loss per unit volume and per unit time can be
pressed as

W5
q2v

2p
uU~q,v!u2 ImF2

1

«~q,v!G , ~16!

where Im stands for the imaginary part. In view of this e
pression, we define the energy-loss functionF(q,v) by

F~q,v!5Im@21/«~q,v!#. ~17!

Here, we pay attention to thev dependence of«(q,v) at q
50. We take the limit ofq→0 and ignore the relaxation-rat
constantsg and h. In this condition, the susceptibility
x(q,v) can be expanded in powers of 1/v, and its expres-
sion up to the second order is given by

x~q,v!'
2

\v E d3k

~2p!3 f ~k!~ I k,k1q2I k,k2q!

1
2

~\v!2 E d3k

~2p!3 f ~k!@ I k,k1q$E~ uk1qu!2E~k!%

1I k,k2q$E~ uk2qu!2E~k!%#. ~18!

Here, the functionf (k) and the energyE(k) are expressed a
f (k) and E(k) (k5uku), respectively, to emphasize tha
these quantities depend not on the direction ofk but only on
the magnitude ofk. In view of the denominatorq2 in Eq. ~9!,
we calculatex(q,v) up to the second order inq. For sim-
plicity of calculation, we take thez axis in the direction
of q. The overlap integralI k,k6q and the energy spacin
E(uk6qu)2E(k) can be expanded up to the second order
qz as follows:

I k,k6q'12FG~k!S kz

k D 2

1H~k!
k22kz

2

k4 Gqz
2, ~19!

E~ uk6qu!2E~k!'6
kz

k

dE

dk
qz1

1

2 F1

k

dE

dk
1S d2E

dk22
1

k

dE

dkD
3S kz

k D 2Gqz
2. ~20!

The coefficientsG(k) andH(k) in Eq. ~19! are expressed in
terms ofak , bk , andck . We do not need their explicit ex
pressions in this calculation. We should note that
qz-linear term vanishes in the expansion ofI k,k6q . Substi-
7-3
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TABLE I. Parameter values of InSb used in the present calculation.

EG 0.1677 eV~Ref. 20! Band-gap energy atT5300 K
DSO 0.850 eV~Ref. 21! Spin-orbit splitting
m0* /m0 0.013 59~Refs. 22,23! Band-edge effective mass in unit

of the free-electron mass
«` 15.68~Ref. 24! High-frequency dielectric constan
«0 17.88~Ref. 24! Static dielectric constant
\vTO 22.90 meV~Ref. 24! Transverse optical-phonon energ
g~\g! 0.007vTO ~0.16 meV! ~Ref. 24! Phonon relaxation-rate constant
h~\h! 331012 s21 ~1.97 meV! Relaxation-rate constant for
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tuting Eqs.~19! and~20! into Eq.~18! and performing angu-
lar integration, we can obtain the following simple expre
sion of «(q50,v):

«~q50,v!5«`1
~«02«`!vTO

2

vTO
2 2v2 2

4pn0e2

m* v2 , ~21!

where the effective massm* is defined by

1

m*
5

b

3p2\2n0
E

0

`

dkk2f ~k!@12 f ~k!#FdE~k!

dk G2

. ~22!

In Eq. ~22! we employ the energy dispersionE(k) obtained
from Eq.~2!. The symbolb is defined byb51/kBT in terms
of the Boltzmann constantkB and the absolute temperatu
T. We should note that the effective massm* in Eq. ~22! is
determined from the energy dispersion around the Fe
level m, because the factorf (k)@12 f (k)# becomes appre
ciable around a wave numberk corresponding tom. The
mode energies atq50 can be obtained from«(q50,v)
50, and thev dependence of«(q50,v) is related to the
infrared-reflection spectrum.

The nonparabolicity of the conduction band is treated i
complete manner in the above-mentioned scheme. As st
in Sec. I, we call this scheme the CNP one. We compare
results of this scheme with those of two simplified schem
In one of these two schemes, we neglect the spin-orbit s
ting of the valence band.12,19The conduction-band dispersio
E(k) is given by the larger solution of an algebraic equat
for E:

E~11aE!5\2k2/2m0* , ~23!

wherea is defined bya51/EG . The overlap integralI k,k8 is
expressed as

I k,k85~akak81ckck8 cosuk,k8!
2, ~24!

in terms of

ak5F 11aE~k!

112aE~k!G
1/2

~25!

and

ck5F aE~k!

112aE~k!G
1/2

. ~26!
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This is the SNP scheme, as named in Sec. I. In the othe
the two simplified schemes, we assume a parabolic dis
sion of the conduction band with the effective massm* in
Eq. ~22!. The parabolic dispersion withm* leads to the same
expression of«(q50,v) as in Eq.~21!. Accordingly, even
the parabolic scheme can give the same energy value
excitation modes atq50 as the CNP scheme, if we emplo
the effective massm* defined by Eq.~22! with E(k) ob-
tained by the CNP scheme. The parabolic dispersionE(k)
5\2k2/2m* is substituted into Eq.~12!, and the overlap in-
tegralI k,k6q is set to unity. We refer to this parabolic schem
with the effective mass modified as the MP one.

III. RESULTS AND DISCUSSION

By means of the theoretical framework in Sec. II, w
investigate those electronic excitations in the nonparab
conduction band which are coupled with polar phonons.
an example for calculation, we adoptn-type InSb whose con-
duction band is highly nonparabolic. In the following calc
lations, we use parameter values tabulated in Table I.20–24We
take room temperatureT5300 K. The band gapEG depends
upon T significantly, and theEG value used is forT
5300 K.20 By virtue of the Lyddane–Sachs–Teller relatio
we obtain the longitudinal optical-phonon energy of lo
wavelength as\vLO5A«0 /«`\vTO524.45 meV. In our
calculations, we employ a small and specific value ofh,
namely, h5331012 s21 (\h51.97 meV). As shown in
Table I of Ref. 25, the relaxation timet of carriers is esti-
mated to be remarkably long inn-type InSb even at room
temperature. As the carrier concentrationn0 increases from
3.531017 cm23 to 4.031018 cm23, the estimated value o
t21 varies from 2.131012 s21 to 3.831012 s21. The above
value ofh used in our calculations is located in the middle
this t21 range. The conspicuously long relaxation time
responsible for the fact that the infrared-reflection spectr
observed exhibits a sharp minimum with negligib
intensity.25

Figure 1 shows the energy dispersion of the conduct
band in the CNP scheme~full curve!, that in the SNP scheme
~dash-dotted curve!, that in the MP scheme~broken curve!,
and the parabolic~P! dispersion with the band-edge effectiv
massm0* ~dotted curve!. The CNP curve and the SNP one a
obtained from Eqs.~2! and ~23!, respectively. With an in-
crease ink, the CNP curve and the SNP one start to devi
7-4
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ELECTRONIC EXCITATIONS IN A NONPARABOLIC . . . PHYSICAL REVIEW B65 085207
from the P curve remarkably, and evolve into a linearlik
increase. This remarkable deviation indicates a high non
rabolicity. The SNP curve lies somewhat below the CNP o
Although this departure looks small, in the below analys
we will find a considerable difference in excitations betwe
these two nonparabolic schemes. For the MP curve, we
ploy the modified effective massm* that is obtained from
Eq. ~22! at carrier concentrationn054.031018 cm23. Be-
cause of the high nonparabolicity, the MP curve is unrea
tically below the CNP curve. However, as seen from
below-mentioned analysis, the important point is that thk
derivative of the MP curve around its Fermi levelm
5179 meV is almost the same as that of the CNP cu
aroundm5278 meV.

Here, following Ref. 12, we pay attention to an intensit
vanishing point in the infrared-reflection spectrum~a deep
minimum with negligible intensity!. The v dependence o
«(q50,v) is related to this spectrum, and energy values\v
satisfying «(q50,v)51 correspond to the intensity
vanishing points in the spectrum. The dielectric functi
«(q50,v) is given by Eq.~21!. Figure 2 exhibits then0
dependence of the higher energy\v of «(q50,v)51 in the
CNP scheme~full curve!, the SNP scheme~dash-dotted
curve!, and the parabolic scheme with the band-edge ef
tive massm0* ~dotted curve!, in comparison with the experi
mental result~five dots!.25 In the CNP~SNP! scheme, the
effective massm* in Eq. ~22! is calculated by usingE(k) in
the CNP~SNP! scheme, and in the parabolic scheme,m* in

FIG. 1. Energy dispersion of the conduction band of InSb aT
5300 K obtained by the complete nonparabolic~CNP! scheme~full
curve!, the simplified nonparabolic~SNP! one ~dash-dotted curve!,
and the modified parabolic~MP! one~broken curve!, in comparison
with the parabolic~P! dispersion with the band-edge effective ma
~dotted curve!. The dispersion curve in the MP scheme is for carr
concentrationn054.031018 cm23.
08520
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Eq. ~21! is replaced bym0* . In this analysis, the MP schem
is equivalent to the CNP one. As displayed in Fig. 2, t
energy values in the CNP scheme are in excellent agreem
with the experimental ones, and the energy values in the S
scheme are appreciably lower than those in the CNP sch
in a highern0 region. Equation~22! implies thatm* is de-
termined by thek derivative ofE around the Fermi levelm.
Table II compiles them andm* values in the CNP, SNP, an
MP schemes for four carrier concentrations. The Fermi le
for eachn0 value can be located in the conduction-band d
persion of Fig. 1. At higher carrier concentrations, thek de-
rivative aroundm becomes appreciably lower in the SN
scheme than in the CNP scheme, and consequently the e
tive massm* in the SNP scheme becomes larger than tha
the CNP scheme. This explains why the energy at
intensity-vanishing point in the SNP scheme is apprecia
lower than that in the CNP scheme in a highern0 range.

We can obtain the energy dispersion of each excitat
mode by locating the corresponding peak inv dependence of
F at variousq values. Figure 3 displays the energy-dispers
diagrams of excitation modes atn054.031018 cm23 ~a!,
1.031018 cm23 ~b!, 0.531018 cm23 ~c!, and 0.1
31018 cm23 ~d!. Full curves, dash-dotted ones, and brok
ones correspond to the CNP scheme, the SNP one, and
MP one, respectively. At eachn0 value, there exist three
dispersion branches, which we nameA, B, andC. In ~a!, ~b!,
or ~c!, the curves of the branchB in the three schemes coin
cide with one another, and look like one curve. In each pa
the curves of the branchC in the three schemes also agr

FIG. 2. Carrier-concentration dependence of the higher one
the two energy values satisfying«(q50,v)51 for n-type InSb at
T5300 K. The calculated results in the CNP scheme~full curve!,
the SNP one~dash-dotted curve!, and the parabolic one with the
band-edge effective mass~dotted curve! are compared with
intensity-vanishing points in observed infrared-reflection spec
~five dots!.

r

d
TABLE II. Carrier-concentration dependence of the Fermi levelm measured from the conduction-ban
bottom and the effective massm* defined by Eq.~22! in the CNP, SNP, and MP schemes.

n0(1018 cm23) 0.1 0.5 1.0 4.0
m~meV! in CNP 23.2 96.2 142.1 277.7
m~meV! in SNP 20.9 90.9 133.8 256.6
m~meV! in MP 9.6 65.8 96.4 178.8
m* /m0 in CNP 0.0248 0.0308 0.0356 0.0505
m* /m0 in SNP 0.0266 0.0335 0.0391 0.0574
m* /m0 in MP 0.0248 0.0308 0.0356 0.0505
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FIG. 3. Energy-dispersion dia
grams of excitation modes o
n-type InSb atT5300 K for car-
rier concentration n054.0
31018 cm23 ~a!, 1.031018 cm23

~b!, 0.531018 cm23 ~c!, and 0.1
31018 cm23 ~d!. Full curves,
dash-dotted ones, and broken on
correspond to the CNP, SNP, an
MP schemes, respectively. At eac
n0 value, there exist three disper
sion branchesA, B, andC. Each of
the three curves~full, dash-dotted,
and broken! starting from the ori-
gin marks the boundary of the
single-particle excitation con-
tinuum in the corresponding
scheme atT50 K. The resonance
intensity decays away on a broke
part of the branchC.
h
rig
tin

ra

t
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nc
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th d MP
with one another. AtT50 K, the SPE continuum in eac
scheme has a definite boundary, and it extends on the
side of the corresponding one of the three curves star
from the origin. This boundary curve forT50 K helps us to
realize around where the Landau damping begins to ope
though we calculate excitation modes atT5300 K, and the
boundary becomes blurred to a certain extent then. A
highern0 value, the boundary curve in the SNP~MP! scheme
begins to deviate downward~upward! conspicuously from
that in the CNP scheme with increase inq. This deviation
originates from the difference in the conduction-band disp
sion among the three schemes~see Fig. 1!. Figures 4, 5, and
6 show thev dependence ofF at each of variousq values for
the branchA with n054.031018 cm23 @see Fig. 3~a!#, the
branchB ~and A! with n050.131018 cm23 @see Fig. 3~d!#,
and the branchC with n051.031018 cm23 @see Fig. 3~b!#,
respectively. Anv range at aq value specified in each pane
can be located in Fig. 3. As in Fig. 3, full curves, dash-dot
ones, and broken ones correspond to the CNP, SNP, and
schemes, respectively.

The branchA is the upper one of the coupled plasm
~PL!-phonon ~PH! modes. As the branch descends towa
\vLO ~524.45 meV! with decrease inn0 , the PL-like modes
evolve into the PH-like ones. On the other hand, the bra
B is the lower one of the coupled PL-PH modes. As t
branch falls further below\vTO with decrease inn0 , the
coupled modes involving strong cancellation in amplitu
between the PL and PH components in the induced-ch
density change into the PL-like modes. The remarka
variation in the mode structure with change inn0 is exam-
ined closely in Ref. 10.

Here, we examine the difference in the dispersion of
branchA or B among the three schemes. In the branchA, we
08520
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te,
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r-

d
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e
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le

e

FIG. 4. v dependence of the energy-loss functionF at q51
3105 cm21 ~a!, 53105 cm21 ~b!, 103105 cm21 ~c!, 12
3105 cm21 ~d!, and 223105 cm21 ~e! for the branchA of n-type
InSb at n054.031018 cm23 and T5300 K. Full curves, dash-
dotted ones, and broken ones correspond to the CNP, SNP, an
schemes, respectively.
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find a greater difference among the three schemes at a h
n0 value, while, in the branchB, we notice a perceivable
difference only at the lowestn0 value. We pay attention to
the branchA at n054.031018 cm23 in Fig. 3~a! where the
difference among the three schemes is most obvious.
branch in the SNP scheme~dash-dotted curve! lies consider-
ably below that in the CNP scheme~full curve! over the
wholeq range. With an increase inq, this deviation becomes
larger, and the mode in the SNP scheme approaches
boundary of the SPE continuum at largerq values than the
mode in the CNP scheme. In Fig. 4, we can follow the var
tion in the resonance peak of the mode on the branchA at the
samen0 value with change inq. When q<123105 cm21,
there is no substantial difference in height and width of
resonance peak between the CNP and SNP schemes@see
Figs. 4~a!–4~d!#. At q5223105 cm21, however, the reso
nance peak in the CNP scheme becomes appreciably b
though that in the SNP scheme shows no substantial br
ening. This implies that the Landau damping begins to op
ate at smallerq values in the CNP scheme than in the SN
scheme. This is consistent with the above-mentioned
proach to the boundary of the SPE continuum at differenq
values. In passing, an extending tail on the lower-energy
of each resonance peak in Fig. 4~e! arises from the SPEs.

Next, we analyze the difference in the branchA between
the CNP and MP schemes. As exhibited in Fig. 3~a!, with an
increase inq, the branch in the MP scheme starts to devi
upward from that in the CNP scheme, and this deviat
becomes larger. The mode in the MP scheme reaches
boundary of the SPE continuum at smallerq values than the
mode in the CNP scheme. Whenq<53105 cm21, the reso-
nance peak in the MP scheme accords completely or alm
completely with that in the CNP scheme@see Figs. 4~a! and
4~b!#. With further increase inq, however, the former pea
departs from the latter peak to the higher-energy side,
begins to broaden at smallerq values than the latter peak. A

FIG. 5. v dependence ofF at q513105 cm21 ~a!, 2
3105 cm21 ~b!, and 33105 cm21 ~c! for the branchB ~andA! of
n-type InSb atn050.131018 cm23 and T5300 K. Organized in
the same manner as Fig. 4.
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q5223105 cm21, the former peak decays away into th
weak extending intensity due to the SPEs@see Fig. 4~e!#.
This indicates that the Landau damping comes into play
considerably smallerq values in the MP scheme than in th
CNP scheme.

Here, we turn our attention to the energy dispersion a
the energy-loss intensity of the branchB with n050.1
31018 cm23 in Fig. 3~d! and Fig. 5, respectively. The differ
ence among the three schemes in the branchB is similar to
that in the branchA, though the former is not so evident a
the latter. As displayed in Fig. 3~d!, the branch in the SNP
scheme lies somewhat below that in the CNP scheme,
with increase inq, the branch in the MP scheme starts
show a small upward deviation from that in the CNP schem
As exhibited in Fig. 5, the Landau damping in the SNP~MP!
scheme begins to operate at larger~smaller! q values than
that in the CNP scheme. The Landau damping at smalleq
values in the MP scheme seems to be inconsistent with
fact that the mode on this branch gets close to the bound
of the SPE continuum at largerq values in this scheme@see
Fig. 3~d!#. However, we should note that the value ofm
(59.6 meV) measured from the conduction-band bott
~see Table II! is considerably lower thankBT ~525.9 meV!,
and that the carrier system begins to acquire classical
character. This is considered to account for the fact that
Landau damping comes into play at smallerq values in the
MP scheme. Incidentally, in the branchA at the samen0
value as well, we can find a similar quick damping in the M
scheme~see Fig. 5!.

Next, we investigate the branchC that lies flat just below
\vLO ~524.45 meV!. As shown in Fig. 3, at any of the fou
n0 values, there is no difference in the energy dispers
among the three schemes. With decrease inq, the resonance
intensity declines, and decays away on a broken part of
dispersion curve. Figure 6 exhibits the variation in the re

FIG. 6. v dependence ofF at q5103105 cm21 ~a!, 15
3105 cm21 ~b!, and 203105 cm21 ~c! for the branchC of n-type
InSb atn051.031018 cm23 and T5300 K. Laid out in the same
fashion as Fig. 4.
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nance peak atn051.031018 cm23 with change inq. In this
branch, the longitudinal optical-phonon polarization plays
major role, and the carriers have a screening effect on
phonon polarization. The carriers operate against the pho
polarization to reduce the energy-loss intensity.10 As dis-
played in Fig. 6~a!, at q5103105 cm21, the reduced reso
nance intensity forms a declining peak in the extending
tensity due to the SPEs. As the screening effect becomes
powerful with increase inq, the mode energy asymptoticall
approaches the value of\vLO , and the resonance intensit
of F increases toward that in the absence of carriers.

As shown in Fig. 1, the conduction-band dispersion ha
somewhat smallerk derivative aroundm in the SNP scheme
than in the CNP scheme. This smaller derivative operate
enhance the screening effect, and consequently, to supp
the energy-loss intensity. In the MP scheme, the overlap
tegral I k,k6q is set to unity, though, in the CNP or SN
scheme, it can be less than unity in a largerq region. No
decrease in the overlap integral in the MP scheme act
overestimate the screening effect, and as a consequenc
reduce the energy-loss intensity. These two effects of
energy dispersion and the overlap integral explain why
resonance intensity in the SNP or MP scheme is somew
weaker than that in the CNP scheme.

Finally, we mention the validity of the RPA in our calcu
lations. We can evaluate the exchange-correlation~XC!
effect by means of the so-called local-field correction.26,27

The XC effect operates to weaken the upward PL d
persion without making any energy change atq50. The XC
effect has no influence on the mode energies atq50 and the
intensity-vanishing point in the infrared-reflection spectru
The above effect of lowering the PL energy in a larg
q region depends upon the effective electron density s
nificantly. Using m* /m0 in the CNP scheme in Table I
and«0 in Table I, we can estimate the effective Bohr radi
aB* and the effective density parameterr s* defined by
(4p/3)(r s* aB* )3n051. The r s* value varies from 0.21 to
g

rs

m

o

li

k
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0.35, when n0 decreases from 4.031018 cm23 to 0.1
31018 cm23. Accordingly, ther s* value remains consider
ably lower than unity in the wholen0 range analyzed here
This indicates that the XC effect is quite small in our carr
system of high effective density.

IV. SUMMARY

Incorporating a nonparabolic conduction-band dispers
into the random-phase approximation in a complete man
we have examined those electronic excitations in the non
rabolic conduction band of ann-type narrow-gap semicon
ductor which are coupled with polar phonons. Our results
this complete nonparabolic~CNP! scheme have been com
pared with those of two simplified schemes, namely, a s
plified nonparabolic~SNP! scheme with the spin-orbit split
ting neglected and a modified parabolic~MP! scheme using a
modified effective mass. Our analysis has shown that
complete treatment of the nonparabolicity as in the C
scheme is essential to accurate evaluation of the energy
persion, the energy-loss intensity, and the Landau dam
of the plasmonlike mode at higher carrier concentratio
The dispersion branch of this mode in the SNP scheme
considerably below that in the CNP scheme, and with
crease in wave numberq, the dispersion branch in the M
scheme begins to deviate upward from that in the C
scheme. The Landau damping starts to operate at la
~smaller! q values in the SNP~MP! scheme than in the CNP
scheme. We have obtained an excellent agreement betw
the CNP scheme and the experiment on the carr
concentration dependence of an intensity-vanishing poin
the infrared-reflection spectrum.
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