Hamiltonian Property of Claw-free Graphs from the View Point of Topological Combinatorics

Gen-ichi OSHIKIRI * (Received Nov. 20, 2008)

Abstract

Let G be a connected claw-free simple graph with $|G| \ge 3$. We show that if the 2-dimensional simplicial complex $\triangle(G)$ associated to G is simply connected then G is hamiltonian. A graph G is said to be \triangle^1 -connected if every pair of edges are connected by some chain consisting of edges and triangles. We also show that if G is \triangle^1 -connected then G is hamiltonian.

1 Introduction.

Recently, a new homotopy theoretical approach has been used to study graphs by many authors such as X. Kramer and R. Laudenbacher [9], H. Barcel and X. Kramer [4], and E. Babson et al. [3]. These approaches have been originated from Atkin's papers [1], [2]. On the other hand, as is well-known, L. Lovász used a homotopy theoretical method to solve the Kneser Conjecture [10], and this area has also been studied extensively (cf. [5], [6], [8], [11]). In this paper, we try to use this approach, so called "Topological Combinatorics", to find hamiltonian cycles of claw-free graphs. Note that the complete bipartite graph $K_{1,3}$ is called a claw, and that a graph is called claw-free if it does not contain any claws as induced subgraphs. A graph is called hamiltonian if it contains a cycle passing through all vertices of the graph (see [7] for the fundamentals on graphs).

Let G be a connected simple graph with $|G| \ge 3$. Attach a triangle (i.e., a 2-simplex) to every triangle of G and denote the resulting 2-dimensional simplicial complex by $\triangle(G)$. We show the following.

Theorem 1 If G is a 2-connected claw-free graph with \triangle (G) being simply-connected, then G is hamiltonian.

^{*} The author is partially supported by Academic Group Research Project(No.14) from Iwate University. Faculty of Education, Iwate University

Gen-ichi OSHIKIRI

Two edges α and ω are said to be 1-connected if there is an alternating sequence of edges σ_i and triangles Δ_i of G

$$\mathbf{P}: \alpha = \sigma_0, \Delta_1, \sigma_1, \Delta_2, \sigma_2, \Delta_3, \cdots, \Delta_k, \sigma_k = \omega$$

such that each triangle Δ_i contains σ_{i-1} and σ_i as edges. Such a sequence will be called a Δ -*chain*. We denote by |P| the length of the chain P, that is, |P| = k in the above case. A graph G is said to be Δ^1 -connected if every pair of edges are connected by some Δ -chain. Note that if G is Δ^1 -connected, then G has no cut-vertices and bridges, thus G is 2-connected and 2-edge connected. Though every edge is contained in a triangle if G is Δ^1 -connected, G is not necessarily locally-connected as the following example shows: $G = C_6^2 \setminus \{e\}$, where C_6 is a 6-cycle, C_6^2 is the square of C_6 , and e is an edge of $C_6^2 \setminus C_6$. Also, a Δ^1 -connected graph may contain some claws: consider three triangles and glue them along one edge, which produces a Δ^1 -connected non-hamiltonian graph with claws. We also show the following.

Theorem 2 Let G be a \triangle^1 -connected claw-free graph with $|G| \ge 3$, then G is hamiltonian.

2 Proofs of Theorems.

Let G be a connected simple graph with $|G| \ge 3$. We shall use the notations defined in § 1.

(*Proof of Theorem 1.*) We shall show that G is locally-connected. Then by the following theorem of D. Oberly and D. Sumner [12], we have the proof of Theorem 1.

Theorem OS A connected, locally connected claw-free graph of $|G| \ge 3$ is hamiltonian.

Let $v \in V(G)$ be a vertex of G. To show that G is locally connected, by definition, it is sufficient to show that the neighborhood N(v) is connected. Take two vertices $u, w \in N(v)$. Then $vu, vw \in E(G)$. As G is 2-connected, there is a path P in G from u to w, which does not contain v. Thus we have a closed circuit $P \cup \{uv, vw\}$. As $\Delta(G)$ is simply connected, there is a continuous map $f: D^2 \to \Delta(G)$ with $f(S^1) \subset P \cup \{uv, vw\}$, where D^2 is the 2-dimensional disk and $S^1 = \partial D^2$. We take a $p \in S^1$ so that f(p) = vand denote it by p_0 . Considering D^2 as a 2-dimensional simplicial complex, and applying the theorem on simplicial approximation, we can regard f itself a simplicial map. Take the connected component C_0 of $f^{-1}(v)$ that contains the vertex p_0 . Collect all simplexes in D^2 which intersects with C_0 , and denote it by N_0 . As $\partial f(N_0)$ is contained in $\Delta (< N(v) \cup v >)$, and $\partial f(N_0)$ contains uv and wv, we have a trail between u and w in N(v). This shows that G is locally connected, and this completes the proof of Theorem 1.

(*Proof of Theorem 2.*) We shall prove the theorem by reductio ad absurdum. Let G = (V, E) be a \triangle^1 -connected claw-free simple graph with $|V| \ge 3$, and *C* be one of the longest cycle/of *G*. If V(C) = V then there is nothing to prove, we assume $V \setminus V(C) \ne \emptyset$. Then there are $u \in V(C)$ and $v \notin V(C)$ with $uv \in E$. Orient *C*, and for $u \in V(C)$ denote by $u + (u^-)$ the successor (the predecessor) of *u* on *C* under the orientation of *C*. Note that if $u \in V(C)$ and $v \notin V(C)$ with $uv \in E$, then $vu^{\pm} \in E$, and as *G* is claw-

free, $u^-u^+ \in E$. We set $\alpha = uv$ and $\omega = uu^-$. As the argument given below is also valid if we replace $\omega = uu^-$ by $\omega = uu^+$, we consider only the case $\omega = uu^-$. As *G* is \triangle^1 -connected, there is a chain *P* connecting α and ω . Among $u \in V(C)$ and $v \notin V(C)$ with $uv \in E$, and *P* connecting α and ω , we assume that *P* is the shortest one.

$$P: \alpha = \sigma_0, \Delta_1, \sigma_1, \Delta_2, \sigma_2, \Delta_3, \cdots, \Delta_k, \sigma_k = \omega$$

Thus we can assume $\sigma_i \neq \sigma_j$ and $\Delta_i \neq \Delta_j$ for $i \neq j$. We denote by $\sigma_i P$ the part

 σ_i , Δ_{i+1} , \cdots , Δ_k , $\sigma_k = \omega$ of *P*. We also use the notations $\Delta_i P$, $P \sigma_i$ and $P \Delta_i$ to denote the similar chains.

Now we have to consider several cases according as the vertices in \triangle_i 's are in V(C) or not. Firstly, note that if |P| = 1 then $\triangle_1 = \{u, v, u^-\}$ and the new cycle $u^+Cu^-vuu^+$ is longer than C, which contradicts the maximality of the length of C. Here we use the notation xCy for $x, y \in V(C)$ that means the part of C beginning at x and ending at y along the given orientation of C.

Assume that $|P| \ge 2$ and let $\triangle_1 = \{u, v, w\}$. We may also assume that $w \ne u^{\pm}$.

 $\underline{\mathbf{Case 1}} w \in V(C)$

In this case, as G is claw-free, $w^- w^+ \in E$.

<u>Case 1.1</u> $\sigma_1 = uw$

Let $\triangle_2 = \{u, w, x\}$. We may assume that $x \neq u^{\pm}$, w^{\pm} , for if x is one of them, we can find a cycle longer than C, which contradicts the maximality of C: e.g., if $x = w^-$, then $uw^- \in E$, and $w^- uvwCu^$ u^+Cw^- is a cycle longer than C.

If $x \notin V(C)$ and $\sigma_2 = ux$, then the chain ux, $\triangle_2 P$ would be a shorter chain than P, which contradicts the minimality of P. Thus, if $x \notin V(C)$, we may also assume that $\sigma_2 = wx$. But, in this case, we can also find a shorter chain ux, $\triangle_2 P$, a contradiction. Therefore, $x \in V(C)$.

If $ux^- \in E$ or $ux^+ \in E$, then we would have a longer cycle, a contradiction: e.g., if $ux^- \in E$, then $x^$ $uvwxCu^-u^+Cw^-w^+Cx^-$ is a longer cycle than C. Thus, as G is claw-free and $ux^\pm \notin E$, it follows that $x^-x^+ \in E$. If $u^+x \in E$, then we would have a longer cycle $xu^+Cw^-w^+Cx^-x^+Cuvwx$, a contradiction. Thus, $u^+x \notin E$. As it is easy to see that $vu^+ \notin E$, it follows that $vx \in E$ because G is claw-free. If $\sigma_2 = ux$, then P can be shorten to σ_0 , $\{u, v, x\}, \sigma_2 P$, a contradiction. We may assume that $\sigma_2 = wx$, and let $\Delta_3 = \{w, x, y\}$.

Case 1.1.a $y \notin V(C)$

It is easy to see that $ux^+ \notin E$ and $yx^+ \notin E$. As G is claw-free, $uy \in E$. If $\sigma_3 = wy$, then

$$\sigma_0, \Delta_1, \sigma_1 = uw, \{u, w, y\}, \sigma_3 = wy, \Delta_4 P$$

is a shorter chain than *P*, a contradiction. If $\sigma_3 = xy$, then

 $\sigma_0, \{u, v, x\}, ux, \{u, x, y\}, \sigma_3 = xy, \triangle_4 P$

is a shorter chain than P, a contradiction.

<u>Case 1.1.b</u> $y \in V(C)$

As the triangles in *P* are mutually different, it follows that $u \neq y$. If $y = u^-$, then there is a cycle $y = u^- Cw^- w + Cx^- x^+ Cuvwxy$ longer than *C*, a contradiction. Similarly, if $y = u^+$, then there is a cycle longer than *C*. Thus $y \neq u$, u^{\pm} .

Gen-ichi OSHIKIRI

If $wy^+ \in E$, then there is a cycle $y^+Cu^-u^+Cw^-w^+Cx^-x^+Cyxvuwy^+$ longer than *C*, a contradiction. Similarly, if $wy^- \in E$, then there is a cycle longer than *C*. Thus, $wy^\pm \notin E$. As *G* is claw-free, it follows that $y^-y^+ \in E$. If $ux^- \in E$, then there is a cycle $x^+Cu^-u^+Cw^-w^+Cx^-uvwxx^+$ longer than *C*, a contradiction. Thus $ux^- \in E$. Similarly, if $yx^- \in E$, then there is a cycle longer than *C*. Thus, $yx^- \notin E$. As *G* is claw-free, it follows that $uy \in E$. Similarly, if $yx^- \in E$, then there is a cycle longer than *C*. Thus, $yx^- \notin E$. As *G* is claw-free, it follows that $uy \in E$. Therefore, if $\sigma_3 = wy$, then there is a shorter chain σ_0 , Δ_1 , σ_1 , $\{u, w, y\}$, $\sigma_3 = wy$, $\Delta_4 P$ than *P*, a contradiction.

<u>Case 1.2</u> $\sigma_1 = vw$

Let $\triangle_2 = \{v, w, x\}$.

Case 1.2.a $x \notin V(C)$

If $uw^- \in E$, then there is a cycle $w^-uvxwCu^-u^+Cw^-$ longer than *C*, a contradiction. Similarly, if $xw^- \in E$, then there is a cycle longer than *C*. Thus, uw^- , $xw^- \notin E$. As *G* is claw-free, it follows that $ux \in E$. If $\sigma_2 = vx$, then there is a shorter chain σ_0 , $\{u, v, x\}, \sigma_2 P$ than *P*, a contradiction. Thus we may assume that $\sigma_2 = wx$. Let $\Delta_3 = \{w, x, y\}$.

<u>Case 1.2.a.(i)</u> $y \in V(C)$

As $xy^{\pm} \notin E$ and *G* is claw-free, it follows that $y^{-}y^{+} \in E$. If $vw^{-} \in E$, then there is a cycle $w^{-}vxywCy^{-}y^{+}Cw^{-}$ longer than *C*, a contradiction. Similarly, if $yw^{-} \in E$, then there is a cycle longer than *C*. Thus, vw^{-} , $yw^{-} \notin E$. As *G* is claw-free, it follows that $vy \in E$. If $\sigma_{3} = xy$, then there is a shorter chain σ_{0} , $\{u, v, x\}$, vx, $\{v, x, y\}$, $\sigma_{3}P$ than *P*, a contradiction. If $\sigma_{3} = wy$, then there is a shorter chain σ_{0} , Δ_{1} , σ_{1} , $\{v, w, y\}$, $\sigma_{3}P$ than *P*, a contradiction.

<u>Case 1.2.a.(ii)</u> $y \notin V(C)$

As vw^- , $yw^- \notin E$ and *G* is claw-free, it follows that $vy \in E$. If $uw^- \in E$, then there is a cycle $w^$ $uvxywCu^-u^+Cw^-$ longer than *C*, a contradiction. Similarly, if $yw^- \in E$, then there is a cycle longer than *C*. Thus, uw^- , $yw^- \notin E$. As *G* is claw-free, it follows that $uy \in E$. If $\sigma_3 = xy$, then there is a shorter chain σ_0 , $\{u, v, x\}, vx, \{v, x, y\}, \sigma_3 P$ than *P*, a contradiction. If $\sigma_3 = wy$, then there is a shorter chain σ_0 , $\Delta_1, \sigma_1, \{v, w, y\}, \sigma_3 P$ than *P*, a contradiction.

<u>Case 1.2.b</u> $x \in V(C)$

We may assume that $x \neq u$, u^{\pm} . As $vx^{\pm} \notin E$ and *G* is claw-free, we have $x^{-}x^{+} \in E$.

<u>Case 1.2.b.(i)</u> $\sigma_2 = vx$

Let $\triangle_2 = \{v, x, y\}$.

Assume $y \notin V(C)$. As yx^- , $wx^- \notin E$ and G is claw-free, we have $yw \in E$. As yw^- , $uw^- \notin E$ and G is claw-free, we have $uy \in E$. Thus, if $\sigma_3 = vy$, then there is a shorter chain σ_0 , $\{u, v, y\}$, $vy = \sigma_3 P$ than P, a contradiction. If $\sigma_3 = xy$, then there is a shorter chain σ_0 , $\{u, v, y\}$, vy, $\Delta_2, \sigma_3 P$ than P, a contradiction.

Assume $y \in V(C)$. It is easy to see that $y \neq u, u^{\pm}, w$. As $vy^{\pm} \notin E$ and *G* is claw-free, we have $y^{-}y^{+} \in E$. Also, as $yw^{-}, uw^{-} \notin E$, $yx^{-}, wx^{-} \notin E$, and *G* is claw-free, we have $uy, yw \in E$. Thus, if $\sigma_{3} = vy$, then there is a shorter chain $\sigma_{0}, \{u, v, y\}, vy = \sigma_{3}P$ than *P*, a contradiction. If $\sigma_{3} = xy$, then there is a shorter chain $\sigma_{0}, \{u, v, y\}, vy = \sigma_{3}P$ than *P*, a contradiction.

Case 1.2.b.(ii)
$$\sigma_2 = wx$$

Let $\Delta_2 = \{w, x, y\}$.

Assume $y \in V(C)$. As $xy^{\pm} \notin E$ and *G* is claw-free, we have $y^{-}y^{+} \in E$. Also, as yw^{-} , $uw^{-} \notin E$, vw^{-} , $yw^{-} \notin E$, and *G* is claw-free, we have uy, $vy \in E$. Thus, if $\sigma_{3} = wy$, then there is a shorter chain σ_{0} , Δ_{1} , σ_{1} , $\{v, w, y\}$, $wy = \sigma_{3}P$ than *P*, a contradiction. If $\sigma_{3} = xy$, then there is a shorter chain σ_{0} , $\{u, v, y\}$, vy, $\{v, x, y\}$, $xy = \sigma_{3}P$ than *P*, a contradiction.

Assume $y \notin V(C)$. As uw^- , $yw^- \notin E$, vx^- , $yx^- \notin E$, and *G* is claw-free, we have uy, $vy \in E$. Thus, if $\sigma_3 = wy$, then there is a shorter chain σ_0 , $\{u, v, y\}$, uy, $\{u, w, y\}$, $wy = \sigma_3 P$ than *P*, a contradiction. If $\sigma_3 = xy$, then there is a shorter chain σ_0 , $\{u, v, y\}$, vy, $\{v, x, y\}$, $xy = \sigma_3 P$ than *P*, a contradiction. Case 2 $w \notin V(C)$

Let x be the first vertex of V(C) appearing in the chain P, that is, $V(C) \cap \sigma_i = \emptyset$ for $i = 0, \dots, k-1$ and $V(C) \cap \Delta_k \neq \emptyset$. We set $\sigma_{k-1} = st$ and $\Delta_k = \{s, t, x\}$. If x = u, then we can find a shorter chain than P. Thus we may assume that $x \neq u$. If $x = u^-$ or $x = u^+$, then we can find a longer cycle than C. Thus we may also assume that $x \neq u^{\pm}$. As G is claw-free, it follows that $x^-x^+ \in E$. In the following, we may assume that $\sigma_k = sx$, because the same argument holds for $\sigma_k = tx$. Let $\Delta_{k+1} = \{s, x, y\}$.

<u>Case 2.1</u> $y \notin V(C)$

As $t\bar{x}$, $y\bar{x} \notin E$ and *G* is claw-free, we have $ty \in E$. If $\sigma_{k+1} = sy$, then there is a shorter chain $P \sigma_{k-1}$, $\{s, t, y\}$, $\sigma_{k+1}P$ than *P*, a contradiction. Thus, we may assume that $\sigma_{k+1} = xy$. Let $\Delta_{k+2} = \{x, y, z\}$.

<u>Case 2.1.a</u> $z \notin V(C)$

As tx^{-} , $zx^{-} \notin E$ and G is claw-free, we have $tz \in E$.

If $\sigma_{k+2} = xz$, then there is a shorter chain $P \sigma_{k-1}$, Δ_k , tx, $\{t, x, z\}$, $xz = \sigma_{k+2}P$ than P, a contradiction.

If $\sigma_{k+2} = yz$, then there is a shorter chain $P \sigma_{k-1}$, $\{s, t, y\}$, ty, $\{t, y, z\}$, $yz = \sigma_{k+2}P$ than P, a contradiction. Case 2.1.b $z \in V(C)$

As $yz^{\pm} \notin E$ and *G* is claw-free, we have $\overline{z}z^{+} \in E$. As tx^{-} , $zx^{-} \notin E$ and *G* is claw-free, we have $tz \in E$. If $\sigma_{k+2} = xz$, then there is a shorter chain $P \sigma_{k-1}$, Δ_k , tx, $\{t, x, z\}$, $xz = \sigma_{k+2}P$ than *P*, a contradiction. If $\sigma_{k+2} = yz$, then there is a shorter chain $P \sigma_{k-1}$, $\{s, t, y\}$, ty, $\{t, y, z\}$, $yz = \sigma_{k+2}P$ than *P*, a contradiction. Case 2.2, $y \in V(C)$

If y = u, then we can find a shorter chain than P. Thus we may assume that $y \neq u$. If $y = u^-$ or $y = u^+$, then we can find a longer cycle than C. Thus we may also assume that $y \neq u^{\pm}$. As $sy^{\pm} \notin E$ and G is claw-free, it follows that $y^-y^+ \in E$. As tx^- , $yx^- \notin E$ and G is claw-free, we have $ty \in E$. If $\sigma_{k+1} = sy$, then there is a shorter chain $P \sigma_{k-1}$, $\{s, t, y\}, \sigma_{k+1}P$ than P, a contradiction. Thus, we may assume that $\sigma_{k+1} = xy$. Let $\Delta_{k+2} = \{x, y, z\}$.

$$\underline{\text{Case } 2.2.a} \ z \notin V(C)$$

As $sy^{\overline{}}$, $zy^{\overline{}} \notin E$ and *G* is claw-free, we have $sz \in E$. As $tx^{\overline{}}$, $zx^{\overline{}} \notin E$ and *G* is claw-free, we have $tz \in E$. If $\sigma_{k+2} = xz$, then there is a shorter chain $P \sigma_{k-1}$, Δ_k , tx, $\{t, x, z\}$, $xz = \sigma_{k+2}P$ than *P*, a contradiction.

If $\sigma_{k+2} = yz$, then there is a shorter chain $P \sigma_{k-1}$, {*s*, *t*, *y*}, sy, {*s*, *y*, *z*}, *yz* = $\sigma_{k+2}P$ than *P*, a contradiction. Case 2.2.b $z \in V(C)$

As zy^- , $sy^- \notin E$ and G is claw-free, we have $sz \in E$. If z = u or $z = u^+$, then this argument also holds. If $z = u^-$, then take y^+ for y^- in this argument. As tx^+ , $zx^+ \notin E$ and G is claw-free, we have $tz \in E$. If z = u or $z = u^-$, then this argument also holds. If $z = u^+$, then take x^- for x^+ in this argument.

If $\sigma_{k+2} = xz$, then there is a shorter chain $P \sigma_{k-1}$, Δ_k , tx, $\{t, x, z\}$, $xz = \sigma_{k+2}P$ than P, a contradiction. If $\sigma_{k+2} = yz$, then there is a shorter chain $P \sigma_{k-1}$, $\{s, t, y\}$, sy, $\{s, y, z\}$, $yz = \sigma_{k+2}P$ than P, a contradiction. tion.

This completes the proof of Theorem 2.

References

- [1] R.H. Atkin, An algebra for patterns on a complex I, Int. J. Man-Machine Studies 6 (1974), 285– 307.
- [2] R.H. Atkin, An algebra for patterns on a complex II, Int. J. Man-Machine Studies 8 (1976), 483– 498.
- [3] E. Babson, H. Barcelo, M. De Longueville and R. Laubenbacher, Homotopy theory of graphs, J. Algebraic Combin. 24 (2006) 31–44.
- [4] H. Barcelo and X. Kramer, Foundations of a connectivity theory for simplicial complexes, *Advances in Appl. Math.* 26 (2001), 97–128.
- [5] A. Björner, J. Matoušek and G.M. Ziegler, *Topological combinatorics*, Book in preparation, 2001.
- [6] A. Björner and V. Welker, The homology of "k-equal" manifolds and related partition lattices, *Advances in Math.* 110 (1995), 277–313.
- [7] R. Diestel, Graph Theory, Springer, 1999.
- [8] D. Kozlov, Combinatorial Algebraic Topology, Springer, 2007.
- [9] X. Kramer and R. Laubenbacher, Combinatorial homotopy of simplicial complexes and complex information systems, *Proc. Symp. in Appl. Math.* 53 (1998), 91–118.
- [10] L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Combinat. Theory, Ser.A 25 (1978), 319–324.
- [11] J. Matoušek, Using the Borsuk-Ulam Theorem, Springer, 2002.
- [12] D.J. Oberly and D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is hamiltonian, *J Graph Theory* 3 (1979), 351–356.