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Efficient Enumeration of All Ladder Lotteries with k£ Bars

Katsuhisa YAMANAKA ™ and Shin-ichi NAKANO'', Members

SUMMARY A ladder lottery, known as the “Amidakuji” in Japan, is
a network with n vertical lines and many horizontal lines each of which
connects two consecutive vertical lines. Each ladder lottery corresponds
to a permutation. Ladder lotteries are frequently used as natural models in
many areas. Given a permutation 7, an algorithm to enumerate all ladder
lotteries of 7 with the minimum number of horizontal lines is known. In
this paper, given a permutation 7 and an integer k, we design an algorithm
to enumerate all ladder lotteries of & with exactly k horizontal lines.
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1. Introduction

A ladder lottery, known as the “Amidakuji” in Japan, is a
common way to choose an assignment randomly. Formally,
a ladder lottery of a permutation © = (py, p2,...,pn) 1S a
network with n vertical lines (/ines for short) and many hor-
izontal lines (bars for short) as follows. The i-th line from
the left is called line i. The top ends of the n lines cor-
respond to . The bottom ends of the » lines correspond to
the identity permutation (1, 2, . .., n). Each bar connects two
consecutive lines. Each number p; in 7 starts at the top end
of line i, and goes down along the line, then whenever p;
comes to an end of a bar, p; goes horizontally along the bar
to the other end, then goes down again. Finally p; reaches
the bottom end of line p;. We can regard a bar as a mod-
ification of the “current” permutation. In a ladder lottery a
sequence of such modifications always results in the identity
permutation (1, 2,...,n). Figure 1 shows a ladder lottery of
permutation (2, 6,4, 1, 5, 3). It consists of six lines and four-
teen bars. For example, number 6 starts at the top end of
line 2, and finally reaches the bottom end at line 6. For each
bar in the figure, two exchanged numbers are written.

The ladder lotteries are strongly related to primitive
sorting networks, which are deeply investigated by Knuth
[2]. A comparator in a primitive sorting network replaces
pi and p; by min (p;, p;) and max (p;, p;), while a bar in a
ladder lottery always exchanges them.

Given a permutation 7 = (py, p2, - . . , pn) the minimum
number of bars to construct ladder lotteries of x is equal
to the number of “inversions” in 7, which are pairs (p;, p;)
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Fig.1 A ladder lottery of the permutation (2,6,4,1,5,3) with 14 bars.
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Fig.2  An optimal ladder lottery of the permutation (2,6,4,1,5,3).

in 7 with p; > p;andi < j. A ladder lottery of 7 with
the minimum number of bars is optimal. The ladder lottery
in Fig. 1 is non-optimal, since its correspondence permuta-
tion (2,6,1,5,3) has eight inversions: (2,1), (6,4), (6,1), (6,5),
(6,3), (4,1), (4,3) and (5,3). The ladder lottery of the same
permutation in Fig. 2 is optimal, since the number of bars is
eight. Optimal ladder lotteries appear in a variety of areas
[6]: algebraic combinatorics and computational geometry,
etc. On the other hand, “non-optimal” ladder lotteries are
very typical for Japanese. When Japanese use a ladder lot-
tery to assign roles or duties to members in a group, a ladder
lottery with many bars is preferred than an optimal one. The
reason is to enjoy an assignment game using the ladder lot-
tery with many bars.

In [6] we gave an algorithm to enumerate all optimal
ladder lotteries of a given permutation 7. The algorithm gen-
erates all optimal ladder lotteries of 7 in O(1) time for each.
The idea of our algorithm in [6] is as follows. We first define
atree structure 7, called the family tree, among optimal lad-
der lotteries of x, in which each vertex of T, corresponds to
each optimal ladder lottery and each edge of 7, corresponds

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers
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Fig.3  The family tree Ty, where 7 = (4,2,3,1) and k = 7.

to a relation between two optimal ladder lotteries. Then we
design an efficient algorithm to generate all child vertices
of a given vertex in T,. Applying the algorithm recursively
from the root vertex of T,, we can generate all vertices in
T, and also corresponding optimal ladder lotteries. Based
on such tree structure, but with some other ideas, a lot of
efficient enumeration algorithms are designed [1], [3], [4].

The algorithm in [6] works only if the number of bars is
minimum. In this paper we generalize the algorithm to enu-
merate all ladder lotteries in S . x, which is the set of all lad-
der lotteries of a given permutation 7 with exactly & bars. To
define the family tree, we adopted swap operations (which
will be defined in Sect. 2) as a relation between two optimal
ladder lotteries in [6]. However, we cannot define a (span-
ning) tree structure among S, using swap operations, be-
cause there may exist two ladder lotteries L, L’ in S .4 such
that L is not derived from L’ by swap operations. Therefore
we first introduce warp operations (which will be defined in
Sect. 2); then we show that a tree structure, called the family
tree, among S, can be defined (see Fig. 3); finally we de-
sign an enumeration algorithm. The algorithm enumerates
all ladder lotteries in S, in O(1) time for each. Note that
if k is smaller than the number of inversions in 7 then S .
= ¢. Also if the parity of k does not match the parity of the
number of inversions in 7 then S,; = ¢. In this paper we
design a new family tree (see Fig. 3) to enumerate all ladder
lotteries in S .4 for any k. By using our enumeration algo-
rithm, we can generate the catalog of all ladder lotteries in
S rx- It would be useful to investigate some properties of
ladder lotteries in S ;4.

The rest of the paper is organized as follows. Section 2
gives some definitions. Section 3 defines the tree structure
among ladder lotteries in S,4. Section 4 gives an efficient
algorithm to enumerate all ladder lotteries in S ;. Finally
Sect. 5 is a conclusion.

2. Preliminary

A ladder lottery L of a permutation 7 = (p1, p2,...,pn) 1S a
network with n vertical lines (/ines for short) and many hori-
zontal lines (bars for short) as follows. The i-th line from the
left is called /ine i. The top ends of the n lines correspond to
n. The bottom ends of the n lines correspond to the identity
permutation (1,2,...,n). Each bar connects two consecu-
tive vertical lines. See Fig. 1. Each number p; in & starts
the top end of line i, and goes down along the line, then
whenever p; comes to an end of a horizontal bar, p; goes to
the other end, then goes down again. Finally p; reaches the
bottom end of line p;. This path is called the p;-route. We
can regard a bar as a modification of the “current” permu-
tation. In a ladder lottery a sequence of such modifications
always results in the identity permutation (1,2, ...,n). The
pi-route is x-monotone if p; always goes right along a bar
on p;-route. Note that p;-route with no bar is x-monotone.
Intuitively p; goes right-down on x-monotone p;-route.

Letm = (p1, p2, - - -, pn) be a permutation. An inversion
in 7 is a pair (p;, p;) with p; > p; and i < j. Let r be the
number of inversions in z. If a ladder lottery L contains
exactly r bars, then we say that L is optimal.

A swap operation, which corresponds the notion of
“braid relation” in the area of algebra, is a local modification
of a ladder lottery as shown in Fig. 4. Note that each dashed
circle contains exactly three bars. Applying this modifica-
tion to a ladder lottery of & resutls in other ladder lottery
of m, since the local permutation consisting of the modified
three bars remains as it was. A swap operation (a) to (b) in
Fig.4 is called a left swap operation to bar b,. Note that in
Fig. 4 the left swap operation moves bar b, from the (upper)
right of the 5-route to the (lower) left, and to apply the left
swap operation we need some route, say the 3-route, to be



YAMANAKA and NAKANO: EFFICIENT ENUMERATION OF ALL LADDER LOTTERIES WITH K BARS

left-swap

-

right-swap

Fig.4 A local swap operation.

4 2 1 6 4 2 16
S— 5 6 - S— 5 6
R left-warp T
P 6 5
S O S - X —
1—6 3 5| right-warp 3 5
T4 T4
b2 3 6 12 3 6
] s 2 1 ] s
5 — 3 4
3 6 T3 5 6
12 3 4 5 1772 4
(@) (b)

Fig.5 A warp operation.

left-turned there. Similarly, a local swap operation (b) to (a)
in Fig. 4 is called a right swap operation to bar b,. Note that
the operation moves bar b, from the left of the 5-route to the
right.

A redundant pair is a pair of parallel bars appearing
consecutively between the same pair of lines. In Fig.5 ex-
amples are shown in the dashed circles. A left warp opera-
tion is a modification of a ladder lottery as shown in Fig. 5,
in which (1) remove some redundant pair, then (2) append it
at the lower left corner. We define a right warp operation as
follows. Let L be a ladder lottery, and b be a redundant pair
of L. Let L’ be a ladder lottery derived from L by a left warp
operation to b. Then a right warp operation is (1) remove b
in L', then (2) append it so that L is again derived from L'.
Intuitively, a right warp operation is the reverse operation of
a left warp operation.

3. The Family Tree

Let S, be the set of all ladder lotteries of a given permu-
tation m = (py, p2, - - ., pn) With exactly k bars. Assume that
k is not smaller than the number of inversions in &, and the
parity of k and the number of inversions match.

In this section we design a tree structure 7,; among
Sz, in which each vertex of T, corresponds to a ladder
lottery in S ., and each edge corresponds to a relation be-
tween two ladder lotteries.

Assume S,; # ¢. Pick up any L, € S, Observe
the n-route in L,. Recall n-route is a path in which n in 7
goes from the top end of line p; with p; = n to the bottom
end of line n. The n-route partitions L, into the upper part
LY and the lower part LL. We say L, is n-clean if (i) LY
has no bar and (ii) the n-route is x-monotone. If L, is n-
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clean then removing the n-route from L, then patching LV
and LE, as shown in Fig. 6, results in a ladder lottery, say
L,_1,1in S 4—1, where 7’ is the permutation derived from 7
by removing n. Similarly observe the (n — 1)-route in L,_;.
We say L,_; is (n — 1)-clean if (i) LY | has no bar and (ii)
the (n — 1)-route is x-monotone. Repeat this process until
some non-clean ladder lottery appears or L, is derived. If L;
is i-clean for each i = 3,4,...,n, then L, is called the root
lottery of S, , denoted by R (See Figs. 8 and 12). Otherwise
we define the clean level of L, as follows. The clean level of
L,is cif L;is i-clean fori = n,n—1,...,c but not (¢ — 1)-
clean. Especially if L, is not n-clean then the clean level of
L, is n+1, and the clean level of R is 3. Note thatif L, € S 4
has the clean level c, then n-route, (n — 1)-route, ..., c-route
form so called ““a brick structure,” as follows.

For each p, > c in «, let (¢1,¢>2,...,qp) be the de-
creasing list of numbers each of which is larger than p, and
locating to the left of p, in 7. In L,, the p,-route first go left
b times, along the bars sharing with ¢,-route, g,-route, .. .,
gp-route, then turn, then go right p, — a + b times. Note that
on the right side of the p,-route with p, > c, every x-route
with x < ¢ always goes left along a bar, every bar is on the
y-route for some y > p,, and there is no bar to which a left
swap operation can be applied. Otherwise there exists some
route with left-turn, a contradiction. Also either (1) L, has
at least one bar in the region below the c-route and above
the (¢ — 1)-route, or (2) the (¢ — 1)-route is not x-monotone
in L._;. See some examples in Fig.7. The region is called
the active region of L,. We define the active region of R is ¢
for convenience (in the proof of Lemma 2).

Now we assign the parent ladder lottery in S , ; for each
ladder lottery L, in Sz \ {R} as follows. We assume that L,
has the clean level c. Let AP (Active Path) be the maximal x-
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monotone subpath of the (c—1)-route ending at the bottom of
line c—1. We say a bar b connecting line [ and /+1 is upward
visible from AP if (1) the lowest end of a bar on [/ above AP is
the end of b, and (2) the lowest end of a bar on /+1 above AP
is the end of b. Note that if b is upward visible from AP then
b can be left-swapped and other upward visible bar from AP
never has an end on line / nor / + 1. Thus the number of the
upward visible bars from AP is at most 5. Now we define
the parent ladder lottery of L, € S, \ {R}, as follows. We
have the following two cases.

Case 1: The active region has at least one visible bar from
AP.

Among the upward visible bars from AP, the rightmost
bar is called the active bar of L,. In Figs.7(a) and (b), b is
the active bar. Apply the left swap operation to the active
bar and let P(L,) be the derived ladder lottery.

Case 2: The active region has no visible bar from AP.

Then at the left end of AP there exists a redundant pair,
which is called the active pair. See Fig.7(c). Apply the left
warp operation to the active pair and let P(L,) be the derived
ladder lottery.

We say P(L,) is the parent ladder lottery of L,, and
L, is a child ladder lottery of P(L,). Note that the parent
ladder lottery of L, is unique, while P(L,) may have many
children. Also note that the clean level of P(L,) is smaller
than or equal to the clean level of L,, and if they have the
same clean level then P(L,) has less or equal number of bars
in the active region, and if they have the same number of
bars in the active region then P(L,) has shorter AP.

We have the following lemma.

Lemma 1: Forany L, € S \ {R}, P(L,) € S & holds.

Proof.
parent preserves the permutation.

Since the each of the two operations to derive the
QED.

Given a ladder lottery L, in S, \ {R}, by repeatedly
finding the parent ladder lottery of the derived ladder lottery,
we can have the unique sequence L,, P(L,), P(P(L,)), ... of
ladder lotteries in S .4, which eventually ends up with the
root lottery R. See Fig.8. The active bars and the active
pairs are depicted by thick lines.

We have the following lemma.

Lemma 2: The sequence L,, P(L,), P(P(L,)),... of L, €
Sxx \ {R} ends with R € S 4.

Proof. For each L, € S, we define its clean poten-
3541 2 35412 3541 2 3541 2 3541 2
1 23 45 1 23 45 1 23 45 123 45 1 2 3 4

L, P(Ly) P(P(Ly)) P(P(P(Lyn))) R=P(P(P(P(Lp))))

Fig.8  The sequence of a ladder lottery L, of (3,5,4,1,2) with exactly 11
bars.
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tial C(L,) = (s,t,u), where s is the clean level of L,, t is
the number of bars in the active region of L, and u is the
length of AP. For L|,L, € Sk with C(L;) = (s1,11,u1)
and C(Ly) = (s2,t,up), we say Ly is cleaner than L, if
(1) s1 < 52, (2) 51 = s and 11 < 1, or (3) 51 = o,
tj] = tp and u; < up. Forany L, € S, we can observe
that P(L,) is cleaner than L, and R is the cleanest among
S zx- Thus for any L, € S the sequence of clean potentials
C(Ly), C(P(Ly)), C(P(P(Ly))), - . - always ends at C(R).
QE.D.

By merging all these sequences we can have the family
tree of S x, denoted by T, in which the root vertex of T,
corresponds to R, the vertices of T correspond to the lad-
der lotteries in S ;4 and each edge corresponds to a relation
between a ladder lottery in S .4 and its parent. See Fig. 3.
The active bars and the active pairs are depicted by thick
lines.

4. Enumerating All Ladder Lotteries

In this section we give an efficient algorithm to enumerate
all ladder lotteries in S ;4.

If we have an algorithm to enumerate all children of
a given ladder lottery in S, then by recursively applying
the algorithm starting at the root lottery R of S, we can
enumerate all ladder lotteries in S ;. Now we design such
an algorithm.

We need some definitions. Let L, € S, with 7 =
(p1, P2, .-, pn). Assume L, has the clean level c. So each
bar locating on the right of the c-route is contained in some
x-route with x > ¢, but either (1) in the active region (See
Fig.7) there is at least one bar which is not contained in
any x-route with x > ¢ — 1 or (2) the (¢ — 1)-route is not
x-monotone. Each x-route with x > ¢ goes left along bars
(sharing with larger routes), “turns,” then goes right along
bars (sharing with smaller routes). For each x-route with
x > ¢, if b is the first bar to go right after bars to go left, then
b is called the turn bar of x. Note that only if the x-route
contains both at least one bar to left and one bar to right, the
x-route has the turn bar. Otherwise if the x-route contains
only bars to left (or right) then the x-route has no turn bar in
L,. Also note that the turn bar is defined only for the x-route
with x > ¢. In the next lemma we show that on the x-route
with x > ¢, only turn bars has a chance to be right swapped.

Lemma 3: Let L, be a ladder lottery having the clean level
c. On the x-route with x > ¢ only the turn bar has a chance
to be right swapped.

Proof. Since L, has the clean level ¢, the x-route of each
x > c first goes left along bars, turns, then goes right along
bars. A bar b; can be right swapped only if the vertical
segment between the left end of b, and the left end of b
has no right end of other bars, where b is the lowermost bar
among the bars above b; as shown in Fig.4(b). Here the
route passes b, then left-turn, then passes b,;. Thus on the
x-route with x > ¢, only the turn bar has a chance to satisfy
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Fig.10  Tllustration for W[L,, x, [, h].

the condition. See an example in Fig. 9. The turn bars of the
9-route and the 7-route can be right swapped, but the turn
bar of the 8-route can not be. QED.

Let S[L,, b] be the ladder lottery derived from L, by
applying the right swap operation to a bar b. If L, € S ;; has
the clean level ¢ and has a redundant pair b at the lower left
corner of L, then let W[L,, x, [, h] be the ladder lottery de-
rived from L, by a right warp operation to b so that (1) b has
ends at line /—1 and /, (2) b is on the x-route of W[L,, x, [, h],
(3) b appears at the left end of AP of W[L,, x, 1, h], and (4)
the vertical segment between the left end of b and the left
end of the bar on the x-route above b has exactly & right
ends of bars in W[L,, x, [, h]. See Fig. 10, where h = 2 cor-
responds the two white circles. Every child of L, is either
S[L,, b] for some b or W[L,, x, [, h] for some x, [ and A, but
not all S[L,, b] or W[L,, x, L, h] are children of L,. S[L,, b]
is a child of L, only if b is the active bar of S[L,, b]. Also
WIL,, x,1,h] is a child of L, only if b is the active pair of
WIL,, x, 1, h].

Now we first classify each S[L,, b] into children of L,
and non-children, as follows. Remember the clean level of
L, is c. Let R(i) be the region on the right side of the i-route,
and L(i) be the region on the left side of the i-route. We have
two types.

Type 1: b is a turn bar.

If b can not be right swapped then S[L,, b] is not de-
fined. So we assume otherwise.

Note that such a bar exists only on the x-routes with
x > c¢. We assume that b is on the g-route, and in L, the
routes of p, g, r pass through as shown in Fig. 11(a). Since
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Fig.11  TIllustration for Type 1.

b is a turn bar of the g-route, ¢ > ¢ and p > g > r hold.
Now S|[L,,b] is not p-clean since b in S[L,, b] is not on
the x-route with x > p. Thus the clean level of S[L,, b] is
increased to p + 1, and b is the only bar in the active region
of S[L,,b]. Since b is upward visible from AP, which is
the maximal x-monotone subpath of the p-route ending at
the bottom of line p, b is the active bar of S[L,,b]. Thus
L[L,,b] is a child of L,. Otherwise S [L,, b] is not a child of
L,.

Type 2: b can be right swapped but b is not a turn bar.

Such a bar, say b, exists only in L(c) N L(c+ 1)N---N
L(n), and b is “downward” visible from some x-route, and
a right swap operation to b moves b to R(x) crossing the
x-route.

Note that the left boundary of L(c) N L(c + 1) N --- N
L(n) is x-monotone. If the right swap operation moves b to
R(x) crossing the x-route with x > ¢, then the clean level
of S[L,,b] is x + 1 and b is the only bar in the new active
region and b is upward visible from AP, so b is the active
bar of S[L,, b]. Thus S[L,, b] is a child of L,,.

If the right swap operation moves b to R(c—1), crossing
AP, which is the maximal x-mononotone subpath of the (¢ —
1)-route ending at the bottom of line ¢ — 1, then the clean
level of S[L,, b] remains ¢, and b is appended to the active
region. Assume the active bar of L, has the left end on line
s and b in L, has the right end on line ¢. So b in S[L,, b] has
the right end on line # + 1. If  + 1 > s, then b is the active
bar of S[L,, b], otherwise b is not. Thus S[L,, b] is a child
of L,ifandonlyifr+ 1 > s.

If the right swap operation moves b to R(c—1), crossing
the (c—1)-route but not AP, then b is not upward visible from
AP. Thus S[L,, b] is not a child of L,.

Otherwise the right swap operation moves b to R(x)
crossing the x-route with x < ¢ — 1. The clean level of
S[L,,b] remains ¢, and b is not the active bar in S[L,, b].
Thus S[L,, b] is not a child of L,,.

Also we classify each W[L,, x, [, h] into children of L,
and non-children, as follows.

Type 3: W[L,, x, 1, h].
If L, has no redundant pair at the lower left corner of
L, then W[L,, x, [, h] is not defined. Assume otherwise. Let
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Algorithm 1: enumerating-ladder-lotteries

(ﬂ:(pl’pZ""’pn)ak)

1 begin

2 Construct the root lottery Rin Sz

3 for each x > 2 do

4 if the turn bar b of the x-route is right swappable then
5 L | find-all-children(S[R,b],x+ 1,b)

£

if L, has no redundant pair at the lower left corner then
7 |_ return

8 for each x > 2 do
9 for each [ = max (uy, 2) to x do
10 for each possible h do
1 L L find-all-children(W[R,x,1, k), c,$)

¢ be the clean level of L,,.

Each x-route with x > ¢ goes left along bars, “turns,”
then goes right along bars. For each x > ¢, let u, be the
leftmost line on which the x-route passes. Note that AP is
X-monotone.

Now for each x > ¢ and each [/, where x > [ >
max (uy, 2), and each possible i, W[L,, x, [, h] is a child of
L,. For [ with x > | > u,, W[L,, x,[, h] is derived from
L, by removing a redundant pair at the lower left corner,
then replace a suitable bar on the x-route by triple bars. For
! = uy, WIL,, x,1, h] is derived from L, by removing a re-
dundant pair at the lower left corner, then appending a re-
dundant pair so that the redundant pair appears at the left
end of AP of W[L,, x, 1, h].

For x = ¢—1 we need to check more carefully. Assume
AP of L, has left end on line u. If L, has no active bar, then
for each [ with ¢ — 1 > [ > max (u, 2) and each possible #,
WIL,,c—1,1,h] is a child of L,.

If L, has the active bar b, then assume it has the left
end on line s. Note that we have u < s. Then for each [
with ¢ — 1 > [ > s and each possible h, W[L,,c — 1,1, h] is a
child of L,. Note that the left end of AP of W[L,,c — 1,1, h]
is on line / — 1. For each [ with s — 1 > [ > max (i, 2),
WIL,,c — 1,1, h] still has the active bar b, so the parent of
WIL,,c—1,1,h]isnot L,, and W[L,,c— 1,1, h] is not a child
of L,.

For x <c¢ -1, W[L,, x,1, h] is not a child of L,,.

By the above case analysis, we have the algorithm as
shown in Algorithms 1 and 2. Algorithm 1 is the main rou-
tine of our algorithm. First we construct the root lottery R in
S »x» Where r is a given permutation and k is a given integer.
Then we generate all children of R and call a procedure Al-
gorithm 2 for each child. Algorithm 2 generates all children
of a given ladder lottery.

By maintaining (1) the clean level ¢, (2) the list of
downward visible bar from x-route, for each x > ¢ — 1
(those are candidate bars to be right swapped, crossing the
x-route), (3) active path AP, (4) the active bar, (5) the maxi-
mal x-monotone subpath of the x-route ending at the bottom
of line x for each x > ¢ (We append redundant pairs along

Algorithm 2: find-all-children(L,,c,a)

1 begin

/* L, is the current ladder lottery, c¢ is the
clean level of L,, and a is the active bar
or the active pair, and s is the line on
which a has the left end. */

2
3 Output L, /% Output the difference from the
previous one. */
4
5 for each x > c do
6 if the turn bar b of the x-route is right swappable then
7 |_ find-all-children(S[L,,b],x+ 1,b)
8 for each downward visible (non-turn) bar b from the
x-route do
9 |_ find-all-children(S[L,,b],x +1,b)
10 for each downward visible bar b from AP do
/* b in L, has the right end on line ¢.
*/
11 if 1 > s — 1 then
12 | find-all-children(S|[L,,bl,c,b)
13 if L, has no redundant pair at the lower left corner then
14 | return
15 for each x > c do
/% u, is the leftmost line on which the
x-route passes. */
16 for each [ = max (i, 2) to x do
17 for each possible h do
18 L |_ find-all-children(W[L,, x,l,h],x + 1, ¢)
19 if L, has no active bar then
/* u is the line on which AP of L, has
left end. */
20 for each / = max (u,2) toc — 1 do
21 L find-all-children(W[L,, x,l, h],c, ) for a
suitable i
22 else
23 foreach/ = stoc—1do
24 L find-all-children(W[L,, x,l, h],c, ¢) for a
suitable i

these paths), and (6) the current ladder lottery, we can enu-
merate all children of L, in O(1) time for each on average.

Lemma 4: One can enumerate all children of L, in O(1)
time for each.

Proof. Let L, be the current ladder lottery, and assume
that its clean level is ¢ and AP is its active path of L,. We
show that, given (1)—(6), we can compute each child and
update (1)—(6) for the child in O(1) time as follows.

Each of Type 1 child and Type 2 child is generated by a
bar in the lists of (2), and each Type 3 child is generated by
removing a redundant pair, then appending a redundant pair
to a suitable place along paths in (5) and along active path
from active bar.

Now we explain how to update data structures as in the
following three cases.
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Fig.12  Computation of the root lottery R in S, where 7 = (3,6,5,1,4,2) and k = 14.

Case 1: Type 1 child S[L,, b].

Now b is the turn bar of the y-route with y > ¢, and as-
sume b is downward visible from x-route with x > ¢. (1) The
clean level becomes to be x + 1. (2) Assume b is downward
visible from the z-route with z > x in S[L,, b]. If the turn
bar b, of x-route is downward visible from z-route, then we
insert b as the next bar of b, in the list of z-route. Note that
there is no downward visible bar from z-route in the “left”
of bin S[L,, b]. Also note that, if b, becomes to be down-
ward non-visible from z-route by swapping b, we exchange
b, with b in the list of z-route. Otherwise, b, is downward
non-visible from z-route, then we insert b as the first bar into
the list of z-route. Note that there is no downward visible bar
from z-route in the “left” of b in S[L,,, b]. Therefore, we can
update these in O(1) time. (3) If x > ¢, then active path is
updated with the maximal x-monotone subpath of x-route.
(4) The active bar updated with b in S[L,, b]. (5) The paths
of w-route for w > x + 1 in S[L,, b] remain as the ones of
w-route in L,. (6) S[L,,b] can be constructed from L, in
O(1) time.

Case 2: Type 2 child S[L,, b].

Now b is not a turn bar. Assume b is downward visible
from x-route with x > c. If x > ¢ holds, then similar to Case
1, we can update (1)—(6) in O(1) time. Otherwise, x = ¢ — 1,
(1) the clean level of S[L,, b] remains as c¢. (2) The list of
downward visible bars from x-route for each x > c is similar
to Case 1. The list for x = ¢ — 1 in S[L,, b] is derived from
the list of downward visible bars from (¢ — 1)-route in L as
follows. Replace the bars up to b by at most two bars each
of which is downward visible from (¢ — 1)-route in S[L,, b]
but not in L,. Thus we can compute (2) in S[L,, b] in O(1)
time. (3) The active path remains as AP. (4) The active
bar updated with b in S[L,, b]. (5) The paths of w-route for
w > cin W[L,, x, [, h] remain as the ones of w-route in L,,.
(6) S[L,, b] can be constructed from L, in O(1) time.

Case 3: Type 3 child W[L,, x, [, h].
(1) The clean level becomes to be x+ 1, and (2) the lists
in L, remain as ones in W[L,, x, [, h]. (3) The active path is

updated with a subpath of x-route of L, from line / to the
bottom end of x-route of L,. (4) W[L,, x, [, h] has no active
bar. (5) The paths of w-route for w > x + 1 in W[L,, x, [, h]
remain as the ones of w-route in L,. (6) W[L,, x,l, h] can
be constructed from L, in O(1) time. Note that one can de-
termine whether or not L, contains redundant pairs in the
lower left corner in O(1) time.

Q.E.D.

From the above lemma, we obtain the following theo-
rem.

Theorem 1: After constructing and outputting the root lot-
tery Rin S 7 in O(n+k) time, the algorithm runs in O(|S ; «|)
time. The algorithm uses O(n + k) working space.

Proof. We show that R in S ;4 can be generated in O(n + k)
time. See Fig. 12 for a sketch. We start with n vertical lines.
Then we append the j-route for each j = n,n—1,...,3. Each
J-route goes left with some bars, turns, then goes right with
some bars. When we append the j-route the part of route
to go left is already completed, since those bars correspond
to the crossing with the routes of larger numbers. So we
only need to append the part to go right, consisting of x-
monotone path. Finally we append the redundant pairs at
the lower left corner. Thus we can compute R in O(n + k)
time and space. QE.D.

By the theorem above, our algorithm generates each
ladder lottery in S, in O(1) time “on average.” However it
may have to return from the deep recursive calls without out-
putting any ladder lottery in S 4, after generating a ladder
lottery corresponding to the rightmost leaf of a large subtree
in the family tree. Therefore the next ladder lottery in S«
cannot be generated in O(1) time in worst case.

By modifying the algorithm so that each ladder lottery
at “even” depth in T is output “before” its children, and
each ladder lottery at “odd” depth in 7, is output “after”
its children [5], we can output the next ladder lottery in O(1)
time in worst case.
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Theorem 2: After constructing and outputting the root lot-
tery R in S, in O(n + k) time, the algorithm enumerates all
ladder lotteries in S . in O(1) time for each. The algorithm
uses O(n + k) working space.

5. Conclusion

In this paper, we gave an algorithm to enumerate all ladder
lotteries of a given permutation 7 with exactly k bars. Our
algorithm uses O(n + k) space and enumerate all ladder lot-
teries in S 4 in O(1) time for each in worst case.
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