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Abstract

Given a codimension-one foliation F of a not necessarily closed manifold M. We show
a relation between the changes of Riemannian metrics and the mean curvature functions,
and derive some consequences when F is a taut foliation. A relation between these

results and a characterization of admissible vector fields is also discussed.

1 Introduction

Let F be a foliation of any codimension of a compact manifold M and X be a vector field on M.
Recently, P. Schweitzer and P. Walczak [10] provided some necessary and sufficient conditions for X to
become the mean curvature vector of 7 with respect to some Riemannian metric on a closed manifold M.
In a previous paper [7], the author studied the same problem for codimension-one foliations , and gave
a necessary and sufficient condition for X to become the mean curvature vector of F with respect to
some Riemannian metric on M, which resembles the conditions given in the papers of the author ([4], [5],
[6]). However, as the conditions given in the above paper are complicated, further studies are needed on
this problem. In this paper, we give a relation between the changes of Riemannian metrics and the mean
curvature functions, and derive some consequences when JF is a taut foliation. A relation between these
results and a characterization of admissible vector fields is also discussed.

We shall give some definitions, preliminaries and the results in § 2, and shall prove them in § 3.

Some remarks are given in § 4.
2 Preliminaries and results

In this paper, we work in the C* -category. In what follows, we always assume that foliations are of
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codimension-one and transversely oriented, and that the ambient manifolds are connected, oriented and
of dimension 7 + 1>2, unless otherwise stated (see [1], [12] for the generalities on foliations).

Let g be a Riemannian metric of M. Then there is a unique vector field orthogonal to 7 whose
direction coincides with the given transverse orientation. We denote this vector field by N. Orientations
of M and F are related as follows: Let {E1,Es, . . . ,En} be an oriented local orthonormal frame of TF .
Then the orientation of M coincides with the one given by {N,E1,Es, . . . ,En).

We denote by /,(x) the mean curvature of a leaf L at x with respect to g and N, that is,

hy= Z:; (VEE; N),

where ¢, ) means ¢(, ), Vis the Riemannian connection of (M, g) and {E1,Es, . . . ,E,} is an oriented
local orthonormal frame of 7F . The vector field H, = h,N is called the mean curvature vector of F
with respect to g. A smooth function f'on M is called admissible if f= — h, for some Riemannian metric
g (cf. [4], [13]). A characterization of admissible functions is given in [6] (see also [4], [5], [13]). We
also call a vector field X on M admissible if X = Hg for some Riemannian metric ¢. A characterization of

admissible vector fields is given in [7]. Define an n-form x= on M by

xr(Vi, ..., Vi) = det((E;, V)i j=1,...n for V; € TM.

The restriction X |L is the volume element of (L, L|g) for L €F . Note that if w is the dual 1-form of
N, thatis, @ (V) =gWN, V) for V€ TM, then dV, = w Axr , where dV} is the volume element of (M, g).
The following Rummler’ s result plays a key role in this paper.

Proposition R (Rummler [8]). d xr = —h,dV, = div,(N)dV,, where div,(N) is the divergence of N

with respect to g, that is, div,(N) = z (VEN,Ei).
i=1

A codimension-one foliation F is called taut if there is a Riemannian metric g of M so that every
leaf of F is a minimal submanifold of (M, g). A topological characterization of taut foliations of closed
manifolds is given by Sullivan [11].

Our results are the following.

Theorem 1. Let (M, F ) be a codimension-one taut foliation, and g be a Riemannian metric of M so
that F is minimal, and N be the unit vector field on M defined above. Then for a smooth function fon M
the vector field /N is admissible if and only if f is of the form 0?N( @) for some smooth functions o>
Oand @ on M.

Theorem 2. Let (M, F ) be a codimension-one foliation, and g be a Riemannian metric of M. Let

N be the unit vector field on M defined above. Then F is taut if and only if there are a positive smooth
function ¢ and a vector field F tangent to F so that div,( N+ F) = 0.
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These results are local in nature, and hold for not necessarily closed manifold. In § 4, we discuss
these results from the view point of the setting of Sullivan.

3  Proof of Theorems

Firstly, we prove a proposition, which is concerned with a relation between mean curvature functions

and Riemannian metrics (cf. Lemma 3 in [3]).

Proposition. Let 7 be a codimension-one foliation of a Riemannian manifold (M, g), N be the unit
vector field orthogonal to F defined as in Section 2, and / be the mean curvature function of F with
respect to g. Let g be another Riemannian metric of M and N be the unit vector field orthogonal to JF
with respect to g. Set N= 0 N + F for a positive smooth function ¢ on M and F € I'( F ). Further, also
set Xr | = @ x| 7 for a positive smooth function ¢ on M. Then, for the mean curvature # of F with

respect to g, we have

h =ch—oN(logy) — F(log E) — divy(F).
o

(Proof.) Hereafter, we denote xrand Xr by x and X , respectively. Denote also dV, by dV and dV; by

dV , respectively. As & does not depend on g|# but only on X , we may assume that the metrics gl and

g|= satisfy the following relation as X | = @ X |# : If {E1,Es, - - - ,E,)} is a local orthonormal frame of
T F with respect to g, then {E1/@,Es, - - - ,E,) is a local orthonormal frame of 7 F with respect to g. We
denote this frame by {E1,Eq, - - - ,E,}. Let o, w1, ws, - - -, @, be the dual 1-forms of NE1,Ey, - - - ,E,.

Then it follows that
1 © _ 1 .
W=—w, B =pw — —w(Fw, & =w; — —wi(Flw (i 2>2).
a a a

In fact, as 1 = w(N) = w( 0N+ F) = 0w(N) and Ker o = Ker m, we have oo = w. As 0 = 01(N) = w1(oN
+F)= 0 wi1(N) + o (F), we have 01(N) = — (/) w(F). It follows that w1 = @1 — (@/0)w1(Fe.

For i > 2, by the similar argument, we have w; = @; — (w{F)/ ) w. It follows that

dV = WAWL AW A AW,

(w/a) A (pwr = (pwi(F)/0)w) A (wa — (waF) [0)w) A=+ A (wn — (walF)/0)w)
(p/o)wAwr A=+ Awy

= Zav.

I

I
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We also have

X = WiADa A Awp

plwr — (Wi(F)/o)w) A (wa — (wa(F) /)W) A+ A (wn — (wn(F)/0)w)

n
— <,ow1/\~-~/\wn—<p2((wi(F)/a)w)/\wl/\-w/\wi_l Awigt A Awy,

n
= px+ fw N (Z(—l)’wz(F)wl AN ANwicg ANwigg Ao A UJn)
o i=1

= ox+ Zupav,
g

where tr denotes the interior product by F.
Now we are in a position to prove our assertion. As, by Proposition R, d x = — hdVanddx = — hdV ,

we have

>
.
<
I

dx=d (wx + %LFdV>
dp Ax + pdx +d (%) A opdV + dLFdV
= (N(w) —ph+ F (g)
(N((p) —gh+F (%) + Zdwg ) gW.

®
+ Udlvg ) dV

Thus, we have

h=oh—aN(logy) — F(log f) — divy(F).
o

(Proof of Theorem 1.) Firstly note that, by Proposition, we have the following.

Assertion. Let F be a codimension-one foliation of a Riemannian manifold (M, g), N be the unit vector
field orthogonal to F , and / be the mean curvature function of F with respect to ¢. If g is another
Riemannian metric of M so that F _| N,g(N,N) =1, and H = fN, then f= 0*(h — N(@)) for some
smooth functions 0 > 0 and ¢ on M.
Indeed, in Proposition, if we set F=0, N=0 N, and X =@ X , then we get
h = oh—oN(log p).

As H=h N =hoN = fN, it follows that f = 0?(h — N(log p)).

Assume that F is minimal with respect to g. Then, we have # = 0. By the assertion, f is of the form
02N( @) for some smooth functions ¢> 0 and ¢ on M.

Conversely, assume that f'is of the form 0% N( @)for some smooth functions ¢ > O and @ on M. If

we choose a Riemannian metric gof M so that ¥ | N, N= oN, and X=¢ ~?x , then, as # = 0, from the
proof of the assertion, we have the desired result. This completes the proof.
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(Proof of Theorem 2.) We shall use the same notations as in Proposition. Let ¢ be any Riemannian
metric of M. Assume that there are a positive smooth function @ and a vector field F tangent to F so
that div,(¢pN + F) = 0. Choose a Riemannian metric g with | N+ (1/@)F, N=N+ (1/@)F, and X |
= @ X |#. Then, by Proposition, we have 7 =h — N(logp) — (1/@)F(log @) — div,((1/@)F), because
0 =1 onM. Ash — Nlog @) — (1/@F(og @) — div((1/@)F) = — (1/@)(div,(@p N+F)) = 0, by
assumption, we have / = 0, which shows that  is taut.

Conversely, assume that F is minimal with respect to some Riemannian metric g of M. We show
that there are a positive smooth function ¢ and a vector field F tangent to F so that div,( N +F) = 0.
Let N= 0 N +Z, where Z € T(F ), be the unit vector field orthogonal to & with respect to g, and ¢ be a

smooth function satisfying X | = @ X |# . Then, from the proof of Proposition, we have

0= N(¢) - ¢h+ 2 (£) + Ldiv,(2) = aiv,(eN + £2).

By setting F = (@/ 0)Z, we have the desired result.
As corollaries to Theorem 2, we have

Corollary 1. Let (M, F ) be a codimension-one foliation, and g be a Riemannian metric of M. Let
N be the unit vector field on M defined as above. Then there is a Riemannian metric g that makes F
minimal with X |» = X | if and only if there is a vector field F tangent to F so that div,(V + F) = 0.

Corollary 2. Let (M, F ) be a codimension-one foliation and X be a non-vanishing divergent-free

vector field, that is, divX'= 0 on M. Then, any codimension-one foliation transverse to X is taut.
4 Concluding remarks

In this section, we give some remarks on a relation between the results of this paper and the conditions
given in [7]. In order to recall the characterization of admissible vector fields given in [7], firstly recall
the set-up by Sullivan [11]. In what follows, we assume that M is a closed oriented manifold. Let D, be
the space of p-currents, and D? be the space of differential p-forms on M with the C* topology. It is well
known that D? is the dual space of D, (cf. Schwartz [9]). Letx EM and {ey, . . ., e, be an oriented basis
of T F . We define the Dirac current ;A" Ae, DY

Oernnen(®) = Galer A--- Aey) for ¢ € D,

and set C r to be the closed convex cone in D, spanned by Dirac currents Oc1 A - aen fOr all oriented bases
{er, ..., es of Ty F and x EM. We denote a base of C # by C, which is an inverse image L~'(1) of a
suitable continuous linear functional L : D, — R. It is known that the base C is compact if L is suitably
chosen. In the following, we assume that C is compact.
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Let X be a vector field on M. Define the closed linear subspace P(X) of D, generated by all the Dirac
currents oxp Av A Ava—1 With U, ..., Uy —1 €T, F and x €M (see [10] for more details), where

Ox@ AviA“* Av a1 1s defined by

6X(z)/\'v1 A AUp—1 (¢) = qu(X(iL’) N (%1 JACERIVAN Unfl) for ¢ c Dr.

Let 0 : Cus1 — C, be the boundary operator and set B = 9 (Cy+1). In these settings, we gave the

following characterization of admissible vector fields on a closed manifold M (Theorem 2 in [7]):

For a vector field X on M, the following two conditions are equivalent.
(1) X is admissible.
(2) There are a volume element dV , a non-vanishing vector field Z transverse to JF whose direction
coincides with the given transverse orientation of 7 , a smooth function f'on M, and a neighborhood U

of O €D, such that

Gi) [, fdV =0,
(iti) [ fdv =0 for all ¢ € 8~(P(X) N B), and
(iv) inf{f fdV | c € 97((C + P(X)+U)NB)} > 0.

Concerning Theorem 1, we show an implication: If fis of the form 2N( ), then N is admissible.

Note that if F is taut, then it is easy to see that (C + P(X) + U) N B =@. Thus the condition (iv)
becomes void. Set dV = (1/02)dV . Then, as fdV = N(p)dV = d(px ), because d x = 0, it follows that
§fdV =lud (px) =0, which means that the condition (i) is satisfied. J.fdV =lcd (px) = Jacx =0,
because X |pavy= 0 and d ¢ € P(N), which means the condition (iii) is satisfied.

Concerning Theorem 2, we show an implication: If div,( N +F) = 0, then F is taut.

Set ¢ = i dV . Then, dip = diggnemdV = Ligv+pndV = divy(@ N + F) = 0. Further, as 1| 7 > 0 and
Wlr(ev+m =0, it is easy to see that the vector field O - N= 0 is admissible, that is, F is taut.
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