Admissible Vector Fields of Codimension-One Plane Fields and Their Stability Property

Gen-ichi OSHIKIRI *
(Received January 12, 2012)

Abstract

Given a codimension-one plane field ξ on a closed manifold M, we show that if X is transverse to ξ, then there are many functions f on M such that $\operatorname{supp}(f)=M$ and that $f X$ is the mean curvature vector field of ξ with respect to some Riemannian metric of M, and we give a necessary and sufficient condition for X to become the mean curvature vector field of ξ with respect to some Riemannian metric of M. As an application, we show a stability property of mean curvature vector fields H of ξ with respect to small perturbations of codimension-one plane fields.

1 Introduction

Let M be an oriented closed manifold and ξ be a transversely oriented codimension-one plane field on M, here 'plane field' means a subbundle of the tangent bundle of M. A smooth function f (resp. vector field X) on M is said to be admissible if there is a Riemannian metric g of M so that f (resp. X) is the mean curvature function (resp. mean curvature vector field) of ξ with respect to g. In [6], the author gave a characterization of admissible functions of codimension-one foliations, and in [7], he also gave a characterization of admissible vector fields of codimension-one foliations on M. In this paper, we shall give an extension of the above result on mean curvature vector fields to not necessarily integrable codimension-one plane fields of M. As an application, we have a stability property of mean curvature vector fields, and consequently, that of mean curvature functions, of ξ with respect to variations of codimension-one plane fields.

We shall give some definitions, preliminaries and results in Section 2, and shall prove them in Section 3. Some remarks on the closedness of $B+P(X, \xi)$ and on $C_{a d}(\xi)$ will be given in Section 4 by using simple foliations on T^{2}.

[^0]
Gen-ichi OSHIKIRI

2 Preliminary and result

In this paper, we work in the C^{∞}-category. In what follows, we always assume that plane fields are of codimension-one and transversely oriented, and that the ambient manifolds are closed, connected, oriented and of dimension $n+1 \geq 2$, unless otherwise stated (see [1], [14] for the generalities on foliations).

Let g be a Riemannian metric of M. Then there is a unique unit vector field orthogonal to ξ whose direction coincides with the given transverse orientation. We denote this vector field by N. Orientations of M and ξ are related as follows: Let $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be an oriented local frame of ξ. Then the orientation of M coincides with the one given by $\left\{N, V_{1}, V_{2}, \ldots, V_{n}\right\}$.

We denote the mean curvature of ξ at x with respect to g and N by $h_{g}(x)$, that is,

$$
h_{g}=\sum_{i=1}^{n}\left\langle\nabla_{E i} E_{i}, N\right\rangle,
$$

where \langle,$\rangle means g(),, \nabla$ is the Riemannian connection of (M, g) and $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ is an oriented local orthonormal frame of ξ. Note that this notion is well-defined even if the plane field is not integrable. The vector field $H_{g}=h_{g} N$ is called the mean curvature vector field of ξ with respect to g. A smooth function f on M is called admissible if $f=-h_{g}$ for some Riemannian metric g (cf. [4], [15]). We also call a vector field X on M admissible if $X=H_{g}$ for some Riemannian metric g. A characterization of admissible functions of codimension-one foliations is given in [6] (see also [4], [5], [15]):

Theorem 1. For any vector field Z transverse to a codimension-one plane field ξ of a closed oriented manifold M, there is a smooth function on M with $\operatorname{supp}(f)=M$ so that $f Z$ is admissible.

We shall recall the characterization of admissible vector fields given in [7].
Define an n-form χ_{ξ} on M by

$$
\chi_{\xi}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{det}\left(\left\langle E_{i}, X_{j}\right\rangle\right)_{i, j=1, \ldots, n} \text { for } X_{j} \in T M
$$

If the plane field ξ is integrable, then the restriction $\chi_{\xi} \mid L$ is the volume element of $(L, L \mid g)$ for a leaf L of ξ. If the plane field ξ is of codimension-one, then the following well-known formula for foliations holds for not necessarily integrable plane fields.

Proposition R (Rummler [9]). $d_{\chi \xi}=-h_{g} d V(M, g)=\operatorname{div}_{g}(N) d V(M, g)$, where $d V(M, g)$ is the volume element of (M, g) and $\operatorname{div}_{g}(N)$ is the divergence of N with respect to g, that is, $\operatorname{div}_{g}(N)=\sum_{i=1}^{n}\left\langle\nabla_{E i} N, E_{i}\right\rangle$.

Now recall the set-up by Sullivan [12]. Let D_{p} be the space of p-currents, and D^{p} be the space of differential p-forms on M with the C^{∞}-topology. It is well known that D^{p} is the dual space of D_{p} (cf. Schwartz [10]). Let $x \in M$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ be an oriented basis of ξ_{x}. We define the Dirac current
$\delta_{e 1 \wedge} \wedge^{\cdots} \wedge_{e n}$ by

$$
\delta_{e 1 \wedge} \cdots \wedge e n(\phi)=\phi_{x}\left(e_{1} \wedge \cdots \wedge e_{n}\right) \text { for } \phi \in D^{n}
$$

and set C_{\S} to be the closed convex cone in D_{n} spanned by Dirac currents $\delta_{e 1 \wedge} \wedge \cdots \wedge$ en for all oriented basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of ξ_{x} and $x \in M$. We denote a base of C_{ξ} by \mathbf{C}_{ξ}, which is an inverse image $L^{-1}(1)$ of a suitable continuous linear functional $L: D_{n} \rightarrow \mathbf{R}$. It is known that the base \mathbf{C}_{ξ} is compact if L is suitably chosen (see Sullivan [12]). In the following, we assume that \mathbf{C}_{ξ} is compact.

Let X be a vector field on M. Denote by $P(X, \xi)$ the closed linear subspace of D_{n} generated by all the Dirac currents $\delta X(x) \wedge v 1 \wedge \cdots \wedge v n-1$ with $v_{1}, \ldots, v_{n-1} \in \xi_{x}$ and $x \in M$ (see [11] for more details), where $\delta \mathrm{X}(x) \wedge v 1 \wedge \cdots \wedge v n-1$ is defined by

$$
\delta_{\mathrm{X}(x) \wedge v 1 \wedge \cdots \wedge v n-1}(\phi)=\phi_{x}\left(X(x) \wedge v_{1} \wedge \cdots \wedge v_{\mathrm{n}-1}\right) \text { for } \phi \in D^{n} .
$$

Let $\partial: D_{n+1} \rightarrow D_{n}$ be the boundary operator and set $B=\partial\left(D_{n+1}\right)$.
A characterization of admissible vector fields for codimension-one foliations is given in [7] (see also [4], [5], [15]). We extend this result to not necessarily integrable codimension-one plane fields ξ.

Theorem 2. For a vector field X on M, the following two conditions are equivalent.
(1) X is admissible.
(2) There are a volume element $d V$, a non-vanishing vector field Z transverse to ξ whose direction coincides with the given transverse orientation of ξ, a smooth function f on M, and a neighborhood U of $0 \in D_{n}$ such that
(i) $X=-f Z$,
(ii) $\int_{M} f d V=0$,
(iii) $\int_{c} f d V=0$ for all $c \in \partial^{-1}(P(X, \xi) \cap B)$, and
(iv) $\inf \left\{\int_{c} f d V \mid c \in \partial^{-1}\left(\left(\boldsymbol{C}_{\xi}+P(X, \xi)+U\right) \cap B\right)\right\}>0$.

Note that the conditions (ii) and (iv) in this theorem mean that the function f is admissible. In the case when $X \equiv 0$, these conditions become $\boldsymbol{C}_{\xi} \cap B=\emptyset$, which is equivalent to the 'tautness' of ξ. In Section 4, we shall give an example of one-dimensional foliation on T^{2}, whose space $B+P(X, \xi)$ is not closed.

As an application, we show a stability property of mean curvature vector fields with respect to perturbations of codimension-one plane fields. When we consider perturbations of plane fields, we consider the topology on the set of C^{∞} plane fields by taking the C^{∞} - topology on the space of sections from M to the oriented Grassmann bundle of all oriented n-planes of the tangent space to M at each point.

Theorem 3. Let X be an admissible vector field of a codimension-one plane field ξ, then X is also admissible for codimension-one plane fields ξ^{\prime} sufficiently close to ξ.

Gen-ichi OSHIKIRI

As a corollary to this theorem, we have the following result.

Corollary. If $f \in C_{a d}(\xi)$ and ξ^{\prime} is sufficiently close to ξ, then $f \in C_{a d}\left(\xi^{\prime}\right)$, where $C_{a d}(\xi)$ is the set of all admissible functions for ξ on M.

3 Proof of Theorems

As Theorems 1 and 2 are proved by the same way as in [7], we only give outlines of the proofs. In order to prove Theorem 1, we need some lemmas.

Lemma 1. Let M be a closed manifold and N be a non-vanishing vector field on M. there is a smooth function φ on M such that $\operatorname{supp} N(\varphi)=M$.

Lemma 2. Let M, N and φ be as in Lemma 1. For any smooth function h on M, there is a positive constant $\alpha>0$ so that $\operatorname{supp}(h-\alpha N(\varphi))=M$.

The following lemma is proved for codimension-one foliations in [3], Lemma 3, where the term in the equality $H^{\prime}=e^{-2 \psi} H$ in (ii) should be corrected by $H^{\prime}=e^{-\psi} H$. This also holds for non-integrable codimension-one plane fields.

Lemma 3. Let ξ be a codimension-one plane field of a Riemannian manifold $(M, g), N$ be a unit vector filed orthogonal to ξ defined as in Section 2, and h be the mean curvature function of ξ with respect to g.
(i) If $\bar{g}=e^{2 \psi} g$, then $\bar{h}=e^{-\psi}(h-N(\psi))$, where \bar{h} is the mean curvature function of ξ with respect to \bar{g} and the unit vector field \bar{N} orthogonal to ξ with respect to \bar{g} defined as in Section 2.
(ii) If $\bar{g}|\xi \otimes T M=g| \xi \otimes T M$ and $\bar{g}(U, V)=e^{2 \psi} g(U, V)$ for U and V orthogonal to ξ, then $\bar{h}=e^{-\psi} h$.
(iii) Let $Z=\varphi N+F$ be a vector field on M with $\varphi>0$ and $F \in \Gamma(\xi)$. Define a Riemannian metric \bar{g} on M as follows: $\bar{g}=g$ on ξ, Z is a unit vector field and orthogonal to ξ with respect to \bar{g}. Then we have $\bar{h}=\varphi h+F(\log \varphi)-\operatorname{div}_{g}(F)$.

We give here another proof of this lemma by presenting a unified form given in [8].

Proposition. Let ξ be a codimension-one plane field of a Riemannian manifold $(M, g), N$ be the unit vector field orthogonal to ξ defined as in Section 2, and h be the mean curvature function of ξ with respect to g. Let \bar{g} be another Riemannian metric of M and \bar{N} be the unit vector field orthogonal to ξ with respect to \bar{g}. Set $\bar{N}=\sigma N+F$ for a positive smooth function σ on M and $F \in \Gamma(\xi)$. Further, also set $\bar{\chi}_{\xi \mid \xi}=\varphi \chi_{\xi} \mid \xi$ for a positive smooth function φ on M. Then, for the mean curvature \bar{h} of ξ with respect to \bar{g}, we have

$$
\bar{h}=\sigma h-\sigma N(\log \varphi)-F\left(\log \frac{\varphi}{\sigma}\right)-\operatorname{div}_{g}(F)
$$

Lemma 3 can be easily derived from this proposition, and Theorem 1 follows directly from these three Lemmas by modifying an arbitrarily given Riemannian metric on M (see [7] for details). To prove Theorem 2, we follow the proof given in [4] with some modifications motivated by [11] (see also Sullivan [12]). To do this we need a Hahn- Banach Theorem of the following form (cf. [2]):

Theorem of Hahn-Banach. Let V be a Fréchet space, W be a closed subspace of V, and C be a compact convex cone at the origin $0 \in V$. Let $\rho: \mathrm{W} \rightarrow \mathbf{R}$ be a continuous linear functional of W with $\rho(v)>0$ for $v \in C \cap W \backslash\{0\}$. Then there is a continuous extension $\eta: V \rightarrow \mathbf{R}$ of ρ so that $\eta(v)>0$ for $v \in C \backslash\{0\}$.

Proof of Theorem 2.

$(1) \Rightarrow(2)$: Assume that there is a Riemannian metric g of M so that X is the mean curvature vector of ξ. Let N be the unit vector field orthogonal to ξ, and χ_{ξ} be the n-form defined as in Section 2. If \mathbf{C}_{ξ} is chosen to be $L^{-1}(1)$ of a continuous linear functional $L: D_{n} \rightarrow \mathbf{R}$ with \mathbf{C}_{ξ} being compact, as $\chi_{\xi}: D_{n} \rightarrow$ \mathbf{R} is also continuous, there is a positive constant $\varepsilon>0$ such that $\chi_{\xi} \geq \varepsilon>0$ on \mathbf{C}_{ξ}. We choose $U=$ $\chi \bar{\xi}^{1}(]-\varepsilon / 2, \varepsilon / 2[)$ as a neighborhood of $0 \in D_{n}$, where $] a, b[$ is an open interval in \mathbf{R}. Set $d V=d V(M, g)$, $Z=N$, and $f=\operatorname{div}_{g}(N)$. It can be shown that these $d V, Z, f$, and U satisfy the conditions (i) $\sim(i v)$ in (2). Note that the integrability of ξ is not used in the argument.
$(2) \Rightarrow(1):$ Let $d V, Z, f, U$ be as in the conditions of (2). Condition (ii) implies that $f d V=d \phi$ for some $\phi \in D^{n}$. By the duality of D_{p} and D^{p} due to Schwartz, we can regard ϕ as a continuous linear functional $k: D_{n} \rightarrow \mathbf{R}$. By condition (iii), we may assume that $k \mid(P(X, \xi) \cap B)=0$. Extend $k: B \rightarrow \mathbf{R}$ to \tilde{k} defined on the subspace $P(X, \xi)+B$ by defining $\tilde{k}(z+b)=k(b)$ for $z \in P(X, \xi)$ and $b \in B$. As $k \mid(P(X, \xi) \cap B)=0$, this is well-defined and is continuous on $P(X, \xi)+B$. Note that, by condition (iv), $\tilde{k}>0$ on $C_{\xi} \cap(P(X, \xi)+B) \backslash\{0\}$. Extend \tilde{k} continuously to κ defined on the closed subspace $W=\overline{P(X}$, $\overline{\xi)+B}$. It can be shown that $\kappa(v)>0$ for $v \in C_{\xi} \cap W \backslash\{0\}$ (cf. [7]), and the Hahn-Banach Theorem quoted above can be applied to the case $V=D_{n}, W=\overline{P(X, \xi)+B}, C=C_{\xi}$ and $\rho=\kappa$. Thus, we have a continuous linear map $\eta: D_{n} \rightarrow \mathbf{R}$ with $\left.\eta\right|_{B}=\left.\mathrm{k}\right|_{B}, \eta(v)>0$ for $v \in C_{\xi} \backslash\{0\}$, and $\eta(z)=0$ for $z \in P(X, \xi)$. By the duality due to Schwartz, we have an n-form χ on M so that $\chi>0$ on $\xi, d \chi=f d V$, and $l_{X} \chi=0$, where l_{X} is the interior product. Now define a Riemannian metric g as Sullivan did in [13], and deform it as in Lemma 3, we have the desired Riemannian metric.
$\underline{\text { Remark Note that if the subspace } P(X, \xi)+B \text { is closed, it is easy to see that the condition (iv) can }}$ be weakened by the following condition, which does not need any existence of U :

$$
\int_{c} f d V>0 \text { for all } c \in \partial^{-1}((\mathbf{C}+P(X, \xi)) \cap B)
$$

However, in general, the space $P(X, \xi)+B$ is not closed as is seen in Section 4.

Proof of Theorem 3.

Let X be an admissible vector field of ξ. In order to see that X is also admissible for ξ^{\prime} near ξ, we

Gen-ichi OSHIKIRI

show that the conditions in Theorem 2 are satisfied for X and ξ^{\prime}. To do this, we choose a Riemannian metric g on M so that X is the mean curvature vector field of ξ. Let N be the unit vector field orthogonal to ξ, χ_{ξ} be the n-form defined as in Section 2, and $d V$ be the volume element of (M, g). Note that $X=-f N$ and $d \chi_{\xi}=f d V$. As the n-form χ_{ξ} is a continuous liner functional $C_{n} \rightarrow \mathbf{R}$ due to the duality of Schwartz, and $C_{\xi} \cap \chi \bar{\xi}^{1}(1)$ is easily seen to be compact, we can take $C_{\xi} \cap \chi \bar{\xi}^{1}$ (1) as the base \mathbf{C} of the cone C_{ξ}. Take a neighborhood V of the origin as $V=\chi \bar{\xi}^{-1}(]-\varepsilon, \varepsilon[)$ for sufficiently small $\varepsilon>0$.

We take $f, Z=N, d V$ and $U=V$ as above and show that the conditions are also satisfied for ξ^{\prime}. The conditions (i) and (ii) are clearly satisfied by definition. Now we show that $P\left(X, \xi^{\prime}\right)=P(X, \xi)$. This clearly implies that the condition (iii) for ξ^{\prime} is also satisfied. As the generators for $P\left(X, \xi^{\prime}\right)$ are of the form $\delta \mathrm{x}(x) \wedge v 1 \wedge \cdots \wedge v \mathrm{n}-1$ with $v_{1}, \ldots, v_{n-1} \in \xi_{x}^{\prime}$, and $v_{i}=a_{i} X(x)+e_{i}$ with $e_{i} \in \xi_{x}$ for $i=1, \ldots$, $n-1$, it follows that $\delta_{X(x)} \wedge v 1 \wedge \cdots \wedge v n-1=\delta_{X(x)} \wedge e 1 \wedge \cdots \wedge e n-1$ if $X(x) \neq 0$ and $\delta_{X(x)} \wedge v 1 \wedge \cdots \wedge v n-1=0$ if $X(x)=0$. This shows $P\left(X, \xi^{\prime}\right)=P(X, \xi)$.

Finally we show that the condition (iv) is satisfied. Set $\mathbf{C}^{\prime}=C_{\xi^{\prime}} \cap \chi_{\bar{\xi}}{ }^{-1}$ (1). We show that the set \mathbf{C}^{\prime} is also compact, thus, is a base of $C_{\xi^{\prime}}$. To see this, as the set \mathbf{C}^{\prime} is closed, we need only to show that \mathbf{C}^{\prime} is bounded. This is done if we can show that the set $\eta\left(\mathbf{C}^{\prime}\right) \subset \mathbf{R}$ is bounded for any fixed n-form η on M (cf. Schwartz [10], Sullivan [12]). Let m be the maximum value of η on any unit n-vector (with respect to g) of M. In the following, we denote $\delta_{v 1 \wedge \cdots \wedge v n}$ by $v_{1} \wedge \cdots \wedge v_{n}$ for simplicity. For $v_{1} \wedge \cdots \wedge v_{n}$ $\in \mathbf{C}^{\prime}$, we can choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of ξ_{x} and real numbers a_{1}, \ldots, a_{n} such that wi= $a_{i} N+e_{i} \in \mathbf{C}^{\prime}$ for $i=1, \ldots, n$ and $v_{1} \wedge \cdots \wedge v_{n}=w_{1} \wedge \cdots \wedge w_{n}$. It follows that

$$
v_{1} \wedge \cdots \wedge v_{n}=\sum_{i=1}^{n}(-1)^{i-1} a_{i} N \wedge e_{1} \wedge \cdots \hat{e}_{i} \cdots \wedge e_{n}+e_{1} \wedge \cdots \wedge e_{n}
$$

where \hat{e}_{i} denotes the elimination of $e i$ from $N \wedge e_{1} \wedge \cdots \wedge e_{n}$. As ξ^{\prime} is close to ξ, we may assume $\sum_{i=1}^{n}=\left|a_{i}\right|<\epsilon$ for sufficiently small $\epsilon>0$. Thus, we have

$$
\left|\eta\left(v_{1} \wedge \cdots \wedge v_{n}\right)\right| \leq \sum_{i=1}^{n}\left|a_{i}\right| m+m=m\left(\sum_{i=1}^{n}\left|a_{i}\right|+1\right)<(\epsilon+1) m
$$

Next consider a finite sum $c=\sum a_{i} \delta_{i} \in \mathbf{C}^{\prime}$, where $a_{i}>0$ and $\delta_{i} \in \mathbf{C}_{\xi^{\prime}}$. As $1=\chi_{\xi}(c)=\sum a_{i} \chi_{\xi}\left(\delta_{i}\right)=$ $\sum \chi_{\xi}\left(\delta_{i}\right) a_{i} \chi_{\xi}\left(\delta_{i} / \chi_{\xi}\left(\delta_{i}\right)\right)$, we may assume that $\delta_{i} \in \mathbf{C}^{\prime}, \sum a_{i}=1$ and $a_{i}>0$. It follows that $|\eta(c)| \leq \sum a_{i}\left|\eta\left(\delta_{i}\right)\right|$ $<\sum a_{i}(1+\epsilon) m=(1+\epsilon) m$. As the set of elements of the form of finite sums are dense in $\mathbf{C}^{\prime}, \eta\left(\mathbf{C}^{\prime}\right)$ is bounded. Therefore the set \mathbf{C}^{\prime} is compact. Now we show that for $V=\chi \bar{\xi}^{1}(]-\varepsilon, \varepsilon[)$ we have

$$
\inf \left\{\int_{c^{\prime}} f d V \mid c^{\prime} \in \partial^{-1}\left(\left(\boldsymbol{C}^{\prime}+P\left(X, \xi^{\prime}\right)+V\right) \cap B\right)\right\}>0
$$

by assuming that for $U=\chi \bar{\xi}^{-1}(]-2 \varepsilon, 2 \varepsilon[)$

$$
\inf \left\{\int_{c^{\prime}} f d V \mid c \in \partial^{-1}((\boldsymbol{C}+P(X, \xi)+U) \cap B)\right\}>0
$$

By the above argument, as \mathbf{C} and \mathbf{C}^{\prime} are contained in $\chi_{\bar{\xi}}{ }^{1}(1)$, it follows that $\mathbf{C}^{\prime} \subset \mathbf{C}+\chi_{\bar{\xi}}{ }^{1}$ (0). By the definitions of V and U, we have $\mathbf{C}^{\prime} \subset \mathbf{C}+V$, and, thus, $\mathbf{C}^{\prime}+V \subset \mathbf{C}+V+V \subset \mathbf{C}+U$. As $P(X, \xi)=$ $P\left(X, \xi^{\prime}\right)$, we have $\mathbf{C}^{\prime}+P\left(X, \xi^{\prime}\right)+V \subset \mathbf{C}+P(X, \xi)+U$, which implies $\partial^{-1}\left(\left(\mathbf{C}^{\prime}+P\left(X, \xi^{\prime}\right)+V\right) \cap B\right) \subset$ $\partial^{-1}((\mathbf{C}+P(X, \xi)+U) \cap B)$. This completes the proof.

4 Concluding remark

In this section, we give a simple example which shows that the space $P(X, \xi)+B$ is not closed, and discuss a property of $C_{a d}(\xi)$ related to our Corollary.

Let T^{2} be a two dimensional torus with the canonical coordinates (x, y), and \mathcal{F} be a foliation given by $\left\{S^{1} \times\{y\} \mid y \in S^{1}\right\}$. We consider the first S^{1}-factor as the quotient $[0,2] /\{0 \sim 2\}$. Define a vector field Z on T^{2} by $\mathrm{Z}=\bar{h}(x) \partial_{x}+\partial_{y}$, where $h:[0,1] \rightarrow \mathbf{R}$ is a smooth function satisfying the conditions $h(0)=$ $h(1)=0$ and $\mathrm{h}(x)>0$ for $x \in] 0,1[$, and \bar{h} is defined by $\bar{h}(x)=h(x)$ for $x \in[0,1]$ and $\bar{h}(x)=-h(2-x)$ for $x \in[1,2]$. We further assume that h is chosen, if we regard Z as a foliation, so that the holonomy groups along the leaves $\{0\} \times S^{1},\{1\} \times S^{1}$ are infinitely tangent to the identity maps. Note that Z is invariant under the rotations along the second S^{1}-factor. Let ϕ_{t} be the one-parameter group on T^{2} generating Z. Consider the closed interval $I=[1 / 2,3 / 2] \times\{0\} \subset S^{1} \times S^{1}$, and set $c_{k}=\left\{\phi_{t}(x) \in S^{1} \times S^{1}\right.$ $\mid x \in I,-k \leq t \leq k\}$. Note that $\phi_{k}(x) \in S^{1} \times\{0\}$ for $x \in I$ and $k \in \mathbf{Z}$. It follows that ∂c_{k} is contained in $S^{1} \times\{0\}+P(Z, \mathcal{F})$. As the holonomy of Z is expanding along $\{1\} \times S^{1}$ and contracting along $\{0\} \times S^{1}$, it follows that $\partial c_{k} \rightarrow S^{1} \times\{0\}=L_{0} \in \mathcal{F}$ modulo $P(Z, \mathcal{F})$. By Theorem 1, we can find a smooth function f on T^{2} so that $\operatorname{supp}(f)=T^{2}$, and $X=-f Z$ is admissible. Because $P(-f Z, \mathcal{F})=P(Z, \mathcal{F})$, we have $L_{0} \in$ $\overline{P(X, \mathcal{F})+B}$. Recall that $B=\partial D_{2}$. But, as it is clear that $L_{0} \notin P(X, \mathcal{F})+B$, the space $P(X, \mathcal{F})+B$ is not closed.

According to our Corollary, if $f \in C_{a d}(\xi)$ and m is sufficiently large, then as ξ_{m} is sufficiently close to ξ with respect to the C^{∞}-topology of plane fields, it follows that $f \in C_{a d}\left(\xi_{m}\right)$ for sufficiently large m. This seems to imply that $C_{a d}(\xi) \subset C_{a d}\left(\xi_{m}\right)$ for sufficiently large m. But, as m depends on f, this does not hold in general. We give such an example of one-dimensional foliations on T^{2}. To do this, recall a characterization of admissible functions of codimension-one foliations.

Theorem (Oshikiri [6]). f is admissible for \mathcal{F} if and only if there is a volume form $d V$ on M satisfying the following two conditions:
(1) $\int_{M} f d V=0$,
(2) $\int_{D} f d V>0$ for every (+)-fcd D, where '(+)-fcd' means a compact saturated domain of M with N being outward everywhere on ∂D.

Let T^{2} be the two dimensional torus with the canonical coordinates (x, y), and consider the first S^{1} factor as the quotient $[0,2] /\{0 \sim 2\}$. Set $A=[0,1] \times S^{1}, B=[1,2] \times S^{1}$, and consider Reeb foliations on them. The orientation is given so that A is $(+)$-fcd. Denote the rotation of angle θ along the first S^{1}-factor by R_{θ}, and set $\mathcal{F}_{m}=\left(R_{\varepsilon / m}\right) * \mathcal{F}$ for sufficiently small fixed $\varepsilon>0$. Then, for sufficiently large m, \mathcal{F}_{m} is sufficiently close to \mathcal{F} with respect to the C^{∞}-topology. We show that $C_{a d}(\mathcal{F}) \not \subset C_{a d}\left(\mathcal{F}_{m}\right)$ and $C_{a d}\left(\mathcal{F}_{m}\right) \not \subset$ $C_{a d}(\mathcal{F})$ for all m.

As $\operatorname{Int}\left(A \backslash\left(R_{\varepsilon / m}\right) * A\right) \neq \emptyset \neq=\operatorname{Int}\left(B \backslash\left(R_{\varepsilon / m}\right) * B\right)$, we can choose $p, v \in \operatorname{Int}\left(\left(R_{\varepsilon / m}\right) * A \cap B\right)$ and $q, u \in \operatorname{Int}\left(A \cap\left(R_{\varepsilon / m}\right)^{*} B\right)$. Thus we can find smooth functions f_{1}, f_{2} on T^{2} so that $f_{1}(x)<0$ near $p, f_{1}(x)>0$ near q and $f_{1}(x)=0$ elsewhere, and $f_{2}(x)<0$ near $u, f_{2}(x)<0$ near v and $f_{2}(x)=0$ elsewhere. By the

Gen-ichi OSHIKIRI

characterization, it is clear that $f_{1} \in C_{a d}(\mathcal{F})$ but $f_{1} \notin C_{a d}\left(\mathcal{F}_{m}\right)$, and that $f_{2} \in \mathrm{C}_{\mathrm{ad}}(\mathcal{F})$ but $f_{2} \in C_{a d}\left(\mathcal{F}_{m}\right)$.

References

1. G. Hector and U. Hirsch, Introduction to the geometry of foliations: Part B, Aspects Math. E3, Friedr. Vieweg \& Sohn, Braunschweig, 1983.
2. J.L. Kelley and I. Namioka, Linear topological spaces, Springer Verlag, New York, 1976.
3. G. Oshikiri, On codimension-one foliations of constant curvature, Math. Z. 203 (1990), 105-113.
4. G. Oshikiri, Mean curvature functions of codimension-one foliations, Comment. Math. Helv. 65 (1990), 79-84.
5. G. Oshikiri, Mean curvature functions of codimension-one foliations II, Comment. Math. Helv. 66 (1991), 512-520.
6. G. Oshikiri, A characterization of the mean curvature functions of codimension-one foliations, Tôhoku Math. J. 49 (1997), 557-563.
7. G. Oshikiri, Some properties of mean curvature vectors for codimension-one foliations, Ill. J. Math. 49 (2005), 159-166.
8. G. Oshikiri, Some properties on mean curvatures of codimension-one taut foliations, Ann. Rep. Edu.,Iwate Univ., Vol. 69 (2009), 103-109.
9. H. Rummler, Quelques notions simples en géométrie riemannienne et leur applications aux feuilletages compacts, Comment. Math. Helv. 54 (1979), 224-239.
10. L. Schwartz, Théorie des distributions. Nouvelle Edition, Hermann, Paris, 1966.
11. P. Schweitzer and P. Walczak, Prescribing mean curvature vectors for foliations, Ill. J. Math. 48 (2004), 21-35.
12. D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds. Inventiones Math. 36 (1976), 225-255.
13. D. Sullivan, A homological characterization of foliations consisting of minimal surfaces, Comment. Math. Helv. 54 (1979), 218-223.
14. P. Tondeur, Geometry of Foliations, Monogr. Math. 90, Birkhäuser Verlag, Basel, 1997.
15. P. Walczak, Mean curvature functions for codimension-one foliations with all leaves compact. Czechoslovak Math. J. 34 (1984), 146-155.

[^0]: * Faculty of Education, Iwate University

