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PAPER

Time-Varying AR Spectral Estimation Using an Indefinite
Matrix-Based Sliding Window Fast Linear Prediction

Kiyoshi NISHIYAMA†a), Member

SUMMARY A method for efficiently estimating the time-varying spec-
tra of nonstationary autoregressive (AR) signals is derived using an indef-
inite matrix-based sliding window fast linear prediction (ISWFLP). In the
linear prediction, the indefinite matrix plays a very important role in sliding
an exponentially weighted finite-length window over the prediction error
samples. The resulting ISWFLP algorithm successively estimates the time-
varying AR parameters of order N at a computational complexity of O(N)
per sample. The performance of the AR parameter estimation is superior
to the performances of the conventional techniques, including the Yule-
Walker, covariance, and Burg methods. Consequently, the ISWFLP-based
AR spectral estimation method is able to rapidly track variations in the fre-
quency components with a high resolution and at a low computational cost.
The effectiveness of the proposed method is demonstrated by the spectral
analysis results of a sinusoidal signal and a speech signal.
key words: spectral estimation, autoregressive model, linear prediction,
fast algorithm, sliding window, indefinite matrix, forgetting factor

1. Introduction

The spectral analysis of signals is widely used in a vari-
ety of fields, including engineering and geophysics. Sev-
eral spectral estimation techniques have been developed
based on fitting a measured data set to an assumed model,
such as an autoregressive (AR), a moving average (MA),
or an autoregressive-moving average (ARMA) model [1]–
[5]. Among the model-based (parametric) methods, the AR
model is frequently employed because AR parameter esti-
mation is a well-established problem and is equivalent to
solving a system of linear equations. Especially in speech
processing, AR modeling is the most popular approach to
spectral analysis [5]–[7]. The parameters of an AR model
can be estimated in different ways, as seen in the Yule-
Walker, covariance, Burg, and maximum likelihood estima-
tion methods. These methods are based on the assumption
that the signals to be modeled may be approximated as sta-
tionary signals over the observation interval. Therefore, they
are not inherently highly adaptable to variations in the AR
parameters. Additionally, the correlations among the sig-
nal samples must be recalculated at each time step during
application of successive processing steps. In an effort to
address these limitations, several adaptive AR spectral esti-
mation methods have been presented using a recursive least
squares (RLS) algorithm with a sliding window [8] or a for-
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getting factor [9]. The sliding window RLS (SWRLS) algo-
rithm is quite suitable for time-varying parameter estimation
problems [10]–[12]; however, sliding a finite-length window
over a data set imposes a heavy computational burden on
the RLS algorithm. The Kalman filter has been applied to
adaptive AR modeling of a nonstationary time series [13].
Unfortunately, these methods require arithmetic operations
that are proportional to N2, namely, O(N2), per sample to
identify an AR model of order N. Although fast versions of
the RLS and SWRLS algorithms have been developed, these
algorithms are quite complicated due to the introduction of
two additional error energies [14] or the need for two ap-
plications of the fast RLS algorithm per sample [15]. Some
researchers have attempted to explicitly model the AR pa-
rameters as time-varying [6]; however, the dependency on
time must be heuristically defined to approximate the dy-
namics.

In this paper, we propose a method for successfully es-
timating the time-varying spectra of nonstationary AR sig-
nals using an indefinite matrix-based sliding window fast
linear prediction (ISWFLP) algorithm. The ISWFLP al-
gorithm performs the sliding window AR parameter esti-
mation at a computational complexity of O(N) per sample,
where the indefinite matrix operation efficiently discards old
data during the correlation update. The sliding window used
in the SWFLP algorithm is exponentially weighted using a
forgetting factor to reinforce the method’s adaptability. In
general, a high adaptability to variations in the AR param-
eters can improve both the time and frequency resolutions
in the corresponding running spectra. The ISWFLP-based
AR spectral estimation method can facilitate the tracking of
nonstationary signals with a high frequency resolution. The
effectiveness of the proposed method is demonstrated by the
spectral analysis results of a frequency-shifted single sinu-
soid and a speech signal.

The remainder of this paper is organized as follows:
Sect. 2 outlines the traditional AR spectral estimation ap-
proach. In Sect. 3, the ISWFLP algorithm is derived using
the shift properties of the signal correlation matrices, and
the algorithm is applied to AR spectral estimation. Sec-
tion 4 demonstrates the effectiveness of the SWFLP-based
AR spectral estimation method using computer simulations.
Finally, the conclusions are given in Sect. 5.

2. Traditional AR Spectral Estimation

AR spectral estimation procedures consist of two steps.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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Given a data sequence {uk}, the parameters of the AR model
are estimated, and the power spectral density (PSD) is com-
puted based on these estimates. The AR method is the most
frequently used approach among the parametric methods be-
cause AR parameter estimation can be easily accomplished
by solving a set of linear equations. Generally, the data sam-
ples modeled using the AR approach are regarded as the
output of a causal, all-pole, discrete-time filter with a white
noise input. The current output sample uk may be repre-
sented as a weighted sum of N past output samples and a
noise term:

uk = −
N∑

n=1

a(n)uk−n + wk, k = 0, 1, · · · , L (1)

where {a(n)} are the AR coefficients of the Nth order AR
process, wk is a zero-mean white noise with a variance equal
to σ2, and the subscript k denotes the index for the sampling
time kT with a period T .

From the AR parameters, the PSD of the data sequence
{uk} may be obtained as

P( f ) =
σ2

|1 +∑N
n=1 a(n)e j2π f n|2 (2)

which results in a function of frequency f .
A popular approach to estimating the AR parameters

is the Yule-Walker method, which is based directly on the
following system of linear equations:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ru(0) Ru(−1) · · · Ru(−N)
Ru(1) Ru(0) · · · Ru(−N + 1)
...

...
. . .

...
Ru(N) Ru(N − 1) · · · Ru(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
a(1)
...

a(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

These equations are characterized by the autocorrelation
function Ru(n) = E{ukuk+n} of the data uk where E{·} denotes
the expectation. Note that real-valued data are assumed in
this work for simplicity. The Levinson-Durbin algorithm
efficiently provides a solution to the Yule-Walker equations,
with a computational complexity of O(N2) [1].

Another approach to estimate the AR parameters is the
least-squares (LS) AR estimation method, which minimizes
the forward prediction error energy:

J =
L−1∑
k=0

|uk − ûk |2, ûk = −
N∑

n=1

a(n)uk−n (4)

where L denotes the length of the data. The LS method can
be interpreted as providing an approximate solution to the
Yule-Walker equations by recognizing that 1

L

∑L−n
k=0 ukuk+n is

a finite-sample estimate of Ru(n) [2].

3. The ISWFLP-Based AR Spectral Estimation

In traditional AR spectral estimation methods, including the
Burg method, the coefficients {b(n)} of the backward pre-
diction ûk−N = −∑N

n=1 b(n)uk−N+n for a given signal uk are
uniquely determined by the forward coefficients {a(n)}, for
example, b(n) = a(N − n)/a(N) (b(n) = a(n) in the Burg
method). This implies that the forward linear prediction is
completely equivalent to the backward prediction within an
observation window. Our key idea in this work is to relax
this constraint. To do so, the coefficients required for the for-
ward prediction of the windowed signal are considered to be
independent of those required for the backward prediction
of the signal. This relaxation will lead to certain improve-
ments in the AR modeling of nonstationary signals. For-
tunately, the forward and backward linear predictions pro-
vides a closed-form recursive solution to the AR parameter
estimation problem.

3.1 A New Criterion for AR Parameter Estimation

The above-mentioned objective was accomplished by em-
ploying the sum of the forward and backward sliding win-
dow linear prediction error powers of the nonstationary sig-
nal uk:

Jk =

k∑
i=k−Ls+1

ρk−i|ui + Ui−1 Ak|2

+

k∑
i=k−Ls+1

ρk−i|ui−N + UiBk |2 (5)

where the forward and backward linear prediction coeffi-
cients may be described in vector form as

Ak = [ak(1) ak(2) · · · ak(N)]T

Bk = [bk(N) · · · bk(2) bk(1)]T (6)

and the corresponding signal samples are given by

Ui = [ui ui−1 · · · ui−N+1]. (7)

This criterion can be expressed using an indefinite matrix as

Jk =

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

i=0

ρk−i|ui + Ui−1 Ak|2

−
k∑

i=0

ρk−i+Ls |ui−Ls + Ui−Ls−1 Ak|2
⎞⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

i=0

ρk−i|ui−N + UiBk |2

−
k∑

i=0

ρk−i+Ls |ui−Ls−N + Ui−Ls Bk |2
⎞⎟⎟⎟⎟⎟⎟⎠

=

k∑
i=0

ρk−i
(
|ui + Ui−1 Ak|2
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−ρLs |ui−Ls + Ui−Ls−1 Ak|2
)

+

k∑
i=0

ρk−i
(
|ui−N + UiBk |2

−ρLs |ui−Ls−N + Ui−Ls Bk |2
)

=

k∑
i=0

ρk−i(ci + Ci−1 Ak)T Ws(ci + Ci−1 Ak)

+

k∑
i=0

ρk−i(ci−N + CiBk)T Ws(ci−N + CiBk)

(8)

in which Ci, ci, and Ws are defined, respectively, as

Ci =

[
Ui

Ui−Ls

]
, ci =

[
ui

ui−Ls

]
, Ws =

[
1 0
0 −ρLs

]
(9)

where Ci is a 2×N signal matrix, ci is the first column vector
of Ci, ρ is a forgetting factor, Ls is the length of the sliding
window, Ws is an indefinite weight matrix involved in the
sliding window processing, and uk is assumed to be a causal
signal.

Here, we provide a brief explanation for Eq. (8). For

an arbitrary two-dimensional column vector

[
a
b

]
, the dif-

ference a2 − b2 can be represented in a quadratic form of[
1 0
0 −1

]
, i.e., a2 − b2 =

[
a
b

]T [
1 0
0 −1

] [
a
b

]
. Apply-

ing the indefinite quadratic form to the window sliding step,
and taking into account the forgetting effects, one can easily
see the transformation from the weighted difference of the
squared prediction errors to the quadratic form of Ws in (8).

When the coefficients Ak and Bk are assumed to be
mutually independent, the optimal forward prediction co-
efficients of Ak, that minimize the criterion Jk, satisfy the
following linear equations:

Qk−1 Ak = −tk (10)

where

Qk−1=

k−1∑
i=0

ρk−1−iCT
i WsCi, tk =

k∑
i=0

ρk−iCT
i−1Wsci. (11)

The forward prediction error power S k may be expressed as

S k =

k∑
i=0

ρk−ieT
k,iWsek,i, ek,i = ci + Ci−1 Ak. (12)

For the backward linear prediction, it follows that the
optimal Bk satisfies

Qk Bk = −tk (13)

where

Qk =

k∑
i=0

ρk−iCT
i WsCi, tk=

k∑
i=0

ρk−iCT
i Wsci−N . (14)

The backward prediction error power S k may be expressed
as

S k =

k∑
i=0

ρk−ieT
k,iWsek,i, ek,i = ci−N + CiBk. (15)

Now, we briefly discuss the assumption that Ak and Bk

are independent. Recalling (10) and (13), we have

Ak = −Q−1
k−1 tk, Bk = −Q−1

k tk (16)

which reduce to

A = −Q−1 t, B = −Q−1 t (17)

when uk is stationary. From these equations and the results
presented in the Appendix, we obtain

J B = −JQ−1 t = −JQ−1 J t = −Q−1 t = A (18)

where

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 1
... . .

.
1 0

0 . .
.
. .
. ...

1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

The resulting equation indicates that b(n) = a(n). This rela-
tionship between the forward and backward prediction co-
efficients coincides with that in the Burg method. In nonsta-
tionary cases, the forward and backward prediction coeffi-
cients Ak and Bk can not be related rigidly. Therefore, the
assumption that Ak and Bk are independent is most favor-
able for deriving a new adaptive AR parameter estimation
approach. The reasonableness of the assumption will be ver-
ified by computer simulations in the following section.

3.2 A Recursive Solution to the AR Parameter Estimation
Problem

The AR parameter estimation problem may be recursively
solved by introducing an auxiliary matrix Kk, defined by
Kk = Q−1

k CT
k .

Given the linear prediction coefficients Ak and Bk, the
auxiliary matrix Kk, which satisfies Qk Kk = CT

k , can be re-
cursively updated as follows.

[Proposition 1]
The auxiliary matrix Kk can be recursively computed at

a computational complexity of O(N) for each time sample as
[
Kk

0

]
=

[
0

Kk−1

]
+

[
1
Ak

]
eT

k

S k
−
[
Bk

1

]
eT

k

S k

(20)

where

ek = ck + Ck−1 Ak, ek = ck−N + Ck Bk. (21)

(Proof)
To take advantage of the shift properties of Ck and Qk,

we introduce the (N + 1) × 2 auxiliary matrix K̆k which sat-
isfies
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Q̆k K̆k=C̆T
k (22)

where

Q̆k =

k∑
i=0

ρk−iC̆T
i WsC̆i (23)

C̆k =

[
uk uk−1 · · · uk−N

uk−Ls uk−Ls−1 · · · uk−Ls−N

]
. (24)

The matrices Q̆k and C̆k are partitioned as

Q̆k =

[
Qk tk

tT
k qb

k

]
=

⎡⎢⎢⎢⎢⎣ qf
k tk

tT
k Qk−1

⎤⎥⎥⎥⎥⎦
C̆k =

[
Ck ck−N

]
=
[

ck Ck−1

]
(25)

where

qf
k =

k∑
i=0

ρk−icT
i Wsci, qb

k =

k∑
i=0

ρk−icT
i−NWsci−N . (26)

Then, using the matrix inversion lemma, we can invert
Q̆k in two different ways as

Q̆−1
k =

[
Qk tT

k

tk qb
k

]−1

=

⎡⎢⎢⎢⎢⎣Q
−1
k + Q−1

k tkS −1
k tT

k Q−1
k − Q−1

k tkS −1
k

−S −1
k tT

k Q−1
k S −1

k

⎤⎥⎥⎥⎥⎦ (27)

Q̆−1
k =

[
qf

k tT
k

tk Qk−1

]−1

=

[
S −1

k −S −1
k tT

k Q−1
k−1−Q−1

k−1 tkS −1
k Q−1

k−1 + Q−1
k−1 tkS −1

k tT
k Q−1

k−1

]
. (28)

Here it should be noted that S k and S k satisfy

S k = qf
k − tT

k Q−1
k−1 tk, S k = qb

k − tT
k Q−1

k tk. (29)

Equation (27) allows K̆k to be expressed in terms of Bk as

K̆k

=

[
Q−1

k 0T

0 0

]
C̆T

k

+

⎡⎢⎢⎢⎢⎣ Q−1
k tkS −1

k tT
k Q−1

k −Q−1
k tkS −1

k

−S −1
k tT

k Q−1
k S −1

k

⎤⎥⎥⎥⎥⎦ C̆T
k

=

[
Kk

0

]
+

[
Q−1

k tkS −1
k tT

k Kk − Q−1
k tkS −1

k cT
k−N−S −1

k tT
k Kk + S −1

k cT
k−N

]

=

[
Kk

0

]
+

[ −Q−1
k tk
1

]
cT

k−N − tT
k Kk

S k

=

[
Kk

0

]
+

[
Bk

1

]
cT

k−N − tT
k Q−1

k CT
k

S k

=

[
Kk

0

]
+

[
Bk

1

]
(ck−N + Ck Bk)T

S k

, (30)

whereas Eq. (28) allows K̆k to be expressed in terms of Ak

as

K̆k

=

[
0 0T

0 Q−1
k−1

]
C̆T

k

+

[
S −1

k −S −1
k tT

k Q−1
k−1

−Q−1
k−1 tkS −1

k Q−1
k−1 tkS −1

k tT
k Q−1

k−1

]
C̆T

k

=

[
0

Kk−1

]

+

[
S −1

k cT
k − S −1

k tT
k Kk−1

−Q−1
k−1 tkS −1

k cT
k + Q−1

k−1 tkS −1
k tT

k Kk−1

]

=

[
0

Kk−1

]
+

[
1

−Q−1
k−1 tk

]
cT

k − tT
k Kk−1

S k

=

[
0

Kk−1

]
+

[
1
Ak

]
(ck + Ck−1 Ak)T

S k
. (31)

Noticing that the right-hand sides of (30) and (31) are equal,
we obtain a recursive expression of Kk:
[

Kk

0

]
=

[
0

Kk−1

]
+

[
1
Ak

]
eT

k

S k
−
[

Bk

1

]
eT

k

S k

which is just (20).
�

[Corollary 1]
The auxiliary matrix Kk can be rewritten without ek and

S k as

Kk = mk − Bkµk (32)

where mk and µk are defined by
[

mk

µk

]
=

[
0

Kk−1

]
+

[
1
Ak

]
eT

k

S k
. (33)

(Proof)
Using (33), we can rewrite (20) as
[

Kk

0

]
=

[
mk

µk

]
−
[

Bk

1

]
eT

k

S k

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
mk −

BkeT
k

S k

µk −
eT

k

S k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (34)

Comparing each component of (34) on both sides leads to
(32).

�
Next, we attempt to identify a recursive relation to de-

termine the forward linear prediction coefficients Ak and the
error power S k.

[Proposition 2]
The forward linear prediction coefficients Ak and the

error power S k can be recursively calculated at a computa-
tional complexity of O(N) for each time sample as

Ak = Ak−1 − Kk−1Wsẽk (35)

S k = ρS k−1 + eT
k Wsẽk (36)
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where

ẽk = ck + Ck−1 Ak−1, ek = ck + Ck−1 Ak. (37)

(Proof)
Using the recursive relations of Qk = ρQk−1 +CT

k WsCk

and tk = ρtk−1 + CT
k−1Wsck, we can rewrite the product

Qk−1 Ak−1 as

Qk−1 Ak−1 = (ρQk−2 + CT
k−1WsCk−1)Ak−1

= ρQk−2 Ak−1 + CT
k−1WsCk−1 Ak−1

= −ρtk−1 + CT
k−1WsCk−1 Ak−1

= −tk + CT
k−1Wsck + CT

k−1WsCk−1 Ak−1

= −tk + CT
k−1Ws(ck + Ck−1 Ak−1). (38)

Subtracting the identity

Qk−1Kk−1Ws(ck + Ck−1 Ak−1)

= CT
k−1Ws(ck + Ck−1 Ak−1) (39)

from the last equation of (38) on both sides, we obtain

Qk−1(Ak−1−Kk−1Ws(ck+Ck−1 Ak−1)) = −tk. (40)

Comparing this equation with (10), we immediately find

Ak = Ak−1 − Kk−1Ws(ck + Ck−1 Ak−1). (41)

On the other hand, from qf
k = ρq

f
k−1 + cT

k Wsck, we can
find a recursive expression for S k as

S k = qf
k + tT

k Ak

= ρqf
k−1 + cT

k Wsck + (ρtk−1 + CT
k−1Wsck)T

× [Ak−1 − Kk−1Ws(ck + Ck−1 Ak−1)]

= ρ(qf
k−1 + tT

k−1 Ak−1) + cT
k Ws(ck + Ck−1 Ak−1)

−tT
k Kk−1Ws(ck + Ck−1 Ak−1)

= ρS k−1 + cT
k Ws(ck + Ck−1 Ak−1)

−tT
k Q−1

k−1CT
k−1Ws(ck + Ck−1 Ak−1)

= ρS k−1 + cT
k Ws(ck + Ck−1 Ak−1)

+AT
k CT

k−1Ws(ck + Ck−1 Ak−1)

= ρS k−1 + (ck + Ck−1 Ak)T Ws(ck + Ck−1 Ak−1).

(42)

�
Note that ẽk and ek are called the pseudoforward and

forward prediction errors, respectively.
Finally, we attempt to identify a recursive relation to

determine the backward linear prediction coefficients Bk.
[Proposition 3]
The backward linear prediction coefficients Bk can

be recursively calculated at a computational complexity of
O(N) for each time sample as

Bk =
Bk−1 − mkWsẽk

1 − µkWsẽk

(43)

where

ẽk = ck−N + Ck Bk−1 (44)[
mk

µk

]
=

[
0

Kk−1

]
+

[
1
Ak

]
eT

k

S k
. (45)

(Proof)
The equation Qk−1Bk−1 = −tk−1 can be rewritten ac-

cording to the recursive relations for Qk and tk as follows:

Qk−1Bk−1 = −tk−1

(ρ−1Qk − ρ−1CT
k WsCk)Bk−1

= −(ρ−1 tk − ρ−1CT
k Wsck−N)

ρ−1QkBk−1 − ρ−1CT
k Ws(Ck Bk−1 + ck−N)

= −ρ−1 tk

Qk Bk−1 − CT
k Wsẽk = −tk

Qk(Bk−1 − Q−1
k CT

k Wsẽk) = −tk

Qk(Bk−1 − KkWsẽk) = −tk.

(46)

Comparing the last equation with (13), we have

Bk = Bk−1 − KkWsẽk. (47)

Substituting Kk = mk − Bkµk into (47) provides

Bk = Bk−1 − (mk − Bkµk)Wsẽk. (48)

Rearranging this equation in terms of Bk, we obtain a feasi-
ble recursive expression for Bk:

Bk =
Bk−1 − mkWsẽk

1 − µkWsẽk

. (49)

�
Note that ẽk, defined by (44), is referred to as the pseu-

dobackward prediction error.
In summary, a closed form of a recursive algorithm (the

ISWFLP algorithm) for efficiently estimating the AR pa-
rameters is described using Propositions 1-3 and Corollary
1:

Ak=Ak−1 − Kk−1Wsẽk (50)

S k=ρS k−1 + eT
k Wsẽk (51)

where

Kk=mk − Bkµk (52)

Bk= [Bk−1 − mkWsẽk][1 − µkWsẽk]−1 (53)[
mk

µk

]
=

[
0

Kk−1

]
+

[
1
Ak

]
eT

k

S k
(54)

ẽk = ck−N + Ck Bk−1 (55)

ek = ck + Ck−1 Ak, ẽk = ck + Ck−1 Ak−1 (56)

in which the recursive relations are initialized by K−1 =

0, A−1 = 0, S −1 = 1/ε0, and B−1 = 0, respectively. The
forgetting factor is set to 0 < ρ ≤ 1, the indefinite matrix Ws

is a 2 × 2 diagonal matrix with diagonal entries 1 and −ρLs ,
and the length of the sliding window is chosen to be Ls > N
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Table 1 Computational complexity of the ISWFLP algorithm; the division of the N-dimensional
vector by a scalar is performed using one division and N multiplications.

Computation Multiplications Additions Divisions

ẽk = ck + Ck−1 Ak−1 2N 2N 0

Ak = Ak−1 − Kk−1Wsẽk 2N + 2 2N 0

ek = ck + Ck−1 Ak 2N 2N 0

S k = ρS k−1 + eT
k Wsẽk 5 2 0⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

mk

µk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Kk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
eT

k
S k

2N + 2 2N 1

ẽk = ck−N + Ck Bk−1 2N 2N 0

Bk = [Bk−1 − mkWsẽk][1 − µkWsẽk]−1 3N + 6 2N + 2 1

Kk = mk − Bkµk 2N 2N 0

Total number 15N + 15 14N + 4 2

where N is the order of the linear predictor.
The corresponding algorithm equations and computa-

tional complexity are summarized in Table 1.

3.3 AR Spectral Estimation

Substituting the AR coefficients {ak(n)} of Ak and the error
power S k estimated by the ISWFLP algorithm into (2), we
can immediately obtain the PSD of the nonstationary signal
at time k as

Pk( f ) =
S k

|1 +∑N
n=1 ak(n)e j2π f n |2 . (57)

Evolving Pk( f ) over time k provides a time-frequency rep-
resentation (running spectra or spectrogram) of the signal.
This procedure is referred to as the ISWFLP-based AR spec-
tral estimation method. The ISWFLP-based method will
provide a high-resolution time-frequency analysis of the sig-
nal.

4. Simulations

The performance of the ISWFLP algorithm was evaluated
for its ability to estimate the coefficients of a nonstationary
AR process. After the fundamental evaluation, the ISWFLP
algorithm was applied to an AR spectral estimation problem
of a sinusoidal signal and a speech signal. All calculations
were performed using MATLAB. The signal sampling fre-
quency was set to 8 kHz throughout the simulations, and the
sliding window size was chosen to be Ls = 256 based on a
stationary range in speech processing.

4.1 AR Parameter Estimation

The performance of the ISWFLP algorithm was investigated
by considering a signal example in which the AR coeffi-
cients of the vowel /e/ suddenly changed to those of the
vowel /a/ at time k = 2000, and then returned to the former
coefficients at time k = 3000. The AR coefficients {ak(n)}

Fig. 1 AR coefficients of order 16 to be tracked.

varied with time k, as shown in Fig. 1, where an AR process
of order 16 was used to model the vowels.

Figure 2 compares the Levinson-Durbin algorithm and
the SWFLP algorithm in their capacities for tracking the
changes in the AR coefficients. The Levinson-Durbin al-
gorithm was applied to an original data set (the reproduced
AR signal corresponding to the vowels) and the 256-point
Hamming-windowed data. The first component ak(1) of the
AR coefficients is plotted in Fig. 3 to facilitate a closer ex-
amination. Figure 4 plots the squared errors

∑16
n=1(ak(n) −

a∗k(n))2 as a function of time k where a∗k(n) denotes the
true values of ak(n). These results demonstrated that the
ISWFLP algorithm tracked the changes in the AR coeffi-
cients more accurately than the Levinson-Durbin algorithm.
The Hamming window smoothed the tracking trajectories
of the AR coefficients obtained from the Levinson-Durbin
algorithm; however, the analysis based on windows yielded
an output that overshot the actual values of trajectories.

4.2 AR Spectral Estimation

The performance of the proposed ISWFLP-based method
was evaluated for AR spectral estimation of a single sinu-
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Fig. 2 Trajectories of the AR coefficients estimated using the Levinson-
Durbin algorithm or the ISWFLP algorithm; (a) the results obtained by
applying the Levinson-Durbin algorithm to the original data, (b) the re-
sults obtained by applying the Levinson-Durbin algorithm to the Hamming-
windowed data, (c) the results obtained by applying the ISWFLP algorithm
with ρ = 0.999 and ε0 = 100.0, where N = 16, Ls = 256.

soidal signal and a speech signal.
First, we consider a noisy single sinusoidal signal with

a frequency shift:

uk = sin(2π fktk) + vk, fk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
625 [Hz], k ≤ 2000

2500 [Hz], k > 2000

tk = kT, k = 0, 1, 2, · · · , 4000 (58)

Fig. 3 Estimates of the first AR coefficient ak(1) obtained using the
Levinson-Durbin algorithm or the ISWFLP algorithm; (a) the results ob-
tained by applying the Levinson-Durbin algorithm to the original data,
(b) the results obtained by applying the Levinson-Durbin algorithm to the
Hamming-windowed data, (c) the results obtained by applying the ISWFLP
algorithm with ρ = 0.999 and ε0 = 100.0, where N = 16, Ls = 256.

Fig. 4 Squared errors of the AR coefficients obtained using the
Levinson-Durbin algorithm or the ISWFLP algorithm; (a) the results ob-
tained by applying the Levinson-Durbin algorithm to the original data,
(b) the results obtained by applying the Levinson-Durbin algorithm to the
Hamming-windowed data, (c) the results obtained by applying the ISWFLP
algorithm with ρ = 0.999 and ε0 = 100.0, where N = 16, Ls = 256.



554
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.2 FEBRUARY 2014

Fig. 5 Running spectra of the single sinusoidal signal for each method;
(a) the results obtained by applying the Yule-Walker method to the original
data, (b) the results obtained by applying the Yule-Walker method to the
Hamming-windowed data, (c) the results obtained by applying the Kalman
filter-based method, (d) the results obtained by applying the ISWFLP-based
method with ρ = 0.999 and ε0 = 10.0, where N = 64, Ls = 256.

where vk is a stationary white Gaussian noise with zero mean
and a standard deviation of σv = 0.04 and the sampling pe-
riod is T = 1/8000s. Sinusoid analysis is very important
because the nonstationary nature of a speech signal may be
caused by variations in the signal source. Note that a small
amount of observation noise was used to test the noise sen-
sitivity of each method.

Figure 5 compares the performances of the Yule-
Walker method using the Levinson-Durbin algorithm, the
Kalman filter-based method, and the proposed ISWFLP-
based method for running spectra estimation of the single
sinusoidal signal. The spectra obtained using the ISWFLP-
based method and the Kalman filter-based method were very
sharp with a small line width, and one major spectral peak
was always observed, even during the transient period. By
contrast, the spectra obtained using the Yule-Walker method
included spurious frequency components with broad line
widths during the transient period. This result was also sup-

Fig. 6 Power spectral densities of the single sinusoidal signal at time k =
2128 for each method; (a) the results obtained by applying the Yule-Walker
method to the original data, (b) the results obtained by applying the Yule-
Walker method to the Hamming-windowed data, (c) the results obtained
by applying the Kalman filter-based method, (d) the results obtained by
applying the ISWFLP-based method with ρ = 0.999 and ε0 = 10.0, where
N = 64, Ls = 256.

ported by the power spectral densities of the sinusoidal sig-
nal at time k = 2128, as shown in Fig. 6. The Yule-Walker
power spectral densities included two peaks with compara-
ble magnitudes where one spectral peak should have been
present.

The adaptability of the Kalman filter-based method was
improved by introducing a zero-mean system noise with co-
variance σ2

wIN into the state-space model where σ2
w was set

to 10−4 and IN is the N-dimensional identity matrix. In the
ISWFLP-based method, the values of N, Ls, and ρ were
empirically determined to provide the desired time and fre-
quency resolutions in the running spectra. Then the fre-
quency resolution improved as N increased, and the time
resolution improved as Ls and ρ decreased. It should be
noted here that decreasing Ls and ρ risks nonsingularity of
the matrix Qk. Therefore, the forgetting factor ρ must be
carefully selected within a range of 0.995 to 0.999.

Figures 7 and 8 show the AR coefficient estimates and
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Fig. 7 Estimated AR coefficients of the speech signal for each method;
(a) the results obtained by applying the Yule-Walker method to the
Hamming-windowed data, (b) the results obtained by applying the Kalman
filter-based method, (c) the results obtained by applying the ISWFLP-based
method with ρ = 0.999 and ε0 = 10.0, where N = 64, Ls = 256.

the corresponding spectrograms obtained by analyzing a
speech signal corresponding to the spoken phrase “this is
easy for us”† using the Yule-Walker method, the Kalman
filter-based method, and the ISWFLP-based method. Here,
the maximum value of each spectrogram was normalized to
one to improve readability, and the spectral magnitudes were
expressed in decibels.

In this example, the ISWFLP-based method provided a
spectrogram with clear harmonic structures that may be sim-

Fig. 8 Spectrograms of the speech signal for each method; (a) the results
obtained by applying the Yule-Walker method to the Hamming-windowed
data, (b) the results obtained by applying the Kalman filter-based method,
(c) the results obtained by applying the ISWFLP-based method with ρ =
0.999 and ε0 = 10.0, where N = 64, Ls = 256.

ilar to a peripheral auditory spectrogram [16]. The formant
trajectories were found to be sharply defined. The AR coef-
ficients estimated using the ISWFLP-based method differed
significantly from those obtained using the Yule-Walker
method, which provides values within a limited range. In
the Yule-Walker method, variations in the frequency com-

†Note that the signal data is available on the Web at
http://research.nii.ac.jp/src/en/UME-ERJ.html.
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ponents broadened the spectral line width. Additionally,
the sliding window processing introduced time lags into the
spectra, even when a Hamming window was used. Unfor-
tunately, the sinusoid analysis in the previous example sug-
gests that the Yule-Walker spectrogram may contain numer-
ous spurious frequency components.

5. Conclusion

We have proposed an ISWFLP-based method for success-
fully estimating the time-varying spectra of nonstationary
AR signals. In the derivation of the proposed method,
the indefinite matrix operation played an important role in
the sliding window processing of the adaptive AR parame-
ter estimation. The ISWFLP-based AR spectral estimation
method enabled nonstationary signals to be tracked rapidly
with a high frequency resolution at a low computational
cost. Computer simulations demonstrated that the ISWFLP-
based method efficiently estimated the time-varying spectra
of a spoken English sentence with a high resolution in both
the time and frequency domains, providing an auditory spec-
trogram that sharply defined the formant trajectories.

The applicability of the ISWFLP-based method will be
investigated in the context of a variety of practical problems,
including the analysis of earthquake signals.
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Appendix: Properties of the Toeplitz Matrix

The following proposition and corollary are useful for ana-
lyzing the AR parameter estimation.

[Proposition A.1]
The Toeplitz matrix Q is invariant under the exchange

of a row and a column in the reverse order, i.e.,

JQJ = Q. (A· 1)

(Proof)
Each element of the Toeplitz matrix is expressed with

Qi j = Q|i− j|. Thus, each element of Q̃ = JQ−1 J
is equal to that of Q because Q̃i j = Q(N− j+1)(N−i+1) =

Q|(N− j+1)−(N−i+1)| = Q|i− j| = Qi j. This leads to JQJ = Q.
�

[Corollary A.1]
The inverse of the Toeplitz matrix Q−1 is invariant un-

der the exchange of a row and a column in the reverse order,
i.e.,

JQ−1 J = Q−1. (A· 2)

(Proof)
Inverting both sides of JQJ = Q, respectively, we ob-

tain

JQ−1 J = Q−1 (A· 3)

because J−1 = J .
�
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