On Prescribing Curvature of Contact 3-Manifolds *

Gen-ichi OSHIKIRI **
(Received January 8, 2013)

Abstract

Recently, V. Krouglov studied prescribing curvatures of contact closed 3-manifolds (M, ω), and proved, among others, that if Ker ω is trivial then for any smooth function on M there is a Riemannian metric of M so that the sectional curvature of Ker ω coincides with the given function. In this paper, we replace this triviality condition of Ker ω to curvature conditions, and show similar results. Keywords: contact structure, prescribing curvature, k-admissible metric.

1 Introduction

Let (M, ω) be a contact closed 3 -manifold. Set $\xi=$ Ker ω. Recently, V. Krouglov [4] studied prescribing curvatures of contact 3 -manifolds, and proved that if ξ is trivial then for any smooth function f on M there is a Riemannian metric of M so that the sectional curvature $\mathrm{K}(\xi)=f$. In this paper, we change this triviality condition of ξ to curvature conditions, that is, we show that, if there is a suitable metric, then for any smooth function on M there is a Riemannian metric of M so that the sectional curvature of ξ coincides with the given function. Though V. Krouglov began his argument with an arbitrary metric of M, we shall begin the argument with a kind of adapted metrics introduced by S. Chern and R. Hamilton [2].

We shall give preliminaries and auxiliary results in $\S 2$, and present and prove main results in $\S 3$. In $\S 4$, we give some examples.

2 Preliminaries and auxiliary results

In this paper, we work in the C^{∞}-category. In what follows, we always assume that a contact structure is given by a one-form ω, and that the ambient manifold M is closed, connected, oriented and of dimension 3 , unless otherwise stated (see [1], [3], [5] for the generalities on contact structures).

* 2000 Mathematics Subject Classication. 53C12.
* * Faculty of Education, Iwate University

Gen-ichi OSHIKIRI

Let $\xi=\operatorname{Ker} \omega$, and assume that $\omega \wedge d \omega>0$ on M. We can find a Riemannian metric g of M satisfying the following: Let be a unit vector field orthogonal to ξ with $\omega()=1, l_{\mathrm{N}} d \omega=0$ and $\omega \wedge d \omega=k d V(M$, g), where k is a positive constant and $d V(M, g)$ is the volume element of the Riemannian manifold (M, g). We call such a metric k-adapted for ω. Note that in case $k=2$, that is, $\omega \wedge d \omega=2 d V(M, g), g$ is called adapted in [3]. Thus, if we give an oriented local orthonormal frame $\{, E, F\}$ with $E, F \in \Gamma(\xi)$, then we have $\omega \wedge d \omega=k d V(M, g)=k * \wedge E^{*} \wedge F^{*}$, where $V^{*}=g(V$,$) . By definition, d \omega / k$ is the volume element along ξ. It follows that ξ is minimal in the sense that

$$
\left\langle\nabla_{E} \quad, E\right\rangle+\left\langle\nabla_{F} \quad, F\right\rangle=0
$$

where ∇ is the Riemannian connection of (M, g).
We locally represent covariant derivatives explicitly (see [6] for details). Let U be an open subset of M.

Proposition 1. Let $\{, E, F\}$ be an oriented orthonormal frame on U. As $\nabla E \perp E$, , we can set ∇E $=\rho F$ for a smooth function ρ on U. Set also $\left\langle\nabla_{E} E,\right\rangle=\lambda$ and $\left\langle\nabla_{E} E,\right\rangle=\alpha$. Then we have
(0) $\langle[E, F]\rangle=$,$-k .$
(1) $\nabla=0, \nabla E=\rho F, \nabla F=-\rho E$.
(2) $\nabla_{E}=-\lambda E-\alpha F, \nabla_{E} E=-\operatorname{div}(F) F+\lambda N, \nabla_{E} F=\operatorname{div}(F) E+\alpha N$.
(3) $\nabla_{E}=-(k+\alpha) E+\lambda F, \nabla_{F} E=\operatorname{div}(E) F+(k+\alpha), \nabla_{F} F=-\operatorname{div}(E) E-\lambda N$.

Define the second fundamental form B of ξ by

$$
\mathrm{B}(\mathrm{~V}, \mathrm{~W})=\frac{1}{2}\left\langle\nabla_{V} W+\nabla_{W} V,\right\rangle
$$

for all sections V, W of ξ (cf. [4], [7]). This is a symmetric bilinear form on ξ. As ξ is minimal, it follows that $\operatorname{Tr} \mathrm{B}=0$. Define also the extrinsic curvature $K_{e}(\xi)$ by

$$
K_{e}(\zeta)=\frac{B(V, V) B(W, W)-B(V, W)^{2}}{\langle V, V\rangle\langle W, W\rangle-\langle V, W\rangle^{2}}
$$

where V, W are two linearly independent sections of ξ (cf. [4]). Note that $K_{\mathrm{e}}(\xi) \leq 0$ because $\operatorname{Tr} \mathrm{B}=$ $B(E, E)+B(F, F)=0$ for an oriented orthonormal basis $\{E, F\}$ of ξ. By using Proposition 1, we have the following (see [6] for details).

Proposition 2. Let $\{, E, F\}, U, B$ be as above. At $p \in U, B_{p}=0$ if and only if $\operatorname{Ric}(,)_{p}=k^{2} / 2$. In particular, $B=0$ on U if and only if is a Killing vector field on U. In this case, we have $\lambda=0$ and $\alpha=-k / 2$.

3 Main results and proofs

Our main results are the following.

Theorem 1. Let ω be a contact structure on an oriented, connected, and closed 3-manifold M. Set $\xi=$ Ker ω. If there is a k-adapted Riemannian metric for ω satisfying $K_{M}>-3 k^{2} / 4$, where K_{M} is the sectional curvature of (M, g), then, for any smooth function f on M, there is a Riemannian metric of M so that $K(\xi)=f$.

Theorem 2. Let ω be a contact structure on an oriented, connected, and closed 3-manifold M. Set $\xi=\operatorname{Ker} \omega$. If there is a k-adapted Riemannian metric for ω satisfying $\operatorname{Ric}_{M}<k^{2} / 2$, then for any smooth function f on M there is a Riemannian metric of M so that $K(\xi)=f$. In particular, if there is a k-adapted Riemannian metric for ω satisfying $K_{M}<k^{2 / 4}$, then for any smooth function f on M there is a Riemannian metric of M so that $K(\xi)=f$.

Note that by Proposition 2, we always have Ric (,) $\leq k^{2} / 2$. Note also that as argued in $\S 7.2$ in [1], k-admissible metrics cannot be of strictly negative curvature.

We prove these results by the same way as V. Krouglov [4]. The difference is that, instead of the triviality of ξ, we assume the existence of a k-adapted Riemannian metric g for ω having the property $K(\xi)>-3 k^{2} / 4$ or $\operatorname{Ric}()<,k^{2} / 2$.

Let (M, ω, g) be as above and $U \subset M$ be an open set. Let be the unit vector field orthogonal to $\xi=$ Ker ω with $\omega()=1, \imath d \omega=0, \omega \wedge d \omega=k d V(M, g)$ and $\{, E, F\}$ be an oriented local orthonormal frame with $E, F \in \Gamma(\xi)$ on U. Let φ be a positive smooth function on M. Define a new metric g of M by

$$
\left.g=\left.\frac{1}{\varphi^{2}} g\right|_{\xi^{\perp}} ^{\perp} \oplus g \right\rvert\, \xi
$$

By definition, ${ }^{-}=\varphi N$ is the unit vector field orthogonal to ξ with respect to this metric \bar{g}, and $\left\{{ }^{-}, E, F\right\}$ is an oriented local orthonormal frame with respect to \bar{g}. Set $g(X, Y)=\langle X, Y\rangle$ and $\bar{g}(X, Y)=\langle X, Y\rangle_{\rho}$ for X, $Y \in \Gamma(T M)$. Recall the Koszul formula for the Riemannian connection ∇ of \langle,$\rangle :$

$$
2\left\langle\nabla{ }_{\mathrm{s}} T, U\right\rangle=S\langle T, U\rangle+T\langle U, S\rangle-U\langle S, T\rangle+\langle[S, T], U\rangle-\langle[S, U], T\rangle-\langle[T, U], S\rangle
$$

for $S, T, U \in \Gamma(T M)$.
Using this formula, we get the following by simple calculations:
(1) $\bar{\nabla}_{F} F=\left\langle\nabla_{F} F, E\right\rangle E+\varphi\left\langle\nabla_{F} F,\right\rangle^{-}$,
(2) $\bar{\nabla}_{E} F=\left\langle\nabla_{E} F, E\right\rangle E+(\varphi B(E, F)-k /(2 \varphi))^{-}$,
(3) $\bar{\nabla}_{E}{ }^{-}=(k /(2 \varphi)-\varphi B(E, F)) F-\varphi\left\langle\nabla_{E} E,\right\rangle E$,
(4) $\bar{\nabla}_{F}-=-(k /(2 \varphi)+\varphi B(E, F)) E-\varphi\left\langle\nabla_{F} F,\right\rangle F$,

Gen-ichi OSHIKIRI

(5) $\bar{\nabla}_{F} E=\left\langle\nabla_{F} E, F\right\rangle F+(\varphi B(E, F)+k /(2 \varphi))^{-}$,
(6) $\bar{\nabla}-F=-\varphi\langle\nabla \quad E, F\rangle E+k(\varphi-1 / \varphi) E / 2-F(\log \varphi)^{-}$.

Using these formulas in this order, we have the following.

Proposition 3. For the sectional curvature $\bar{K}(\xi)$ along ξ with respect to \bar{g} we have

$$
\bar{K}(\xi)=K(\xi)-\varphi^{2} K_{e}(\xi)+B(E, E) B(F, F)-\left\langle\nabla_{E} F, \nabla_{F} E\right\rangle+\frac{k^{2}}{2}-\frac{3 k^{2}}{4 \varphi^{2}} .
$$

Proof. Let $\{, E, F\}$ be an oriented orthonormal frame with respect to g and $\left\{{ }^{-}, E, F\right\}$ be an oriented orthonormal frame with respect to \bar{g} on U. It follows that

$$
\begin{aligned}
& \bar{K}(\xi)=\bar{K}(E, F)=\langle\bar{R}(E, F) F, E\rangle_{,} \\
& =\left\langle\bar{\nabla}_{E} \bar{\nabla}_{F} F, E\right\rangle_{\varphi}-\left\langle\bar{\nabla}_{F} \bar{\nabla}_{E} F, E\right\rangle_{\varphi}-\left\langle\bar{\nabla}_{[E, F]} F, E\right\rangle_{\varphi} \\
& =\left\langle\bar{\nabla}_{E}\left(\left\langle\nabla_{F} F, E\right\rangle E+\varphi\left\langle\nabla_{F} F,\right\rangle^{-}\right), E\right\rangle_{\varphi} \\
& -\left\langle\bar{\nabla}_{F}\left(\left\langle\nabla_{E} F, E\right\rangle E+\left(\varphi B(E, F)-\frac{k}{2 \varphi}\right)^{-}\right), E\right\rangle_{\rho} \\
& -\left\langle\bar{\nabla}_{E} F, E\right\rangle_{\varphi}\left\langle\bar{\nabla}_{E} F, E\right\rangle_{\varphi}+\left\langle\bar{\nabla}_{F} E, F\right\rangle_{\varphi}\left\langle\bar{\nabla}_{F} F, E\right\rangle_{\varphi} \\
& -\frac{1}{\varphi^{2}}\left\langle[E, F],{ }^{-}\right\rangle\langle\bar{\nabla}-F, E\rangle \text {, } \\
& =E\left\langle\nabla_{F} F, E\right\rangle-\varphi^{2}\left\langle\nabla_{F} F,\right\rangle\left\langle\nabla_{E} E,\right\rangle \\
& -F\left\langle\nabla_{E} F, E\right\rangle+\left(\varphi B(E, F)-\frac{k}{2 \varphi}\right)\left(\varphi B(E, F)+\frac{k}{2 \varphi}\right) \\
& -\left\langle\nabla_{E} E, F\right\rangle^{2}-\left\langle\nabla_{F} F, E\right\rangle^{2}+\frac{\mathrm{k}}{\varphi}\left(-\varphi\langle\nabla \quad E, F\rangle+\frac{\mathrm{k}}{2}\left(\varphi-\frac{1}{\varphi}\right)\right) \\
& =K(\xi)-\varphi^{2} K_{e}(\xi)+B(E, E) B(F, F)-\left\langle\nabla_{E} F, \nabla_{F} E\right\rangle+\frac{k^{2}}{2}-\frac{3 k^{2}}{4 \varphi^{2}} .
\end{aligned}
$$

Proof of Theorem l. Let g be a k-adapted Riemannian metric with the property $K(\xi)+3 k^{2} / 4>0$ and f be an arbitrary smooth function on M. We can choose a small positive constant C so that $K(\xi)+3 k^{2} / 4$ - Cf >0 on M, because M is compact. Let $\{, E, F\}$ be an oriented orthonormal frame of $U \subset M$. Then, for the metric $\bar{g}=\frac{1}{\varphi^{2}} g\left|\xi^{\perp} \oplus g\right| \xi$ we have

$$
\bar{K}(\xi)=K(\xi)-\varphi^{2} K_{e}(\xi)+B(E, E) B(F, F)-\left\langle\nabla_{E} F, \nabla_{F} E\right\rangle+\frac{k^{2}}{2}-\frac{3 k^{2}}{4 \varphi^{2}}
$$

by Proposition 3. It is easy to see that the right hand side formula is independent of the choices of oriented orthonormal frames on U. Thus, the following equation on φ is globally defined one over M :

$$
C f=K(\xi)-\varphi^{2} K_{e}(\xi)+B(E, E) B(F, F)-\left\langle\nabla_{E} F, \nabla_{F} E\right\rangle+\frac{k^{2}}{2}-\frac{3 k^{2}}{4 \varphi^{2}} .
$$

If we could get a positive solution φ of this equation, we would have proved our Theorem.
Set $t=1 / \varphi^{2}$ and at each point $x \in M$ consider the quadratic equation on t :

$$
\frac{3 k^{2}}{4} \mathrm{t}^{2}+\left(C f-K(\xi)-B(E, E) B(F, F)+\left\langle\nabla_{E} F, \nabla_{F} E\right\rangle-\frac{k^{2}}{2}\right) t+K_{e}(\xi)=0
$$

Note that, as $K_{e}(\xi) \leq 0$, the discriminant D of this equation satisfies

$$
D=\left(C f-K(\xi)-B(E, E) B(F, F)+\left\langle\nabla_{E} F, \nabla_{F} E\right\rangle-\frac{k^{2}}{2}\right)^{2}-3 k^{2} K_{e}(\xi) \geq 0
$$

It follows that this equation has a non-negative solution at each point $x \in M$. We have to show that this solution is positive and smooth on M. To see this, consider the case $K_{e}(\xi)=0$. Note that the solution is positive and smooth at the points $x \in M$ with $K_{e}(\xi)(x)<0$. In case $K_{e}(\xi)=0$, by Proposition 2, we have $\lambda=0$ and $\alpha=-k / 2$, that is, the coefficient of t becomes

$$
C f-K(\xi)-B(E, E) B(F, F)+\left\langle\nabla_{E} F, \nabla_{F} E\right\rangle-\frac{k^{2}}{2}=C f-K(\xi)-\frac{3 k^{2}}{4}<0
$$

which shows that the solution is positive and smooth, too. By a conformal change of this metric using C, we get the desired metric \tilde{g} with $\tilde{K}(\xi)=f$ and this completes the proof.

Proof of Theorem 2. From the above proof, it is easy to see that if $K_{e}(\xi)<0$ then we get the same result as in Theorem 1. As $K_{e}(\xi) \leq 0$, it is sufficient to show that $K_{e}(\xi) \neq 0$. By Proposition 2, we have, at $p \in M$

$$
K_{e}(\xi)_{p}=0 \Leftrightarrow B_{p}=0 \Leftrightarrow \operatorname{Ric}(,)_{p}=\frac{k^{2}}{2}
$$

By the assumption that $R i c_{M}<\mathrm{k}^{2} / 2$, we have $K_{e}(\xi)<0$, which completes the proof of Theorem 2 .

4 Examples

To apply our theorem, we have just to note that $K(\xi)+3 k^{2} / 4-C f>0$.
The first example is due to $[5]$. Let $\left(\mathbf{R}^{3}, g_{0}\right)$ be the 3 -dimensional Euclidean space with the canonical coordinate (x, y, z). Define $\omega=\sin z d x+\cos z d y$. Then, it follows that

$$
d \omega=\cos z d z \wedge d x-\sin z d z \wedge d y, \text { and } \omega \wedge d \omega=d x \wedge d y \wedge d z=d V\left(\mathbf{R}^{3}, g_{0}\right)
$$

Gen-ichi OSHIKIRI

This is 1 -adapted. Define $=\sin z \partial_{x}+\cos z \partial_{y}, E=\partial_{z}$ and $F=\cos z \partial_{x}-\sin z \partial_{y}$. Then, it is easy to see that $\{, E, F\}$ is an oriented orthonormal frame on $\mathbf{R}^{\mathbf{3}}$. We get covariant derivatives

$$
\begin{aligned}
& \nabla \quad=0, \nabla \quad E=0, \nabla \quad F=0 \\
& \nabla_{E}=\cos z \partial_{x}-\sin z \partial_{y}, \nabla_{E} E=0, \nabla_{E} F=-\sin z \partial N_{x}-\cos z \partial_{y} \\
& \nabla_{F}=0, \nabla_{F} E=0, \nabla_{F} F=0
\end{aligned}
$$

Thus, we have

$$
\rho=\langle\nabla E, F\rangle=0, \lambda=\left\langle\nabla_{E} E, \quad\right\rangle=0, \alpha=\left\langle\nabla_{E} F, \quad\right\rangle=-1,
$$

and

$$
\begin{aligned}
& B(E, E)=B(F, F)=0, B(E, F)=B(F, E)=-1 / 2 \\
& K(\xi)=0, K_{e}(\xi)=-1 / 4
\end{aligned}
$$

For an arbitrary smooth function f on \mathbf{R}^{3}, the equation becomes

$$
\begin{aligned}
f & =K(\xi)-\varphi^{2} K_{e}(\xi)+B(E, E) B(F, F)-\left\langle\nabla_{E} F, \nabla_{F} E\right\rangle+\frac{1}{2}-\frac{3}{4 \varphi^{2}} \\
& =\frac{\varphi^{2}}{4}+\frac{1}{2}-\frac{3}{4 \varphi^{2}}
\end{aligned}
$$

whose positive solution is

$$
\varphi=\sqrt{2 f-1+\sqrt{(2 f-1)^{2}+3}}
$$

Thus, if we want to get $\bar{K}(\xi)=1$ then take $\varphi=\sqrt{3}$, and if we want to get $\bar{K}(\xi)=-1$ then take $\varphi=\sqrt{2 \sqrt{3}-3}$. Note that on the flat torus T^{3}, we get the same conclusion because the above quantities are well defined on T^{3}.

The second one is due to [2]. Let $\left(S^{3}, g_{1}\right)$ be the unit sphere in the 4 -dimensional Euclidean space \mathbf{R}^{4} with the canonical coordinate (x, y, z, w). Define a 1 -form ω by

$$
\omega=x d y-y d x+z d w-w d z
$$

It is easy to see that $\omega \wedge d \omega=2 d V\left(S^{3}, g_{1}\right)$, thus $k=2$. Set $=x \partial_{y}-y \partial_{x}+z \partial_{w}-w \partial_{z}, E=x \partial_{z}-$ $z \partial_{x}-y \partial_{w}+w \partial_{y}$ and $F=x \partial_{w}-w \partial_{x}-y \partial_{z}-z \partial_{y}$. Then $\{, E, F\}$ is an oriented orthonormal frame of S^{3} with $\omega()=1$ and $E, F \in \operatorname{Ker} \omega$. We get covariant derivatives

$$
\begin{aligned}
& \nabla=0, \nabla E=-F, \nabla F=E, \\
& \nabla_{E} E=0, \nabla_{E} F=-, \nabla_{E}=F, \\
& \nabla_{F} E=, \nabla_{F} F=0, \nabla_{F}=-E,
\end{aligned}
$$

Thus, we have

$$
\rho=\langle\nabla E, F\rangle=-1, \lambda=\left\langle\nabla_{E} E, \quad\right\rangle=0, \alpha=\left\langle\nabla_{E} F, \quad\right\rangle=-1
$$

and

$$
B(E, E)=B(F, F)=B(E, F)=B(F, E)=0 .
$$

Note that Ker ω is non-trivial. For a smooth function f on S^{3} and positive constant C with $C f<4$, the equation becomes

On Prescribing Curvature of Contact 3-Manifolds

$$
\begin{aligned}
C f & =K(\xi)-\varphi 2 K_{e}(\xi)+B(E, E) B(F, F)-\left\langle\nabla_{E} F, \nabla_{F} E\right\rangle+\frac{2^{2}}{2}-\frac{32^{2}}{4 \varphi^{2}} \\
& =1-0+0+1+2-\frac{3}{\varphi^{2}} \\
& =4-\frac{3}{\varphi^{2}}
\end{aligned}
$$

whose positive solution is

$$
\phi=\sqrt{\frac{3}{4-C f}} .
$$

Thus, if we want to get $\bar{K}(\xi)=0$ then take $\varphi=\sqrt{3 / 4}$, and if we want to get $\bar{K}(\xi)=-1$ then take $\varphi=$ $\sqrt{3 / 5}$.

References

1. D. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math. 203 (2002), Birkhäuser, Boston.
2. S. Chern and R. Hamilton, On Riemannian metrics adapted to Three-dimensional contact manifolds, Lecture Notes in Mathematics 1111 (1985), Springer, Berlin, 279--308.
3. J. Etnyre, Introductory lectures on contact geometry, Proc. Symp. Pure Math. 71 (2003), 81-107.
4. V. Krouglov, The curvature of contact structures on 3-manifolds, Alg. and Geom. Topology 8 (2008), 1567 1579.
5. Z. Olszak, On contact metric manifolds, Tohoku Math. Journ. 31 (1979), 247-253.
6. G. Oshikiri, On curvatures of k-adapted metrics to contact 3 -manifolds, Ann. Rep. Fac. Educ. Iwate Univ. 70 (2010), 81-87.
7. B. Reinhart, The second fundamental form of a plane field, Journ. of Diff. Geom. 12 (1977), 619-627.
