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Abstract 

　Though there are many differential geometric results on contact metric structures, adapted metrics 
for contact structures introduced by S. Chern and R. Hamilton are not studied. In this paper, we study 
curvatures arising from k-adapted metric to contact structures on 3-manifolds, which is an extended 
notion of adapted metrics introduced by S. Chern and R. Hamilton, and give some results that also hold 
for contact metric structures, especially, on K-contact metric structures. We also study the Gaussian 
curvature of ξ  introduced by V. Krouglov.

1　Introduction 

Though there are many differential geometric results on contact metric structures (cf. [2]), adapted 
metrics to contact structures introduced by S. Chern and R. Hamilton [3] are not studied. In this paper, 
we introduce k-adapted metrics to contact structures on 3-manifolds, where k is a positive constant, 
and study curvatures arising from adapted metrics. We give some results that also hold for contact 
metric structures, especially, on K-contact metric structures. We also study the Gaussian curvature of ξ 
introduced by V. Krouglov [6]. We shall give preliminaries and auxiliary results in §2, and present and 
prove main results in §3. In §4, we give some examples.

2　Preliminaries and auxiliary results

In this paper, we work in the C ∞ -category. In what follows, we always assume that contact structures 
are given by one-form ω, and that the ambient manifolds are connected, oriented and of dimension 3, 
unless otherwise stated (see [2], [4], [7] for the generalities on contact structures).
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　　Let ξ = Ker ω, and assume that ω ∧ dω > 0 on M. Let g be a Riemannian metric of M. For a 
positive constant k, a metric g is called k-adapted to the contact form ω if there is a unit vector field N 
orthogonal to ξ such that ω (N) = 1, ιN dω = 0 and ω ∧ dω = kdV (M, g), where dV (M, g) is the volume 
element of the Riemannian manifold (M, g). In case k = 2, g is adapted in the sense of [3]. Thus, if we 
give an oriented local orthonormal frame {N, E, F} with E, F ∈ Γ(ξ), then we have ω ∧ dω = kdV (M, g) 
= kN＊∧ E＊∧ F＊ . By definition, dω/k is the volume element along ξ. It follows that ξ is minimal in the 
sense that

〈∇EN,E 〉 + 〈∇F N, F 〉 = 0,
where ∇ is the Riemannian connection of (M, g).
　　As ιNdω = 0, for any section V of ξ we have

0 = ιNdω (V ) = dω (N, V ) = −ω ([N, V ]) = 〈∇N N, V 〉.

Thus we have

　　Lemma 1． ∇N N = 0, that is, the orbits of N are geodesics.

This is known for contact metric structures, which needs stronger conditions than adapted ones (cf. [2]). 
By calculating dω(E, F) = k for an oriented orthonormal basis {E, F} of ξ, we have

k = dω(E, F) = −〈∇E F − ∇F E, N〉.

It follows that
　　Lemma 2． For an oriented orthonormal frame {N, E, F}, we have

〈∇FE, N〉 = k ＋〈∇E F, N〉.

　　Define the second fundamental form B of ξ by

B (V, W) = 〈∇V  W ＋ ∇WV, N〉

for all sections V, W of ξ (cf. [6], [8]). This is a symmetric bilinear form on ξ. As ξ is
minimal, it follows that TrB = 0. Define also the extrinsic curvature Ke (ξ) by

Ke (ξ) =
  B (V, V )B (W, W )−B (V, W )2   

,　　　 〈V, V 〉〈W, W 〉−〈V, W 〉2  

where V,W are two linearly independent sections of ξ, and the Gaussian curvature KG (ξ) by KG (ξ) = K(ξ) 
+ Ke (ξ) (cf. [6]). Note that Ke(ξ) ≤ 0 because TrB = B(E, E) + B(F, F) = 0 for an oriented orthonormal 
basis {E, F} of ξ. Let {N, E, F} be an oriented orthonormal frame of M. Now calculate K(ξ).

　　　　　　K (ξ) = K (E, F ) = 〈R (E,  F )F, E 〉
　　　　　　　　= 〈∇E∇F F, E 〉−〈∇F∇E F, E 〉−〈∇[E, F ] F, E 〉
　　　　　　　　= E〈∇F F, E 〉+F〈∇E E, F 〉−〈∇E E, F 〉2 −〈∇F F, E 〉2

　　　　　　　　　　− 〈∇EE, N 〉〈∇FF, N 〉+〈∇EF, N 〉〈∇FE, N 〉+ k〈∇NF, E 〉．
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As div (E) = 〈∇E E,E 〉 + 〈∇F E, F 〉 + 〈∇N E,N 〉 = −〈∇F F,E 〉 , div(F) = −〈∇E E, F〉 and −div (div(E)
E + div (F)F) = div ( ∇E E + ∇F F ), we have

　　Lemma 3． For an oriented orthonormal frame {N,E, F } of M, we have

　　　　K (ξ) = div ( ∇E E + ∇F F )
　　　　　　　−〈 ∇E E,N 〉〈∇F F,N 〉 + 〈∇E F,N 〉〈∇F E,N 〉 + k〈∇N F,E 〉．

Note that the vector field ∇E E +∇F F is independent of the choices of local orthonormal frame {E, F} of ξ. 
By using Lemma 1, we have

　　　　K (E, N ) = 〈R (E, N )N, E 〉
　　　　　　　= 〈∇E∇N N, E 〉 − 〈∇N∇E N, E 〉 − 〈∇[E , N ] N, E 〉
　　　　　　　= − N〈∇E N, E 〉 + 〈∇E N, ∇N E 〉 − 〈 [E, N ], N 〉〈∇N N, E 〉
　　　　　　　　　− 〈[E, N ], E 〉〈∇E N,  E〉 − 〈 [E, N ],  F 〉〈∇F N, E 〉 .

It follows that
　　Lemma 4． For an oriented orthonormal frame {N, E,  F } of M, we have

　　　　K (E, N ) = N〈∇E E, N 〉 − 〈∇E E, N 〉2 − 〈∇E F, N 〉〈∇F E, N 〉
　　　　　　　　− 〈∇N E, F 〉 （〈∇E F, N 〉 + 〈∇F E, N 〉).

As the Ricci curvature in the direction of N is given by Ric (N, N ) = K (E, N ) + K (F, N ) and TrB = 0, 
by Lemma 4, we have

　　Lemma 5． For an oriented orthonormal frame {N, E, F} of M, we have

　　　　Ric (N, N ) = − 〈∇E E,N 〉2 − 〈∇F F, N 〉2 − 2〈∇E F, N 〉〈∇F E, N 〉 . 

3　Main results

Firstly, we locally represent covariant derivatives explicitly by using the results in §2. Let U be an open 
subset of M.

　　Proposition 1． Let {N ,E, F } be an oriented orthonormal frame on U. As ∇N E ⊥ E, N, we can 
set ∇N E = f F for a smooth function on U. Set also 〈∇E E, N 〉 = λ and 〈∇E F, N 〉 = α. Then we have
　(1) ∇N N = 0, ∇N E = f F, ∇N F = −f E.
　(2) ∇E N = − λE − αF, ∇E E = − div (F) F + λN, ∇E F = div (F) E + αN.
　(3) ∇F N = −(k + α)E +λ F, ∇F E = div (E) F + (k + α ) N, ∇F F = −div (E) E − λN.
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　　Theorem 1． Under the assumptions in Proposition 1, we get

　　　　KG (ξ) = K(ξ) + Ke (ξ) = div ( ∇E E + ∇F F ) − k f − .

　　Note that the function f = 〈∇N E, F 〉 can vary as we see in the examples given in §4.As a corollary 
to this theorem, we have the following by letting k be sufficiently large (see [6] for more general result).

　　Corollary． If M is closed, then there is a k-adapted metric so that KG (ξ) < 0.
　　
　　Next, we give an upper bound of the Ricci curvature in the direction of N (cf. [2]).

　　Theorem 2． Ric (N, N ) ≤  , where the equality holds if and only if B = 0 at the point.

(Proof.) Set t = 〈∇E F, N 〉. Then, by Lemma 2, 〈∇F E, N 〉 = k + t. By Lemma 5, it follows that

　　　　Ric (N, N ) ≤ −2t (k + t ) ≤ −2  t +  
2
+  ≤ .

If Ric (N, N ) = k2/2, then 〈∇E E, N 〉2 = 〈∇F F, N 〉2 = 0 and t = − k /2. This implies that B (E, E ) = 
B (F, F ) = 0 and 2B (E, F ) = 〈∇E F + ∇F E, N 〉 = − k /2 + k /2 = 0. Thus we have B = 0. Conversely, 
assume that B = 0. Then, we have 0 = B (E, E ) = 〈∇E E, N 〉, 0 = B (F, F ) = 〈∇F F, N 〉 and 0 = 2B (E, 
F ) = 〈∇E F + ∇F E, N 〉. By Lemma 2, 〈∇F E, N 〉 = k + 〈∇E F, N 〉. It follows that 〈∇E F, N 〉 = −
k /2, which shows that Ric (N, N ) = k2/2.

　　It seems to be of some interest to see a conclusion of B = 0. We investigate a relation between N 
and B on an open set U ⊂ M.

　　Theorem 3． On an open set U ⊂ M, B = 0 if only if N is a Killing vector field.

(Proof.) Note that N is a Killing vector field on U if and only if

　　　　〈∇X N, Y 〉 + 〈∇Y N, X 〉 = 0

for any vectors X and Y on U. As ∇N N = 0 by Lemma 1, this is equivalent to the following conditions:

　　　　〈∇E N, E 〉 = 0, 〈∇F N, F 〉 = 0 and 〈∇E N, F 〉 + 〈∇F N, E 〉 = 0．

And these conditions can be read as

　　　　B (E, E ) = 0, B (F, F ) = 0 and B (E, F ) = B (F, E ) = 0．

This means that B = 0 on U, and this completes the proof.
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　　A contact metric structure with N being a Killing vector field is called a K-contact metric structure, 
and the following result is known for K-contact metric structures (cf. [1], [5]). We can get the same 
result for our k-adapted metrics with weaker conditions than K-contact metric structures.

　　Theorem 4． If N is a Killing vector field on M, then the sectional curvatures for planes containing 
N are always equal to k 2/4 at any point of M.

(Proof.) By Theorem 2, B = 0. Thus, for an oriented orthonormal frame {N, E, F } of M, we have

　　　　〈∇E N, E 〉 = 0, 〈∇F N, F 〉 = 0 and 〈∇E N, F 〉 + 〈∇F N, E 〉 = 0.

It is easy to see that K (N, E ) = k 2/4 by Lemma 4.

　　Combining these results, we have the following.

　　Theorem 5． For a k-adapted metric of a contact structure on M, the following conditions are 
equivalent on an open set U ⊂ M:
　　(1) Ric (N, N ) = k2/2 at any point of U.
　　(2) B = 0 at any point of U.
　　(3) N is a Killing vector field on U.
　　Further, in these cases, the sectional curvatures for planes containing N are always equal to k2/4 at 
any point of U.

　　We locally represent covariant derivatives explicitly as in Proposition 1. Note that in this case we 
have α = − k /2 and λ = 0.

　　Proposition 2． Under the assumptions in Theorem 5 and Proposition 1, we have
　　(1) ∇N N = 0, ∇N E = f F, ∇N F = − f E.
　　(2) ∇E N = k /2F, ∇E E = − div (F)F, ∇E F = div (F)E − k /2N.
　　(3) ∇F N = − k/2E, ∇F E = div (E)F + k /2N, ∇F F = − div (E)E.
　　(4) Ric (N, N ) = k2/2.
　　(5) B = 0, Ke (ξ) = 0.
　　(6) K (ξ) = KG  (ξ) = div ( ∇E E + ∇F F) − k f − k2/4.

4．Examples

The first example is due to [7]. Let (R3, g0) be the 3-dimensional Euclidean space with the canonical 
coordinate (x, y, z). Define ω = sin zdx + cos zdy. Then, it follows that
　　　　dω = cos zdz ∧ dx − sin zdz ∧ dy, and ω ∧ dω = dx ∧ dy ∧ dz = dV (R3, g 0).
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Thus, g 0  is a 1-adapted metric to this contact form ω. Defi ne N = sin z x + cos z y, E = z  and F = cos 
z x  − sin z y . Then, it is easy to see that {N, E,  F } is an oriented orthonormal frame on R3. We get 
covariant derivatives

∇N N = 0, ∇N E = 0, ∇N F = 0,
∇E N = cos z x  − sin z y , ∇E E = 0, ∇E F = −sin z N x  − cos z y ,

∇F N = 0, ∇F E = 0, ∇F F = 0.

Thus, we have

f = 〈∇N E, F 〉 = 0,  λ = 〈∇E E, N 〉 = 0, α = 〈∇E F, N 〉 = −1,

and
B (E,E) = B (F, F ) = 0,  B (E, F ) = B (F, E ) = −1/2,

K (ξ) = 0,  Ke (ξ) = −1/4,   KG (ξ) = −1/4.

　　The second one is due to [3]. Let (S3, g1) be the unit sphere in the 4-dimensional Euclidean space 
R4 with the canonical coordinate (x, y, z, w ). Defi ne a 1-form ω by

ω = xdy − ydx + zdw − wdz.

It is easy to see that ω ∧ dω = 2dV (S3, g1). Thus g1 is a 2-adapted to this contact form ω.
Set N = x y −y x +z w −w z ,  E = x z −z x −y w +w y  and  F = x w −w x −y z −z y .
Then {N, E, F, } is an oriented orthonormal frame of S3 with ω(N) = 1 and E, F ∈ Ker ω.
We get covariant derivatives

∇N N = 0, ∇N E = − F, ∇N F = E,
∇E E = 0, ∇E F = − N, ∇E N = F,
∇F E = N, ∇F F = 0, ∇F N = − E.

Thus, we have
f = 〈∇N E, F 〉 = −1, λ = 〈∇E E, N 〉 = 0, α = 〈∇E F, N 〉 = −1,

and

B (E, E ) = B (F, F ) = B (E, F ) = B (F, E ) = 0,
Ke  (ξ) = 0, KG (ξ) = K (ξ) = 0 − 2( −1) − 22/4 = 1.
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