研究速報

遺伝的アルゴリズムを用いたスピーカの高調波ひずみ 率測定法 藤岡 豊太^{†a})(正員) 工藤 正平†

永田 仁史†(正員) 安倍 正人†(正員)

The Harmomic Distortion Level Measurement Technique of a Loudspeaker Using Genetic Algorithm Toyota FUJIOKA^{† a)}, Member,

Shyouhei KUDOU[†], Nonmember, Yoshifumi NAGATA[†], and Masato ABE[†], Members

† 岩手大学工学部,盛岡市

Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka-shi, 105-0123 Japan

a) E-mail: toy@cis.iwate-u.ac.jp

あらまし スピーカの高調波ひずみ率測定における 信号パワー値推定に遺伝的アルゴリズムを用い、従来 法より短時間で測定可能な測定法を提案する.また, 本提案測定法を DSP に実装し、実時間測定実験によ り測定性能の評価を行う.

キーワード スピーカ,高調波ひずみ,ひずみ率測 定,遺伝的アルゴリズム

1. まえがき

スピーカで再現される音響信号に含まれるひずみ成 分において、主要なひずみの一つが高調波ひずみであ る[1]. そのため、高調波ひずみはスピーカの性能を表 す指標の一つとしても用いられている。高調波ひずみ 率測定は,現在はスペクトル解析により測定するのが 一般的であり、専用機器のみならず一般の PC などで も測定することができる. 我々は, 既に新たな測定法 として、安価な DSP などへ実装し小型で扱いやすい測 定器として実現できる、適応フィルタを用いたスピー カの高調波ひずみ率測定法を提案し, DSP を用いた 測定実験により提案測定法の有効性を確認している [2].

2. スピーカの高調波ひずみ率測定

スピーカの高調波ひずみ率測定は、スピーカにテス ト信号となる正弦波信号を入力し、スピーカで再現さ れる音響信号に含まれる基本波成分及び高調波成分と なる正弦波信号のパワーを求めることにより得られ る[3]. テスト信号として,スピーカに振幅 Ao,角周 波数 ω_0 の正弦波 $v_i = A_0 \sin(\omega_0 t)$ を入力すると、高 調波ひずみを含むスピーカ信号 voは、フーリエ級数 展開により式(1)のように表すことができる.

$$v_o = \sum_{n=1}^{\infty} A_n \sin(n\omega_0 t + \phi_n) \tag{1}$$

ここで A_n は各成分の振幅, ϕ_n は位相である. 式 (1) より、 $A_1 \sin(\omega_0 t + \phi_1)$ はスピーカ出力信号のテスト 信号と同じ周波数成分(以下,基本成分)となる.そ して, $A_n \sin(n\omega_0 t + \phi_n), n = 2, 3, 4, \cdots$ が, スピー カの非直線性により引き起こされる第 n 次高調波成分 となる.このとき IEC 規格における第 n 次高調波ひ ずみ率 DL_n は, 式 (2) のように表される.

$$DL_n = 20\log_{10} \frac{|A_n|}{\sqrt{信号の全振幅パワ-}}$$
(2)

第 n 次高調波成分の信号パワー値を求める方法と して,スペクトル解析法が一般的に用いられている. 我々が提案している適応フィルタを用いた測定法は, 従来測定法に比べ計算量が大幅に少なく DSP などへ の実装が容易な測定法である [2]. しかし、この測定法 で IEC 規格による式 (2) の高調波ひずみ率を得るに は、フィルタ出力が十分収束する必要があり正確な測 定値を得るのに時間を要する.

本論文では、式(2)のひずみ率をより短時間で測定 する方法として、スピーカ出力信号から式(1)の最適 パラメータを GA を用いて直接推定する測定法を提案 し、測定実験により測定精度及び測定時間についての 性能評価を行う.

3. GA を用いた高調波ひずみ率測定

3.1 原 玾

本提案測定法は,式(1)を構成する各最適パラメー タを GA を用いて推定する測定法である. 高調波ひず み率に必要はパラメータは An のみであるが,測定信 号の遅延を考慮するため φ_n の推定も必要となる.し かし測定角周波数 ω_n は既知であるので, 推定すべき パラメータは各成分当り A_n , ϕ_n の二つとなる. パ ラメータ推定は,式(1)で A_n , ϕ_n により得られる一 定長の推定正弦波信号と,同じ長さのスピーカ出力信 号との二乗平均誤差を用いて求める. 二乗平均誤差が 最小のときの A_n , ϕ_n が最適パラメータであるので, 二乗平均誤差を GA の評価関数にすることで誤差を評 価値として用いることができる. 信号パワーは, An の最適値から求められる.他に GA を波形信号のパラ メータ推定に適応している例として、正弦波騒音の能 動騒音制御における騒音のパラメータ推定[4]や、声 道インパルス応答を複数の減衰正弦波積和としたイン パルス応答のパラメータ推定[5] などがある.

本提案法は、推定パラメータが二つのみであること から、GA により短時間で適応度の高いパラメータを

642

電子情報通信学会論文誌 A Vol. J93-A No.9 pp. 642-645 ⓒ(社)電子情報通信学会 2010

推定でき,また遺伝子表現が単純であることやアル ゴリズム的に処理の分割・並列化しやすいことから, DSPへの実装や専用ハードウェアとしての実装も容 易であるものと考えらえる.

3.2 提案測定アルゴリズム

本提案測定法のアルゴリズムを図1に示す.本提 案測定法は,はじめにテスト信号により駆動されたス ピーカ出力から基本波成分数周期分の長さをバッファ に保存し,そして保存データを用いGAにより推定信 号の最適パラメータを求める.本提案法におけるGA 部は、以下の遺伝子表現,遺伝子操作を実装する.

遺伝子表現: A_n, φ_n とも長さ 16 のビットス
トリング

• 推定信号: $v_{(est)} = A_n \sin(n\omega t + \phi_n)$

評価関数:スピーカ出力と推定信号の二乗平均
誤差がパラメータの評価値となる

 遺伝子操作:エリート戦略.評価値順にソート した遺伝子のうち,下位の遺伝子があらかじめ設定し た淘汰割合だけ淘汰される.新たな遺伝子は,残った 上位の遺伝子からランダムに二つを選択し,ランダム に決定した交差位置による一点交差により生成される.

• 終了条件:あらかじめ設定した世代交代数

本提案測定法での遺伝子表現・操作は、安価な DSP へ実装することを考慮して決定している。

3.3 DSP への実装

実時間測定のために、測定アルゴリズムの DSP へ の実装は測定時間や操作の点で有用である.本提案測 定法を DSP へ実装するために本論文では、図 2 のよ うに GA における一世代の処理をサンプリング時間内 に収まる程度に分割し、複数サンプリング時間で一世 代の処理を行う方法を提案する.

DSP 内では、図 2 の各ブロックが矢印の順に実行され、マイクロホン出力の保存と初期遺伝子の生成の後 は遺伝的アルゴリズム処理を順に繰り返す。各ブロッ ク内の括弧内の記号は、各ブロックが処理に要するサ ンプリング回数であり、N は遺伝子数、L は保存デー タ長である。図 2 は 1 サンプリング当りの評価値算出 を 1 遺伝子のみとした場合で、ソートの所要回数は単 純ソートの場合である。以上から、サンプリング周波 数 f_s 、世代交代数 G_{max} とすると、本提案システム による測定時間は式 (3) となる。

測定時間 =
$$\frac{1 + L + G_{max}(4N - 1)}{f_s}$$
 [秒] (3)

3.4 提案測定法の問題

3.4.1 初期値の影響

GA では,推定パラメータが初期値に依存し局所解 に陥る危険性がある.その改善法として,遺伝子操作 にエリート戦略と他の選択法を組み合わせる方法が用 いられることが多い.しかし,本提案測定法では DSP への実装を考慮しエリート戦略のみを用いるため,測 定性能に悪影響を与える可能性がある.

3.4.2 スピーカ出力の安定性

本提案測定法は、短時間スピーカ出力信号から高調

643

波ひずみ率を推定するため,従来の測定法に比ベス ピーカ出力の不安定性や外部雑音などの影響を受けや すいものと考えられる。本提案測定法では,測定信号 と推定信号の間の二乗平均誤差を求める信号長を基本 波周波数の整数陪の長さに設定し,時間領域で同期加 算することにより外部雑音に対する SN 比を向上させ ている.

4. 実 験

4.1 測定条件

本提案測定法の性能評価のため,同じ条件下で本 提案法,スペクトル解析法,適応フィルタ法 (LMS, DXHS) それぞれの方法で測定を行い,測定精度及び 測定時間を求めた.測定実験は,本研究室所有の簡 易無響室で行った.無響室の暗騒音は約 40 dB(C) で ある.

表1に測定条件を示す.遺伝的アルゴリズム条件に おける各パラメータ値は,事前の予備実験により決定 した値である.また,測定場所,使用スピーカ,テス ト信号周波数,スピーカ・マイクロホン間距離を除き, スペクトル解析法,適応フィルタ法の各測定条件は文 献[2]と同じである.

表 1 測 定 条 件				
Table 1 Me	easurement condition.			
	使用機器			
スピーカ SP BOSE 101MM				
マイクロホン MIC	B&K Hand-held Analyzer			
	Туре 2250			
DSP 機器	PCI-DSPIO67 及び I/O ボード			
·	((株)コーメックス電子)			
7	、ピーカ性能			
インピーダンス	.6 Ω			
再生周波数带域	$70\mathrm{Hz}{\sim}17\mathrm{kHz}$			
感度	86 dB/W/m			
許容入力	45 W rms (IEC268-5),			
	150 W rms (peak)			
· · · · · · · · · · · · · · · · · · ·	測定条件			
サンプリング周波数 f_s	16000 Hz			
テスト信号周波数 ƒ1	500 Hz, 1000 Hz, 1600 Hz			
測定高調波	第2次~第5次			
SP・MIC 間距離 D	m			
テスト信号レベル	_90 dB(C)			
遺伝的	アルゴリズム条件			
~ 遺伝子数 N	30			
染色体長 M	16			
選択	エリート戦略			
交差	一点交差			
淘汰確率	0.3			
突然変異確率	0.15			
世代交代数 G_{max}	200			
二乗平均信号長 L	$5 imes f_s/f$			
同期加算数	30			

4.2 測定結果

4.2.1 測定精度

本提案法の測定精度の検証のため、本提案法(以下 GA法)、及びFFTを用いたスペクトル解析法(以下 FFT法)、LMS、DXHS 各々を用いた適応フィルタ法 (以下 LMS 法、DXHS 法)により同じ条件下で測定 を行った.また本提案法では、3.4の理由により測定 値が局所解に陥る可能性があるため、同じ条件での測 定でも従来測定法に比べて測定ごとに測定値がばらつ く可能性が予想された.そこでGA法では、同じ条件 で100回測定したときの基本波及び高調波成分の測定 値のばらつきも求めた.

はじめに、GA 法及び FFT 法、LMS 法、DXHS 法 での $f_1 = 500 \,\text{Hz}, 1000 \,\text{Hz}, 1600 \,\text{Hz}$ の場合の測定 結果を表 2 に示す.表 2 では,従来法である FFT 法 の測定値を基準値と定め、基準値との誤差が±1dB未 満の測定値を太字で,また誤差が ±1 dB 以上 ±3 dB 未満の測定値を下線で示している.また.GA法1は GA 法により 100 回測定した 1 回目の測定値, GA 法 2は100回測定して得られた最頻値である、本実験で 用いた測定機器での測定可能ひずみ率範囲は、0dB~ 約 -63 dB 程度である [2]. FFT 法で測定可能範囲内 の測定値が得られた高調波成分について見ると、LMS 法, DXHS 法では FFT 法と同等の精度で測定されて いる. GA 法では, GA1 法1 に比べ GA 法2 の方が 基準値に近い測定値が得られ、f1 = 500 Hz の第5次 高調波成分以外は、GA 法2 ではほぼ基準値どおりの ひずみ率が測定されている.

次に, f₁ = 1000 Hz で GA 法により 100 回測定し

表 2 測 定 結 果

f_1	測定法		高調波ひす	[*] み率 [dB]		
[Hz]		2 次	3 次	4 次	5 次	
500	FFT 法	-36.78	-34.75	-57.11	-63.10	
	LMS 法	-36.78	-34.88	-56.78	-65.68	
	DXHS 法	-36.58	-34.78	-57.78	-62.78	
	GA 法 1	-35.37	-34.41	-58.16	-61.07	
	GA 法 2	-35.38	-34.69	-55.71	-57.02	
1000	FFT 法	-47.63	-47.56	-68.59	-59.64	
	LMS 法	-47.68	-47.23	-68.48	-61.98	
	DXHS 法	-47.66	-47.26	-67.76	-60.86	
	GA 法 1	-48.22	-47.71	-64.22	-72.52	
	GA 法 2	-46.82	-46.76	-72.66	-60.03	
1600	FFT 法	-61.35	-56.49	-66.31		
	LMS 法	-62.84	-57.04	-60.54	-	
	DXHS 法	-62.60	-57.10	-60.70	-	
	GA 法 1	-70.73	-56.50	-73.65	- '	
	GA 法 2	-64.24	-56.30	-73.65	-	

表 3 GA 法での測定値のばらつき (f₁ = 1000 Hz, 測定 回数:100 回)

Table	3	Dispersion	of	measured	power.	$(f_1$	-
		1000 Hz, nur	nbe	er of measu	re: 100)		

				+		
	測定パワー値 [dB]					
	1次	2 次	3 次	4次	5次	
最小值	84.94	34.34	34.48	-1.51	-1.51	
最大値	84.97	40.63	40.64	23.10	28.87	
平均值	84.94	37.64	37.93	12.00	23.15	
最頻値	84.94	38.15	38.21	12.40	25.07	
標準偏差	0.011	1.560	0.925	5.820	6.017	

たときの測定結果について,第2次高調波ひずみ率の 頻度分布を図3に,また各高調波成分の最小値,最大 値,平均値,最頻値及び標準偏差を表3に各々示す. GA 法では,図3,表3のように測定値のばらつきが 確認できる.しかし第2,第3高調波ひずみ率のよう に,本実験機器で測定可能な最小ひずみ率よりも大き いひずみでは,標準偏差を見てもばらつきは小さくほ ぼ同じ測定値が得られた.しかし,最小ひずみ率付近 である -60 [dB] 以下になると,測定値は基準値付近 に収束するものの測定値のばらつきが大きい.本提案 測定法は,1回のみの測定における測定可能な最小ひ ずみ率に近い高調波ひずみに対しての信頼性は従来測 定法に比べて低いが,同じ状態で多数測定してその平 均値または最頻値を求めるという方法により信頼性を 向上することができる.

4.2.2 測定時間

適応フィルタを用いた測定法では、測定パワー値が 収束するのに時間を要するという問題があった. 図 4 に, GA 法, LMS 法, DXHS 法, FFT 法について $f_1 = 1000$ Hz, 第 2 次高調波成分での測定パワー値の 収束特性を示す. GA 法は,世代交代数 2000 まで増 やして示している. 図 4 より, GA 法は測定に 1 秒程 度要するのに対し, LMS 法, DXHS 法では 15 秒程度

図 4 測定値の収束特定 $(f_1 = 1000 \text{ Hz}, 第 2 次高調波)$ Fig. 4 Convergence of measurement power. $(f_1 = 1000 \text{ Hz}, 2nd \text{ harmonic})$

要しており,GA 法の方が大幅に短い時間で測定できている.FFT 法との測定時間の比較は難しいが,本実験でのFFT 法の条件(時間窓長 16384,同期加算 10回)では約 10 秒分の信号データが必要になり,FFT 法と比べても十分に短い時間で測定できている.

5. む す び

本論文では,スピーカの高調波ひずみ率測定時間の 短縮を実現するため,遺伝的アルゴリズムを用いてス ピーカ信号中の基本成分及び高調波成分を推定する測 定法を提案し,測定実験により提案測定法の測定精度, 測定時間の評価を行った.

DSP を用いた測定実験により,本提案法では高調波 ひずみ率が小さい場合には測定値に誤差が発生しやす くなる問題があるものの,-60 dB 程度までの高調波 ひずみ率については従来測定法と同様の精度での測定 が可能であることが確認でき,また従来の測定法と比 べて大幅に短い時間で測定できることを確認した.

文 献

- R.C. Cabot, "Fundamentals of modern audio measurement," J. Audio Eng. Soc., vol.47, no.9, pp.738-762, 1999.
- [2] 藤岡豊太,永田仁史,安倍正人,"適応フィルタを用いた スピーカの高調波ひずみ率測定システムと実時間実験によ る性能評価,"信学論(A), vol.J92-A, no.2, pp.71-83, Feb. 2009.
- [3] IEC 60268-5, "Sound system equipment Pt.5: Loudspeakers," May 2003.
- [4] J.C. Werner, J.S. Junior, R.G. Lima, and T.C. Fogarty, "Active noise control in ducts using genetic algorithms," 2002 International Symposium on Active Control of Sound and Vibration, vol.1, pp.243-254, 2002.
- [5] 米山正秀,古森浩一,中村尚五,"ハイブリッドGAによ る声道インパルス応答の推定,"音響誌,vol.55, no.12, pp.821-831, 1999.

(平成 22 年 3 月 26 日受付, 5 月 7 日再受付)

645