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Abstract

Given a codimension-one plane field & on a closed manifold M, we show that if X is
transverse to &, then there are many functions fon M such that supp(f) = M and that /X
is the mean curvature vector field of & with respect to some Riemannian metric of M,
and we give a necessary and sufficient condition for X to become the mean curvature
vector field of ¢ with respect to some Riemannian metric of M. As an application, we
show a stability property of mean curvature vector fields A of ¢ with respect to small
perturbations of codimension-one plane fields.

1 Introduction

Let M be an oriented closed manifold and ¢ be a transversely oriented codimension-one plane field on
M, here ‘plane field’ means a subbundle of the tangent bundle of M. A smooth function f (resp. vector
field X) on M is said to be admissible if there is a Riemannian metric g of M so that f (resp. X) is the
mean curvature function (resp. mean curvature vector field) of ¢ with respect to g. In [6], the author
gave a characterization of admissible functions of codimension-one foliations, and in [7], he also gave
a characterization of admissible vector fields of codimension-one foliations on M. In this paper, we
shall give an extension of the above result on mean curvature vector fields to not necessarily integrable
codimension-one plane fields of M. As an application, we have a stability property of mean curvature
vector fields, and consequently, that of mean curvature functions, of & with respect to variations of
codimension-one plane fields.

We shall give some definitions, preliminaries and results in Section 2, and shall prove them in
Section 3. Some remarks on the closedness of B + P (X, &) and on C,q (&) will be given in Section 4 by

using simple foliations on 72,
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2 Preliminary and result

In this paper, we work in the C* -category. In what follows, we always assume that plane fields are
of codimension-one and transversely oriented, and that the ambient manifolds are closed, connected,
oriented and of dimension 7 + 1> 2, unless otherwise stated (see [1], [14] for the generalities on
foliations).

Let g be a Riemannian metric of M. Then there is a unique unit vector field orthogonal to ¢ whose
direction coincides with the given transverse orientation. We denote this vector field by V. Orientations
of M and ¢& are related as follows: Let {V1, Vo, . . ., V) be an oriented local frame of & Then the
orientation of M coincides with the one given by (N, V1, Vs, ..., Val.

We denote the mean curvature of ¢ at x with respect to g and N by £,(x), that is,

hg/ = 2 <VEiEi, N>;

i=1

where ¢, ) means ¢ (, ), Vis the Riemannian connection of (M, g) and {E1,Es, . . . ,E,} is an oriented local
orthonormal frame of & Note that this notion is well-defined even if the plane field is not integrable. The
vector field H, = h,N is called the mean curvature vector field of & with respect to g. A smooth function f
on M is called admissible if f = —h, for some Riemannian metric g (cf. [4], [15]). We also call a vector
field X on M admissible if X = H, for some Riemannian metric g. A characterization of admissible
functions of codimension-one foliations is given in [6] (see also [4], [5], [15]):

Theorem 1. For any vector field Z transverse to a codimension-one plane field ¢ of a closed
oriented manifold M, there is a smooth function on M with supp (/) = M so that fZ is admissible.

We shall recall the characterization of admissible vector fields given in [7].

Define an n-form x: on M by
Xe X1y oo Xy) = det((E;, Xj>)i,j:1,~--,n forX; € TM.

If the plane field ¢ is integrable, then the restriction ¥z|L is the volume element of (L,L|g) for a leaf L of
¢&. If the plane field & is of codimension-one, then the following well-known formula for foliations holds

for not necessarily integrable plane fields.

Proposition R (Rummler [9]).d, : = —h,dV (M, g)=div,(N)dV (M, g),where dV (M, g) is the volume
element of (M, g) and div,(N) is the divergence of N with respect to g, that is, div,(N) = 2 (VEN, E).
i=1
Now recall the set-up by Sullivan [12]. Let D, be the space of p-currents, and D? be the space of
differential p-forms on M with the C *° -topology. It is well known that D? is the dual space of D, (cf.
Schwartz [10]). Let x € M and {ei, . . ., es} be an oriented basis of &,. We define the Dirac current
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O el A" Aen DY
661/\"' /\en(¢) = ¢x(el /\ BRIEIVAN en) for¢ S D",

and set C: to be the closed convex cone in D, spanned by Dirac currents Oc1 A - aen for all oriented basis
{e1, ..., es of & and x € M. We denote a base of C; by Cg, which is an inverse image L ~ (1) of a
suitable continuous linear functional L : D, — R. It is known that the base C; is compact if L is suitably
chosen (see Sullivan [12]). In the following, we assume that C; is compact.

Let X be a vector field on M. Denote by P(X, &) the closed linear subspace of D, generated by all
the Dirac currents 0 x@) AviA - Aon—1 With 01, ..., v, -1 € & and x € M (see [11] for more details),

where 0 x AviA - Aon —1 i defined by
OX@ Aot A - ron —1(8) = d(X(x) Aoyt A - - Avy—y) forg € D",

Let 0 : Dyw1 — D, be the boundary operator and set B = 0 (Dy.1).
A characterization of admissible vector fields for codimension-one foliations is given in [7] (see

also [4], [5], [15]). We extend this result to not necessarily integrable codimension-one plane fields ¢.

Theorem 2. For a vector field X on M, the following two conditions are equivalent.
(1) X is admissible.
(2) There are a volume element dV , a non-vanishing vector field Z transverse to ¢ whose direction
coincides with the given transverse orientation of &, a smooth function f'on M, and a neighborhood U of
0 € D, such that

() X=—rz

(i) fufdV =0,

(iii) JofdV =0 forallc € 9 ~H(P(X, &) N B), and

(v) inf{JefdV1c € 9 ~W(C:+ PX, )+ U) N B)}> 0.

Note that the conditions (ii) and (iv) in this theorem mean that the function f is admissible. In the
case when X = 0, these conditions become C: N B = (J, which is equivalent to the ‘tautness’ of £. In
Section 4, we shall give an example of one-dimensional foliation on 7%, whose space B + P(X, &) is not
closed.

As an application, we show a stability property of mean curvature vector fields with respect to
perturbations of codimension-one plane fields. When we consider perturbations of plane fields, we
consider the topology on the set of C* plane fields by taking the C * - topology on the space of sections
from M to the oriented Grassmann bundle of all oriented n-planes of the tangent space to M at each

point.

Theorem 3. Let X be an admissible vector field of a codimension-one plane field &, then X is also
admissible for codimension-one plane fields ¢ ' sufficiently close to &.
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As a corollary to this theorem, we have the following result.

Corollary. If f € C,4(¢) and &' is sufficiently close to &, then f € Cau(&"), where Cau(&) is the set of
all admissible functions for ¢ on M.

3  Proof of Theorems

As Theorems 1 and 2 are proved by the same way as in [7], we only give outlines of the proofs. In order

to prove Theorem 1, we need some lemmas.

Lemma 1. Let M be a closed manifold and N be a non-vanishing vector field on M. there is a

smooth function ¢ on M such that suppN(p) = M.

Lemma 2. Let M, N and ¢ be as in Lemma 1. For any smooth function 4 on M, there is a positive
constant &> 0 so that supp(h — a N(p)) = M.

The following lemma is proved for codimension-one foliations in [3], Lemma 3, where the term in
the equality H' = e ~2¥ H in (ii) should be corrected by H' = e ~¥H. This also holds for non-integrable

codimension-one plane fields.

Lemma 3. Let & be a codimension-one plane field of a Riemannian manifold (M, g), N be a unit
vector filed orthogonal to ¢ defined as in Section 2, and 4 be the mean curvature function of & with
respect to g.

(i) Ifg=e?¥ g, thenf = e~ *(h — N(1))), where j; is the mean curvature function of ¢ with respect

to g and the unit vector field N orthogonal to & with respect tog defined as in Section 2.

(i) If g|¢ @ TM = g|¢ @ TM and g(U, V') = *¥g(U, V) for U and V orthogonal to ¢, thensi=e~ Yh.

(iii) Let Z = @N + F be a vector field on M with ¢ > 0 and F € T"(¢). Define a Riemannian metric

g on M as follows: g = g on ¢, Z is a unit vector field and orthogonal to ¢ with respect to g. Then we

have 7 = ph + F(log ) — div,(F).

We give here another proof of this lemma by presenting a unified form given in [8].

Proposition. Let & be a codimension-one plane field of a Riemannian manifold (M, g), N be the
unit vector field orthogonal to ¢ defined as in Section 2, and % be the mean curvature function of ¢ with
respect to g. Let § be another Riemannian metric of M and N be the unit vector field orthogonal to & with
respect to g. Set N =0 N + F for a positive smooth function ¢ on M and F € T"(¢). Further, also set
% de= ¢ % 4e for a positive smooth function ¢ on M. Then, for the mean curvature /; of ¢ with respect to g,
we have

7= 0h—oN(log 9) — Fllog 2) — div,(F).
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Lemma 3 can be easily derived from this proposition, and Theorem 1 follows directly from these
three Lemmas by modifying an arbitrarily given Riemannian metric on M (see [7] for details). To prove
Theorem 2, we follow the proof given in [4] with some modifications motivated by [11] (see also
Sullivan [12]). To do this we need a Hahn- Banach Theorem of the following form (cf. [2]):

Theorem of Hahn-Banach. Let V" be a Fréchet space, W be a closed subspace of V', and C be a
compact convex cone at the origin O € V. Let p : W — R be a continuous linear functional of W with
p() >0 forv € C N W\ {0}. Then there is a continuous extension 7 : ¥ — R of p so that 1 (v) >0
forv € C\{0}.

Proof of Theorem 2.

(1) = (2) : Assume that there is a Riemannian metric g of M so that X is the mean curvature vector
of & Let N be the unit vector field orthogonal to &, and x¢ be the n-form defined as in Section 2. If C¢ is
chosen to be L (1) of a continuous linear functional L : D, — R with C¢ being compact, as x¢: D, —
R is also continuous, there is a positive constant &€ > 0 such that s> & >0 on Cs. We choose U=
12! (1—¢ /2,& /2[) as a neighborhood of 0 € D,,, where Ja, bl is an open interval in R. Set dV'=dV (M, g),
Z =N, and = div,(N). It can be shown that these dV', Z, f, and U satisfy the conditions (i) ~ (iv) in (2).
Note that the integrability of £ is not used in the argument.

(2) > (1) : LetdV , Z, f, U be as in the conditions of (2). Condition (ii) implies that fdV = d¢ for

some ¢ € D" By the duality of D, and D” due to Schwartz, we can regard ¢ as a continuous linear
functional k : D, — R. By condition (iii), we may assume that k|(P(X, &) N B) = 0. Extend
k : B — R tof defined on the subspace P(X, &) + B by defining ; (z + b) = k(b) for z € P(X, &) and b € B.
As K(P(X, &) N B) =0, this is well-defined and is continuous on P(X, &) + B. Note that, by condition (iv),
F>0o0nC: N (P, &)+ B) \ {0}. Extend ; continuously to k defined on the closed subspace W = P(X,
&) + B. Tt can be shown that k (v) > 0 forv € C: N W\ {0} (cf. [7]), and the Hahn-Banach Theorem
quoted above can be applied to the case V' =D,, W = m, C=Csand p = K. Thus, we have a
continuous linear map 7 : D, — R with 5|z = k|s, 7(v) > 0 for v € C:\ {0}, and 5(z) = 0 for z € P(X, ¢).

By the duality due to Schwartz, we have an n-form x on M so that x >0 on ¢ dy=/fdV ,and ixy =0,
where iy is the interior product. Now define a Riemannian metric g as Sullivan did in [13], and deform it

as in Lemma 3, we have the desired Riemannian metric.

Remark Note that if the subspace P(X, &) + B is closed, it is easy to see that the condition (iv) can

be weakened by the following condition, which does not need any existence of U:

fcde> 0 forallc € 0~ 1((C + P(X, &) N B).
However, in general, the space P(X, &) + B is not closed as is seen in Section 4.

Proof of Theorem 3.

Let X be an admissible vector field of . In order to see that X is also admissible for &' near &, we
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show that the conditions in Theorem 2 are satisfied for X and ¢&'. To do this, we choose a Riemannian
metric g on M so that X is the mean curvature vector field of . Let N be the unit vector field orthogonal to &,
¢ be the n-form defined as in Section 2, and dV be the volume element of (A, g). Note that X =—fN
and dye = fdV. As the n-form ¢ is a continuous liner functional C, — R due to the duality of Schwartz,
and C: N %z ' (1) is easily seen to be compact, we can take C: N &' (1) as the base C of the cone C:.
Take a neighborhood ¥ of the origin as V' =z ! (]—e, &[) for sufficiently small £ > 0.

We take f, Z= N, dV and U = V as above and show that the conditions are also satisfied for &'. The
conditions (i) and (ii) are clearly satisfied by definition. Now we show that P(X, &) = P(X, &). This
clearly implies that the condition (iii) for ¢’ is also satisfied. ~ As the generators for P(X, &) are
of the form 0 xw AviA - Aon—1 With D1, ..., 00 —1 € & and v = aX (x) + ; withe; € Ecfori=1, ...,
n — 1, it follows that Sxw) A w1 A~ Aon—1 = Ox@ A el A Aen—1 i X () # 0 and dxew AviA - Aon—1=0
if X(x) = 0. This shows P(X, &) = P(X, &).

Finally we show that the condition (iv) is satisfied. Set C'= Cz N yz' (1). We show that the set C’
is also compact, thus, is a base of C¢. To see this, as the set C’ is closed, we need only to show that C’
is bounded. This is done if we can show that the set #(C") C R is bounded for any fixed n-form 7 on M
(cf. Schwartz [10], Sullivan [12]). Let m be the maximum value of 5 on any unit n-vector (with respect
to g) of M. In the following, we denote dy1 A - A on by v1 A - - = A v, for simplicity. Forvi A - - A v,
& C', we can choose an orthonormal basis {e1, . . ., e,} of &, and real numbers a1, . . ., a, such that wi =
aN+e € C'fori=1,...,nandvy A - - - ANv,=wi A - - - A wy It follows that

n

A A= (—1) T laN A e A é Aeater A A e,

i=1
where é; denotes the elimination of ei from N A e; A - - - A e, As &' is close to £, we may assume
>.7_,=lai < € for sufficiently small € > 0. Thus, we have

o1 A Ao <D laim+m=m( D |a]+ 1) < (c+ Dm.
i =1 i =1

Next consider a finite sum ¢ = > a:6; € C’, where ¢;> 0 and §; € Ce . As 1 = y:(c) = 2 ape(d) =
> xe(B)aiye(64/x: (1), we may assume that §; € C’, > a; =1 and a; > 0. It follows that |(c)| < > ailn(6)|
<> a(l + om = (1 + €)m. As the set of elements of the form of finite sums are dense in C’, #(C’) is

bounded. Therefore the set C’is compact. Now we show that for V= yz ! (]—e, ¢[) we have
inf{fc,fdm ¢ E0NIC+PX,EN+ V)N B)Y>0
by assuming that for U=z ' (] — 2¢, 2¢[)
inf{fc,fdm c€ a1 (C+PX, &) +U) N B)>0.
By the above argument, as C and C' are contained in yz ' (1), it follows that C' C C + yz ! (0). By the
definitions of ¥ and U, we have C' C C + V, and, thus, C'+ V C C+V +V C C+U. As P(X, &) =

P(X, &), we have C+P(X, &')+V  C C+P(X, &)+U, which implies 0 ~'((C+RX, &')+V) N B) C
01 ((C+P(X, £)+U) N B). This completes the proof.
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4 Concluding remark

In this section, we give a simple example which shows that the space P(X, &) + B is not closed, and
discuss a property of Cuq (&) related to our Corollary.

Let 7% be a two dimensional torus with the canonical coordinates (x, y), and F be a foliation given
by {S! X {y} |y € S'}. We consider the first S*-factor as the quotient [0, 2]/{0 ~ 2}. Define a vector field
Zon T?by Z =} (x)0+0,, where h : [0, 1] — R is a smooth function satisfying the conditions /4(0)=
h(1) = 0 and h(x) > 0 for x €]0, 1[, and}; is defined by}, (x) = A(x) forx € [0, 1] andj; (x) = —h(2— x)
for x € [1, 2]. We further assume that / is chosen, if we regard Z as a foliation, so that the holonomy
groups along the leaves {0} X S, {1} X S! are infinitely tangent to the identity maps. Note that Z is

invariant under the rotations along the second S'-factor. Let ¢, be the one-parameter group on T2
generating Z. Consider the closed interval 7 =[1/2, 3/2] X {0} C S'X S, and set ¢ = {¢,(x) € S' X S!
| x € I, — k<t <k}. Note that ¢x(x) € S' X {0} for x € Iand k € Z. It follows that dcy is contained in
STX {0}+P(Z, F). As the holonomy of Z is expanding along {1}XS! and contracting along {0} XS, it
follows that dc, — S'X {0} = Ly € F modulo P(Z, F). By Theorem 1, we can find a smooth function f
on T2 so that supp(f) = T?, and X = —fZ is admissible. Because P( —fZ, F) = P(Z, F ), we have Ly €
P(X, F) + B. Recall that B = dDy. But, as it is clear that Lo& P(X, F) + B, the space P(X, F) + B is not
closed.

According to our Corollary, if f € C.(&) and m is sufficiently large, then as &, is sufficiently close
to & with respect to the C * -topology of plane fields, it follows that f € Caq(&,) for sufficiently large
m. This seems to imply that Coa(&) C Cua(&,) for sufficiently large m. But, as m depends on f; this does
not hold in general. We give such an example of one-dimensional foliations on 72. To do this, recall a

characterization of admissible functions of codimension-one foliations.

Theorem (Oshikiri [6]). f'is admissible for J if and only if there is a volume form d¥ on M
satisfying the following two conditions:
(1) fufdv =0,
(2) JpfdV > 0 for every (+)-fcd D, where ‘(+)-fcd” means a compact saturated domain of M with N
being outward everywhere on 0D.

Let 72 be the two dimensional torus with the canonical coordinates (x, y), and consider the first S*-
factor as the quotient [0, 2]/{0 ~ 2}. Set 4 =[0, 11X S!, B=[1, 2]XS, and consider Reeb foliations on
them. The orientation is given so that A is (+)-fcd. Denote the rotation of angle 6 along the first S'-factor
by Rs, and set 5, = (R.m) ¥ F for sufficiently small fixed ¢ > 0. Then, for sufficiently large m, F, is
sufficiently close to F with respect to the C*-topology. We show that Coq(F) & Cua(Fn) and Coa( Fn) &
Caa(F) for all m.

As Int (A\Re/m) * 4) #= ¢ # = Int(B\(R./m) * B), we can choose p, v € Int((Re/m) * 4 N B) and
g, u € Int (4N (Re/m)* B). Thus we can find smooth functions f1, /2 on 72so that f;(x) <0 near p, fi(x)> 0
near q and fi(x) = 0 elsewhere, and f2(x) < O near u, f2(x) < 0 near v and fo(x) = O elsewhere. By the
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characterization, it is clear that fi € Cu(F) but fi & Cas( Fin), and that f2 € Caa( F) but f2 € Caa( Fn).
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