Chapter 4

Large elastic anomalies in Cgg

In this chapter we will discuss on the large elastic softening in Cgg.
Fig 4.1 shows the T dependence of Cgg for the samples with z = 0, 0.037,
0.060, 0.084, 0.098, 0.116, 0.161, and 0.245. Cig significantly decrecases
as T decreases. Although a decrease in elastic stiffness is a common
feature of structural phase transition. The amount of softening, i.e., as
much as 80% for Ba(Feggg3C00.037)2A82, is unprecedentedly large. The
softening in Cyg corresponds to a symmetry change from tetragonal to
orthorhombic. This is consistent with the result of the structural analysis
of this material, where the space groups are I4/mmm and Fmmm for
the high- and low-temperature phases, respectively.

The decrease in Cgg with decreasing T is prominent for x = 0, 0.037,
which follow the disappearance of the signal at structural transition tem-
peratures Ty = 141K (x = 0), 84.7K (x = 0.037). The data below Tg
were not plotted for = 0 or 0.037, because the sound echo signal disap-

peared in a certain temperature range below Ty, which may be ascribed
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about anomalies in the corresponding Cgg and %(Cn — (C'3). The strain
exy can couple with the orbital (quadrupole) Oyxy. We can calculate
the strain susceptibility based on a localized picture of d electrons:

0
X66
Cog = Cro — NN —296 _ — O
66 66,0 1 [Xga 66,0

(4.1)

where A, I and N are the coupling constant, intersite interaction, and
number of atoms per unit volume. Here, we adopted the form x5y =<
(Oxy)? > /T for localized d electrons. Here, we introduce the elas-
tic compliance S;;, which is a component of the inverse C;; matrix. In
eq. 4.1, the transition occurs at T, where the lattice shows instability.
Elastic compliance represents the "structural” susceptibility of elastic
systems, and corresponds to the magnetic susceptibility y in magnetic
systems. The experimentally observed Sgs (= CL%) can be decomposed
into the sum of the anomalous contributions that exhibit critical behav-
ior, Sger, and the normal contribution (background) Sgg o

Er
T—1,

Se6 = 526 + S6,er = Se6,0(1 + ) (4.2)

where E;r = T — ©. Ejp stands for the JahnTeller energy, an energy
scale that corresponds to the strength of the electron-lattice coupling.
Note that this formula has the same form as the CurieWeiss susceptibility
of ferromagnetic materials.

For the analysis, we employed the data of Ba(Feg 755Co0q.945)2Asy for

Se6,0, and subtract it from the other data. Figure 4.3 shows the inverse
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of exy occurs below Tk.

4.1.2 Analysis based on band picture

The T dependence of Cyg in the overdoped region can be explained
by a band picture instead of by eq. 4.2. Large elastic anomalies com-
pared with those of iron-based materials have been reported in the A15
superconductor V3Si and the Laves-phase superconductor CeRuy so far
[32, 33]. These anomalies have been ascribed to the large density of
states at the Fermi energy. 3d orbitals form bands in an iron based su-
perconductor. The bands located above the Fermi energy at the I'-point
form hole Fermi surfaces and electron pockets at M-points of the zone
T

X 0] direction

a’a’

boundary[34]. In addition, the band nesting along the |
is a key feature in iron-based superconductors. Here, we will consider the
effects of bands. The bandwidth is affected by the crystal deformation,
because the electron transfer (namely, transfer integral) between iron
atoms would be modified by the lattice distortion. Therefore, equivalent
four M-points in the tetragonal lattice do not become equivalent under
the application of the strain € xy, as shown in Fig. 4.4. For example, the
width of the bands at the Brillouin zone boundary M; and M3 in Fig.
4.4 becomes large, and those of the bands at M, and M, become smaller
under the application of exy. This process gains the electronic energy,
and looses the elastic energy. The amount of deformation is determined

by the energy valance of the electronic and lattice energies. The formula
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The band effect discussed here is called the electronic redistribution
mechanism [36] and is applicable to systems having a low resistivity.
It is supported experimentally. The resistivity of this system becomes
lower in the overdoped region than in the underdoped region. Band
nesting along the [Z,Z,0] direction is a characteristic feature of iron-
based superconductors. We have no tool for analyzing elastic data on
the basis of band nesting. However, we infer that it has a similar effect

to that discussed above, and may cause Cgg softening.

4.2 Quantum criticality

Figure 4.6 shows a summary of the phase diagram of Ba(Fe;_,Co, )2 As,.
The Co concentration dependences of Ts and Ty, are highly consistent
with previous results[37]. We found two characteristic temperatures, i.e.,
T* and 1,,4.. A possible explanation for T™ is the crossover from the non-
Fermi liquid region to the Fermi liquid region. The boundary from the
non-Fermi T dependence to the Fermi liquid 7% dependence observed
in the resistivity measurements is not clear for Ba(Fe;_,Co,)sAs9[38].
However, the behavior observed in BaFey(As; ,P,)s is similar to that
observed in the present study including the x dependence of the crossover
region(39].

We found 7,4, which corresponds to the temperature at which Sgg
takes its maximum (at which 1/Sg6. takes its minimum), as shown

in Figs. 4.3 and 4.7. For highly correlated electron systems such as
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4.3 Correlation between elastic anomaly and super-

conductivity

We now discuss the relationship between elastic anomaly and super-
conductivity. As seen in the inset of Fig. 4.7, the amount of 1/Sgs
is proportional to x — z¢, where z¢ is the QCP concentration of Co;
zo= 0.07 for this system. Such a behavior is well known at the y of the
magnetic QCP. It is surprising that such a well-known behavior holds
in this system with respect to Sgs instead of y for the magnetic sys-
tem. As shown in the same figure, Ti. decreases with increasing x — z¢.
Therefore, we can recognize an apparent correlation between Ty, and
1/Sg6.cr, such that T, is a function of 1/S5.-. The explanation for this
interesting fact is speculated to be as follows. As shown in Fig. 4.8,
the underdoped sample exhibits a small anomaly at Ty., while a large
upturn at Ty is seen in the overdoped samples. Once the system enters
the orthorhombic phase from the tetragonal phase, structural fluctua-
tions are suppressed in the ordered phase. In the overdoped samples,
however, structural fluctuations still survive even at 7,.. The amount
of anomaly at T correlates with the peak height of Sgs.., which is a
measure of structural fluctnation. The large anomaly at T}, for the over-
doped samples suggests a strong coupling between structural fluctuation
and superconductivity. These facts suggest that the origin of Sgs... is

deeply related to the emergence of superconductivity.
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Chapter 5

Strange inter-layer properties

appearing in (33

In this chapter we concentrate on our mind to the anomalous in Css.
As shown in Fig. 5.1 shows the temperature dependence of elastic con-
stant C'33 for all samples. One can see in the figure that, all samples
show monotonic increase with decreasing temperature. The samples of
x = 0, 0.037 show elastic softening at ITx and 7g. Overdoped sam-
ples of x = 0.084, 0.098, and 0.116 show a step-wise elastic anomaly
at Ty.. Nearly optimal-doped sample of x = 0.060 shows remarkable
clastic anomalies at Ty, and Ty. The appearance of elastic anomaly in
(33 for under-doped, optimal doped, and over-doped samples would be
reflected from a three-dimensional character of the iron-based supercon-
ductor Ba(Fe;_,Co,)9Asy. Next, we will report peculiar physical prop-
erties of Ba(Feq94Cog gg)2Ass, which is located near to the QQCP. For this
Co concentration, we have studied the elastic properties, specific heat

and electrical resistivity for two samples of different batch. A clear sam-
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constants Cs3 and Cge. Cgg shows large elastic softening from room
temperature to low temperatures, and an inflection at Ts. In the case
of Cgg, both samples show elastic softening at Tg, but a small elastic
anomaly was observed at 7. and no anomaly at Tx. On the other hand,
Cs3 shows a remarkable softening from 50 - 60 K towards Ty and Ti.. Css
drops steeply below a certain temperature above Ty, which is considered
to be Ty. Cs3 shows a minimum near 7., and increases rapidly with
decreasing temperature. Precisely, sample B shows a step-wise anomaly
at Ty, while sample D shows no such anomaly near T,.. It would be
noted that both samples show no anomaly at T5s.

According to specific heat and resistivity in Figs. 5.2(e) and (f),
specific heat anomaly was observed at T, and no anomaly at Ty. The
(33 in sample B and sample D show rather large softening towards Ty
and/or T,.. The amount of softening is 0.2% for sample B and 0.5% for
sample D. For this analysis, it would be interesting what is the main
factor for the softening in which, it starts from high temperature region
such as 50 - 60 K. In general, it has been told that fluctuations associated
with superconductivity does not start from such a high temperature,
and appear just above Ti.. They cannot bring a large elastic softening.
To the best of our knowledge, the largest elastic softening associated
with superconductivity appears in organic superconductor x-(ET),X (X
= Cu(NCS)2, Cu[N(CN)y|Br), which was found by Simizu.[45] Even in
this case, the softening starts from 1.27;. at most. On the other hand

the softening in Cs3 starts from almost 27, for sample B and 37T, for



sample D, it implies that the elastic behavior in Cs3 is not from the
superconducting origin. From our results, we would like to conclude that
the anomaly in Cs3 is possibly ascribed to magnetic origin, although the
origin still is an enigma.

We have also studied the ultrasonic attenuation « of the longitudinal
elastic waves propagating along the c-axis for both samples. In Figs.
5.2(c) and (d), Cs3 and « are depicted as a function of temperature
in an expanded scale. Although there are precise differences between
sample B and D, we found interesting common features in C33 and a.
The o shows a maximum at around 7. and an additional peak below
T.. for both samples. Similar maximum in the ultrasonic attenuation
was reported for BaFe; g5Nig5Ass polycrystalline[46]. Usually, the ul-
trasonic attenuation decreases below T,.. Historically, some heavy elec-
tron superconductors UBe;3 and UPt3 showed an ultrasonic attenuation
peak below T,., which was discussed theoretically based on Landau-
Khalatnikov damping mechanism[48, 47, 49]. It is associated with the
relaxation of order parameter amplitude, which was found in superfluid
He at first.[50] From the same point of view as Heavy fermion supercon-
ductor, the coupling between the superconducting gap amplitude and
long wave length phonon was discussed for the case of a charge density-
wave (CDW) compound NbSe,y.[51] The attenuation peak below 7. for
Ba(Fe(.94Cog.06)2Asy would be caused by the same origin as the Heavy
fermion superconductors and /or CDW compound, but the origin is still

open.
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For over doped samples, C33 shows a small but sharp softening to-
wards T results are shown in Fig. 5.3. In elastic constant measure-
ments, there are two types of coupling between the order parameter M
and elastic strain €. One is bilinear coupling having the form of Me,
the other one is magneto-elastic coupling having the form of M?e. Bilin-
ear coupling brings about large elastic softening from high temperature,
which was seen in Cg. On the other hand, magneto-elastic coupling
brings only a step-wise elastic anomaly. In general it does not show
large anomaly compared to the bilinear coupling. In 6.0 % doped sam-
ple, the softening in Cs3 starts from high temperatures, which resembles
that the large softening in C'33 originated from the bilinear coupling. It
would be possible origin for (33 anomaly, but it is an enigma. Impor-
tant point is that there is no anomaly at 75, but there is an anomaly at
T'vy. This fact suggests the importance of magneto-elastic coupling in C'3
elastic anomaly. For over doped samples, C33 shows a small but sharp
softening towards T, so the elastic anomaly in Cs3 for £ = 0.060, 0.084,
0.098, and 0.116 suggests that the coupling between the order parameter
and clastic strain is M?e.

In Fig. 5.3, we plotted a relative amount of softening, which is normal-
ized the data at 120 K as AC33/Cs3 (2, T) = C33(24.5%,T)/Cs3 (x, T) —
1. The normalized data ACy3/Css merge at 120 K. Overdoped sam-
ples show remarkable step-wise anomaly at T,.. Unlike 6.0 % doped
sample, obove the T, in overall temperature range, overdoped samples

show monotonic increase with decreasing temperature. However when
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where 7. is the superconducting phase transition temperature, Cr is the
bulk modules.

Firstly, lets define the derivation of the uniaxial-pressure function of aaf—p
The Ehrenfest relationship in thermodynamics is established at the time
of second order phase transition. Following equation holds change does

not occur in entropy before and after the transition to the secondary

phase transition.

51(Tsc,p) = SQ(Tscap) (5~3)

make a full differential for both sides, it will be change,

0S: 051 052 059
dT, — = dTy, — d 5.4
<8T‘5(ﬁ>p ( * < ap )TSC dp (aTs‘C)p i < ap >Tsc g ( )

here,
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{ bC p Tsc p} 8p T 8]9 T
1
T,

. 6Vm1 anQ
~(Co = o) e = {((mc)p— (aTSC)p}dp (5.8)

I 1 AB

Op  VAC, Ty (59)

where AfS is the volume expansion, if we replace the volume expansion
by the linear expansion coefficient Aq, uniaxial-pressure dependence of

T.,. becomes

0T, 1 Ag;
Plse 2O (5.10)
dpi vV ACp/TS‘C
then the Griuneisen constant takes the definition of
Cr 0T
QO = — 5.11
Tsc 8pi ( )

on the other hand, the elastic constant from the second derivative by

the distortion of the free energy F
F=Tf(T-T,) (5.12)

if this form differentiated by the strain e, then it becomes

8F o g_ . _ 8f(T - Tsc) . 8T9(5
g N Os {Tf(T TSC)} =1 8(T - TéC) Oe
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by further differentiating

Cr = ?_ZE o _a_ {_Taf(T— Tsc) . 8Tsc}
P92 T 0 T —Ty) Oe
. Tazf(T - Tsc) (&)2
(T —Ty)? \ Oe

in addition, entropy S and internal energy U is become

Uv=rF+T1s, S—- (%%
aT ),

S0, we can write it

therefore, the specific heat Cy is,

N et

Lo, QUH/T) g OUF/T)

AT — Ty T — T )?

here, considering only the second term we can get

PFT-T.)  ACy
a(T - TSC) B TSQC

if we input this formula in to 5.14 then,

TSC aYﬂ’SC ?
ACF_.—E-ACV< = )
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the definition of Griineisen constant €2 from 5.2

ACr = —T, . ACy$)?

ACT
ACy T

(5.20)
-

In this research we ha calculated the The Griineisen constant from

the jump in specific heat and the jump in elastic moduli at T, by
AC = —Q2AC T (5.21)

The jump at the superconducting phase transition temperature of Css3
and the heat capacity were pictured in Fig. 5.4 for under doped region,
and in Fig. 5.5 for over doped region. The jumps in C; for overdoped
samples at T,. was pictured in Fig. 5.5.

Gruneisen parameter has a small value near the QCP, and gradually
increases with the increasing of Co concentration in over-doped region.
Our estimation can be checked by the previous works. The Griineisen
parameter defined by

1 dT.

Qg = —— . 5.22
- fFsc dsi ( )

Here the uniaxial strain dependence d7;./de; is related to uniaxial pres-

sure dependence of T;. as
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et al. reported these values of d1y./dp; for 3.8 % and 7.4 %, and Hardy
ct al. reported it for 8.0 %. Bud'ko et al. obtained dTy./dp, = —4.1
K/kbar and dTy./dp. = 1.7 K/kbar for 3.8%, dT,./dp, = 0.3 K/kbar
and dT./dp. = —2.6 K/kbar for 7.4% [29]. Hardy et al. obtained
dTy/dp. = 3.1(1) K/GPa and dTi./dp. = —7.0(2) K/GPa for 8% [30]
from thermal expansion measurement. We used these values of C}q, Css
and Ci9 to be 109.2 GPa, 78.7 GPa and 43.46 GPa, respectively, for
the calculation. Since Cy3 cannot be obtained by our measurements, we
assumed it to be the same value as (5. In the case of 8% doped sample,
Griineisen constant and dT,./dez; are evaluated to be 14.2 and 282 K,
respectively. The value of €2 is consistent with our result. On the other
hand the predicted values did not achieved for 3.8% and 7.4%, it is ten
times larger then our value. In the case of 3.8%, the calculated values
are 716 K for dTSC/dezz and 102.3 for Grineisen constant, and 2037 K
and 97 for 7.4%. They are inconsistent with our results and Hardy et al.
The reason of the differences is an enigma. Here, we have to attention to
the sign of the Griineisen parameter. We cannot obtain the information
about whether €2 is positive or negative, when it is evaluated from 5.21.
On the other hand, 5.22 - 5.24 give its sign. dT./dp. is positive for
underdoped samples, and negative for overdoped region. dT,./dp, has
an opposite sign of dT./dp.. Since the 6.0 % sample is located in the
underdoped region, the sign of 2 might be negative. In addition, as
long as hydrostatic pressure concern the changing of T, is positive for

underdoped samples, and negative for overdoped samples. This behavior
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Table 5.1: Estimated values of Ty, ACs3, and AC,/T,. and calculated strain depen-
dence of dT./dp,., dT,./de.,., and Q for 6%, 8.4%, and 9.8%.

x-Co(%) 0.06 0.084 0.098
T (K) 24 16.7 20.6
ACy; (102GPa) 1.5 2.5 1.96
AC,/Ts 33 23 15
(mJ/mol- K?)

dTy./dp, K/GPa 1.84 2.32 2.49
dT,./dp, K/GPa 1.9 4.2 5.3
dTyc/deyy 163 258 280
dT,./de . 160 334 420
| 2 a3 6.7 16.2 25.2
| Q|1 6.8 12.5 16.8

is similar to c-axis uniaxial pressure dependence of this system.[?] This
implies that hydrostatic pressure dependence is due to the c-axis.

The calculated results of both dTi./de, and dTi./de. as a function
of Co-concentration dependence re-listed in Table I for the overdoped

samples.
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Chapter 6

Large elastic softening in heavy

fermion superconductor Rh{7Ss

6.0.1 Introduction

Rh17S15 mainly found near the Miass river in south part of Ural moun-
tains in Russia. This compound firstly found by Matthias in 1954. Until
now many minerals were found in this area. Rh17515 belongs to the cubic
space group Pm3m with a lattice constant of 0.99093(2) nm. As shown
in Fig. 6.1a (a), it contains a cage in the center of the structure. Oth-
erwise the structure contains 2 f.u. with 64 atoms in the unit cell. As
pictured in Fig. 6.1b (b), it contains four rhodium sites (1b, 3d, 6e and
24m), and three sulfur sites (12i, 12j and 6f )|. One of the important
features of this structure is that the Rh(3d) has two Rh(6e) neighbors
at 0.258 nm which is shorter than the nearest neighbor Rh-Rh distance
(0.269 nm) in a cubic Rh metal. As shown in Fig. 6.1, it shows a super-
conducting at 5.4 K, and exhibiting shoulder like behavior around 100
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6.1.1 Magnetic field dependence of Cg

We have also studied the magnetic field dependence of elastic constant
Cg of this sample. When we increase the magnetic field the elastic
anomaly at Ty, becomes small and shifts to low temperature side as
pictured in Fig. 6.9. Decreasing of Ty, with the increasing of magnetic
field is corresponds to the magnetic field dependence of the resistivity of

this sample which was measured by R. Settai et al. [57].

6.1.2 Effect of band to the large elastic softening in Cg

Deformations of the lattice caused by sound waves or phonons modify
the charge distribution and lattice potential which leads to a coupling
between conduction electrons and phonon. It causes a temperature de-
pendence of elastic constants. According to the band calculations the
bands located above the Fermi energy at the v point form electron pock-
ets at M-points of the zone boundary. We believe that if a large density
of states exists at the M-point, an elastic anomaly may be caused. Fig.
77 is an illustration for the effect of band on the crystal deformation un-
der the v3 symmetry strain €,, —€,,. By the application of €,, — ¢, the
bands at two locations X, are pushed up and the others (X,) are pulled
down. Maybe this illustration provides why the large elastic anomaly
occurs in the elastic constant Cg. A rigid two band model with constant

density of states N4, and Np gives

Cr = Cp — ((da) — (dp))*Nafafp/[Nafa+ Npfs] (6.2)
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and for the special case
NA,B = NO, <dA> = —<dB> —dand n = QNO(EF — E())

one obtains the so-called band Jahn-Teller formula
Cr = Cf — 2d°Ny[1 — /7] (6.3)

where CS is the back ground elastic constant, We adopted the back
ground of CY=AT+B with A= -0.0013 GPa/K and B = 96 GPa, d
is the coupling constant, Ny is the density of states at Er. From the
adjustable parameter d’?/Ny and band width w were evaluated as 20.8 for
2d’ Ny, and 29.5 K for band width. The fitting of eq. (3) to the elastic
softening in the experiments seems to be perfect, results are pictured in
Fig. 77.

The large elastic anomalies compared with Rh;7S;5 have been re-
ported in iron based superconductors Ba(Fe; ,Co,)2Ass, A15 supercon-
ductor V3Si and the Laves-phase superconductor CeRus so far [56, 58,
59]. These anomalies have been ascribed to the large density of states
at the Fermi energy. Fig. 6.11 describes the softening size of Rh;7S5:5
with the iron based superconductor Ba(Fe; ,Co,)oAsy where x =0.084
and 0.098. Both samples show large elastic softening towards to low

temperature and the softening behavior becomes to upturn at 7.









Chapter 7

Conclusion

In this thesis we have reported elastic properties of iron-based super-
conductors Ba(Fe; ,Co,)2Ass, and found the structural fluctuation in
Cge associated with the structural (Ts) phase transition, and strange in-
terlayer properties of Ba(Fe;_,Co,)sAss, by studying its elastic constant
Cs3.

In the studying of the elastic constant Cgg structural quantum crit-
ical behavior was reported for Ba(Fe; ,Co,)sAsy. The QCP behav-
ior has also been reported by resistivity measurements and NMR of
Ba(Fe; ,Co,)2As,[65]. The QCP behavior observed in NMR and elastic
measurement is expected to be of the same origin. The elastic constant is
not a sensitive measure of magnetism, but is a sensitive probe for orbitals
(quadrupoles), in contrast to NMR. Our measurement entails an obser-
vation from the side of orbitals (quadrupoles). Our studies show that
T,. was enhanced near the QCP, and we found the correlation between

the elastic softening and superconductivity:.
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Our results of Cgg suggested the importance of orbital fluctuation in
the emergence of superconductivity. Starting from our reports, many
researchers have discussed the superconductivity based non the orbital
fluctuations. On the other hand, the structural fluctuation leads to an
in-plane order, and it possesses two-dimensional nature. However, an or-
der is hard to occur in two-dimensional systems, so three-dimensionality
is necessary for the occurrence of ordering. So we focused on our at-
tention to the three-dimensional character of this system by measuring
the elastic constant Cs3. In this study, we found inter-layer fluctuation
accompanying small lattice fluctuation. It does not stop below Ty and
continues to Tn. We obtained the Griineisen parameter along c-axis. It
becomes small near the QCP. This is very important information, be-
causc it is a reflection of dTy. /de 7z, which can be obtained only by elastic
constant measurements. The amount of softening in C33 was enhanced
near the QCP. In both results of Cygg and Cs3, we found the correlation
of T,. with the superconductivity, and the enhancement of T,. near the
QCP. This fact might be used as a probe for the discovery of high T
materials. We could find high 7, materials through the exploration of
materials showing elastic softening.

One question remains. Is the correlation between Ty and Sgg . either
a particular phenomenon existing only in Ba(Fe; ,Co,)sAss or a univer-
sal one appearing in related materials including iron-based compounds?
Huge elastic anomalies have been observed not only in iron-based super-

conductors, but also in famous practical materials of A15 compounds
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such as NbsSn and V3Si, and Laves phase compound CeRus, so far.
More recently in our studies we have found very large elastic softening
in heavy fermion superconductor Rh;7S15. On the other hand, elastic
anomaly associated with the adjacent magnetic order has been observed
in LSCO oxide superconductors, in addition to A15 compounds. How
about the similarities and dissimilarities between the elastic anomalies
in iron-based superconductors and those in other systems found in the
past. In the case of Bal22, Ejr is very large, which is in the range of
20 50 K, whose amount is similar in A15 compounds. In contrast, the
value of Eyr in LSCO is estimated to be small at about 1 K. In heavy
fermion superconductor Rhi7S;5, the Ej7 is estimated to be 8.5 K.

We are aware of that the materials, which show large elastic soften-
ing with large FEjr, are all belonging to the substance group of tran-
sition metal compounds having a multi-orbital. It would be expected
that possible high T,. materials like iron-based superconductors would

be discovered around them.

90



Chapter 8

Appendix

8.1 Analysis of elastic constants

We consider the elastic properties of a crystal viewed as a homogeneous
continuous medium rather than as a periodic array of atoms. The con-
tinuum approximation is usually valid for elastic waves of wavelengths
A longer than 1079 cm, which means for frequencies below 10! or 10'2
Hz. Some of the material below looks complicated because of the un-
avoidable multiplicity of subscripts on the symbols. The basic physical
ideas are simple: we use Hook’s law and Newton’s second law. Hook’s
law states that in an elastic solid the strain is directly proportional to
the stress. The law applies to small strains only. We say that we are in
the nonlinear region when the strains are so large that Hook’s law is no
longer satisfied.

We specify the strain in terms of the components e;., e,y, €.z, €y, €4z,
¢., which arc defined below. We imagine that three orthogonal vectors

X, y, z of unit length are embedded securely in the unstrained solid, as
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shown in Fig. 8.1. After uniform deformation of the solid has taken
place, the axes are distorted in orientation and in length. In a uniform
deformation each primitive cell of the crystal is deformed in the same

way. The new axes x', y’, 2’ may be written in terms of the old axes:

X' = (14 €50)X + €245 + €1,2
Y = X+ (14 €)y + €,:2 (8.1)

Z = X+ e,y + (1 +e€..)z

The cocfficient €, define the deformation; they are dimensionless and
have values < 1 if the strain is small. The original axes were of unit
length, but the new axes will not necessarily be of unit length. For
example,

X X =142+ e, + 6, + € (8.2)

whence 2’ = 1 4+ ¢, + ---. The fractional changes of length of the X,y
and Z axes are €, €y, €, respectively, to the first order.

What is the cffect of the deformation (8.1) on an atom originally at
r = rX + yy + 227 The origion is taken at some other atom. If the
deformation is uniform, then after deformation the point will be at the
position r' = xx’ + yy’ + zz’. This is obviously correct if we choose
the x axes such that r = xX; then r' = xx’ by definition of x’. The

displacement R of the deformation is defined by

R=r'—r=a(x'-%)+yy' - 3) + (2 - 2), (8.3)
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Figure 8.1: (Color online) (a) The orthogonal unit axes in the unstrained state. (h)
Deformed in the strained state

or, from equation (8.1),

R(r) = (zepp+yeyet26:0)X +(wer,+yey, +2e,)y +(Ter. +ye,.+z2¢6..)7.
(8.4)
This may be written in a more general form by introducing components

of displacement u, v, w such that the displacement is given by
R(r) = u(r)x + v(r)y + w(r)z. (8.5)

If the deformation is nonuniform we must relate u, v, w to the local strain.
We take the origin of r close to the region of interest; then comparison

of (8.4) and (8.5) gives, by Taylor series expansion of R using R(0) = 0,

ou ou

T€yp = T—:! Y€yy = y—a—y; etc. (8.6)

ox
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It is usual to work with coefficients e, 5 rather than e,5. We define the

strain components e, €y, €;. by the relations

ou ov ow

Cra = €pp = %; Cyy = €yy — 5&; €rz = €z = 82; (87)

using (8.6). The other strain components e, €., €,, are defined in terms

of the changes in angle between the axes: using (8.1) we may define

L ou Ov
exyEX'y:ny+€$y:5§+5§;
ov  Ow

Cyr = y/ WA €y + €yr = 5; + (9_y; (88)
L ou  Jw
emzz-x:em—kgngﬁ—%—.

8.2 Dilation

The fractional increase of volume associated with a deformation is called
the dilation. The dilation is negative for hydrostatic pressure. The unit

cube of edges x,y,z has a volume after deformation of
Vi=x"-y' x7 (8.9)

by virtue of a well-known result for the volume of a parallel piped having

edges x',y',2". From equation (8.1) we have

L+e, ey €rs
Xy xd=| ¢, 14¢, ¢ |Zl+emtey+e. (810)
€z €zy 1+e,.
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Products of two strain components have been neglected. The dilation o

is then given by
V-V

0=
7

X e + ey + €ss (8.11)

8.3 Stress Components

The force acting on a unit area in the solid is defined as the stress. There
are nine stress components: X,, X,, X,,Y,,Y,,Y;, Z,, Z,, Z.. The capital
letter indicates the direction of the force, and the subscript indicates the
normal to the plane to which the force is applied. In Fig. 8.2 the stress
components X, represents a force applied in the x direction to a unit
area of a plane whose normal lies in the x direction; the stress component
X, represents a force applied in the z direction to a unit area of a plane
whose normal lies in the y direction. The number of independent stress
components is reduced from nine to six by applying to an elementary
cube (as in Fig. 8.3) the condition that the angular acceleration vanish,

and hence that the total torque must be zero. It follows that

<

Y. =2 Z, = X,; X, =Y, (8.12)

The six independent stress components may be taken as X,,Y,, Z.,Y,, Z,, X,.
Stress components have the dimensions of force per unit area or energy
per unit volume. The strain components are ratios of lengths and are

dimensionless.

95









X, = Crieg + Croeyy + Cizes. + Claey, + Crsee + Clrsyy;
Y, = Coepy + Cozeyy + Coze, + Couey, + Cosery + Coglpy;
Z, = Cs1€4y + Cyoeyy + Cszesy + Cspey + Caseny + Csgeny;  (8.14)
Y. = Cuezy + Cioeyy + Cuzez. + Cuey, + Cuserp + Cplyry;
Zy = Cs1eg, + Csoeyy + Osze,. + Csgey, + Cssee + Csgluy:

Xy = Ce1€40 + Cooeyy + Cgse.. + Coaeys + Cosezp + Coelay)

The quantities Sy, S1o--- are called elastic compliance constants or
elastic constants; the quantities Cyq, Cio--- are called the elastic stiff-
ness constants or moduli of elasticity. The S’s have the dimensions
of [area]/[force] or [volume|/[energy]. The C’s have the dimensions of

[force|/[area] or [energy]/[volume].

8.5 Elastic energy density

The 36 constants in (8.4) or in (8.4) may be reduced by several con-
siderations. The elastic energy density U is a quadratic function of the
strains, in the approximation of Hooke’s law (recall the expression for

the energy of a stretched spring). Thus we may write

6 6
> ) Cnenen (8.15)

A=1 p=1

U =

[Nl A

where the indicts 1 through 6 are defined as:

l=zxx; 2=yy; 3=zz, 4=yz; b=zr; 6=u1y; (8.16)



The C's are related to the C's of (8.4), as in (8.18) below.

The stress components are found from the derivative of U with respect to
the associated strain components. This result follows from the definition
of potential energy. Consider the stress X, applied to one face of a unit

cube, the opposite face being held at rest:

ou ou

X, = =
aemxz a61

6
N 1 . .
= Cl1e1 + § ;(Cm + 051)65. (817)

Note that only the combination %(éag + éﬂa) enters the stress-strain

relations. It follows that the elastic stiffness constants are symmetrical:
1 -~ -
C(Yﬁ = 5(001[3 + Cﬁu) = C,B(y (818)

Thus the thirty six elastic stiffness constants are reduced to twenty-one.

8.6 Elastic stiffness constants of cubic crystals

The number of independent elastic stiffness constants is reduced further
if the crystal possess symmetry elements. We now show that in cubic
crystals there are only three independent stiffness constants.

We assert that the elastic energy density of a cubic crystal is

1 1
U = 5Cu(er,Fey,+e)+5Culeerten, ) +Cn(eye. tewemnterey),
(8.19)
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Figure 8.4: (Color online) Rotation by 27/3 about the axis marked 3 changes z — ¥;
y— z;and z — z..

and that no other quadratic terms occur; that is,

(exxeyy + o ); (eyzezm +oee ); (emxeyz +oe ); (820)

do not occur.
The minimum symmetry requirement for a cubic structure is the exis-
tence of four three-fold rotation axes. The axes in the [111] and quivalent
directions (Fig. 8.4). The effect of rotation of 27 /3 about these four axes
is to interchang the x,y, z axes according to the schemes

T—Y 2T, —TZY = =T

(8.21)
T == =Y =T —Tr =Y =2 —T;
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according to the axis chosen. Under the first of these schemes, for ex-
ample,

2 2, 2 2 2 2
Crp T €y T €5, =€y, + s+ e, (8.22)

and similarly for the other terms in parentheses in (8.19). Thus (8.19)
is invariant under the operations considered. But each of the terms
exhibited in (8.20) is odd in one or more indices. A rotation in the
set (8.21) can be found which will change the sign of the term, because
Coy = —€y(—y), for example. Thus the terms (8.20) are not invariant
under the required operations.

It remains to verify that the numerical factors in (8.19) are coorect. By

(8.17).
oU

0.

= X; = Crieg + Cra(eyy + €22) (8.23)

The appearance of Cyye,, agrees with (8.4). On further comparison, we

see that

Cra2 = Ch3; Cry=Ci5=Cis = 0. (8.24)

Further, from (8.19),
oUu

Deqy

= Xy = 0446_/1;:9,; (825)

on comparison with (8.4) we have

Cer = Cs2 = Cp3 = Gy = Cp5 = 0;  Cgg = Clyy. (8.26)

Thus from (8.19) we find that the array of values of the clastic stiffness
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constants is reduced for a cubic crystal to the matrix

€xx Cyy €2z Eyr Ezx  Eay
Xy Cn Cp Cg 0 0 0
Y| Ci2 Ciy C2 0 0 0O
Z,|Cqo Cip Cy 0 0 O
Y, 0 0 0 Cy 0 0
Ly 0 0 0 0 Cy 0
X, 0 0 0 0 0 Cu

(8.27)
For cubic crystals the stiffness and compliance constants are related by
Ciy = 1/Sy; C1p—Cira=(Sn — S12)7Y Oy +2C19 = (S + 2519) 7"

(8.28)

These relations follow on evaluating the inverse matrix to (8.27)

8.7 Elastic waves in cubic crystals

By considering as in Fig. 8.5 the forces acting on an element of volume

in the crystal we obtain the equation of motion in the x direction

OPu_0X, 0X, OX.
Porr ~ or oy 0z

(8.29)
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here p is the density and u is the displacement in the x direction. There
are similar equations for the y and z directions. From (8.4) and (8.27)
it follows that for a cubic crystal

Oeyy Oy,

By + pp ); (8.30)

——+012(—x+ a:) + Cyy(

here the z, y, z directions are parallel to the cube edges. Using the

definitions (8.7) and (8.1) of the strain compounents we have

0?u 0*u *u  0%u 0% Oow
P~ Cugp T Culgz + o)+ (Cr2+Cul 55+ 5057

); (8.31)

where u, v, w are the components of the displacement R as defined by
(8.5).
The corresponding equations of motion for & aﬂ - and %;5” are found directly

from (8.31) by symmetry:

v O%*v 82'0 v ou ow
o~ Cugp + Oulgs T g 57) +(Cut Cu)Ga, t ay:)
(8.32)
0w 0w 8211) 0w ou Ov
pgm = Cngy + Culgy (93/2) (o + Cul55; + 5,07
(8.33)

we now look for simple special solutions of these equations.
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Consider a transverse or shear wave with the wavevector along the x

cube edge and with the particle displacement v in the y direction:
v = wexpli(Kx — wt). (8.37)
On substitution in (8.33) this gives the dispersion relation
wp = CyuK?; (8.38)
thus the velocity w/K of the transverse wave in the [100] direction is
vs = (Cua/p)*"?. (8.39)

The identical velocity is obtained if the particle displacement is in the z
direction. Thus for K parallel to [100] the two independent shear waves
have equal velocities. This is not true for K in a general direction in the

crystal.

8.9 Wave in the [110] direction

There is a special interest in waves that propagate in a face diagonal
direction of a cubic crystal, because the three elastic constants can be
found simply from the three propagation velocities in this direction.

Consider a shear wave that propagates in the xy plane with particle
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displacement w in the z direction

w = woexpli( Ky + kyy) — wt)], (8.40)
whence (?7?) gives

w'p = Cu(K; + K}) = CuK?, (8.41)

independent of propagation direction in the plane.
Consider other waves that propagate in the xy plane with particle motion

in the zy plane: let
u = woexp[i(K,x + Ky —wt)]; v =wvexpli( Kyz + K,y — wt)]. (8.42)

From (8.31) and (8.33),

w2pu — (CHK;C? + C44K§)U -+ (012 + C’44)K$Kyv; (8 43)
prU = (OHK?? + 044[(_5)7) + (012 + C44)KxKyu;

This pair of equations has a particularly simple solution for a wave in
the [110] direction, for which K, = K, = K/v/2. The condition for a
solution is that the determinant of the cocfficients of w and v in (8.44)

should equal zero:

—w2,0 + %(Cll + C44>K2 %(012 -+ C44)K2

(8.44)
%(012 + C44)K2 —w2p + %(011 + C44)K2
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This equation has the roots

1 1
wp = 5(011 + Cia+2Cu)K? w?p = 5(011 — C)K? (8.45)

The first root describes longitudinal wave; the second root describes a
shear wave. How do we determine the direction of particle displacement?

The first root when substituted into the upper equation of (8.44) gives
1 5 1 5 1 5
5(011 + Cio+ 2044)K U = 5(011 + C44)K U+ 5(012 + C44)K v, (846)

whence the displacement components satisfy v = v. Thus the particle
displacement is along [110] and parallel to the K vector (Fig. 8.6). The
second root of (8.45) when substituted into the upper equation of (8.44)

gives
1 , 1 , 1 )
5(011 - Clg)K u = 5(011 + C44)K U+ 5(012 + C44)K v, (847)

whence u = —v. The particle displacement is along [110] and perpen-

dicular to the K vector.
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This reduce the number of independent elastic constants to eight and

elastic energy density becomes

1 1
U= 5(63%30 + 632/21) + '2‘033652537 + ClQea;a:eyy + 013(€:Em + 6yy)ezz

+016(63:1' - eyy)exy + 034(€yz - 6zx>ezz (849)

1 1
+§C44(622/Z + 631) + 50666?59

Tetragonal structure also includes two-fold semmetry about the z or y
axis. Consider a rotation through 7 about z axis, which has the effect
y — —y,z — —z,x — . Applying this on the energy density (8.50), we
find that all terms remain invariant cxcept the two involving cocfficients
Che and (4, which must vanish. The final form of the energy density is

then
1 2 2 1 2
U= §Cll<€mx + eyy) + 5033633111 + Clgemeyy
1 2 2 =4
+C13(Ear + €yy)ezz + 5044(%2 +e5,) (8.50)

1
-+ -2- 066 eiy

The stress components are found from the derivative of U with respect to
the associated strain component. This result follows from the definition

of potential energy. Consider the stress X, applied to one face of a unit,

109



the opposite face being held at rest so that we can obtain

oU
Je = Xl = C’llem + Clgeyy + Clgezz (851)
oU
—_— = Y;J = ClQegca: + C11€yy -+ 013622 (852)
Oeyy
oU
Je - Zz = 033ezz + 013(€:Ex + 6yy) (853)
oU
aexy = Xy = C(;@Bajy (854)
oU
=Y, = Cue,. 8.59
aeyz 44€y ( )
oU
=7, = Cpyé 8.56
e, ue (8.56)
(8.57)

It can be seen that any other transformation of tetragonal structure leave
the bilinear form (8.57) invariant, so that there is no further simplifica-
tion. A tetragonal crystal has six independent elastic constants, and

matrix of elastic constants reduces the form

rX:z: rCn Cia Ci3 0 0 0| |e€aw
Y,| [Cw € G 00 0] ey,
Z, _ Ci3 Ciz3 C33 0 0 0 e (8.58)
Y, 0 0 0 000|]e.
Z, 0 0 0 00 0| e,
_Xy_ LO 0 0 0O 0_ | ay |
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8.11 Elastic waves in tetragonal crystal

The force has been indicate by the mass of the tetragonal and times

the components of the acceleration in the x direction. The mass is

pAxAyAz, and the acceleration is %i%, so it takes

0%u Oe de Oe de de
I SLANEYG it L1 = Y Opy—= 8.59
paE = Cngy T 0T, + g+ Cag + Cutgm (859)
here the strain components are
Cop = Ou Cyy = v, €y = ow.
rr — oz’ vy — 8y’ zz — 9z (8 60)
0z oyt T 0z ox Y gy o
from this formula we can get
O%u 0u 0%u 0u 0 O*w
— =Ci1— —+Cy—+(C C
P = Cingga T Coslga + Cugy H(Cut Gl rg, + (Cut Cu)z 70
(8.61)
The corresponding equations of motion for %%’ and %%” are
02 0%v v v 0w O*u
— = Cn=— + Ce(= — |
P o Moy * 66(6332 Cu 072 (Gt C44>8y8,z Gzt C66)8x8y
(8.62)
0w 0w 0w 0*w 0%u 0%
— = COy— + Cy(—=—= — 14
g = Cuggr + Culg + Cugg + (Gt Culg + (Gt Culg 5o
(8.63)

We now look for simple special solutions of these equations.
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8.12 Waves in the [100] direction

On the solution (8.31) is given by a longitudinal wave
u(K) = wpezpli( Kz — wt), (8.64)

where u is the z component of the particle displacement. Both the
wavevector and the particle motion are along the x direction. Here
K = 27 /X is the wave vector and w = 27v is the angular frequency. If

we substitude (8.35) into (8.31) we find
w?p = C K* (8.65)
thus the velocity w/K of a longitudinal wave in the [100] direction is

vy =vA=w/K =+/Cn/p. (8.66)

Consider a transverse or shear wave with the wave vector along the x

direction and with the particle displacement v in the y direction:

v(K) = vpexpli( Kt — wt)] (8.67)

On the substitution in to (8.31) this gives the dispersion relation

Wp = Cee K (8.68)
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thus the velocity w/K of a transverse wave in [100] direction is

vr =/ (Ces/p) (8.69)

If the particle displacement v in the z direction, we find the velocity

w/K of a transverse wave in the [100] direction is

vr =/ (Cua/p) (8.70)

8.13 Waves in the [001] direction

On the solution (8.31) is given by a longitudinal wave
w(K) = weexpli( Kz — wt)], (8.71)

where w is the z component of the particle displacement. Both the wave
vector and the particle motion are along the z direction. Here K = 27 /A

is the wave vector and w = 27w is the angular frequency. If we substitute

(8.35) into (8.31) we find
2 _ 2
wp= ngK (872)
thus the velocity w/K of a longitudinal wave in the [001] direction is

wr, =vA=w/K = /Cs3/p. (8.73)
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Consider a transverse or shear wave with the wave vector along the z

direction and with the particle displacement v in the z direction:

u(K) = upexpli( Kt — wt)] (8.74)

On the substitution in to (8.33) this gives the dispersion relation
wip = CuK? (8.75)
thus the velocity w/K of a transverse wave in [001] direction is

ur = v/ (Cu/p) (8.76)

If the particle displacement v in the y direction, we find the velocity

w/K of a transverse wave in the [001] direction is

vr = v/ (Caa/p) (8.77)

8.14 Waves in the [110] direction

Consider a shear wave that propagates in the xy plane with particle

displacement w in the z direction

w = woearp[i( Kz + K,y — wt)] (8.78)
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if we substitute this into (8.68) we find
w2,0 = C44K2 (879)

independent of propagation direction in the plane.
Consider other waves that propagates in the zy plane with particle mo-

tion in the xy plane: let

u = upearpli( Ky + K,y — wt)) (8.80)

v = voeapli(Kx + K,y — wt)] (8.81)
from (8.31) and (8.35),

w2pu = (011 -+ 066)K u + (012 + Cﬁﬁ)K v (882)

wipu = (012 + Cog) Ku + (011 + Ceo) K0 (8.83)

The condition for this solution is that the determinant of the coefficients

of v and v in (8.44) should be zero:

—w?p + 5(Ci1 + Cog) K 5(Cha + Coe) K*

(8.84)
5(012 + Cg) K* —w?p+ % (011 + Cee) K

This equation has the roots

1 1
wp = 5(011 +Cry +2C)K*; - w?p = 5(011 — C)K* (8.85)
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