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On Prescribing Curvature of Contact 3-Manifolds * 
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Abstract 

Recently, V. Krouglov studied prescribing curvatures of contact closed 3-manifolds 

(M, w), and proved, among others, that if Ker w is trivial then for any smooth func

tion on M there is a Riemannian metric of M so that the sectional curvature of Ker w 

coincides with the given function. In this paper, we replace this triviality condition of 

Ker w to curvature conditions, and show similar results. 
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1 Introduction 

Let (M, w) be a contact closed 3-manifold. Set~= Ker w. Recently, V. K.rouglov [ 4] studied prescribing 

curvatures of contact 3-manifolds, and proved that if¢ is trivial then for any smooth function/ on M 

there is a Riemannian metric of M so that the sectional curvature K(¢) = f In this paper, we change this 

triviality condition of~ to curvature conditions, that is, we show that, if there is a suitable metric, then 

for any smooth function on M there is a Riemannian metric of M so that the sectional curvature of ¢ 

coincides with the given function. Though V. K.rouglov began his argument with an arbitrary metric of M, 
we shall begin the argument with a kind of adapted metrics introduced by S. Chern and R. Hamilton [2]. 

We shall give preliminaries and auxiliary results in §2, and present and prove main results in §3. In §4, 

we give some examples. 

2 Preliminaries and auxiliary results 

In this paper, we work in the ceo -category. In what follows, we always assume that a contact structure is 

given by a one-fom1 w, and that the ambient manifold M is closed, connected, oriented and of dimension 

3, unless otherwise stated (see [1], [3], [5] for the generalities on contact structures). 
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Let ( = Ker OJ, and assume that OJ !\ dOJ > 0 on M We can find a Riemannian metric g of M satisfying 

the following: Let be a unit vector field orthogonal to (with OJ( ) = 1, lNdOJ 0 and OJ !\ dOJ kdV (M, 

g), where k is a positive constant and dV (M, g) is the volume element of the Riemannian manifold (M, g). 

We call such a metric k-adapted for OJ. Note that in case k = 2, that is, OJ !\ d w = 2dV (M, g), g is called 

adapted in [3]. Thus, if we give an oriented local orthonormal frame { ,£,F) withE, FE f(,), then we 

have OJ !\ dOJ = kdV (M, g) k * !\ E* !\ F*, where V* = g(V, ). By definition, dOJ/k is the volume 

element along (. It follows that 'is minimal in the sense that 

('h ,£)+ (\!p ,F)=O, 

where \! is the Riemannian connection of (M, g). 

We locally represent covariant derivatives explicitly (see [ 6] for details). Let U be an open subset of M 

Proposition 1. Let ( ,E,F} be an oriented orthonormal frame on U. As \! E ..l E, , we can set \! E 

= pF for a smooth function p on U. Set also ( \! E E, ) = A. and ( \! E E, ) = a. Then we have 

(0) ([E, F], ) - k. 

(1) \! 

(2) \! E 

(3) \! E 

0, \! E=pF, \! F - pE. 

- A.E - aF, \! EE = - div(F)F + A.N, \! EF = div(F)£ +aN. 

- (k + a)E +AF, \!FE= div(E)F +(k+a) , \! F F = div(£)£ - AN. 

Define the second fundamental form B of' by 

1 
B(V,W) =2 (\!vW+ \!wV, ) 

for all sections V,W of ( (cf. [ 4], [7]). This is a symmetric bilinear form on(. As' is minimal, it follows 

that Tr B = 0. Define also the extrinsic curvature Ke(() by 

B(V, V)B(W,W)- B(V,W)2 

Ke(Q = --------
(V, V) (W,W) - (V,W) 2 ' 

where V, Ware two linearly independent sections of' (cf. [ 4]). Note that Ke(() :S: 0 because Tr B 

B(E,E) + B(F, F) = 0 for an oriented orthonormal basis (£, F) of'· By using Proposition 1, we have the 

following (see [6] for details). 

Proposition 2. Let ( ,£, F},U,B be as above. At p E U, Bp = 0 if and only if Ric( , )p k2/2. In 

particular, B 0 on U if and only if is a Killing vector field on U. In this case, we have A.= 0 and a=- k/2. 

94 



On Prescribing Curvature of Contact 3-Manifolds 

3 Main results and proofs 

Our main results are the following. 

Theorem 1. Let w be a contact structure on an oriented, connected, and closed 3-manifold M. Set 

( = Ker w. If there is a k-adapted Riemannian metric for w satisfYing KM > - 3Ji2!4, where KM is the 

sectional curvature of (M, g), then, for any smooth function/ on M, there is a Riemannian metric of M so 

that K(() = f 

Theorem 2. Let co be a contact structure on an oriented, connected, and closed 3-manifold M. 

Set ( = Ker w. If there is a k-adapted Riemannian metric for w satisfying RicM < k 2!2, then for any 

smooth function f on M there is a Riemannian metric of M so that K(C:) = f In particular, if there is a 

k-adapted Riemannian metric for w satisfYing KM< F/4, then for any smooth function/on Mthere is a 

Riemannian metric of M so that K(() = f 

Note that by Proposition 2, we always have Ric( , ) :5: k2!2. Note also that as argued in §7.2 in [1], 

k-admissible metrics cannot be of strictly negative curvature. 

We prove these results by the same way as V. Krouglov [ 4]. The difference is that, instead of the 

triviality of(, we assume the existence of a k-adapted Riemannian metric g for co having the property 

K(/;) > - 3k2!4 or Ric( , ) < k 2!2. 

Let (M, w, g) be as above and U C Mbe an open set. Let be the unit vector field orthogonal to ( = 
Ker w with w( ) = 1, 1 dw 0, w 1\ dw = kdV (M, g) and { ,E, F) be an oriented local orthonormal 

frame withE, FE f' (() on U. Let rp be a positive smooth function on M. Define a new metric g of Mby 

By definition, rpN is the unit vector field orthogonal to (with respect to this metric g, and { ,E, F} 

is an oriented local orthonormal frame with respect to g. Set g(X, Y) =(X, Y) and g(X, Y) =(X, Y)'P for X, 

Y E f' (TM). Recall the Koszul formula for the Riemannian connection \1 of (, ) : 

2 (\I sT, U) S (T, U) + T (U, S) U (S, T) + ([S, T],U) - ([S, U], T) ([T, U], S) 

for S, T, U E f' (TJvf). 

Using this formula, we get the following by simple calculations: 

( 1) ~ FF = < \1 FF,E) E + rp < \1 FF, > 
(2) ~ EF =(\I EF,E) E + (rpB(E, F) k/(2rp)) , 

(3) ~ E = (k!(2rp) rpB(E, F))F- rp ('! EE, > E, 

(4) ~ F = - (k/(2rp) + rpB(E, F))E- rp (\IFF, > F, 
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(5) V FE= (\7 FE, F) F + (rpB(E, F) + k/(2rp)) 

(6) v-F=- rp (V E,F) E+k(rp- 1/rp)E/2- F(Iogrp) 

Using these fonnulas in this order, we have the following. 

Proposition 3. For the sectional curvature K ( ~) along ~ with respect tog we have 

- k2 3~ 
K(~) =K(~)- rp2Ke(~) +B(E,E)B(F,F)- (VEF, VFE)+'-' --2 2 4rp 

Proof. Let { , E, F} be an oriented orthononnal frame with respect tog and 

,E, F} be an oriented orthonormal frame with respect to g on U. It follows that 

K(~) = K(E, F) = (R(E, F)F,E) 'P 

= <v E v F F, E> 'P - <v F v E F, E> 'I' - <v [E,F] F,E> 'P 

=<vEc<v FF,E> E+rp <v FF, >-),E> 'P 

- (VF ( <V EF,E) E+(rpB(E,F) -2~) -),E) rp 

- <v E F ,E> 'fl <v E F,E> rp + <v FE, F> 'fl <v F F,E> 'P 

- ~~ ([E, F], ) <v- F, E) '~' 
= E < \7 F F, E) - rp2 (\7 F F, > < v E E, > 

- F < V E F,E) + (rpB(E, F) -l )(rpB(E, F) +: ) 
rpk rp k 1 

- <v EE,F) 2 - <v FF,E) 2 +- (- rp <v E,F>+2 (rp --)) 
• rp ~ 3~ rp 

=K(t;)- rp-Ke(~) +B(E,E)B(F,F)- (V EF, V FE)+-cz;- 4rp2 . 

Proof of Theorem 1. Let g beak-adapted Riemannian metric with the property K(~) + 3k2/4 > 0 and 

/be an arbitrary smooth function on M. We can choose a small positive constant C so that K(~) + 3k214 

- Cf> 0 on M, because M is compact. Let { , E, F} be an oriented orthonormal frame of U C M. 

Then, for the metric g =~ gJ" .L EB gJ ~ we have 

by Proposition 3. It is easy to see that the right hand side formula is independent of the choices of 

oriented orthononnal frames on U. Thus, the following equation on rp is globally defined one over M: 
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If we could get a positive solution rp of this equation, we would have proved our Theorem. 

Set t = l!rp2 and at each point x E M consider the quadratic equation on t: 

Note that, as Ke(.;) :S 0, the discriminant D of this equation satisfies 

It follows that this equation has a non-negative solution at each point x E M. We have to show that this 

solution is positive and smooth on M. To see this, consider the case Ke(/;) = 0. Note that the solution is 

positive and smooth at the points x E M with Ke(/;) (x) < 0. In case Ke(l;) = 0, by Proposition 2, we 

have i\. = 0 and a = - k/2, that is, the coefficient oft becomes 

Cf-K(I;) -B(E,E)B(F,F)+ ('VEF, 'VFE) _k; Cf-K(I;)- ~k2<0, 

which shows that the solution is positive and smooth, too. By a conformal change of this metric using C, 

we get the desired metricg withk (I;) =f and this completes the proof. 

Proof of Theorem 2. From the above proof, it is easy to see that if Ke(.;) < 0 then we get the same 

result as in Theorem 1. As Ke( I;) :S 0, it is sufficient to show that Ke( I;) =F 0. 

By Proposition 2, we have, atp EM 

By the assumption that RicM < k2/2, we have Ke(/;) < 0, which completes the proof of Theorem 2. 

4 Examples 

To apply our theorem, we have just to note that K(l;) + 3k214 - Cf> 0. 

The first example is due to [5]. Let (R3 , go) be the 3-dimensional Euclidean space with the canonical 

coordinate (x,y, z). Define w sin zdx +cos zdy. Then, it follows that 

dw = cos zdz !\ dx - sin zdz !\ dy, and w !\ dw = dx !\ dy !\ dz = dV (R3, go). 
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This is 1-adapted. Define = sinzax +cosza,., E az and F coszax - sinzay. Then, it is easy to see 

that { , E, F} is an oriented orthonormal frame on R3• We get covariant derivatives 

\/ =0, \/ E=O, \/ F=O, 

\/ E = coszax - sinza,., \/ EE = 0, \/ EF - sinzaN,. coszay, 

'IF =0, 'IFE=O, 'IFF=O. 

Thus, we have 

and 

B (E, E) = B (F, F) = 0, B (E, F) B (F, E) 1/2, 

K( t;) = 0, KeC t;) = - 1/4. 

For an arbitrary smooth function/on R3, the equation becomes 

f= K( f;) - rp 2Ke(f;) + B (E, E) B (F, F) (\/ EF, \/FE) 

=~+~-
whose positive solution is 

qJ = .~~2/:-::-_--:-1 -+--:-/;::;;(2;;::'!;;::_===::1::;:;)2;=+=3~. 

3 
- 4rp2 

Thus, if we want to get K (!;) 1 then take rp = 13, and if we want to get K (!;)= - 1 then take 

rp = ./2 /3 - 3. Note that on the flat torus T3
, we get the same conclusion because the above quantities 

are well defined on T 3. 

The second one is due to [2]. Let (S3, f]J) be the unit sphere in the 4-dimensional Euclidean space R4 

with the canonical coordinate (x, y, z, w). Define a 1-form OJ by 

OJ= xdy - ydx + zdw - wdz. 

It is easy to see that OJ 1\ dOJ = 2dV (S3
, g1), thus k = 2. Set = xa.v - yax + zaw waz, E = xaz -

zax yaw+ way and F = xaw - wax - ya= - zay. Then { , E, F} is an oriented orthonormal frame 

of S 3 with OJ( ) = 1 and E, F E Ker OJ. We get covariant derivatives 

\/ =0, \/ E=-F, \/ F=E, 

'IEE=O, 'IEF=- , \IE =F, 

\/FE=, 'IFF=O, 'IF =-E. 

Thus, we have 

p=(\1 E,F)=- 1, A =('lEE, )=0, a =('IEF, )=- 1, 

and 

B (E, E) = B (F, F) = B (E, F) = B (F,E) = 0. 

Note that Ker OJ is non-trivial. For a smooth function/ on S3 and positive constant C with Cf < 4, the 

equation becomes 
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22 3 22 
Cf = K( t;) - cp2KeC t;) + B (E, E) B (F, F) - ('V EF, \/pE) + -

2 
- -:rz-

3 cp 
=1-0+0+1+2--z 

3 cp 
=4 -2 cp 

whose positive solution is 

Thus, if we want to get K (t;) = 0 then take cp = ./ 3/4, and if we want to get K (!;) = - 1 then take £P 

.; 3/5. 
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