
Chapter 4

Large elastic anomalies in C66

   In this chapter we will discuss on the large elastic softening in C66.

Fig 4.1 shows the T dependence of C66 for the samples with x == O, O.037,

O.060, O.084, O.098, O.116, O.161, and O.245. C66 significantly decrcases

as T decreases. Although a decrease in elast,ic st,iffness is a common

feature of structural phase transition. The amount of softening, i.e., as

much as 8091o for Ba(Feo.g63Coo.o37)2As2, is unprecedentedly large. 1]he

softening jn C66 corresponds to a symmetry change from tetragonal to

orthorhombic. This is consist,ent with the result ofthe structural analysis

of this ma,t,erial, where the space groups are I4/mmm and F77zmm for

the high- and low-temperature phases, respectively.

  The decrease in C66 with decreasing T is prominent for x = O, O.037,

which follow the disappearance of the signal at structural transition tem-

peratures Ts = 141K (x = O), 84.7K (cv = O.037). The data below Ts

were not plotted for x = O or O.037, because the sound echo signal disap-

peared in a certain temperature range below Ts, which may be ascribed

49



50

40

G 3o
ais

V-
gO 20

10

o

                    Ba(Fei..Co.)2AS2

NT
 sc           !iiiii= ;li

Nsc

 T'lstc,, / x

        Ts/
        VT4

Tsc

    Ny

ExY
 Oy

  X

24.5%
16.1%
11.6%
9.8%
8.4%
6.0oro

3.7%

o%

                O 50 100 150 200 250 300
                           Temperature (K)

Figure 4.1: Temperature dependence of the elastic stiffness C66 of Ba(Fei-xCox)2As2
wit,h various Co concentrations.

to strong scattering of the sound by orthorhombic domain boundaries.

The softening of C66 is less prominent as x increases, which is consis-

tent with the disappearance of the structural phase transition. For the

superconducting samples, O.060 S x g O.116 anomalies are observed at

T,, - 24 K (.x - O.060), 20.7 K (x - O.084), 16.5 K (x = O.098), and

10.5 K (x - O.116).

  The underdoped samples show a peak at T,, and a steplike anomaly

below T,,. On t,he other hand, C66 increases below T,, in the overdoped

region. This difference will be discussed later. Moreover, the supercon-

ducting transition disappears when x > O.161. The C66 values of the

samples of x = O.161 and O.245 show gradual increases as T decreases,

which a typical behavior for any material, reflecting phonon anharmonic-

50



ity.

4.1 Origin of C66 softening

4.1.1 Analysis based on localized picture

The observed large elastic anomaly in C66 is a precursor of structural

phase transition. Here, we will discuss the origin of the softening in C66.

3d orbitals are split into an Eg doublet and a T2g triplet by an electric

crystalline field (CEF) in a cubic symmetry. Eg is split into two singlets,

and T2g is split into one singlet and one doublet by the tetragonal CEF of

iron-based materials. The remaining doublet can be lifted by the elastic

strain and may cause elastic anomaly these description was seen in Fig.

4.2. We will consider the coupling between the strain s and the order

parameter O as H = -AOFET. The equivalence of the X- and Y-axes

    '                   intermediate                    spin state low-spin state
   glgt:le"'"L':::::1'-"4--EB',1(lldax)-M.l'1'1'1"1'1'1'1"4-+ddi.Z,

   Ns         ss
         "'.St ::...""'tHta Alg:Z2 'N'-"'"""- dz2
                  ""'--tl'-ip Bix:X2-Y2 -""""- dx2-r2

           cubic tetragonal orthorhombic
Figure 4.2: Schematic illustration of a ground state d6 configuration of Fe ion with an

intermediate spin state of S = 1 and low-spin state.

in tetragonal symmetry leads to the degeneration of the dzx and dyz

orbitals. This degeneracy is lifted by Exy or Exx - Eyy, and brings
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about anomalies in the corresponding C66 and S(Cn - Ci2). The strain

sxy can couple with the orbital (quadrupole) Oxy. We can calculate

the strain susceptibility based on a localized picture of d electrons:

                              x8,                                          T-Tc             C66 = C66,o - NA21- Ixs6 = C66,o T-o (4•1)

where A, I and N are the coupling constant, intersite interaction, and

number of atoms per unit volume. Here, we adopted the form xg6 =<

(Oxy)2 > /T for localized d electrons. Here, we introduce the elas-

t,ic compliance SiJ•, which is a component of the inverse C,j matrix. In

eq. 4.1, the transition occurs at Tc, where the lattice shows instability.

Elastic compliance represents the "struct,ural" susceptibility of elastic

syst,ems, and corresponds to the magnetic susceptibility .x in magnetic

systems. The experimentally observed S66 (== ttF,) can be decomposed

into the sum of the anomalous contributions that exhibit critical behav-

ior, S66,,., and the normal contribution (background) S66,o:

                                         .E]JT              S66 = S606 + S66,,r = S66,o(1 +                                              ) (4.2)
                                       T-Tc

where EJT = Tc - e. EJT stands for the JahnTeller energy, an energy

scale that corresponds to the strength of the electron-lattice coupling.

Note that this formula has the same form as the CurieWeiss susceptibility

of ferromagnetic materials.

  For the analysis, we employed the data of Ba(Feo.7ssCoo.24Jr)2As2 for

S66,o, and subtract it from the other data. Figure 4.3 shows the inverse
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of S66,.,t as a function of temperature. It can clearly be seen that 1/S66...

in the underdoped region (x < O.070) exhibits a linear T dependence.

This indicates that S66,,. obeys eq. 4.2. In the underdoped samples,
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Tc in eq. 4.2 and

O, 81.4 and 84.7

respect/ively. The

C66 measurement owing to the disappearance ofthe echo signal bel

Our recent measurement

of Ts = 84.7 K and TN

Tc in each sample

that C66 softens toward Ts, and that the ferro-type crystal deformation
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  Ts obtained from C66 are 134.3 and 141 K for x =

K for x = O.037, and 28.2 and 30.0K for x = O.060,

 magnetic transition at TN could not observed in the

                                       ow Ts•

       of C33, however, clearly shows the separation

     = 75.7 K for x = O,037. The closeness of Ts and

  and the result on C33 for the 3.7% sample suggest



of sxy occurs below Ts.

4.1.2 Analysis based on band picture

  The T dependence of C66 in the overdoped region can be explained

by a band picture instead of by eq. 4.2. Large elastic anomalies com-

pared with those of iron-based materials have been reported in the A15

superconductor V3Si and the Laves--phase superconductor CeRu2 so far

[32, 33]. These anomalies have been ascribed to the large density of

states at the Fermi energy. 3d orbitals form bands in an iron based su-

perconductor. The bands Iocated above the Fermi energy at the r-point

form hole Fermi surfaces and electron pockets at M-points of the zone

boundary[34]. In addition, the band nesting along the [Z, Z' , O] direction

is a key feature in iron-based superconductors. Here, we will consider the

effects of bands. The bandwidth is affected by the crysta.1 deformation,

because the electron transfer (namely, transfer integral) between iron

atoms would be modified by the lattice distortion. Therefoi'e, equivalent

four M-points in the tetragonal lattice do not become equivalent under

the application of the strain sxy, as shown in Fig. 4.4. For example, the

width of the bands at the Brillouin zone boundary Mi and M3 in Fig.

4.4 becomes large, and those of the bands at M2 and M4 become smaller

under the application of Exy. This process gains the electronic energy,

and looses the elastic energy. The amount of deformation is determined

by the energy valance of the electronic and lattice energies. The formula
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Figure 4.4: Effect of band on the cryst,al deforination. Four .)vl points in square lattice

do not become equivalent by the strain 6.y, which makes the band consisting of dy,/d..

and d.2 - dy2 degeneracy lifted..

for the elastic constant based on this consideration is as follows[35]:

                                         XO,
               C66 = C66,o - (dMi - dM2)2
                                       1-I.\g
             XOs - kiT 2 fk(1 - fk)fdEN(E)f(E) (4.3)

                  N(E) .. ZgL, [1 + (E -vvEF)2]-i

where f is the FermiDirac function, d(= dMi = dM2) is the electronlat-

tice coupling constant, No is the density of states at Fermi energy EF,

and I is the intersite interaction. The results of the fitting by adopting

the Lorentzian density of states are shown in Fig. 4.5. In this analysis,

the main adjustable paramcter is the bandwidth W. We fixed EF/W =

O.4 to obt,ain t,he best fitting. I is displa,yed in the figure, depending

on x. We added a small constant ranging from O.8 to 2.45 GPa to the

experimental value of C66,o for the fitting. The W values were 100, 180,

250, and 450 K for the 8.4, 9.8, 11.6, and 16.1% samples, respectively.

From the adjustable parameter Nod2, d was respectively evaluated as

s

E(k)s

eN:,ts:ss

E(k)t

--.---"-t- .e

Ml,M3E..toM2,M4

55



AcS!

!iili!'

 8-
9o

lo
9o

o

-5

-1O

-15

-20

-25

16.1O/o
VV = 450K
I= -270 K

  11.60/o
L41- 250K I= -1 50 K

Ba(Fei-,Co,)2AS2

  9.80/o
LXV = 180K
l= -99

8.40/o

LXV - 1 OOK

I- -50 K

1

1+(E-E.
  W
E,1LIV=O.4

)2

- -2 O 2   E/W
4

            O 50 100 150 200 250 300
                         Temperature (K)
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O.22, O.25, O.28, and O.28 eV/Fe for the four samples, under the assump-

tion that No is approximately 1/W. The values of No calculated from

No = 1/I7V are respectively 110, 64, 46, and 26 states/eV for the four

samples.

  Note that eq. 3.14 is deduced to have the same form as eq. 4.1 for

T > W. In this sense, eq. 3.14 includes eq. 4.2. However, eq. 3.14 is not

applicable to analyzing the data of the underdoped samples, because W

cannot be determined uniquely owing to the high Ts. Therefore, we con-

sider that the adoption of the two typeg. of analysis for the underdoped

and overdoped samples is reasonable.
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  The band effect discussed here is called the electronic redistribution

mechanism [36] and is applicable to systems having a low resistivity.

It is supported experimentally. The resistivity of this system becomes

lower in the overdoped region than in the underdoped region. Band

nesting along the [Z,Z,O] direction is a characteristic feature of iron-

based superconductors. We have no tool for analyzing elastic data on

the basis of band nesting, However, we infer that it has a sirnilar effect

to that discussed above, and may cause C66 softening.

4.2 Quantumcriticality

  Figure 4.6 shows a summary of the phase diagram of Ba(Fei-xCox)2As2.

The Co concentration dependences of Ts and T,. are highl,y consistent

with previous results[37]. We found two characteristic temperatures, i.e.,

T' and T,na,,. A possible explanation for T' is the crossover from the non-

Fermi liquid region to the Fermi liquid region. The boundary from the

non-Fermi T dependence to the Fermi liquid T2 dependence observed

in the resistivity measurements is not clear for Ba(FeimxCox)2As2[38].

However, the behavior observed in BaFe2(Asi-.P.)2 is similar to that

observed in the present study including the x dependence of the crossover

region [39] .

  We found T,..,,, which corresponds to the temperature at which S66,,,

takes its maximum (at which 1/S66,., takes its minimum), as shown

in Figs. 4.3 and 4.7. For highly correlated electron systems such as
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  Figure 4.6: Phase diagram of Ba(Fei-.Co.)2As2. The curves are visual guides.

CeCu2Si2, UPd2A13, and UPt3, a similar maximum was reported in the

magnetic susceptibility .\ and interpreted as a Kondo temperature, sig-

naling t,he coherent motion of f-electrons[40]. From this analogy, T...

in this system suggests the onset of new coherent states.

  Note that T' and T... approach zero at a QCP concentration of xc =

O.07, indicating the existence of structural QCP at this concentration.

In addition, the analysis based on the band picture suggests that the

bandwidth W also approaches zero at the same xc, which suggests a

pog.sible mass enhancement toward QCP in this system. Note that this

point is located at the center of the superconducting dome. A similar

phenomenon was reported for BaFe2(Asim.P.)2[41]. The obtained phase
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diagram and various phenomena near the QCP resemble those of well-

known rare-earth compounds and uranium compounds. This coincidence

strongly suggests the intimate relationship between superconductivity

and QCP in t,his system, as in heavy fermion systems where magnetic

QCP is presumed to be responsible for the emergence of unconventional

superconductivity[42]. The essential difference in this case is that the

quantiim criticality is associated with structural fluctuations, unlike the

magnetic fluctuations in previous cases. For this reason, we would like

to call it the structural quantum criticality.

59



4.3 Correlationbetweenelasticanomalyandsuper-

      conductivity

  We now discuss the relationship between elastic anomaly and super-

conductivity. As seen in t,he inset of Fig. 4.7, the amount of 1/S66,cr

is proportional to cu - xc, where xc is the QCP concentration of Co;

xc = O.07 for this system. Such a behavior is well known at the x of the

magnetic QCP. It is surprising that such a well-known behavior holds

in this system with respect to S66 instead of x for the magnetic sys-

tem. As shown in the same figure, T,, decreases with increasing x - xc.

Therefore, we can recognize an apparent correlation betJween T,, and

1/S66,cr, such that Tse is a function of 1/S66,,.. The explanation for this

interesting fact is speculated to be as follows. As shown in Fig. 4.8,

the underdoped sample exhibits a small anomaly at T,,, while a large

upturn at T,, is seen in the overdoped samples. Once the system enters

the orthorhombic phase from the tetragonal phase, structural fluctua-

tions are suppressed in the ordered phase. In the overdoped samples,

however, struct/ural fluctuations still survive even at T,,. The amount

of anomaly at T,, correlates with the peak height of S66,c,, which is a

measure of f t,ructural fluctuation. rl]he Iarge anomaly at, T,, for the over-

doped samples g. uggests a strong coupling between structural fluctuat,ion

and superconductivity. These facts suggest that the origin of S66.cr is

deeply related to the emergence of superconductivity.
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Chapter 5

Strange in

           .appear1ng

ter-layer

in C33

properties

  In this chapter we concentrate on our mind to the anomalous in C33.

As shown in Fig. 5.1 shows the temperature dependence of elastic con-

stant C33 for all samples. One can see in the figure that, all samples

show monotonic increase with decreasing temperature. The samples of

x == O, O.037 show elastic softening at TN and Ts. Overdoped sam-

ples of x = O.084, O.098, and O.116 show a step-wise elastic anomaly

at T,,. Nearly optimal-doped sample of x == O.060 shows remarkable

elastic, anomalies at T,, and TN. The appearance of elastic anomaly in

C33 for under-doped, optimal doped, and over-doped samples would be

reflected t'i'oin a three-diinensional character of the iron-based supercon-

ductor Ba(Feir.Co.)2As2. Next, we will report peculiar physical prop-

erties of Ba(Feo.g4Cooo6)2As2, which is located near to the QCP. For this

Co con(ientration, we have st,udied t,he elastic propert,ies, specific heat

and elect,rical resistivity for two samples of different batch. A clear sam-
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Figure 5.1: Temperature dependence of elastic constant C33 of Ba(Fei-.Cox)2As2•
Where `c = O, O.037, O,060, 0.084, O.098, O.116, O.161, 0.245 respectively.

ple dependence for this composition was proved by careful inspection

of elastic constants C33 and C66, resistivity, and elastic attenuation a.

According to t,he phase diagram of Ba122, the structural, magnetic, and

superconducting phase transitions closely located to each other for 6oro

Co-doped sample. So to determine at which phases the elastic anoma-

lous are occurred, we have carried out a simultaneous measurements of

the electrical resistivity and elastic constant by one setting, where su-

perconductivity is evident from a sharp drop to zero in the resistivity

at 24 K for sample B, 24.2 K for sample D. These results of the electri-

cal resistivity associated with the superconducting transition were also

followed by the heat capacity measurement.

  Figures 5.2(a) and (b) show temperature dependence of the elastic
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constant for optimal doped sample D. (e) Temperature dependence of heat capacity
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constants C33 and C66. C66 shows large elastic softening from room

temperature to low temperatures, and an inflection at Ts. In the cafe

of C66, both samples show elastic softening at Ts, but a small elastic

anomaly was observed at T,, and no anomaly at TN. On the other hand,

C33 shows a remarkable softening from 50 - 60 K towards TN and Tsc. C33

drops steeply below a certain temperature above T,,, which is considered

to be TN. C33 shows a minimum near T,,, and increases rapidly with

decreasing temperature. Precisely, sample B shows a step-wise anomaly

at T,., while sample D shows no such anomaly near T,,. It would be

noted that both samples show no anomaly at Ts.

  According to specific heat and resistivity in Figs. 5.2(e) and (f),

fpecific heat anomal.y was observed at T,,, and no anomaly at TN. The

C33 in sample B and sample D show rather large softening towards TN

and/or T,,. The amount of softening is O.2% for sample B and O.5% for

sample D. For this analysis, it would be interesting what is the main

factor for the softening in which, it starts from high temperature region

such as 50 - 60 K. In general, it has been to}d that fiuctuations associated

with superconductivity does not start from such a high temperature,

and appear just above T,,. They cannot bring a large e}astic softening.

To the best of our knowledge, the largest elastic softening associated

with superconductivity appears in organic superconductor K-(ET)2X (X

== Cu(NCS)2, Cu[N(CN)2]Br), which was found by Simizu.[45] Even in

this case, the softening starts from 1.2T,, at most. On the other hand

the softening in C33 starts from almost 2T,, for sample B and 3T,, for
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sample D, it implies that the elastic behavior in C33 is not from the

superconducting origin. From our results, we would like to conclude that

t•he anomaly in C33 is possibly ascribed to magnetic origin, although the

origin still is an enigma.

  We have also studied the ultrasonic attenuation a of the longitudinal

elastic waves propagating along the c-axis for both samples. In Figs.

5.2(c) and (d), C33 and cv are depicted as a function of temperature

in an expanded scale. Alt/hough t,here are precife differences bet,ween

sample B and D, we found interesting common features in C33 and a.

The dv shows a maximum at around T,, and an additional peak below

T,, for both samples. Similar maximum in the ultrasonic attenuation

was reported for BaFei.ssNio.isAs2 polycrystalline[46]. Usually, the ul-

trasonic attenuation decreases below T,,. Historically, some heavy elec-

tron superconductors UBei3 and UPt3 showed an ultrasonic attenuation

peak below T,,, which was discussed theoretically based on Landau-

Khalatnikov damping mechanism[48, 47, 49]. It is associated with the

relaxation of order parameter amplitude, which was found in superfluid

He, at firg. t/.[50] Froin the saine point of view as Heavy ferinion supercon-

ductor, the coupling between the superconducting gap amplitude and

long wave length phonon was discussed for the case of a charge density-

wave (CDW) compound NbSe2.[51] The attenuation peak below T,, for

Ba(Feo.g4Coo.o6)2As2 would be caused by the same origin as the Heavy

fermion superconductors and /or CDW compound, but the origin is still

open.
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  For over doped samples, C33 shows a small but sharp softening to-

wards T,, results are shown in Fig. 5.3. In elastic constant measure-

ments, there are two types of coupling between the order parameter M

and elastic strain E. One is bilinear coupling having the form of ME,

the other one is magneto-elastic coupling having the form of M2E. Bilin-

ear coupling brings about large elastic softening from high temperature,

which was seen in C66. 0n the other hand, magneto--elastic coupling

brings only a step-wise elastic anomaly. In general it does not show

large anomaly compared to the bilinear coupling. In 6.0 9o doped sam-

ple, the softening in C33 starts from high temperatures, which resembles

that the large softening in C33 originated from the bilinear coupling. It

would be possible origin for C33 anomaly, but it is an enigma. Impor-

t•ant point is that there is no anomaly at Ts, but there is an anomaly at

TN. This fact suggests the importance of magneto-elastic coupling in C33

elastic anomaly. For over doped samples, C33 shows a small but sharp

softening towards T,.,, so the elastic anomaly in C33 for [c = O.060, O.084,

O.098, and O.116 suggests that the coupling between the order parameter

and elastic strain is M2E.

  In Fig. 5.3, we plotted a relative amount of softening, which is normal-

ized the data at, 120 K as AC33/C33 ([v,T) == C33 (24.591o,T)/C33 (x,T) -

1. rl"he normalized data AC33/C33 merge at 120 K. Overdoped sam-

ples show remarkable step-wise anomaly at T,,, Unlike 6.0 O/o doped

sample, obove the T,, in overall temperature range, overdoped samples

show monotonic increase with decreasing temperature. However when
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 Figure 5.3: Te' mperature dependence of elastic constant C33 of overdoped samples.

we regard 24.5 % sample as the back ground, overdoped samples show

anomaly towards low temperatures same as 6.0 O/o doped sample. The

amount of softening is defined by AC33/C33 = AC33(24.5oro, T,,)/C33(24.5oro, 120K)-

AC33(x, T,,(x))/C33(x, 120K).

  This amount becomes larger as approaching to the QCP.

  Second, we will discuss about GrUneisen parameter. GrUneisen con-

stant is a scale of magnitude and order parameter so called the interac-

tion of order parameter and distortion of the magneto-strictive coupling.

GrUneisen parainet/er S2,, for T,, can be defined by the relation:

                              Cr 0Tsc
                        9sc=E7gT, ap (5.1)

                      st--i711T.(0oT,sc) (s.2)
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where T,, is the superconducting phase transition temperature, CF is the

bulk modules.

Firstly, lets define the derivation of the uniaxial-pressure function of 0 ii5i ` .

The Ehrenfest relationship in thermodynamics is established at the time

of second order phase transition. Following equation holds change does

not occur in entropy before and after the transition to the secondary

phag. e transition.

                     Si(T,,,p)=S2(T.,p) (5.3)

niake a full differential for both sides, it will be change,

   (oOTII,.),dTsc+(0oSpi).,,dP=(oOT9,2.,),dTsc+(0aSp2).,.dP (5'4)

here,

               Cp=Tsc(oOfic),'(oOisc),=k,Pc (5'5)

      s - - ({lll/i) ? v = (!illi'ii). (lil('ii)T =: -ZilJ (il/i)p

                                                       (5.6)
                      =-Eil'7(:'i)T==-(00VT),

  then
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   ((oOTS,`,),- (oOTS,2,),] dTs( == {- (0oSpi)T+ (0oSp2)Tdp} (5•7)

  il,:.(Cpi-Cp2)dTsc=((eoVTM,.i)p'(0oVTM,,2)p)dp (5•8)

   0Tsc 1 A6   0p =i7 ACp/Tsc (5'9)
where A5 is the volume expansion, if we replace the volume expansion

by t,he linear expansion coeflftcient Aa, uniaxial-pressure dependence of

Tsc becomes
                       0Tsc 1 Aai                       dPi = il7 ACp/T,, (5'10)

then t,he GrUneisen constant takes the definition of

                              Cr aT,,
                         S2i=l7g; op, (5.11)

on the other hand, the elastic constant, from the second derivative by

the distortion of the free energy F

                       F=Tf(T-Tsc) (5•12)

if this form differentiated by the strain 6, then it becomes

                                 0f(T-Tsc) 0Tsc       OF O       o, = sr, {Tf(T-Tsc)} =: -T o(T-T,,) ' os .                                                        (Jr.13)
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by further differentiating

       cr-iilj?lll]F,-iil,,{-TO,f,iTi.Tgg'•!lg/llEisc}

            -TOS,'Yi.///;•)(ili/;,)2

in addition, entropy S and internal energy U is become

          u ., F+ Ts, s-- (ili/I;).

so we can wrlte lt '

        U = F- T (IIIi/ÅÄ). = -T2 ( (Fo/TT) ).

therefore, t,he t pecific heat, Cv is,

 '      cv = [li/ÅÄ =-zl.i [TbZ (o9fF-/TT,),)}.

                0(F/T) -T, 0(F/T)           = -2Tgc                       0(T - Tsc)2               0(T - Tgc)

here, considering only the second term we can get

            02f(T- Tsc) ACv
            O(T-Tsc) T,2,
if we input this formula in to 5.14 then,

          AcF = -lll'gs• •Ac. (s:Iltll;Eisc)2
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(5.19)



the definition of GrUneisen constant 9 from 5.2

                      ACr = -T,,ACvS22

                             AC, (5.20)
                      st2 =
                            A Cv Tsc

  In this research we ha calculated the The GrUneisen constant from

the jump in specific heat and the jump in elastic moduli at T,c by

                      AC=-9g,ACv Tsc• (5•21)

  The jump at the superconducting phase transition temperature of C33

and t,he heat capacity were pictured in Fig. 5.4 for under doped region,

and in Fig. 5.5 for over doped region. The jumps in Cii for overdoped

samples at T,, was pictured in Fig. 5.5.

  GrUneisen parameter has a small value near the QCP, and gradually

increases with the increasing of Co concentration in over-doped region.

Our estimation can be checked by the previous works. The Grimeisen

paraineter defined by

                               1 dTsc
                       SZSC=-i7gT, d,,• (5.22)

Here the uniaxial strain dependence dT,,/d6i is related to uniaxial pres-

sure dependence of Tsc as
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                                           dTsc                                  dTsc                         dTsc              dTsc              dsxx =-C'1 dp. -C'? dp. -Ci3 dp, (5'23)

                                   dTsc                         dTsc              dTsc              dEzz =-C33 dp, -2Ci3 op. (5'24)

where i is 1 for XX and a-axis, and 3 for ZZ and c-axis. Cij is the

corresponding elastic constants, and dT,,/dpi is the uniaxial pressure

dependencies of T,,. We can calculate st from the elastic constant and

uniaxial pressure dependence of Tsc.

                                                          r  We would like to compare our results with the previous works. Bud ko
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et al. reported these values of dT,,/dpi for 3.8 9o and 7.4 O/o, and Hardy

et al. reported it for 8.0 %. Bud'ko et al. obtained dT,,/dpa = -4.1

K/kbar and dT,,/dp, = 1.7 K/kbar for 3.8%, dT,,/op. = O.3 K/kbar

and dT,,/dp, == -2.6 K/kbar for 7.40/o [29]. Hardy et al. obtained

dT,,/dp. = 3.1(1) K/GPa and dT,,/dp, - -7.0(2) K/GPa for 8% [30]

from thermal expansion measurement. We used these values of Cii, C33

and Ci2 to be 109.2 GPa, 78.7 GPa and 43.46 GPa, respectively, for

the calculation. Since Ci3 cannot be obtained by our measurements, we

assumed it to be the same value as Ci2. In the case of 8% doped sample,

GrUneisen constant and dT,,/d6zz are evaluated to be 14.2 and 282 K,

respectively. The value of S2 is consistent with our result. On the other

hand the predicted values did not achieved for 3.89o and 7.4oro, it is ten

times larger then our value. In the case of 3.8oro, the calculated values

are 716 K for dT,,/dezz and 102.3 for GrUneisen constant, and 2037 K

and 97 for 7.4%. They are inconsistent with our results and Hardy et al.

The reason of the differenceg. is an enigma. Here, we have to attention to

the sign of the GrUneisen parameter. We cannot obtain the information

about/ wliethe.r 9 is positive or negative, when it is eva,luated froin 5.21.

On the other hand, 5.22 - 5.24 give its sign. dT,,/op, is positive for

underdoped samples, and negative for overdoped region. dT,,/dp. has

an opposite sign of dT,,/dp,. Since the 6.0 % sample is located in the

underdoped region, the sign of 9 might be negative. In addition, as

long as hydrostatic pressure concern the changing of T,, is positive for

underdoped samples, and negative for overdoped samples. This behavior
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Table 5.1: Estimated values of T,,, AC33, and ACp/T,. and calculated strain depen-
dence of dT,./dp,, dT,,/dE,., and S) for 69(D, 8.491,, and 9.8"/o.

x-Co(oro) O.06 O.084 O.098

        Tsc (K) 24 16•7 20.6
        ACii (10m2GPa) 1,5 2.5 L96
        AC33(10L2GPa) 1.4 4.2 4.4
        ACp/Tsc 33 23 15        (mJ/mol•K2)
        dT,./dp. K/GPa l.84 2.32 2.49
        dT,./dpcK/GPa l•9 42 5.3
        dTsc/d8xa: 163 258 280
        d71gc/dEzz 160 334 420
        IS2 133 6.7 16.2 2s.2
        19 1,i 6.8 12.5 16.s
is similar to c-axis uniaxial pressure dependence of this system.[?] This

implies that hydrostatic pressure dependence is due to the e-axis.

  The calculated results of both dT,,/dE. and dT,,/ds, as a function

of Co-concentration dependence re-listed in Table I for the overdoped

samples.
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Chapter 6

Large elastic softening in heavy

fermion superconductor Rh17Sls

6.0.1 Introduction

  Rhi7Sis mainly found near the Miass river in south part of Ural moun-

tains iii Russia. This compouiid firstly fouiid by Matthias in 1954. Unt•il

now man,y minerals were found in this area. Rhi7Sis belongs to the cubic

space group Pm3m with a lattice constant of O.99093(2) nm. As shown

in Fig. 6.la (a), it contains a cage in the center of the structure. Oth-

erwise the structure contains 2 f.u. with 64 atoms in the unit cell. As

pictured in Fig. 6.lb (b), it contains four rhodium sites (lb, 3d, 6e and

24m), and three sulfur sites (12i, 12j and 6f )]. One of the important

features of this structure is that the Rh(3d) has two Rh(6e) neighbors

at O.258 nm which is shorter than the nearest neighbor Rh-Rh distance

(O.269 nm) in a cubic Rh metal. As shown in Fig. 6.1, it shows a super-

conducting at 5.4 K, and exhibiting shoulder like behavior around 100
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Figure 6.1: (a) The crystal structure of Rhi7Sis which consists of two formula units
with 64 atoms in the unit cell. (b) Rhi7Sis has 4 types of Rhodium atoms with position
symmetry 24m, 6e, 3d and 1 b, and three sulfur sides (12i, 12j, 6f). Rh(d) has two
shorter Rh(e) neighbors at O.258 nm

K. Apart from this Rhi7Sis has several interesting properties such as

the temperature dependence of upper critical field estimates H,2 at T =

O K to be 23.5 T, which significantly exceeds the Pauli limit (9.99 T).

The result of temperature dependence of the heat capacity indicates the

strongly-coupled superconductivity by the fact that ACp/7T,, is approx-

imately 2.6 and this value is larger than 1.43 (BCS theoretical value).

Moreover, normal state properties are worth mentioning as well. Som-

merfeld constant takes a relatively large value (or =110 mJ/mol K2), and

H. R. Naren et aL estimated the enhanced density of stated N'(O) = 46

states/eV-formula unit, these above mentioned results were illustrated

in Fig. 6.2, and 6.3.

  The band structure of the Rhi7Sis with the Density of States plot as

shown in Fig. 6.4, one can imagine that both electron-like and hole-like

pockets at the Fermi Level supporting the fact that there are both types
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of charge carriers in the system.

As shown in Fig.

the electron-phonon coupling (A) by
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cal Density Approximation) calculations.
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                6.5 the DOS plot in the total energy range of calcula-

tion indicates the large density of states at the Fermi level and estimate

              A Dosf,..bh.eidt,Cta,P.a,Cti.\,)-1 (6.1)

which gives a A of O.7.

  The basic properties such as Sommerfeld coefficjent, enhanced suscep-

tibility and large upper critical field, in R,hi7Si.r [55] suggests a strong

Rh-Rh interactions which form a large density of states at the Fermi

leve,l. As we know the 3d orbitals form the bands in an iron-based su-

perconductors. Our group has reported a large elastic anomaly in C66 for

Ba(Fei-xCox)2As2 [56], analyzed this elastic anomaly by band picture.

Large elastic anomalies compared with those of iron-based materials have
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been reported in the A15 superconductor V3Si and the Laves-phase su-

perconductor CeRu2. In these compounds the anomalies have been as-

cribed to the large density of states at the Fermi level. So it is motivated

us to study the elastic properties of this sample.

6.0.2 Sample for the Ultrasonic measurement

              Figure 6.6: The picture of Rhi7Sis (upper),
              and pulse echo of this sample (down).

    In this research we have studied the longitudinal elastic constants

Cii, CL (CL =1/2 (Cii+Ci2+2C44)), and transverse elastic constants

C4.i and CE =1/2(Cii-Ci2). Sample was provided by Onuki, and Settai

from Osaka University. The sample which was used in the ultrasonic

measurement (the upper picture) and its echo shape (down picture) is

seen in Fig. 6.6. The echo shape seen in the picture was obtained after

polishing this sample. The tools for polish were pictured in Fig. 6.6. We

used PHTHALICGLUE t,o stabilize the sample on the polish set.
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                   Figure 6.7: Tools for the polish.

6.1 Experimental results and discussions

   Rhi7Sis has the cubic crystal symmetry, then it has three elastic c,on-

stantds Cii, C", and Ci2. We have measured all elastic constants for this

g.ample. As you can see in Fig. 6.7 all elastic constants show monotonic

incre,ase with decreasing temperature above certain temperatures and

then turn to decrease until superconducting phase transition tempera-

ture. The amount of softening is 6.63 oro, O.61 O/o, 1.66 oro, and 17.5 9o for

Cii. C", CL, and CE respectively. All elastic constants show an anomaly

at 5.4 K it corresponds to the superconducting phase transition. Among

them the CE (CE equals to 1/2(Cii - Ci2)) shows large elastic softening

of 17.5 91o.
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6.1.1 Magnetic field dependence of CE

  We have also studied the magnetic field dependence of elastic constant/

CE of this sample. When we increase the magnetic field the elastic

anomaly at T,, becomes small and shifts to low temperature side as

pictured in Fig. 6.9. Decreasing of T,, with the increasing of magnetic

field is corresponds to the magnetic field dependence of the resistivity of

this sample which was measured by R. Settai et al. [57].

6.1.2 Effect of band to the large elastic softening in CE

  Deformations of t,he lattice caused by sound waves or phonons modify

the charge distribution and lattice potential which leads to a coupling

between conduction electrons and phonon. It causes a temperature de-

pendence of elastic constants. According to the band ca}culations the

bands located above the Fermi energy at the 7 point form electron pock-

ets at M-points of the zone boundary. We believe that ifalarge density

of states exists at t,he M-point, an elastic anomaly may be caused. Fig.

?? is an illust,rat,ion for the effpct of band on t,he cryt tal deforinat,ion un-

der the n)f3 symmetry strain E.,, - syy. By the application of E,.. - Eyy, the

bands at two locations X. are pushed up and the others (Xy) are pulled

down. Maybe this illustration provides why the large elastic anomal.y

occurf i' n the elastic constant CE. A rigid two band model with constant

density of states NA, and NB gives

         CF - CP - (<d.> - (d.>)2 NA fA f./[NA fA + N. f.] (6.2)
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and for the special case

NA,B = No, <dA> = -<dB> = d and n - 2No(EF - Eo)

one obtains the so-called band Jahn-Teller formula

                   CF-Cg-2d2N,[1-eW/T] (6.3)

where CP is the back ground elastic constant, We adopted the back

ground of CP =AT+B with A= -O.OO13 GPa/K and B == 96 GPa, d

is the coupling constant, No is the density of states at EF. From the

adjustable parameter d2No and band width w were evaluated as 20.8 for

2d2No, and 29.5 K for band width. The fitting of eq. (3) to the elastic

softening in the experiments seems to be perfect, results are pictured in

Fig. ??.

  The large elastic anomalies compared with Rhi7Sis have been re-

ported in iron based superconductors Ba(Feirm.Co.)2As2, A15 supercon-

ductor V3Si and the Laves-phase superconductor CeRu2 so far [56, 58,

59]. These anomalies have been ascribed to the large density of states

at the Fermi energy. Fig. 6.11 describes the softening size of Rhi7Sis

with the iron based superconductor Ba(FeiL.Co.s)2As2 where x =O.084

and O.098. Both samples show large elastic softening towards to low

temperature and the softening behavior becomes to upturn at T,,.
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Chapter 7

Conclusion

  In this thesis we have reported elastic properties of iron-based super-

conductors Ba(FeiL.Co.)2As2,, and found the structural fluctuation in

C66 associated with the structural (Ts) phase transition, and strange in-

terlayer properties of Ba(Fei-.Co.)2As2, by studying it,s elastic constant

C33•

  In the studying of the elastic constant C66 structural quantum crit-

ical behavior was reported for Ba(Fei-.Co.)2As2. The QCP behav-

ior has also been reported by resistivity measurements and NMR of

Ba(Fei-ntCox)2As2[65]. The QCP behavior observed in NMR and elastic

measurement is expected to be of the same origin. The elastic constant is

not a sensitive measure of magnetism, but is a sensitive probe for orbitals

(quadrupoles), in contrast to NMR. Our measurement entails an obser-

vation from the side of orbitals (quadrupoles). Our studies show that

T,, was enhanced near the QCP, and we found the correlation between

the elastic softening and superconductivity.
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  Our results of C66 suggested the importance of orbital fluctuation in

the emergence of superconductivity. Starting from our reports, many

researchers have discussed the superconductivity based non the orbital

fluctuations. On the other hand. the structural fluctuation leads to an

in-plane order, and it possesses two-dimensional nature. However, an or-

der is hard to occur in two-dimensional systems, so three-dimensionality

is necessary for the occurrence of ordering. So we focused on our at-

tention to the three-dimensional character of this system by measuring

the elastic constant C33. In this study, we found inter-layer fluctuation

accompanying small lattice fiuctuation. It does not stop below Ts and

c,ontinues to TN. We obtained the GrUneisen parameter along e-axis. It

becomes small near the QCP. This is very important information, be-

cause it is a reflection of clT,,/dszz, which can be obtained only by elastic

constant measurements. The amount of softening in C33 was enhanced

near the QCP. In both resuks of C66 and C33, we found the correlation

of T,, with the superconductivity, and the enhancement of T,, near the

QCP. This fact might be used as a probe for the discovery of high T,,

materials. We could find high T,, materials through the exploration of

materials showing elastic softening.

  One question remains. Is the correlation between Tsc and S66,cr either

a particular phenomenon existing only in Ba(Fei-xCoar)2As2 or a univer-

sal one appearing in related materials including iron-based compounds?

Huge elastic anomalies have been observed not only in iron-based super-

conductors, but also in famous practical materials of A15 compounds

                            89



such as Nb3Sn and V3Si, and Laves phase compound CeRu2, so far.

More recently in our studies we have found very large elastic softening

in heavy fermion superconductor Rhi7Sis. On the other hand, elastic

anomaly associated with the adjacent magnetic order has been observed

in LSCO oxide superconductors, in addition to A15 compounds. How

about the similarities and dissimilarities between the elastic anomalies

in iron-based superconductors and those in other systems found in the

past. In the case of Ba122, EJrr is very large, which is in the range of

20 50 K, whose amount is similar in A15 compounds. In contrast, the

value of EJT in LSCO is estimated to be small at about 1 K. In heavy

fermion superconductor Rhi7Sis, the EJT is estimated to be 8.5 K.

  We are aware of that the materials, which show large elastic soften-

ing with large EJT, are all belonging to the substance group of tran--

sition metal compounds having a multi-orbital. It would be expected

that possible high T,, materials like iron-based superconductors would

be discovered around them.
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Chapter 8

Append.

IX

8.1 Analysis ofelastic constants

We consider the elastic properties of a crystal viewed as a homogeneous

continuous medium rather than as a periodic array of atoms. The con-

tinuum approximation is usually valid for elastic waves of wavelengths

A longer than 10-6 cm, which means for frequencies below 10ii or 10i2

Hz. Some of the material below looks complicated because of the un-

avoidable multiplicity of subscripts on the symbols. The basic physical

ideas are simple: we use Hook's law and Newton's second law. Hook's

law states that in an elastic solid the strain is directly proportional to

the stress. The law applies to small strains only. We say that we are in

the nonlinear region when the strains are so large that Hook's law is no

longer g. atisfied.

We specify the strain in terms of the components exx, eyy, ezz, eup, ege,

e,. which are defined below, We imagine that three orthogonal vectors

X, Y, 2 of unit length are embedded securely in the unstrained solid, as
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shown in Fig. 8.1. After uniform deformation of the solid has taken

place, the axes are distorted in orientation and in length. In a uniform

deformation each primitive cell of the crystal is deformed in the same

way. The new axes x', y', z' may be written in terms of the old axes:

                  x' = (1 + carx)5i[1 + Ea;giY + Exz2

                  y' =: E.,,, Sl+(1+Ez/y)Y+Eziz2 (8•1)

                  Z' = Ezx]ikl + EzzlS>' + (1 + Ezz)2

The coefllicient c.rs define the dcformation; they are dimensionless and

have values << 1 if the strain is small. The original axes were of unit

length, but the new axes will not necessarily be of unit length. For

example,

                X' ' X' =1+ 2Ec: +Eii,c +Eiiz/ +E?,]z (8'2)

whence [v' r-V- 1 + E.. + •••. The fractional changes of length of the X,Y

and 2 axes are cnv,Eyy,E.,, reg.pectively, to the first order.

 What/ is the effcct of the deformat,ion (8.1) on an atom originally at,

r = ,xX+yY+22? The origion is taken at some other atom. If the

(leformation is uniform, then after deformation the point will be at the

position r' = xx' + yy' + zz'. This is obviously correct if we choose

the X axes such that r = xk; then r' = xx' by definition of x'. The

displacement R of the deformation is defined by

          Ri r' -r- x(x' - X) +y(y' - Y) +z(z' - 2), (8.3)
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Figure 8.1: (Color online)

Deforrned in the strained state

or, from equation (8.1),

R(r) i (.Tc.x+ycy.+zczx)x'+(xE.y+y

zr

                            y'

                      xt
                  (b)

(a) The orthogonal unit axes in the unstrained state. (b)

                               C•y!/+ZCzy)Yl+([VCcz+3IEy.+Zc.,)Zt.

                                                       (8.4)

This ma.y be written in a more general form by introducing components

of displacement zL, v, w such that the displacement is given by

                 R(r) - iL (r)X+v(r)Y+w(r)2. (8.5)

If the deformation is nonuniform we must relate 'a, v, w to the local strain.

We take the origin ofr close to the region of interest; then comparison

of (8.4) and (8.5) gives, by Taylor series expansion of R using R(O) = O,

                     0iL Ou              XE:vx =XbTi yc:yx =ybiij; ete. (8.6)

93



It is usual to work with coeflicients e.B rather than E.s. W'e define the

strain components e.., eyy, e,2 by the relations

             01L 0v Ow  eg:x i Exx = s[tT; eyy =- Eyy = oj; ezz =- E.z = -s[tT; (8•7)

using (8.6). The other strain components e.y, eyz, e.. are defined in terms

of the changes in angle between the axes: using (8.1) we may define

                                      aze 0v
               e,,y =- x' ' yt ;: Ey`ll + Eary = 6ili7 + ZiiltTi

                                     0v 0w               eyz iy'•z' ;'t czy+Eyz = bTt + oj; (8•8)

                                     0iL OW
               ezx i zt • xt ;'Y Ezx + Cx2 == Z5Tt + 6Ft '

8.2 Dilation

The fractional increase of volume associated with a deformation is called

the dilation. The dilation is negative for hydrostatic pressure. The unit

cube of edges X, Y, 2 has a volume after deformation of

                        V'=x'•y'xz' (8.9)

by virtue of a well-known result for the volume of a parallel piped having

edges x',y',z'. From equation (8.1) we have

              1+Eca] (Exz/ Ecz
  x' • y' Å~ z' = (i zi ,, 1+ Ey,y cy. ;i!l 1+ e::v+ etyy + e... (8. 10)

                Ezx Ezz/ 1+ Ezz
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Products of two strain components have been neglected. The dilation 6

is then given by

                      vi -V                  6i v g'Y e.. +eyy +e... (8.11)

8.3 Stress Components

rl]he force acting on a unit area in the solid is defined as the stress. There

are nine stress components: Xx, Xy, X., Y., Yy, Y., Zx, Zy, Zz. The capital

letter indicates the direction of the force, and the subscript indicates the

normal to the plane to which the force is applied. In Fig. 8.2 the stress

components X. represents a force applied in the x direction to a unit

area of a plane whose normal lies in the [v direction; the stress component

Xy represents a force applied in the a; direction to a unit area of a plane

whose normal lies in the y direction. The number of independent stress

components is reduced from nine to six by applying to an elementary

cube (as in Fig. 8.3) the condition that the angular acceleration vanish,

and hence that the total torque must be zero. It follows that

               Yz=Zyl Zx -- Xzl Xy=Yx (8.12)

The six independent stress components may be taken as Xi,, Yy, Z., Y., Zx, Xy.

Stress components have the dimensions of force per unit area or energy

per unit volume. The strain components are ratios of lengths and are

dimensionless.
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Figure 8.2: (Color online) St/ress components force applied in to a unit area of a plane

whose norinal lies.

8.4 Elastic compliance and stiffness constants

Hooke's law states that for sufficiently sinall deformations the strain is

directly proportional to the stress, so that the strain components are
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l
Yx

Figure 8,3: (Color online) Stress components force applied in to a unit area of a plane

whose normal lies.

Iinear functions of the stress components:

    e.,. = SllX. + S12Yy + S13Z, + S14Y, + SlsZ. + S16Xyi

    eyy = S21X. + S22Yy + S23Z. + S24Y, + S2sZ. + S26Xyl

  e,, = S31X. + S32Yy + S33Z, + S34Y, + S3sZ. + S36Xyl (8.13)

    ey, = S41X. + S42Yy + S43Z. + S44Y, + S4sZ. + S46Xyl

    ez,i; = S51Xx + S52Yy + S53Z2 + S54Yz + S5sZx + Ss6Xyl

    e.y == S61X. + S62Yy + S63Z, + S64Y, + S6sZ. + S66Xyl
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     X. = Clle.. + C12eyy + C13ezz + C14ey. + Clse.. + C16exy;

     Yy = C21e.. + C22eyy + C23e., + C24ey. + C2se.x + C26ex•y;

   Zz = C3ie.. + C32eyy + C33e., + C34ey. + C3se.. + C36e.y; (8.14)

     Y, == C41e,,,,, + C42eyy + C43e.. + C44ey. + C4se... + C46e.yl

     Z. = Csle.. + Cs2eyy + Cs3ezz + Cs4ey. + Csse.x + Cs6e.yl

     Xy = C61env + C62eyy + C63e,, + C64ey. + C6se.. + C66e.yl

The quantities Sii, Si2••• are called elastic compliance constants or

elastic constants; the quantities Cii, Ci2••• are called the elastic stiff-

ness constants or moduli of elasticity. The S's have the dimensions

of [area]/[force] or [volume]/[energy]. The C's have the dimensions of

[force]/[area] or [energy]/[volume].

8.5 Elastic energy density

The 36 constants in (8.4) or in (8.4) may be reduced by several con-

siderations. The elastic energy density U is a quadratic function of the

strains, in the approximation of Hooke's law (recall the expression for

the energ: of a stretched spring). Thus we may write

                       66                     l                 U= i22 0AiL eAei, (s. is)
                      A=1 t.L =1

where the indicts 1 through 6 are defined as:

  lixx; 2!y,y; 3=-zz; 4ige; 5=-zx; 6=-xy; (8.16)
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The C's are related to the C's of (8.4), as in (8.18) below.

The stress components are found from the derivative of U with respect to

the associated strain components. rlihis result, follows from the definition

of potential energy. Consider the stress X. applied to one face of a unit

cube, the opposite face being held at rest:

       Xx =o2..U.. ! oO,K = Oiiei +ll,lil=,(Oi6+ 06i)es• (s•i7)

Note that only the combination 5(C.,B + C6.) enters the stress-strain

relat,ions. It follows that the elastic stiffness constants are symmetrical:

                        IN A.                  C(vfi =i(C(w+C6a•)= C,s(y (8`18)

rThus the thirty six elastic stiffness constants are reduced to twenty-one.

8.6 Elastic stiffness constants of cubic crystals

rl'he. nurnber of independent elastic g.tiffness constants is reduce,d further

if the crystal possess s: mmetry elements. We now show that in cubic

cryst•als there are only three independent stiffness constants.

We assert that the elastic energy density of a cubic crystal is

U = iCii(eZ• ,,+e2:,y+e2,.)+3C44(eZ.+eZ.+eZy)+Ci2(eyye..+e..e..+e,,,,,eyy),

                                                      (8.19)
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Figure 8.4: (Color online) Rot/at/ion by 2T/3 about, the axis marked 3 changeg. x -> yt ;

•y ez', and z- x..

and that no other quadratic terms occur; that is,

     (e...eyy +•••); (ey,e2. +•••); (e..ey. +•••); (8.20)

do not occur.

The minimum symmetry requirement for a cubic structure is the exis-

t,ence of four three-fold rotation axes. The axes in the [111] and quivalent

directions (Fig. 8.4). The effect/ of rot,ation of 2T/3 about these four axes

is to interchang the [v,y,z axes according to the schemes

              x-y-z-xl -x-z->y--xl                                                          (8.21)

             x-z--y->xl -x-y-z--xl
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according to the axis chosen. Under the first of these schemes, for ex-

ample,

                 eg.+eZ,+e?.. -> eZ,+e2..+eZ. (8.22)

and similarly for the other terms in parentheses in (8.19). Thus (8.19)

is invariant under the operations considered. But each of the terms

exhibited in (8.20) is odd in one or more indices. A rotation in the

set (8.21) can be found which will change the sign of the term, because

eaiy = -ex(-y), for example. Thus the terms (8.20) are not invariant

under the required operations.

It remains to verify that the numerical factors in (8.19) are coorect. By

(8.17),

                0U
                    == Xx = Ciie.. + Ci2(eyy +e..) (8.23)
               0exx

The appearance of Ciie.. agrees with (8.4). On further comparison, we

see that

               Ci2 = Ci3I Ci4 = Cis = Ci6 = O. (8.24)

Further, from (8.19),

                      0U
                          =Xy == C44e:i:y; (8.25)
                      0ex!y

on comparison with (8.4) we have

          C6i=C62=C63=C64=C6s=Ol C66=C44. (8.26)

Thus from (8.19) we find that• the array of values of the elastic stiffness
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constants is reduced for a cubic crysta} to the matrix

exxeyy ezzeyzezx exy

Xx CllC12 C12OOo

Yy C12Cll Ci2OO o

Zx C12C12CiiOO o

Y. oo OC44Oo

Zx oo OOC44o

Xy oo C44

                                                   (8.27)

For cubic cryfttals t,he stiffness and compliance constants are related by

Ci4 : 1/S441 Cii - Ci2 = (Sii - S,2)-il Cll + 2C,, = (S,1 + 2S12)ri

                                                   (8.28)

These relations follow on evaluating the inverse matrix to (8.27)

8.7 Elastic waves in cubic crystals

By considering as in Fig. 8.5 the forces acting on an element of volume

in t,he cr: stal we obtain the equation of motion in the x direction

                 pOa2t#=0oX.x+aoXyy+0oX.z;' (s.2g)
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here p is the density and iL is the displacement in the x direction. There

are similar equations for the y and z directions. From (8.4) and (8.27)

it follows that for a cubic crystal

     o2 •u,                             0ezz                                             0ezx                       Oe                                       ae.y             Oexx   Pot2 -- Cii o. +Ci2( aiY+ o. )+C44( oy + o. )I (8•30)

here the x, y, z directions are parallel to the cube edges. Using the

definitions (8.7) and (8.1) of tlie strain coinponents we have

                   02u 02u                                         02v 0w  02u           o2u
 Pot2 == Ci'ox2 + C"(oy2 + oz2)+(Ci2+ C")(o.oy + o.o.)l (8'31)

where iL, v, w are the components of the dig. placement R as defined by

(8.5).

The corresponding equations of motion for ge1'g' and !i7igiW, are found directly

from (8.31) by symmetry:

                      02v 02v    o2v             o2v                                            0iL 0W
   Pot2 = Ciioy2 + C"(o.2 + o.2) + (Ci2 + C")(oa]oy + oyo2)l

                                                      (8.32)

                      o2w a2w   o2w            o2w                                             02i, 0V
  P ot2 = Cii oz2 + C`4( ox2 + ay2) + (C`2 + C44)(oxoz + oyoz)I

                                                      (8.33)

we now look for simple special solutions of these equations.
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                                 Ax

Figure 8.5: (Color online) Cube of volume AxAyAz acted on by a stress -X.(x) on
the face at x, and X.([c + Ax) = X.(x) + <lit xm Ax.

8.8 Waves in the [100] direction

One solution of (8.31) si given by a longitudinal wave

                     iL= zLoexp [i(Kx-cat)] (8.34)

where u is the x component of the particle displacement. Both the

vLravevector and the particle motion are long the x cube edge. Here

K = 2T/A is the wave vector and av = 2Tv is the angular frequency. If

we substitute (8.35) into (8.31) we find

                         av2p=CnK2 (8•35)

thus the velocity w/K of the longitudinal wave in the [100] direction is

                  v, =vA == w/K=(Cii/p)'/2. (8.36)
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Consider a transverse or shear wave with the wavevector along the x

cube edge and with the particle displacement v in the ?y direction:

                     v- voe up[i, (Ka;-wt). (8.37)

On subg.titution in (8.33) this gives the dispersion relation

                        w2p= C44K2; (8.38)

thus the velocity av/K of the transverse wave in the [100] direction is

                        'v,=(C44/,o)i/2. (8.39)

The identical velocity is obtained if the particle displacement is in the 2

direction. Thus for K parallel to [100] the two independent shear waves

have equal velocities. This is not true for K in a general direction in the

crystal.

8.9 Wave in the [110] direction

There is a special interest in waves that propagate in a face diagonal

direction of a cubic crystal, because the three elastic constants can be

found simply from the three propagation velocities in this direction.

Consider a shear wave that propagates in the a;y plane with particle
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displacement w in the z direction

               w= woexp [i(K. cv + k,y) - cut)], (8.40)

whence (??) gives

               cu2p - C44(Kg + K,,2) = C44K2, (8.41)

independent. of propagation direction in the plane.

Consider other waves that propagate in the xy plane with particle motion

in the xty plane: let

 u = uoexp [i(K.x + K,y - wt)]; v = ?Jo exp [i(K.x + K,y - wt)]. (8.42)

From (8.31) and (8.33),

      w2pzL == (C,,KZ + C44K3)iL + (Ci2 + C44)K.K,vl
                                                 (8.43)
      av2pv = (CiiK,2 + C44Ke)v + (Ci2 + C44)K.Kyze;

This pair of equations has a particularly simple solution for a wave in

the [110] direction, for which K,i = K, == K/Vi}. The condition for a

solution is that the deterininant of the coeflftcie,nts of ?L and v in (8,44)

should equal zero:

      -w2p + Å}(Cii + C44)K2 3(Ci2 + C44)K2
                                                 (8.44)
         3(Ci2 + C44)K2 -w2p + 3(Cii + C44)K2
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This equation has the roots

    w2p = 3(c,, + c,2 + 2c44)K2I cu2p == S(Cll - C,2)K2
(8.4Jr)

T"he first, root describes longitudinal wave; the second root describes a

shear wave. How do we determine the direction of particle displacement?

The first root when substituted into the upper equation of (8.44) gives

 S(Cii + Ci2 +2C44)K2zt = S(C,, + C,,)K27L + S(C,,+ C,,)K2v, (s.46)

whence the displacement components satisfy u = v. Thus the particle

displacement is along [110] and parallel to the K vector (Fig. 8.6). The

second root of (8.45) when substituted into the upper equation of (8.44)

gives

   S(Cii - Ci2)K2u = S(Ci, + C,,)K2 iL + S(C,, + C,,)K2v, (s.47)

whence u = -v. The particle displacement is along [110] and perpen-

dicular to the K vector.
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Figure 8.6: (Color online) of elastic
waves in the principal propagation directions in cubic crystals,

8.10 Elastic stiffness constants of tetragonal crys-

       tals

The minimum symmetry requirement for a tetragonal structure is the

existence of four four-fold rotation axes. A rotation through 900 about

z has the effect x -> y -> -x,2 -> z. Applying this operation to the

energy density (8.15), and equating the coeMcient,s of the corresponding

terms in (8.15) and in the transformed expression, we find the following

conditions on the elastic constants:

  Cll == C12, C44 = Css, C13 = C23, C16 = -C26, C34 = -C3s,
                                                    (8.48)
        C14 == C2s = Cls = C24 = C36 = C4s = C46 = Cs6 =O

       Z: [OOI] Z: [OOI]

       T, T, L!IK
y: [OIO] y: [OIO] T                           y: [OIO]        LK T
    x: [100] x: [100]
   Wave in [110] direction Wave in [111] direction

  L: ;(Cll + C12 +2C44) L: g(C,1 + 2C,2 +4C44)

  Tl: f]44 T: i(Cll-C12+C44)
  T2: i(Cll - C12)

Eff'ectijve elastic const,ant,s for t,he tliree modes
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This reduce the number of independent elastic constants to eight and

elastic energy density becomes

   U = -l (eZ. + eZy) + 3C33eZ. + Ci2e..ey•g + Ci3(exx + eyy)ezz

                     +Ci6(exx - eyy)e..y + C34(eyz - e..)eee (8.49)

                             +Sc44(eZ. + ez.,) + gc,,ez,

Tetragonal structure also includes two-fold semmetry about the x or y

axis. Consider a rotation through T about z axis, which has the effect

y --> -y, z - -z, :v -> cv. Applying this on the energy density (8.50), vLTe

find that all terms remain invariant except the two involving coeflicients

Ci6 and C34,, which must vanish. The final form of the energy density is

then

            u = -I Cii(eg. + eY',) + SC33eg. + Ci2exxeyy

                  +Ci3(ea:x + eyy)e,, + 3C44(eZ. + eg.) (s.Jro)

                                         +iC66e2,

The stress components are found from the derivative of U with respect to

the as,s.()ciated strain component. This result follows from t,he definit,ion

of potential energy. Consider the stress X.x applied to one face of a unit,
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the opposite face being held at rest so that we can obtain

               0U
                   = Xx = Ciiexx + Ci2eyy + Ci3e,. (8.51)
              0env
               ou
                   = Yy = Ci2exx + Ciieyy + Ci3e,. (8.52)
               0eyy
                0U
                    = Zz = C33ezz + Ci3(e.. +eyy) (8.53)
               Oezz
                       0U
                          =Xy=C66exy (8•54)                      0exy
                       0U
                           =Y2 == C44e,yz (8.55)                      0eyz
                       OU
                          =Zx=C44ezx (8t56)                      ae,.

                                                        (8.57)

It can be seen that any other transformation of tetragonal structure leave

t,he bi}inear form (8.57) invariant, so that the-,re is i}o furt•her simplifiea--

tion. A tetragonal crystal has six independent elastic constants, and

matrix of elastic constants reduces the form

                      Cii Ci2 Ci3 OOO               Xx                                            exx

               Yy C12 Cll C13OOO eyy
               Zz                      Cl ,3 C13 C33 O O O egz
                   = (8.58)               Y. O O O OOO e,,
               Zx                       o o o ooo                                            ezx

               x, oooooo                                            exy
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8.11 Elastic waves in tetragonal crystal

The force has been indicate by the mass of the tetragonal and times

the components of the acceleration in the x direction. The mass is

pAxAyAz, and the acceleration is il?il;i,L, so it takes

    o21L                             0ezz                                              0ezx                     0eyy                                      0exy            0exx
  Pot2 == Cii ox +Ci2 ox +Ci3 ox +C66 oy +C44 o. (8'59)

here the strain components are

         0ZL 0V 0W    exx=it3ii.xl oe.yy=Z5i71 eoXi=itiliii,I a,, o. (s•60)

    eyz=-oz+'bi7I ezx==doz+6EtTI exiy=doy+EFt:i

from this formula we can get

                         o2IL         o2u o2u                 o2u                                       o2v                                                     o2w
P ot2 = C'i o.2 + C66( oy2 + C44 o.2 + (C'2+ C66) oxoy +(Ci3+ C44) o.ox

                                                     (8.61)

The corresponding equations of motion for ge?g and tli?gZW, are

         02v                  02v                                         a21v a2v                          o2v                                                        o2u•
Pot2 = Ciioy2 + C66(o,,2 + C44o.2 + (C'2 + C44)oyo. + (Ci2 + C66)o,,o,y

                                                    (8.62)

          o2w                   02w o2w                           o2w                                          o2u                                                          o2v
P ot2 == C44 o,,2 + C44( oy2 + C33 oz2 + (Ci3 + C44)o,,o. + (Ci3 + C44)oyo,r

                                                    (8.63)

"Je now look for simple special solutions of these equations.
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8.12 Waves in the [100] direction

On the solution (8.31) is given by a }ongitudinal wave

                   u(K) = uoe[vp [i (K[c - cut), (8.64)

where u is the x component of the particle displacement. Both the

wavevector and the particle motion are along the x direction. Here

K = 2T/A is the wave vector and w = 2Tv is the angular frequency. If

we substitude (8.35) into (8.31) we find

                         ev2p=CiiK2 (8.65)

thus the velocity cu/K of a longitudinal wave in the [100] direction is

                   vL = vA = cu/K - vili5I'I7i5. (s.66)

Consider a transverse or shear wave with the wave vector along the x

direction and with the particle displacement v in the y direction:

                    v(K)-voexp[i(Kt-wt)] (8.67)

On the substitution in to (8.31) this gives the dispersion relation

                         ee2p= C66K2; (8.68)
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thus the velocity av/K of a transverse wave in [100] direction is

                        VT- (C66/P) (8.69)

If the particle displacement v in the z direction, we find the velocity

w/K of a transverse wave in the [100] direction is

                        vT=: (C44/p) (8.70)

8.13 Waves in the [OOI] direction

On the solution (8.31) is given b: a longitudinal wave

                   w(K) = wo exp [i (Kz -wt)], (8.71)

where w is the z component ofthe particle displacement. Both the wave

vector and the particle motion are along the z direction. Here K = 2T/A

is the wave vector and cu = 2Tv is the angular frequency. If we substitute

(8.35) into (8.31) we filld

                         ev2p=C33K2 (8.72)

thus the velocity w/K of a longitudinal wave in the [OOI] direction is

                   wL == vA-cu/K= viEiEIIII7ZI. (s.73)
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Consider a transverse or shear wave with the wave vector along the 2

direction and with the particle displacement 2L in the x direction:

                   u(K) - zLoea]p [i(Kt - cut)] (8. 74)

On the substitution in to (8.33) this gives the dispersion relation

                        w2p=C44K2; (8.75)

thus the velocity w/K of a transverse wave in [OOI] direction is

                       zeT- (C44/p) (8.76)

If the particle displacement v in the y direct,ion, we find t,he velocit,y

w/K of a transverse wave in the [OOI] direction is

                       VT- (C44/P) (8.77)

8.14 Waves in the [110] direction

Consider a shear wave that propagates in the ury plane with particle

dig.placement w in the z direction

                 w= woexp [i(K.x+ K,y-wt)] (8.78)
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if we substittite this into (8.68) we find

                   av2p=C44K2 (8.79)

independent of propagation direction in the plane.

Consider other waves that propagates in the xy plane with particle mo-

t•ion in the [rcy plane: let

              u= iLoe[cp [i(K.x+ K,y- cut)] (8.80)

              v == voexp[i(K.x+ K,y-wt)] (8.81)

from (8.31) and (8.35),

         ev2pzL = -i (Cii + C66)K2u + 3(Ci2 + C66)K2v (8.82)

         w2pv == S(C,,+ C,,)K2iL + S(Ci,+ C66)K2v (8.83)

rl]he condition for this g. olut,ion ig. that the determinant of the coefficients

of 7L and v in (8.44) should be zero:

     -av2p + 3(Cn + C66)K2 5(Ci2 + C66)K2
                                            (8.84)
        5(Ci2 + C66)K2 -w2p + 3(Cii + C66)K2

This equation has the roots

   cu2p == 3(C,,+ C,,+2C66)K21 av2p = S(C,,- C,,)K2 (s.ss)
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How do we determine the direction of particle displacement? The first

root when substituted into the upper equation of (8.44) gives

 i(Cn + Ci2+2C66)K2?L = i(Cii + C66)K2ze +Å}(Ci2+ C66)K2v, (8.86)

whence the displacement components satisfy u = v. Thus the particle

displacement is along [110] and parallel to the K vector (Fig. 8.7). The

second root of (8.20) when substituted into the upper equation of (8.44)

glves

   g(Cii - Ci2) K2 7L = S(C,, + C,,)K2 ze + S(C,, + C,,)K2v, (8.87)

whence ze = -v. The particle displacement is along [110] and perpen-

dicular to the K vector.

             Z: [OOI] Z: [OOI] Z: [OOI]

    L
  K

x: [I OO]

L: Cn
Tl: C44

T2: C66

(Color

Tl

        T2

Wave in [100] direction

Figure 8.7: online)
waves in the principal propagation directions in tetragonal crystals.
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