Ann. Rep. Fac. Edu., Iwate Univ., Vol.72 (March, 2013), $93 \sim 99$

On Prescribing Curvature of Contact 3-Manifolds *

Gen-ichi OSHIKIRI ** (Received January 8, 2013)

Abstract

Recently, V. Krouglov studied prescribing curvatures of contact closed 3-manifolds (M, ω) , and proved, among others, that if Ker ω is trivial then for any smooth function on M there is a Riemannian metric of M so that the sectional curvature of Ker ω coincides with the given function. In this paper, we replace this triviality condition of Ker ω to curvature conditions, and show similar results.

Keywords: contact structure, prescribing curvature, *k*-admissible metric.

1 Introduction

Let (M, ω) be a contact closed 3-manifold. Set $\xi = \text{Ker } \omega$. Recently, V. Krouglov [4] studied prescribing curvatures of contact 3-manifolds, and proved that if ξ is trivial then for any smooth function f on M there is a Riemannian metric of M so that the sectional curvature $K(\xi) = f$. In this paper, we change this triviality condition of ξ to curvature conditions, that is, we show that, if there is a suitable metric, then for any smooth function on M there is a Riemannian metric of M so that the sectional curvature of ξ coincides with the given function. Though V. Krouglov began his argument with an arbitrary metric of M, we shall begin the argument with a kind of adapted metrics introduced by S. Chern and R. Hamilton [2].

We shall give preliminaries and auxiliary results in \$2, and present and prove main results in \$3. In \$4, we give some examples.

2 Preliminaries and auxiliary results

In this paper, we work in the C^{∞} -category. In what follows, we always assume that a contact structure is given by a one-form ω , and that the ambient manifold M is closed, connected, oriented and of dimension 3, unless otherwise stated (see [1], [3], [5] for the generalities on contact structures).

^{* 2000} Mathematics Subject Classication. 53C12.

^{* *} Faculty of Education, Iwate University

Gen-ichi OSHIKIRI

Let $\xi = \text{Ker } \omega$, and assume that $\omega \wedge d\omega > 0$ on M. We can find a Riemannian metric g of M satisfying the following: Let be a unit vector field orthogonal to ξ with $\omega(\) = 1$, $\iota_N d\omega = 0$ and $\omega \wedge d\omega = kdV(M, g)$, where k is a positive constant and dV(M, g) is the volume element of the Riemannian manifold (M, g). We call such a metric k-adapted for ω . Note that in case k = 2, that is, $\omega \wedge d\omega = 2dV(M, g)$, g is called adapted in [3]. Thus, if we give an oriented local orthonormal frame $\{ \ ,E, F\}$ with $E, F \in \Gamma(\xi)$, then we have $\omega \wedge d\omega = kdV(M, g) = k \ * \wedge E^* \wedge F^*$, where $V^* = g(V, \cdot)$. By definition, $d\omega/k$ is the volume element along ξ . It follows that ξ is minimal in the sense that

$$\langle \nabla_E, E \rangle + \langle \nabla_F, F \rangle = 0,$$

where ∇ is the Riemannian connection of (M, g).

We locally represent covariant derivatives explicitly (see [6] for details). Let U be an open subset of M.

Proposition 1. Let $\{-,E,F\}$ be an oriented orthonormal frame on U. As $\nabla E \perp E$, , we can set $\nabla E = \rho F$ for a smooth function ρ on U. Set also $\langle \nabla_E E, \rangle = \lambda$ and $\langle \nabla_E E, \rangle = \alpha$. Then we have

- (0) $\langle [E, F], \rangle = -k.$
- (1) $\nabla = 0, \nabla E = \rho F, \nabla F = -\rho E.$
- (2) $\nabla_E = -\lambda E \alpha F$, $\nabla_E E = -\operatorname{div}(F)F + \lambda N$, $\nabla_E F = \operatorname{div}(F)E + \alpha N$.
- (3) $\nabla_E = -(k+\alpha)E + \lambda F$, $\nabla_F E = \operatorname{div}(E)F + (k+\alpha)$, $\nabla_F F = -\operatorname{div}(E)E \lambda N$.

Define the second fundamental form B of ξ by

$$B(V,W) = \frac{1}{2} \langle \nabla_V W + \nabla_W V, \rangle$$

for all sections V, W of ζ (cf. [4], [7]). This is a symmetric bilinear form on ζ . As ζ is minimal, it follows that Tr B = 0. Define also the *extrinsic curvature* $K_e(\zeta)$ by

$$K_e(\zeta) = \frac{B(V, V)B(W, W) - B(V, W)^2}{\langle V, V \rangle \langle W, W \rangle - \langle V, W \rangle^2}$$

where V,W are two linearly independent sections of ξ (cf. [4]). Note that $K_e(\xi) \leq 0$ because Tr B = B(E,E) + B(F,F) = 0 for an oriented orthonormal basis $\{E, F\}$ of ξ . By using Proposition 1, we have the following (see [6] for details).

Proposition 2. Let $\{-,E,F\}, U, B$ be as above. At $p \in U$, $B_p = 0$ if and only if $Ric(-,-)_p = k^2/2$. In particular, B = 0 on U if and only if is a Killing vector field on U. In this case, we have $\lambda = 0$ and $\alpha = -k/2$.

On Prescribing Curvature of Contact 3-Manifolds

3 Main results and proofs

Our main results are the following.

Theorem 1. Let ω be a contact structure on an oriented, connected, and closed 3-manifold M. Set $\xi = \text{Ker } \omega$. If there is a k-adapted Riemannian metric for ω satisfying $K_M > - 3k^2/4$, where K_M is the sectional curvature of (M, g), then, for any smooth function f on M, there is a Riemannian metric of M so that $K(\xi) = f$.

Theorem 2. Let ω be a contact structure on an oriented, connected, and closed 3-manifold M. Set $\xi = \text{Ker } \omega$. If there is a k-adapted Riemannian metric for ω satisfying $Ric_M < k^2/2$, then for any smooth function f on M there is a Riemannian metric of M so that $K(\xi) = f$. In particular, if there is a k-adapted Riemannian metric for ω satisfying $K_M < k^2/4$, then for any smooth function f on M there is a Riemannian metric of M so that $K(\xi) = f$.

Note that by Proposition 2, we always have $Ric(,) \le k^2/2$. Note also that as argued in §7.2 in [1], *k*-admissible metrics cannot be of strictly negative curvature.

We prove these results by the same way as V. Krouglov [4]. The difference is that, instead of the triviality of ξ , we assume the existence of a k-adapted Riemannian metric g for ω having the property $K(\xi) > - 3k^2/4$ or $Ric(,) < k^2/2$.

Let (M, ω, g) be as above and $U \subseteq M$ be an open set. Let be the unit vector field orthogonal to $\xi =$ Ker ω with $\omega(\) = 1$, $\iota \ d\omega = 0$, $\omega \land d\omega = kdV(M, g)$ and $\{ , E, F \}$ be an oriented local orthonormal frame with $E, F \in \Gamma(\xi)$ on U. Let φ be a positive smooth function on M. Define a new metric g of M by

$$g = \frac{1}{\varphi^2} g|_{\xi} \perp \bigoplus g|_{\xi}.$$

By definition, $\overline{} = \varphi N$ is the unit vector field orthogonal to ξ with respect to this metric \overline{g} , and $\{\overline{}, E, F\}$ is an oriented local orthonormal frame with respect to \overline{g} . Set $g(X, Y) = \langle X, Y \rangle$ and $\overline{g}(X, Y) = \langle X, Y \rangle_{\varphi}$ for X, $Y \in \Gamma$ (*TM*). Recall the Koszul formula for the Riemannian connection ∇ of \langle , \rangle :

 $2 \langle \nabla_{S}T, U \rangle = S \langle T, U \rangle + T \langle U, S \rangle - U \langle S, T \rangle + \langle [S, T], U \rangle - \langle [S, U], T \rangle - \langle [T, U], S \rangle$ for S, T, U $\in \Gamma$ (TM).

Using this formula, we get the following by simple calculations:

 $\begin{array}{l} (1) \ \overline{\nabla}_{F}F = \langle \nabla_{F}F, E \rangle \ E + \varphi \ \langle \nabla_{F}F, \ \rangle^{-}, \\ (2) \ \overline{\nabla}_{E}F = \langle \nabla_{E}F, E \rangle \ E + (\varphi B(E, F) - k/(2\varphi))^{-}, \\ (3) \ \overline{\nabla}_{E}^{-} = (k/(2\varphi) - \varphi B(E, F))F - \varphi \ \langle \nabla_{E}E, \ \rangle \ E, \\ (4) \ \overline{\nabla}_{F}^{-} = - (k/(2\varphi) + \varphi B(E, F))E - \varphi \ \langle \nabla_{F}F, \ \rangle \ F, \end{array}$

 $(5) \ \overline{\nabla} \ _{F}E = \left\langle \nabla \ _{F}E, \ F \right\rangle \ F + \left(\varphi B(E, \ F) + k/(2\varphi) \right)^{-},$ $(6) \ \overline{\nabla} \ ^{-}F = - \ \varphi \ \left\langle \nabla \ E, \ F \right\rangle \ E + k(\varphi - 1/\varphi)E/2 \ - F(\log \varphi)^{-}.$

Using these formulas in this order, we have the following.

Proposition 3. For the sectional curvature $\overline{K}(\xi)$ along ξ with respect to \overline{g} we have

$$\overline{K}(\xi) = K(\xi) - \varphi^2 K_e(\xi) + B(E,E)B(F,F) - \langle \nabla_E F, \nabla_F E \rangle + \frac{k^2}{2} - \frac{3k^2}{4\varphi^2}.$$

Proof. Let $\{ , E, F \}$ be an oriented orthonormal frame with respect to g and $\{ -, E, F \}$ be an oriented orthonormal frame with respect to \overline{g} on U. It follows that

$$\begin{split} \overline{K}(\xi) &= \overline{K}(E,F) = \langle \overline{R}(E,F)F,E \rangle_{\varphi} \\ &= \langle \overline{\nabla}_{E} \overline{\nabla}_{F}F,E \rangle_{\varphi} - \langle \overline{\nabla}_{F} \overline{\nabla}_{E}F,E \rangle_{\varphi} - \langle \overline{\nabla}_{[E,F]}F,E \rangle_{\varphi} \\ &= \langle \overline{\nabla}_{E} \left(\langle \nabla_{F}F,E \rangle E + \varphi \langle \nabla_{F}F,\rangle^{-} \right),E \rangle_{\varphi} \\ &- \langle \overline{\nabla}_{F} \left(\langle \nabla_{E}F,E \rangle E + (\varphi B(E,F) - \frac{k}{2\varphi})^{-} \right),E \rangle_{\varphi} \\ &- \langle \overline{\nabla}_{E}F,E \rangle_{\varphi} \langle \overline{\nabla}_{E}F,E \rangle_{\varphi} + \langle \overline{\nabla}_{F}E,F \rangle_{\varphi} \langle \overline{\nabla}_{F}F,E \rangle_{\varphi} \\ &- \frac{1}{\varphi^{2}} \langle [E,F],^{-} \rangle \langle \overline{\nabla}^{-}F,E \rangle_{\varphi} \\ &= E \langle \nabla_{F}F,E \rangle - \varphi^{2} \langle \nabla_{F}F,\rangle \langle \nabla_{E}E,\rangle \\ &- F \langle \nabla_{E}F,E \rangle + (\varphi B(E,F) - \frac{k}{2\varphi}) (\varphi B(E,F) + \frac{k}{2\varphi}) \\ &- \langle \nabla_{E}E,F \rangle^{2} - \langle \nabla_{F}F,E \rangle^{2} + \frac{k}{\varphi} \left(-\varphi \langle \nabla E,F \rangle + \frac{k}{2} \left(\varphi - \frac{1}{4\varphi^{2}} \right) \right) \\ &= K(\xi) - \varphi^{2} K_{e}(\xi) + B(E,E) B(F,F) - \langle \nabla_{E}F,\nabla_{F}E \rangle + \frac{k^{2}}{2} - \frac{3k^{2}}{4\varphi^{2}}. \end{split}$$

Proof of Theorem 1. Let g be a k-adapted Riemannian metric with the property $K(\xi) + 3k^2/4 > 0$ and f be an arbitrary smooth function on M. We can choose a small positive constant C so that $K(\xi) + 3k^2/4$ -Cf > 0 on M, because M is compact. Let $\{ , E, F \}$ be an oriented orthonormal frame of $U \subset M$. Then, for the metric $\tilde{g} = \frac{1}{g^2} g|_{\xi} \perp \bigoplus g|_{\xi}$ we have

$$\overline{K}(\xi) = K(\xi) - \varphi^2 K_e(\xi) + B(E,E)B(F,F) - \langle \nabla_E F, \nabla_F E \rangle + \frac{k^2}{2} - \frac{3k^2}{4\varphi^2}$$

by Proposition 3. It is easy to see that the right hand side formula is independent of the choices of oriented orthonormal frames on U. Thus, the following equation on φ is globally defined one over M:

$$Cf = K(\xi) - \varphi^2 K_e(\xi) + B(E, E) B(F, F) - \langle \nabla_E F, \nabla_F E \rangle + \frac{k^2}{2} - \frac{3k^2}{4\varphi^2}.$$

On Prescribing Curvature of Contact 3-Manifolds

If we could get a positive solution φ of this equation, we would have proved our Theorem.

Set $t = 1/\varphi^2$ and at each point $x \in M$ consider the quadratic equation on t:

$$\frac{3k^2}{4}t^2 + \left(Cf - K(\xi) - B(E, E) B(F, F) + \langle \nabla_E F, \nabla_F E \rangle - \frac{k^2}{2}\right)t + K_e(\xi) = 0.$$

Note that, as $K_e(\xi) \leq 0$, the discriminant D of this equation satisfies

$$D = \left(Cf - K(\xi) - B(E, E) B(F, F) + \langle \nabla_E F, \nabla_F E \rangle - \frac{k^2}{2}\right)^2 - 3k^2 K_{\epsilon}(\xi) \ge 0.$$

It follows that this equation has a non-negative solution at each point $x \in M$. We have to show that this solution is positive and smooth on M. To see this, consider the case $K_e(\xi) = 0$. Note that the solution is positive and smooth at the points $x \in M$ with $K_e(\xi)$ (x) < 0. In case $K_e(\xi) = 0$, by Proposition 2, we have $\lambda = 0$ and $\alpha = -k/2$, that is, the coefficient of t becomes

$$Cf - K(\xi) - B(E, E) B(F, F) + \langle \nabla_E F, \nabla_F E \rangle - \frac{k^2}{2} = Cf - K(\xi) - \frac{3k^2}{4} < 0,$$

which shows that the solution is positive and smooth, too. By a conformal change of this metric using C, we get the desired metric \tilde{g} with $\tilde{K}(\xi) = f$ and this completes the proof.

Proof of Theorem 2. From the above proof, it is easy to see that if $K_e(\xi) < 0$ then we get the same result as in Theorem 1. As $K_e(\xi) \le 0$, it is sufficient to show that $K_e(\xi) \ne 0$. By Proposition 2, we have, at $p \in M$

$$K_e(\xi)_p = 0 \Leftrightarrow B_p = 0 \Leftrightarrow Ric(,)_p = \frac{k^2}{2}.$$

By the assumption that $Ric_M < k^2/2$, we have $K_e(\xi) < 0$, which completes the proof of Theorem 2.

4 Examples

To apply our theorem, we have just to note that $K(\xi) + 3k^2/4 - Cf > 0$.

The first example is due to [5]. Let (\mathbf{R}^3, g_0) be the 3-dimensional Euclidean space with the canonical coordinate (x, y, z). Define $\omega = \sin z dx + \cos z dy$. Then, it follows that

 $d\omega = \cos z dz \wedge dx - \sin z dz \wedge dy$, and $\omega \wedge d\omega = dx \wedge dy \wedge dz = dV(\mathbf{R}^3, g_0)$.

Gen-ichi OSHIKIRI

This is 1-adapted. Define $= \sin z \partial_x + \cos z \partial_y$, $E = \partial_z$ and $F = \cos z \partial_x - \sin z \partial_y$. Then, it is easy to see that $\{ , E, F \}$ is an oriented orthonormal frame on \mathbb{R}^3 . We get covariant derivatives

$$\nabla = 0, \ \nabla E = 0, \ \nabla F = 0,$$

$$\nabla_E = \cos 2\partial_x - \sin 2\partial_y, \ \nabla_E E = 0, \ \nabla_E F = -\sin 2\partial N_x - \cos 2\partial_y,$$

$$\nabla_F = 0, \ \nabla_F E = 0, \ \nabla_F F = 0.$$

Thus, we have

 $\rho = \langle \nabla E, F \rangle = 0, \ \lambda = \langle \nabla_E E, \rangle = 0, \ \alpha = \langle \nabla_E F, \rangle = -1,$ and

$$B(E, E) = B(F, F) = 0, B(E, F) = B(F, E) = -1/2,$$

$$K(\xi) = 0, K_e(\xi) = -1/4.$$

For an arbitrary smooth function f on \mathbb{R}^3 , the equation becomes

$$\begin{split} f &= K(\xi) - \varphi^2 K_e(\xi) + B(E,E) \ B(F,F) - \langle \nabla_E F, \nabla_F E \rangle + \frac{1}{2} - \frac{3}{4\varphi^2} \\ &= \frac{\varphi^2}{4} + \frac{1}{2} - \frac{3}{4\varphi^2}, \end{split}$$

whose positive solution is

 $\varphi = \sqrt{2f - 1 + \sqrt{(2f - 1)^2 + 3.}}$

Thus, if we want to get $\overline{K}(\xi) = 1$ then take $\varphi = \sqrt{3}$, and if we want to get $\overline{K}(\xi) = -1$ then take

 $\varphi = \sqrt{2\sqrt{3} - 3}$. Note that on the flat torus T^3 , we get the same conclusion because the above quantities are well defined on T^3 .

The second one is due to [2]. Let (S^3, g_1) be the unit sphere in the 4-dimensional Euclidean space \mathbb{R}^4 with the canonical coordinate (x, y, z, w). Define a 1-form ω by

 $\omega = xdy - ydx + zdw - wdz.$

It is easy to see that $\omega \wedge d\omega = 2dV(S^3, g_1)$, thus k = 2. Set $= x\partial_y - y\partial_x + z\partial_w - w\partial_z$, $E = x\partial_z - z\partial_x - y\partial_w + w\partial_y$ and $F = x\partial_w - w\partial_x - y\partial_z - z\partial_y$. Then $\{ , E, F \}$ is an oriented orthonormal frame of S^3 with $\omega() = 1$ and $E, F \in \text{Ker } \omega$. We get covariant derivatives

$$\nabla = 0, \ \nabla E = -F, \ \nabla F = E,$$

$$\nabla_{E}E = 0, \ \nabla_{E}F = -, \ \nabla_{E} = F,$$

$$\nabla_{F}E = , \ \nabla_{F}F = 0, \ \nabla_{F} = -E.$$

Thus, we have

 $\rho = \langle \nabla E, F \rangle = -1, \ \lambda = \langle \nabla_E E, \rangle = 0, \ \alpha = \langle \nabla_E F, \rangle = -1,$

and

$$B(E, E) = B(F, F) = B(E, F) = B(F, E) = 0.$$

Note that Ker ω is non-trivial. For a smooth function f on S^3 and positive constant C with Cf < 4, the equation becomes

On Prescribing Curvature of Contact 3-Manifolds

$$Cf = K(\xi) - \varphi 2K_e(\xi) + B(E, E) B(F, F) - \langle \nabla_E F, \nabla_F E \rangle + \frac{2^2}{2} - \frac{3}{4\varphi^2} \frac{2^2}{4\varphi^2}$$

= 1 - 0 + 0 + 1 + 2 - $\frac{3}{\varphi^2}$
= 4 - $\frac{3}{\varphi^2}$

whose positive solution is

$$\phi = \sqrt{\frac{3}{4 - Cf}}.$$

Thus, if we want to get $\overline{K}(\xi) = 0$ then take $\varphi = \sqrt{3/4}$, and if we want to get $\overline{K}(\xi) = -1$ then take $\varphi = \sqrt{3/5}$.

References

- D. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math. 203 (2002), Birkhäuser, Boston.
- S. Chern and R. Hamilton, On Riemannian metrics adapted to Three-dimensional contact manifolds, Lecture Notes in Mathematics 1111 (1985), Springer, Berlin, 279–308.
- 3. J. Etnyre, Introductory lectures on contact geometry, Proc. Symp. Pure Math. 71 (2003), 81-107.
- 4. V. Krouglov, The curvature of contact structures on 3-manifolds, Alg. and Geom. Topology 8 (2008), 1567-1579.
- 5. Z. Olszak, On contact metric manifolds, Tohoku Math. Journ. 31 (1979), 247-253.
- G. Oshikiri, On curvatures of k-adapted metrics to contact 3-manifolds, Ann. Rep. Fac. Educ. Iwate Univ. 70 (2010), 81–87.
- 7. B. Reinhart, The second fundamental form of a plane field, Journ. of Diff. Geom. 12 (1977), 619-627.