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A signal-processing method is proposed in the fully interferometric three-dimensional (3D) imaging
spectrometry. This processing computes a 3D interferogram, in which recorded fringe patterns do not
directly reflect wavefront forms propagated from a polychromatic light source under measurement. This
paper presents a procedure for signal processing including a synthesis of the 3D interferogram and re-
trieval of a set of spectral components of 3D images. We demonstrate retrieving 3D images for spectral
components of two planar light sources by means of the proposed method. The procedure to synthesize
the 3D interferogram in this method suggests the possibility of direct measurement of the 3D
interferogram. © 2013 Optical Society of America
OCIS codes: 090.1995, 300.6300, 110.3175.

1. Introduction

In digital holography, methods based on various
phase-shifting techniques that compute complex
holograms have been reported recently [1–16]. These
complex holograms record wavefront information of
the optical field propagated from an object under
measurement. We may obtain three-dimensional
(3D) spatial information of the object by the usual
backpropagation techniques.

We have investigated the possibility to obtain a
set of spectral components of 3D images for spatially
incoherent, polychromatic objects by a fully passive
interferometric technique that is strongly coupled
with digital signal processing [17–23]. The principle
of our method is based on the measurement of a
five-dimensional (5D) spatial coherence function and

signal processing including a synthetic aperture
technique. Reports of other passive interferometry
include techniques to obtain a set of spectral compo-
nents of two-dimensional (2D) images [24,25], var-
ious techniques to obtain 3D monochromatic images
[26–30], and spectral tomography based on spatial
coherence measurements by a rotational shear
interferometer and a four-dimensional (4D) Fourier
transform of the coherence function [31].

Our method can be used for a vast range of wave-
lengths, because special imaging devices, such as
lenses, or dispersion devices, such as gratings or
prisms, are not required. In addition, coherent light
sources, such as a frequency tunable laser or an
ultrashort pulse laser, are not necessary in our
method. Since our method is based on the interfero-
metric measurement of a partially coherent optical
field propagating from a spatially incoherent, poly-
chromatic object, it may be classified as “fully passive
interferometry.”
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In a previously reported method [19,20,23], a 3D
interference pattern has been computed from a data-
set of originally measured interference patterns,
which records a 5D spatial coherence function. This
3D interference pattern is proportional to a superpo-
sition of spherical waves emanating from the points
on the object under measurement. Each spectrally
decomposed incoherent hologram contains wavefront
information of the optical field at the specific wave-
length propagated from the object. By applying the
technique of wavefront backpropagation to each inco-
herent hologram, the 3D image at a specific spectral
component may be retrieved.

In this paper, we present a newmethod to compute
an alternative 3D interference pattern. We call this
interference pattern a hyperbolic-type volume inter-
ferogram [21]. For retrieval of the object, it is of no
use the usual technique of wavefront backpropaga-
tion. Instead, a proper signal processing enables us
to retrieve the object information. Then, we also
show the retrieval processing of 3D images from the
hyperbolic-type volume interferogram. In addition,
the synthetic procedure of the hyperbolic-type volume
interferogram indicates the possibility of getting the
3-D interferogram directly in terms of an interfero-
metric measurement by a fixed single detector.

In Section 2, we present a method to synthesize
the hyperbolic-type volume interferogram from ori-
ginally measured interference patterns. A retrieval
procedure for the set of spectral components of 3D
images from the hyperbolic-type volume interfero-
gram is presented afterward. In Section 3, we demon-
strate our experimental results. These results lead to
the conclusion of this work, which will be stated in
Section 4.

2. Principle of Method

This section presents a measurement method for the
5D spatial coherence function, the synthesis proce-
dure of the hyperbolic-type volume interferogram,
and retrieval of the spectral components of 3D
images for a spatially incoherent, polychromatic
object. Figure 1 shows a schematic of the two-
wavefront folding interferometer. This interferom-
eter is used to measure a 5D spatial coherence
function. The object under measurement is set on the
x–y stage. We take a Cartesian coordinate system

�x; y; z� whose origin is fixed on this x–y stage. The
propagating optical wave from the object is split by
a beam splitter (BS). Each split wavefront is reflected
by right-angle prisms. Because two apexes of the
prisms are set orthogonally each other, each wave-
front is reversed vertically or horizontally by the
prism P or P0. These wavefronts generate the inter-
ference pattern by superposing on the BS. The inter-
ference pattern is detected by a 2D array detector
(CCD). We set a lens (L) between the BS and the CCD
so that the L projects the surface of the CCD onto the
apex of the prism P0. We call this projected plane a
virtual observation plane. The prism P is mounted
on the piezoelectric translator (PZT) to introduce
the optical path difference Z along the optical axis.
The x or y offset of the apex of P0 or P is denoted as
x̂ or ŷ. During the interferometric measurement, the
x–y stage and PZT are moved stepwise and the CCD
records the interference patterns sequentially. The
whole dataset forms a 5D interferogram, and the
three-dimensionally arranged 2D interference pat-
terns compose it. The respective 2D interference pat-
tern is called the elementally interference pattern.

We now investigate the expression of the 5D inter-
ferogram in the Cartesian coordinate system. The
spatial coherence function Γ�r0; r� for the complex
optical field V�r; t� at two 3D positions r and r0 at the
equal time t is defined as

Γ�r0; r� � Γ�r0; t; r; t� � hV��r0; t�V�r; t�i; (1)

where the asterisk denotes the complex conjugate
and the angle bracket stands for the ensemble
average. We suppress t in Γ since the optical field
is stationary in time. The optical intensities at the
points r and r0 are written as Γ�r; r� � hjV�r; t�j2i
and Γ�r0; r0� � hjV�r0; t�j2i. The measured 5D interfer-
ogram, which is denoted I, is expressed as

I�x; y; x̂; ŷ; Z� � 1
4
�Γ�r0; r0� � Γ�r; r� � Γ�r0; r�

� Γ��r0; r��; (2)

where the position vectors r and r0 are the superposed
points of the optical fields, which are reversed by
prisms P and P0. They are written as

r � �x; 2ŷ − y; z0 � Z�; (3a)

r0 � �2x̂ − x; y; z0�; (3b)

where z0 is the optical length between the virtual ob-
servation plane and the origin of the Cartesian coor-
dinate system. We note that the �x; y� origin of the
Cartesian coordinate system and the origin of the
coordinate system �ξ; η� taken over the observation
plane do not always coincide because of the motion
of the x–y stage. The relationship between �x; y�
coordinates and �ξ; η� coordinates is expressed as

Fig. 1. (Color online) Schematic of two-wavefront folding
interferometer.

1498 APPLIED OPTICS / Vol. 52, No. 7 / 1 March 2013



x � ξ� x̂; (4a)

y � η� ŷ: (4b)

Upon substituting Eqs. (4) into Eqs. (3), we may ex-
press the 5D interferogram in Eq. (2) in terms of
�ξ; η� coordinates as in the form

I�ξ; η; x̂; ŷ; Z� � 1
4
�Γ�r0; r0� � Γ�r; r� � Γ�r0; r� � Γ��r0; r��;

(5)

where we write

r � �ξ� x̂;−η� ŷ; z0 � Z�; (6a)

r0 � �−ξ� x̂; η� ŷ; z0�: (6b)

Figure 2 shows an illustration of the 5D interfer-
ogram. In this manner, 2D elementally interference
patterns are arranged three-dimensionally in accor-
dance with the parameters x̂, ŷ, and Z.

To retrieve the source information, we first apply
a synthetic aperture technique to the 5D interfero-
gram. This process computes a volume (3D) inter-
ferogram from the 5D interferogram [21]. The first
step for computing this interferogram is to choose
one pixel value from each elementally interference
pattern according to the following selection rule:

ξ � −x̂; (7a)

η � −ŷ: (7b)

Next, we introduce new parameters,

X � 2x̂; (8a)

Y � 2ŷ; (8b)

to rearrange the selected value. The rearranged
dataset forms the volume interferogram.

Our synthetic procedure consists of sampling and
rearrangement, as observed above. However, this
procedure is similar to a synthetic aperture proces-
sing written in [25]. Therefore, we also may call
our procedure a synthetic aperture when the size
of sampled pixels is as large as the size of the pinhole
aperture.

According to Eqs. (6), the spatial coherence func-
tion involved in this volume interferogram is ex-
pressed as Γ�X; 0; z0; 0; Y; z0 � Z�. However, Fig. 3
shows an example of such a volume interferogram.
This interferogram is calculated under the assump-
tion that the object under measurement is a mono-
chromatic point source of particular wavelength,
located at the origin of the Cartesian coordinate sys-
tem. As shown in Fig. 3, the fringe patterns across
the X–Y surface of this volume interferogram form
a hyperbolic. In addition, we find that the orienta-
tions of the curves of the fringe patterns across the
Z–Y surface and the Z–X surface are opposite. We
call the volume interferogram that is computed with
the selection rule in Eqs. (7) the hyperbolic-type
volume interferogram. The selection rules and rear-
rangement conditions for computing the spherical-
type volume interferogram, in which the spatial
coherence function involved is expressed as Γ�0; 0; z0;
X;Y; z0 � Z�, are �ξ; η� � �x̂;−ŷ� and �X;Y� � �2x̂; 2ŷ�
[20,23]. The method to compute the hyperbolic-type
volume interferogram differs from the conventional
method only in the selection rules.

Because the optical field is stationary in time,
the recorded spatial coherence function Γ�X; 0; z0;
0; Y; z0 � Z� may be expressed in terms of the
cross-spectral density Wω�X; 0; z0; 0; Y; z0 � Z� as

Γ�X; 0; z0; 0; Y; z0 � Z�

�
Z

∞

0
Wω�X; 0; z0; 0; Y; z0 � Z�dω; (9)

Fig. 2. Illustration of the 5D interferogram. Fig. 3. Example of the hyperbolic-type volume interferogram.

1 March 2013 / Vol. 52, No. 7 / APPLIED OPTICS 1499



where ω � ck is the angular frequency, c is speed of
light in free space, and k is the wave number. It is
shown in Appendix A that, within the paraxial re-
gime, the 3D cross-spectral density appearing in
the right-hand-side of Eq. (9) is related to the
cross-spectral density W�z0�

ω �X; 0; 0; Y�≡Wω�X; 0; z0;
0; Y; z0� across the observation plane z � z0 as

Wω�X; 0; z0; 0; Y; z0 � Z� � W�z0�
ω �X; 0; 0; Y� exp�ikZ�;

(10)

where

W�z0�
ω �X; 0; 0; Y� �

Z
Sω�rs� exp

�
ik

Xxs − Yys
z

�

× exp
�
ik

−X2 � Y2

2z

�
d3rs: (11)

In Eq. (11), Sω�rs� is the spectral density for 3D
light source distribution at rs � �xs; ys; zs�, d3rs �
dxsdysdzs and z � z0 − zs. Upon substituting Eq. (10)
into Eq. (9), we obtain the following relationship be-
tween the measured spatial coherence function and
the cross-spectral density over the observation plane:

Γ�X; 0; z0; 0; Y; z0 � Z�

� c
Z

∞

0
W�z0�

ω �X; 0; 0; Y� exp�ikZ�dk: (12)

It is clear that Eq. (12) may be inverted to express the
cross-spectral density as the Fourier transform of the
3D spatial coherence function,

W�z0�
ω �X; 0; 0; Y� � 1

2πc

Z
Γ�X; 0; z0; 0; Y; z0

� Z� exp�−ikZ�dZ; (13)

where the integrand is taken over the actual exten-
sion of the interferogram with respect to Z.

Equation (11) indicates that the spectral and 3D
spatial information of the light source is recorded
in the hyperbolic-type volume interferogram. We
may rewrite this equation in the form

W�z0�
ω �X; 0; 0; Y� �

Z
Sω�rs� exp�i�−kxX � kyY��

× exp
�
ik

−X2 � Y2

2z

�
d3rs; (14)

where kx � −kxs∕z and ky � −kys∕z are the x and y
components of the wave number vector k of the plane
wave propagating from the source direction to the
center of the observation plane. We take the product
of the cross-spectral density and the following func-
tion Yω, which includes the retrieval depth z0 and
wave number k � ω∕c:

Yω�X;Y; z0� � exp
�
−ik

−X2 � Y2

2z0

�
: (15)

The monochromatic component of the retrieved
image Oω�x; y; z0� is expressed as

Oω�x; y; z0� �
Z

W�z0�
ω �X; 0; 0; Y�Yω�X;Y; z0�

× exp�−i�−k0xX � k0yY��d3rs; (16)

where k0 � −kx∕z0 and k0 � −ky∕z0. The retrieved
image is focused on the z � z0 plane, while objects
located at other depths are defocused. This phenom-
enon is well known in conventional holographic 3D
imaging.

The fields of view (FOVs) along the x and y direc-
tions, denoted xmax and ymax, are expressed as xmax �
z0λ∕Δlx and ymax � z0λ∕Δly, where Δlx and Δly are the
pixel sizes of the complex hologram in the x and y
directions. These FOVs are as large as the FOVs
of the retrieval images in the conventional method
[20], because the retrieval procedure from the hyper-
bolic-type volume interferogram differs from the
conventional method only in the sign of X2 in the
quadratic phase factor and k0 in the linear phase
factor.

3. Experiment

To verify our method described in the previous sec-
tion, we demonstrate the experimental results for
retrieving 3D images for spectral components of
two planar light sources. The shapes and continuous
spectra of these sources are different. These planar
light sources are located at different depths. The pla-
nar sources to be measured are denoted S1 and S2.
They are composed of guiding lights of light-emitting
diodes through acrylic rods whose front ends are
shaped as triangles and squares. The surfaces of the
front ends are roughened. Figure 4 shows a front
view of S1 and S2. The optical depth of S1, denoted
as z1, is 95 mm, and that of S2, z2 is 82 mm. Figure 5
shows spectral profiles of the light sources S1 and
S2. Each spectral profile is measured by Fourier
transform spectroscopy separately and normalized
as the peak intensity becomes unity. Spectral resolu-
tions of these profiles are Δk∕2π � 61.09 cm−1. The
typical wavelengths of the continuous spectra of
those planar light sources are approximately λ �
458 nm for S1 and 643 nm for S2.

We record the 5D interferogram using the two-
wavefront folding interferometer. The numbers of
steps and intervals are 64 and 12.9 μm for the x–y
stage and 64 and 0.08 μm for the PZT. Then, the
5D interferogram, measured by this experiment,
consists of 64 × 64 × 64 elementally interference pat-
terns. We then compute the hyperbolic-type volume
interferogram based on the new selection rule in
Eqs. (7). The obtained volume interferogram is
shown in Fig. 6. The quarter part of the interfeogram
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is removed to show the inner fringe arrangement. In
Fig. 6, high-contrast fringe patterns along the direc-
tion of Z are located near the optical axis (center of
the volume interferogram). This corresponds to the
coherence area of the partially coherent optical field
under observation.

The spectral profile measured across the observa-
tion plane is shown in Fig. 7. This is obtained by
taking the Fourier transform of the intensity distri-
bution at the center of the volume interferogram
with respect to Z. The spectral resolution of this pro-
file is Δk∕2π � 992.06 cm−1. The spectral peaks are
located near 458 and 630 nm. Within the spectral re-
solution, these peaks agree with the peak wave-
lengths of the respective light sources, given by
Fig. 5. In addition, by taking the Fourier transform
with respect to Z of the volume interferogram, we ob-
tain a set of the cross-spectral densities in Eq. (13).
Figure 8 shows the cross-spectral densities at λ �
458 nm and λ � 630 nm. Figures 8(a) and 8(b) show
the absolute value distribution and the phase
distribution at λ � 458 nm, and (c) and (d) show
those at λ � 630 nm. Figure 9 shows a comparison
of the in-focus images obtained by the present meth-
od and those obtained by the conventional method
proposed in [20]. Figures 9(a) and 9(b) show the
retrieved images at λ � 458 nm and z0 � z1, and at
λ � 630 nm and z0 � z2. Figures 9(c) and 9(d) show

retrieved images by the conventional method [20]
under the same conditions as in Figs. 9(a) and 9(b).
These images are obtained from the same 5D inter-
ferogram. We find that the images retrieved from
the hyperbolic-type volume interferogram are simi-
lar to the images retrieved from the spherical-type
volume interferogram. These shapes of images agree
with the shape shown in Fig. 4. Since the vertical
variations of both methods are very slow, we could
not confirm these depth resolutions. This is because
the distance between the optical sources to be mea-
sured and the observation plane is too long for the
sizes of the complex holograms. From these experi-
mental results, we conclude that the object infor-
mation for the planar light sources can be retrieved
from the hyperbolic-type volume interferogram. The
improvement of the depth resolution for retrieving
the image of the object having horizontal width is
a subject to be explored in the future.

4. Conclusion

We have presented the method to synthesize the
hyperbolic-type volume interferogram. This technique
is based on a new selection rule and data rearrange-
ment. The fringe patterns of the hyperbolic-type

Fig. 4. (Color online) Front view of S1 and S2.
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Fig. 6. Hyperbolic-type volume interferogram computed by the
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volume interferogram do not directly correspond to
wavefront forms propagated from the object to be
measured.We also proposed themethod for retrieving
a set of spectral components of 3D images from the
hyperbolic-type volume interferogram. From our ex-
perimental results, we may state that it is possible
to retrieve the object information of spatially incoher-
ent, polychromatic objects from the hyperbolic-type
volume interferogram.

The selection rule to obtain the hyperbolic-type
volume interferogram chooses one interference in-
tensity at a particular point on each elementally in-
terference pattern. In the coordinate system taken
over the observation plane, the selected points to
generate the hyperbolic-type volume interferogram
are written as �−x̂;−ŷ�. However, if the same points
are viewed from the Cartesian coordinate system,
one finds that the selected points locate (0,0). Thus,
these points are identical and fixed at the �x; y� origin
of the Cartesian coordinate system. This suggests a
possibility of using a single detector instead of a 2D
detector array for direct acquisition of the hyperbolic-
type volume interferogram, because the measure
points always coincide with the x–y origin of the
Cartesian coordinate system. For direct acquisition
of the spherical-type volume interferogram, the de-
tector needs to move over the observation plane,

though for direct acquisition of the hyperbolic-type
volume interferogram, the detector only has to be
fixed. We plan to report the validation of such an idea
for an interferometer in the future.

Appendix A: Derivation of Eq. (10)

The cross-spectral densityWω�r0; r� for the monochro-
matic complex optical field Uω�r� at a pair of position
vectors r0 and r is written as

Wω�r0; r� � hU��r0; t�U�r; t�i

�
Z

Sω�rs�
rr0

exp�ik�r − r0��d3rs; (A1)

where h� � �i stands for the ensemble average, the as-
terisk denotes the complex conjugate, r0 � jr0 − rsj,
and r � jr − rsj. In Eq. (A1), Sω�rs� denotes the spec-
tral density with angular frequency ω for the spa-
tially incoherent optical source at rs � �xs; ys; zs�,
k � ω∕c is the wave number, and c is the speed of
the light in free space. In the sense of paraxial re-
sume, we assume that r0 and r are far enough away
from the object and are located near the optical axis.
If we set r0 and r as

r0 � �X; 0; z0� (A2a)

Fig. 8. Absolute value image and phase distribution of the cross spectral density (a), (b) at λ � 458 nm, and (c), (d) at λ � 630 nm.
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and

r � �0; Y; z0 � Z�; (A2b)

then r0 and r in Eq. (A1) are written as

r0 �
����������������������������������������������������������
�X − xs�2 � y2s � �z0 − zs�2

q
; (A3a)

r �
�������������������������������������������������������������������
x2s � �Y − ys�2 � �z0 � Z − zs�2

q
: (A3b)

Within the paraxial approximation, Eqs. (A3) are
expressed as

r0 � z0 − zs �
�X − xs�2 � y2s

2�z0 − zs�
; (A4a)

r � z0 � Z − zs �
x2s � �Y − ys�2
2�z0 � Z − zs�

: (A4b)

By assuming z0 ≫ Z, Eq. (A1) is rewritten as

Wω�r0; r� � exp�ikZ�
Z

Sω�rs� exp
�
ik

Xxs − Yys
z

�

× exp
�
ik

−X2 � Y2

2z

�
d3rs; (A5)

where z � z0 − zs. For simplicity, the distances r and
r0 in the denominator in Eq. (A1) have been absorbed
in the spectral density Sω. Similarly, we consider the
cross-spectral density Wω�r0; r00�, where the point r00 is
the position of r shifting to Z � 0 is written as

Wω�r0; r00� �
Z

Sω�rs� exp
�
ik

Xxs − Yys
z

�

× exp
�
ik

−X2 � Y2

2z

�
d3rs: (A6)

By comparing Eq. (A5) with (A6), one obtains the
following equation in Eq. (10):

Wω�r0; r� � Wω�r0; r00� exp�ikZ�: (A7)

Fig. 9. Retrieved images by the proposed method at (a) λ � 458 nm and z0 � 95 mm, (b) λ � 630 nm and z0 � 82 mm, and those by the
conventional method, at (c) λ � 458 nm and z0 � 95 mm, and (d) λ � 630 nm and z0 � 82 mm.
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