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Abstract 

　Given a codimension-one plane field ξ on a closed manifold M, we show that if X is 
transverse to ξ, then there are many functions f on M such that supp( f ) = M and that fX 
is the mean curvature vector field of ξ with respect to some Riemannian metric of M, 
and we give a necessary and sufficient condition for X to become the mean curvature 
vector field of ξ with respect to some Riemannian metric of M. As an application, we 
show a stability property of mean curvature vector fields H of ξ with respect to small 
perturbations of codimension-one plane fields.

1　Introduction 

Let M be an oriented closed manifold and ξ be a transversely oriented codimension-one plane field on 
M, here ʻplane fieldʼ means a subbundle of the tangent bundle of M. A smooth function f (resp. vector 
field X ) on M is said to be admissible if there is a Riemannian metric g of M so that f (resp. X ) is the 
mean curvature function (resp. mean curvature vector field) of ξ with respect to g. In [6], the author 
gave a characterization of admissible functions of codimension-one foliations, and in [7], he also gave 
a characterization of admissible vector fields of codimension-one foliations on M. In this paper, we 
shall give an extension of the above result on mean curvature vector fields to not necessarily integrable 
codimension-one plane fields of M. As an application, we have a stability property of mean curvature 
vector fields, and consequently, that of mean curvature functions, of ξ with respect to variations of 
codimension-one plane fields. 
　　We shall give some definitions, preliminaries and results in Section 2, and shall prove them in 
Section 3. Some remarks on the closedness of B + P ( X, ξ) and on Cad (ξ) will be given in Section 4 by 
using simple foliations on T2.
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2　Preliminary and result

In this paper, we work in the C ∞ -category. In what follows, we always assume that plane fields are 
of codimension-one and transversely oriented, and that the ambient manifolds are closed, connected, 
oriented and of dimension n + 1≥ 2, unless otherwise stated (see [1], [14] for the generalities on 
foliations).
　Let g be a Riemannian metric of M. Then there is a unique unit vector field orthogonal to ξ whose 
direction coincides with the given transverse orientation. We denote this vector field by N. Orientations 
of M and ξ are related as follows: Let {V1, V2, . . . , Vn} be an oriented local frame of ξ. Then the 
orientation of M coincides with the one given by {N, V1, V2, . . . , Vn}.
　We denote the mean curvature of ξ at x with respect to g and N by hg(x), that is,

　　　　　　　　　　hg = 〈▽Ei Ei, N〉,

where 〈, 〉 means g (, ), ▽ is the Riemannian connection of (M, g) and {E1,E2, . . . ,En} is an oriented local 
orthonormal frame of ξ. Note that this notion is well-defined even if the plane field is not integrable. The 
vector field Hg = hgN is called the mean curvature vector field of ξ with respect to g. A smooth function f 
on M is called admissible if f = －hg for some Riemannian metric g (cf. [4], [15]). We also call a vector 
field X on M admissible if X = Hg  for some Riemannian metric g. A characterization of admissible 
functions of codimension-one foliations is given in [6] (see also [4], [5], [15]):

　　Theorem 1. For any vector field Z transverse to a codimension-one plane field ξ of a closed 
oriented manifold M, there is a smooth function on M with supp( f ) = M so that fZ is admissible.

　　We shall recall the characterization of admissible vector fields given in [7].
　　Define an n-form χξ on M by

χξ (X1, . . . , Xn) = det(〈Ei, X j〉)i , j = 1,...,n for Xj ∈ TM.

If the plane field ξ is integrable, then the restriction χξ|L is the volume element of (L,L|g ) for a leaf L of 
ξ. If the plane field ξ is of codimension-one, then the following well-known formula for foliations holds 
for not necessarily integrable plane fields.

　　Proposition R (Rummler [9]). dχξ = －hgdV (M, g)=divg(N)dV (M, g),where dV (M, g) is the volume 

element of (M, g) and divg(N) is the divergence of N with respect to g, that is, divg(N) = 〈▽Ei N, Ei〉.

　　Now recall the set-up by Sullivan [12]. Let Dp be the space of p-currents, and Dp be the space of 
differential p-forms on M with the C ∞ -topology. It is well known that Dp is the dual space of Dp (cf.
 Schwartz [10]). Let x ∈ M and {e1, . . . , en} be an oriented basis of ξx. We define the Dirac current 
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δe1∧··· ∧en by

δe1∧··· ∧en(ϕ) = ϕx(e1∧· · ·∧ en) for ϕ ∈ Dn,

and set Cξ to be the closed convex cone in Dn spanned by Dirac currents δe1∧··· ∧en for all oriented basis 
{e1, . . . , en} of ξx and x ∈ M. We denote a base of Cξ by Cξ, which is an inverse image L －1(1) of a 
suitable continuous linear functional L : Dn → R. It is known that the base Cξ is compact if L is suitably 
chosen (see Sullivan [12]). In the following, we assume that Cξ is compact.
　　Let X be a vector field on M. Denote by P(X, ξ ) the closed linear subspace of Dn generated by all 
the Dirac currents δX(x) ∧v1∧ ··· ∧vn －1 with v1, . . . , vn －1 ∈ ξx and x ∈ M (see [11] for more details), 
where δX(x) ∧v1∧ ··· ∧vn －1 is defined by

δX(x) ∧v1∧ ··· ∧vn －1(ϕ) = ϕx(X(x) ∧ v1 ∧ · · · ∧ vn －1) for ϕ ∈ Dn.

Let ∂ : Dn+1 → Dn be the boundary operator and set B = ∂ (Dn+1).
　　A characterization of admissible vector fields for codimension-one foliations is given in [7] (see 
also [4], [5], [15]). We extend this result to not necessarily integrable codimension-one plane fields ξ.

Theorem 2. For a vector field X on M, the following two conditions are equivalent.
(1) X is admissible.
(2) There are a volume element dV , a non-vanishing vector field Z transverse to ξ whose direction 
coincides with the given transverse orientation of ξ, a smooth function f on M, and a neighborhood U of 
0 ∈ Dn such that
　(i) X = －f Z,
　(ii) ∫M fdV = 0,
　(iii) ∫c fdV = 0 for all c ∈ ∂－1(P(X, ξ) ∩ B), and
　(iv) inf { ∫c fdV | c ∈ ∂－1((Cξ + P(X, ξ) + U ) ∩ B)} > 0.

　　Note that the conditions (ii) and (iv) in this theorem mean that the function f is admissible. In the 
case when X ≡ 0, these conditions become Cξ ∩ B = ₀, which is equivalent to the ʻtautnessʼ of ξ. In 
Section 4, we shall give an example of one-dimensional foliation on T 2, whose space B + P(X, ξ ) is not 
closed.
　　As an application, we show a stability property of mean curvature vector fields with respect to 
perturbations of codimension-one plane fields. When we consider perturbations of plane fields, we 
consider the topology on the set of C ∞ plane fields by taking the C ∞ - topology on the space of sections 
from M to the oriented Grassmann bundle of all oriented n-planes of the tangent space to M at each 
point.

　　Theorem 3. Let X be an admissible vector field of a codimension-one plane field ξ, then X is also 
admissible for codimension-one plane fields ξ ′ sufficiently close to ξ.
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　　As a corollary to this theorem, we have the following result.

　　Corollary. If f ∈ Cad(ξ ) and ξ ′ is sufficiently close to ξ, then f ∈ Cad(ξ′ ), where Cad(ξ ) is the set of 
all admissible functions for ξ on M.

3　Proof of Theorems

As Theorems 1 and 2 are proved by the same way as in [7], we only give outlines of the proofs. In order 
to prove Theorem 1, we need some lemmas.

　　Lemma 1. Let M be a closed manifold and N be a non-vanishing vector field on M. there is a 
smooth function φ on M such that suppN(φ) = M.

　　Lemma 2. Let M, N and φ be as in Lemma 1. For any smooth function h on M, there is a positive 
constant α > 0 so that supp(h － αN (φ)) = M.

　　The following lemma is proved for codimension-one foliations in [3], Lemma 3, where the term in 
the equality H′ = e －2ψ H in (ii) should be corrected by H′ = e －ψH. This also holds for non-integrable 
codimension-one plane fields.

　　Lemma 3. Let ξ be a codimension-one plane field of a Riemannian manifold (M, g), N be a unit 
vector filed orthogonal to ξ defined as in Section 2, and h be the mean curvature function of ξ with 
respect to g.
　　(i) If ḡ = e2ψ g, then h̄ = e－ψ(h － N(ψ)), where h̄ is the mean curvature function of ξ with respect 

to ḡ and the unit vector field  N̄ orthogonal to ξ with respect to ḡ defined as in Section 2.
　　(ii) If ḡ|ξ ⊗ TM = g|ξ ⊗ TM and ḡ(U, V ) = e2ψg(U, V ) for U and V orthogonal to ξ, then h̄ = e － ψh.
　　(iii) Let Z = φN + F be a vector field on M with φ > 0 and F ∈ Γ(ξ ). Define a Riemannian metric 

ḡ on M as follows: ḡ = g on ξ, Z is a unit vector field and orthogonal to ξ with respect to ḡ. Then we 
have  h̄ = φh + F(log φ) － divg(F).

　　We give here another proof of this lemma by presenting a unified form given in [8].

　　Proposition. 　Let ξ be a codimension-one plane field of a Riemannian manifold (M, g), N be the 
unit vector field orthogonal to ξ defined as in Section 2, and h be the mean curvature function of ξ with 
respect to g. Let  ḡ be another Riemannian metric of M and  N̄ be the unit vector field orthogonal to ξ with
respect to ḡ. Set  N̄ = σ N + F for a positive smooth function σ on M and F ∈ Γ(ξ ). Further, also set
χ̄ξ|ξ = φχξ|ξ for a positive smooth function φ on M. Then, for the mean curvature h̄ of ξ with respect to ḡ, 
we have

h̄ = σh－σN (log φ) － F(log ) － divg(F).
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　　Lemma 3 can be easily derived from this proposition, and Theorem 1 follows directly from these 
three Lemmas by modifying an arbitrarily given Riemannian metric on M (see [7] for details). To prove 
Theorem 2, we follow the proof given in [4] with some modifications motivated by [11] (see also 
Sullivan [12]). To do this we need a Hahn- Banach Theorem of the following form (cf. [2]):

　　Theorem of Hahn-Banach. Let V be a Fréchet space, W be a closed subspace of V , and C be a 
compact convex cone at the origin 0 ∈ V . Let ρ : W → R be a continuous linear functional of W with 
ρ(v) > 0 for v ∈ C ∩ W \ {0}. Then there is a continuous extension η : V → R of ρ so that η(v) > 0 
for v ∈ C \ {0}.

Proof of Theorem 2.
　　(1) ⇒ (2) : Assume that there is a Riemannian metric g of M so that X is the mean curvature vector 
of ξ. Let N be the unit vector field orthogonal to ξ, and χξ be the n-form defined as in Section 2. If Cξ is 
chosen to be L －1(1) of a continuous linear functional L : Dn → R with Cξ being compact, as χξ : Dn → 
R is also continuous, there is a positive constant ε > 0 such that χξ ≥ ε > 0 on Cξ. We choose U =
χξ－1 (] － ε /2, ε /2[) as a neighborhood of 0 ∈ Dn, where ]a, b[ is an open interval in R. Set dV = dV (M, g),
Z = N, and f = divg(N). It can be shown that these dV , Z, f, and U satisfy the conditions (i) ∼ (iv) in (2). 
Note that the integrability of ξ is not used in the argument. 
　　(2) ⇒ (1) : Let dV , Z, f, U be as in the conditions of (2). Condition (ii) implies that fdV = dϕ for
 some ϕ ∈ Dn. By the duality of Dp and Dp due to Schwartz, we can regard ϕ as a continuous linear 
functional k : Dn → R. By condi t ion (iii), we may assume that k|(P(X, ξ ) ∩ B) = 0. Extend
k : B → R to k̃ defined on the subspace P(X, ξ) + B by defining k̃ (z + b) = k(b) for z ∈ P(X, ξ) and b ∈ B. 
As k|(P(X, ξ) ∩ B) = 0, this is well-defined and is continuous on P(X, ξ) + B. Note that, by condition (iv), 
k̃ > 0 on Cξ ∩ (P(X, ξ ) + B) \ {0}. Extend k̃ continuously to κ defined on the closed subspace W = P(X, 
ξ ) + B. It can be shown that κ(v) > 0 for v ∈ Cξ ∩ W \ {0} (cf. [7]), and the Hahn-Banach Theorem 
quoted above can be applied to the case V = Dn, W = P(X, ξ ) + B, C = Cξ and ρ = κ. Thus, we have a 
continuous linear map η : Dn → R with η|B = k|B, η(v) > 0 for v ∈ Cξ \ {0}, and η(z) = 0 for z ∈ P(X, ξ). 
By the duality due to Schwartz, we have an n-form χ on M so that χ > 0 on ξ, dχ = fdV , and ιX χ = 0, 
where ιX  is the interior product. Now define a Riemannian metric g as Sullivan did in [13], and deform it 
as in Lemma 3, we have the desired Riemannian metric.

　　Remark Note that if the subspace P(X, ξ ) + B is closed, it is easy to see that the condition (iv) can 
be weakened by the following condition, which does not need any existence of U: 

∫c fdV > 0 for all c ∈ ∂ －1((C + P(X, ξ )) ∩ B).

However, in general, the space P(X, ξ ) + B is not closed as is seen in Section 4.

Proof of Theorem 3.
　　Let X be an admissible vector field of ξ. In order to see that X is also admissible for ξ′ near ξ, we 
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show that the conditions in Theorem 2 are satisfied for X and ξ′. To do this, we choose a Riemannian 
metric g on M so that X is the mean curvature vector field of ξ. Let N be the unit vector field orthogonal to ξ, 
χξ be the n-form defined as in Section 2, and dV be the volume element of (M, g). Note that X =－f N 
and dχξ = fdV . As the n-form χ ξ is a continuous liner functional Cn → R due to the duality of Schwartz, 
and Cξ ∩ χ ξ－1 (1) is easily seen to be compact, we can take Cξ ∩ χ ξ－1 (1) as the base C of the cone Cξ. 
Take a neighborhood V of the origin as V = χ ξ－1 (] － ε, ε[) for sufficiently small ε > 0.
　　We take f, Z = N, dV and U = V as above and show that the conditions are also satisfied for ξ′. The 
conditions (i) and (ii) are clearly satisfied by definition. Now we show that P(X, ξ′) = P (X, ξ ). This 
clearly implies that the condition (iii) for ξ′ is also satisfied.      As the generators for P(X, ξ′) are 
of the form δ X(x) ∧ v1∧ ··· ∧ vn －1 with v1, . . . , vn －1 ∈ ξ′x, and vi = aiX (x) + ei with ei ∈ ξ x for i = 1, . . . ,
n － 1, it follows that δX (x) ∧ v1∧ ··· ∧ vn －1 = δX (x) ∧ e1∧ ··· ∧ en －1 if X (x) ≠ 0 and δX (x) ∧ v1∧ ··· ∧ vn －1 = 0 
if X (x) = 0. This shows P(X, ξ′) = P(X, ξ).
　　Finally we show that the condition (iv) is satisfied. Set C′ = Cξ′ ∩ χξ－1 (1). We show that the set C′ 
is also compact, thus, is a base of Cξ′ . To see this, as the set C′ is closed, we need only to show that C′ 
is bounded. This is done if we can show that the set η(C′) ⊂ R is bounded for any fixed n-form η on M 
(cf. Schwartz [10], Sullivan [12]). Let m be the maximum value of η on any unit n-vector (with respect 
to g) of M. In the following, we denote δv1∧ ··· ∧ vn by v1 ∧ · · · ∧ vn for simplicity. For v1 ∧ · · · ∧ vn 
∈ C′, we can choose an orthonormal basis {e1, . . . , en} of ξ x and real numbers a1, . . . , an such that wi = 
aiN + ei ∈ C′ for i = 1, . . . , n and v1 ∧ · · · ∧ vn = w1 ∧ · · · ∧ wn. It follows that

v1 ∧ · · · ∧ vn = ( －1)i －1aiN ∧ e1 ∧ · · · êi · · · ∧ en + e1 ∧ · · · ∧ en,

where êi denotes the elimination of ei from N ∧ e1 ∧ · · · ∧ en. As ξ′ is close to ξ, we may assume 
 = |ai| < ϵ for sufficiently small ϵ > 0. Thus, we have

|η(v1 ∧ · · · ∧ vn)| ≤ |ai|m + m = m( |ai| + 1) < (ϵ + 1)m.

Next consider a finite sum c = aiδi ∈ C′, where ai > 0 and δi ∈ Cξ′ . As 1 = χξ (c) = aiχξ (δi) =
χξ (δi)aiχξ (δi/χξ (δi)), we may assume that δi ∈ C′, ai = 1 and ai > 0. It follows that |η(c)| ≤ ai|η(δi)| 

< ai(1 + ϵ)m = (1 + ϵ)m. As the set of elements of the form of finite sums are dense in C′, η(C′) is 
bounded. Therefore the set C′ is compact. Now we show that for V = χξ－1 ( ] － ε, ε [ ) we have

inf {∫c′
 fdV | c′ ∈ ∂ －1((C′ + P(X, ξ′ ) + V ) ∩ B)} > 0

by assuming that for U = χξ－1 (] － 2ε, 2ε[)

inf {∫c′
 fdV | c ∈ ∂ －1((C + P(X, ξ ) + U) ∩ B)} > 0.

By the above argument, as C and C′ are contained in χξ－1 (1), it follows that C′ ⊂ C + χξ－1 (0). By the
definitions of V and U, we have C′ ⊂ C + V , and, thus, C′ + V ⊂ C+V +V ⊂ C+U. As P(X, ξ) =
P (X, ξ′ ), we have C′+P(X, ξ′ )+V ⊂ C+P(X, ξ )+U, which implies ∂ －1((C′+P(X, ξ′ )+V ) ∩ B) ⊂
∂ －1 ((C+P (X, ξ )+U ) ∩ B). This completes the proof.
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4　Concluding remark

In this section, we give a simple example which shows that the space P(X, ξ ) + B is not closed, and 
discuss a property of Cad (ξ) related to our Corollary.
　　Let T2 be a two dimensional torus with the canonical coordinates (x, y), and  be a foliation given 
by {S1 × {y} | y ∈ S1}. We consider the fi rst S1-factor as the quotient [0, 2]/{0 ∼ 2}. Defi ne a vector fi eld 
Z on T 2 by Z = h̄ (x)∂x+∂y, where h : [0, 1] → R is a smooth function satisfying the conditions h(0)= 
h(1) = 0 and h(x) > 0 for x ∈]0, 1[, and h̄ is defi ned by h̄ (x) = h(x) for x ∈ [0, 1] and h̄ (x) = －h(2－ x) 
for x ∈ [1, 2]. We further assume that h is chosen, if we regard Z as a foliation, so that the holonomy
groups along the leaves {0} × S1, {1} × S1 are infi nitely tangent to the identity maps. Note that Z is
 invariant under the rotations along the second S1-factor. Let ϕt be the one-parameter group on T 2

generating Z. Consider the closed interval I = [1/2, 3/2] × {0} ⊂ S1 × S1, and set ck = {ϕt(x) ∈ S1×S1

| x ∈ I, － k ≤ t ≤ k}. Note that ϕk(x) ∈ S1×{0} for x ∈ I and k ∈ Z. It follows that ∂ck is contained in 
S1× {0}+P(Z, ). As the holonomy of Z is expanding along {1}×S1 and contracting along {0}×S1, it 
follows that ∂ck → S1× {0} = L0 ∈  modulo P(Z, ). By Theorem 1, we can fi nd a smooth function f 
on T2 so that supp( f ) = T2, and X = －f Z is admissible. Because P( －f Z, ) = P(Z, ), we have L0 ∈ 
P(X, ) + B. Recall that B = ∂D2. But, as it is clear that L0  P(X, ) + B, the space P(X, ) + B is not 
closed.
　　According to our Corollary, if f ∈ Cad(ξ ) and m is suffi ciently large, then as ξm is suffi ciently close 
to ξ with respect to the C ∞ -topology of plane fi elds, it follows that f ∈ Cad(ξm) for suffi ciently large 
m. This seems to imply that Cad(ξ ) ⊂ Cad(ξm) for suffi ciently large m. But, as m depends on f, this does 
not hold in general. We give such an example of one-dimensional foliations on T2. To do this, recall a 
characterization of admissible functions of codimension-one foliations.

　　Theorem (Oshikiri [6]). f is admissible for  if and only if there is a volume form dV on M 
satisfying the following two conditions:
　(1) ∫M fdV = 0,
　(2) ∫D fdV > 0 for every (+)-fcd D, where ʻ(+)-fcdʼ means a compact saturated domain of M with N 

being outward everywhere on ∂D.

　　Let T2 be the two dimensional torus with the canonical coordinates (x, y), and consider the fi rst S1-
factor as the quotient [0, 2]/{0 ∼ 2}. Set A = [0, 1]×S1, B = [1, 2]×S1, and consider Reeb foliations on 
them. The orientation is given so that A is (+)-fcd. Denote the rotation of angle θ along the fi rst S1-factor 
by Rθ, and set m = (Rε /m) ＊   for suffi ciently small fi xed ε  > 0. Then, for suffi ciently large m, m is 
suffi ciently close to     with respect to the C∞-topology. We show that Cad( )  Cad ( m) and Cad( m)  
Cad ( ) for all m.
　　As Int (A\(Rε/m) ＊ A) ≠ ₀ ≠ = Int(B\(Rε /m) ＊ B), we can choose p, v ∈ Int ((Rε/m) ＊ A ∩ B) and
q, u ∈ Int (A∩(Rε/m)＊B). Thus we can fi nd smooth functions f1, f2 on T2 so that f1(x) < 0 near p, f1(x) > 0 
near q and f1(x) = 0 elsewhere, and f2(x) < 0 near u, f2(x) < 0 near v and f2(x) = 0 elsewhere. By the 
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characterization, it is clear that f1 ∈ Cad ( ) but f1  Cad( m), and that f2 ∈ Cad( ) but f2 ∈ Cad( m).
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