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Abstract 

　Let G be a connected claw-free simple graph with |G| ≥ 3. We show that if the 
2-dimensional simplicial complex△ (G) associated to G is simply connected then G is 
hamiltonian. A graph G is said to be △1-connected if every pair of edges are connected 
by some chain consisting of edges and triangles. We also show that if G is △1-connected 
then G is hamiltonian. 

1　Introduction. 

Recently, a new homotopy theoretical approach has been used to study graphs by many authors such 
as X. Kramer and R. Laudenbacher [9], H. Barcel and X. Kramer [4], and E. Babson et al. [3]. These 
approaches have been originated from Atkinʼs papers [1], [2]. On the other hand, as is well-known, L. 
Lovász used a homotopy theoretical method to solve the Kneser Conjecture [10], and this area has also 
been studied extensively (cf. [5], [6], [8], [11]). In this paper, we try to use this approach, so called “ 
Topological Combinatorics” , to find hamiltonian cycles of claw-free graphs. Note that the complete 
bipartite graph K1,3 is called a claw, and that a graph is called claw-free if it does not contain any claws 
as induced subgraphs. A graph is called hamiltonian if it contains a cycle passing through all vertices of 
the graph (see [7] for the fundamentals on graphs). 
　Let G be a connected simple graph with |G| ≥ 3. Attach a triangle (i.e., a 2-simplex) to every triangle 
of G and denote the resulting 2-dimensional simplicial complex by △ (G). We show the following. 

Theorem 1　If G is a 2-connected claw-free graph with △ (G) being simply-connected, then G is 
hamiltonian. 
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　Two edges α and ω are said to be 1-connected if there is an alternating sequence of edges σi and 
triangles △ j of G 

P : α = σ0, △1, σ1, △2,σ2, △3, … , △k,σk = ω 
such that each triangle △ i contains σi ︲1 and σi as edges. Such a sequence will be called a △ -chain. 
We denote by | P | the length of the chain P , that is, | P | = k in the above case. A graph G is said to be 
△1-connected if every pair of edges are connected by some △ -chain. Note that if G is △1-connected, 
then G has no cut-vertices and bridges, thus G is 2-connected and 2-edge connected. Though every edge 
is contained in a triangle if G is △1-connected, G is not necessarily locally-connected as the following 
example shows: G = C 2 \{e}, where C 6 is a 6-cycle, C 6 is the square of C 6, and e is an edge of C 2\ C6.
Also, a △1-connected graph may contain some claws: consider three triangles and glue them along one 
edge, which produces a △1-connected non-hamiltonian graph with claws. We also show the following. 

Theorem 2　Let G be a△1-connected claw-free graph with |G| ≥ 3, then G is hamiltonian. 

2　Proofs of Theorems. 

Let G be a connected simple graph with |G| ≥ 3. We shall use the notations defined in §1. 

(Proof of Theorem 1.) We shall show that G is locally-connected. Then by the following theorem of D. 
Oberly and D. Sumner [12], we have the proof of Theorem 1. 

Theorem OS　A connected, locally connected claw-free graph of |G| ≥ 3 is hamiltonian. 

　Let v ∈ V (G) be a vertex of G. To show that G is locally connected, by definition, it is sufficient to 
show that the neighborhood N(v) is connected. Take two vertices u, w ∈ N(v). Then vu, vw ∈ E(G). As 
G is 2-connected, there is a path P in G from u to w, which does not contain v. Thus we have a closed 
circuit P ∪ {uv, vw}. As △ (G) is simply connected, there is a continuous map f : D2 →△ (G) with
 f (S1) ⊂ P ∪{uv, vw}, where D2 is the 2-dimensional disk and S1

 = ∂D2 . We take a p ∈ S1 so that f (p)= 
v and denote it by p0. Considering D2 as a 2-dimensional simplicial complex, and applying the theorem 
on simplicial approximation, we can regard  f  itself a simplicial map. Take the connected component C0 
of f －1(v) that contains the vertex p0. Collect all simplexes in D2 which intersects with C0, and denote 
it by N0. As ∂f (N0) is contained in △ (< N (v) ∪ v >), and ∂f (N0) contains uv and wv, we have a 
trail between u and w in N(v). This shows that G is locally connected, and this completes the proof of 
Theorem 1. 

(Proof of Theorem 2.) We shall prove the theorem by reductio ad absurdum. Let G =(V, E) be a △1 

-connected claw-free simple graph with |V | ≥ 3, and C be one of the longest cycle of G. If V (C)= V then 
there is nothing to prove, we assume V \ V (C) ≠0. Then there are u ∈ V (C) and v ∈ V (C) with uv ∈ 
E. Orient C, and for u ∈ V (C) denote by u+ (u－ ) the successor (the predecessor) of u on C under the 
orientation of C. Note that if u ∈ V (C) and v ∈ V (C) with uv ∈ E, then vu± ∈ E, and as G is claw-
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free, u︲ u+ ∈ E. We set α = uv and ω = uu－ . As the argument given below is also valid if we 
replace ω = uu－ by ω = uu+, we consider only the case ω = uu－ . As G is △1-connected, there is a 
chain P connecting α and ω. Among u ∈ V (C) and v ∈ V (C) with uv ∈ E, and P connecting α and ω, 
we assume that P is the shortest one. 

P : α = σ0, △1, σ1, △2,σ2,△3, … , △k,σk = ω 

Thus we can assume σi ≠ σj and △i ≠ △j for i ≠ j. We denote by σiP the part 
σi , △i+1 , … , △k, σk = ω of P . We also use the notations △i P , Pσi and P△i to denote the similar 
chains. 
　Now we have to consider several cases according as the vertices in △iʼs are in V (C) or not. Firstly, 
note that if | P | = 1 then △ 1 = {u, v, u－ } and the new cycle u +Cu－ vuu+ is longer than C, which 
contradicts the maximality of the length of C. Here we use the notation xCy for x, y ∈ V (C) that means 
the part of C beginning at x and ending at y along the given orientation of C. 
　Assume that | P | ≥ 2 and let △1 = {u, v, w}. We may also assume that w ≠ u± .
Case 1 w ∈ V (C) 
　In this case, as G is claw-free, w－ w+ ∈ E. 
　Case 1.1  σ1 = uw 
　Let △2 = {u, w, x}. We may assume that x ≠ u±, w±, for if x is one of them, we can find a cycle 
longer than C, which contradicts the maximality of C: e.g., if x = w－ , then uw－ ∈ E, and w－ uvwCu－

u+Cw－ is a cycle longer than C. 
　If x ∈ V (C) and σ2 = ux, then the chain ux, △2P would be a shorter chain than P , which contradicts 
the minimality of P . Thus, if x ∈ V (C), we may also assume that σ2 = wx. But, in this case, we can 
also find a shorter chain ux, △2P , a contradiction. Therefore, x ∈ V (C). 
　If ux－ ∈ E or ux+ ∈ E, then we would have a longer cycle, a contradiction: e.g., if ux－ ∈ E, then x－

uvwxCu－ u+Cw－ w+Cx－ is a longer cycle than C. Thus, as G is claw-free and ux± ∈ E, it follows that 
x－ x+ ∈ E. If u＋ x ∈ E, then we would have a longer cycle xu +Cw－ w +Cx－ x +Cuvwx, a contradiction. 
Thus, u+x ∈ E. As it is easy to see that vu+ ∈ E, it follows that vx ∈ E because G is claw-free. If σ2 = 
ux, then P can be shorten to σ0, {u, v, x},σ2P , a contradiction. We may assume that σ2 = wx, and let △3 
= {w, x, y}. 
　Case 1.1.a  y ∈ V (C) 
　It is easy to see that ux+ ∈ E and yx+ ∈ E. As G is claw-free, uy ∈ E. If σ3 = wy, then 
  σ0, △1, σ1 = uw, {u, w, y},σ3 = wy, △4P 
is a shorter chain than P , a contradiction. If σ3 = xy, then 
  σ0, {u, v, x}, ux, {u, x, y},σ3 = xy, △4P 
is a shorter chain than P , a contradiction. 
　Case 1.1.b  y ∈ V (C) 
　As the triangles in P are mutually different, it follows that u ≠ y. If y = u－ , then there is a cycle y = 
u－ Cw－ w+Cx－ x+Cuvwxy longer than C, a contradiction. Similarly, if y = u+, then there is a cycle longer 
than C. Thus y ≠ u, u± .
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　If wy+ ∈ E, then there is a cycle y+Cu－ u+Cw－ w+Cx－ x+Cyxvuwy+ longer than C, a contradiction. 
Similarly, if wy－ ∈ E, then there is a cycle longer than C. Thus, wy± ∈ E. As G is claw-free, it follows 
that y－ y＋∈ E. If ux︲ ∈ E, then there is a cycle x+Cu︲ u+Cw︲ w+Cx︲ uvwxx+ longer than C, a contradiction. 
Thus ux︲ ∈ E. Similarly, if yx︲∈ E, then there is a cycle longer than C. Thus, yx︲ ∈ E. As G is claw-
free, it follows that uy ∈ E. Therefore, if σ3 = wy, then there is a shorter chain σ0, △1, σ1, {u, w, y}, 
σ3 = wy, △4P than P , a contradiction. If σ3 = xy, then there is a shorter chain σ0, {u, v, x}, ux, {u, x, y}, 
σ3 = xy, △4P than P , a contradiction. 
　Case 1.2  σ1 = vw 
　Let △2 = {v, w, x}. 
　Case 1.2.a  x ∈ V (C) 
　If uw︲ ∈ E, then there is a cycle w︲ uvxwCu︲ u+Cw︲ longer than C, a contradiction. Similarly, if xw︲ ∈ 
E, then there is a cycle longer than C. Thus, uw︲ , xw︲ ∈ E. As G is claw-free, it follows that ux ∈ E. If
σ2 = vx , then there is a shorter chain σ0, {u, v, x},σ2P than P , a contradiction. Thus we may assume 
that σ2 = wx. Let △3 = {w, x, y}. 
　Case 1.2.a.(i)  y ∈ V (C) 
　As xy± ∈ E and G is claw-free, it follows that y︲ y+ ∈ E. If vw︲ ∈ E, then there is a cycle w︲ vxywCy︲

y+Cw︲ longer than C, a contradiction. Similarly, if yw︲ ∈ E, then there is a cycle longer than C. Thus, 
vw︲ , yw︲ ∈ E. As G is claw-free, it follows that vy ∈ E. If σ3 = xy , then there is a shorter chain σ0, {u, 
v, x}, vx, {v, x, y},σ3P than P , a contradiction. If σ3 = wy , then there is a shorter chain σ0, △1,σ1, {v, w, 
y}, σ3P than P , a contradiction. 
　Case 1.2.a.(ii)  y ∈ V (C) 
　As vw︲ , yw︲ ∈ E and G is claw-free, it follows that vy ∈ E. If uw︲ ∈ E, then there is a cycle w︲

uvxywCu︲ u+Cw︲ longer than C, a contradiction. Similarly, if yw︲ ∈ E, then there is a cycle longer than C. 
Thus, uw︲ , yw︲ ∈ E. As G is claw-free, it follows that uy ∈ E. If σ3 = xy , then there is a shorter chain σ0, 
{u, v, x}, vx, {v, x, y},σ3P than P , a contradiction. If σ3 = wy , then there is a shorter chain σ0, △1,σ1, {v, 
w, y}, σ3P than P , a contradiction. 
　Case 1.2.b  x ∈ V (C) 
　We may assume that x ≠ u, u±. As vx± ∈ E and G is claw-free, we have x︲ x+ ∈ E.
　Case 1.2.b.(i)  σ2 = vx 
　Let △2 = {v, x, y}. 
　Assume y ∈ V (C). As yx︲ , wx︲ ∈ E and G is claw-free, we have yw ∈ E. As yw－ , uw－ ∈ E and 
G is claw-free, we have uy ∈ E. Thus, if σ3 = vy, then there is a shorter chain σ0, {u, v, y}, vy = σ3P
than P , a contradiction. If σ3 = xy, then there is a shorter chain σ0, {u, v, y}, vy, △2,σ3P than P , a 
contradiction. 
　Assume y ∈ V (C). It is easy to see that y ≠u,u±,w. As vy± ∈ E and G is claw-free, we have y︲y+∈ E. 
Also, as yw︲ ,uw︲ ∈ E, yx︲ ,wx︲ ∈ E, and G is claw-free, we have uy, yw ∈ E. Thus, if σ3 = vy, then 
there is a shorter chain σ0, {u, v, y}, vy = σ3P than P , a contradiction. If σ3 = xy, then there is a shorter 
chain σ0, {u, v, y}, vy, {v, x, y}, xy = σ3P than P , a contradiction. 
　Case 1.2.b.(ii)  σ2 = wx 
　Let △2 = {w, x, y}. 
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　Assume y ∈ V (C). As xy± ∈ E and G is claw-free, we have y︲ y+ ∈ E. Also, as yw－ , uw－ ∈ E, 
vw－ , yw－ ∈ E, and G is claw-free, we have uy, vy ∈ E. Thus, if σ3 = wy, then there is a shorter chain 
σ0, △1,σ1, {v, w, y}, wy = σ3P than P , a contradiction. If σ3 = xy, then there is a shorter chain σ0, {u, v, 
y}, vy, {v, x, y}, xy = σ3P than P ,a contradiction. 
　Assume y ∈ V (C). As uw︲ , yw︲ ∈ E, vx︲ , yx︲ ∈ E, and G is claw-free, we have uy, vy ∈ E. Thus, 
if σ3 = wy, then there is a shorter chain σ0, {u, v, y}, uy, {u, w, y}, wy = σ3P than P , a contradiction. If  
σ3 = xy, then there is a shorter chain σ0, {u, v, y}, vy, {v, x, y}, xy = σ3P than P , a contradiction. 
Case 2  w ∈ V (C) 
　Let x be the first vertex of V (C) appearing in the chain P , that is, V (C) ∩ σi = ₀ for i =0,…,k ︲ 1 
and V (C) ∩△k ≠₀. We set σk ︲1 = st and △k ＝ {s, t, x}. If x = u, then we can find a shorter chain than 
P . Thus we may assume that x ≠ u. If x = u︲ or x = u+ , then we can find a longer cycle than C. Thus we 
may also assume that x ≠ u± . As G is claw-free, it follows that x︲ x+ ∈ E. In the following, we may 
assume that σk = sx, because the same argument holds for σk = tx. Let △k+1 = {s, x, y}. 
　Case 2.1  y ∈ V (C) 
　As tx︲ , yx︲ ∈ E and G is claw-free, we have ty ∈ E. If σk+1 = sy, then there is a shorter chain Pσk︲1, {s, 
t, y}, σk+1P than P , a contradiction. Thus, we may assume that σk+1 = xy. Let △k+2 = {x, y, z}. 
　Case 2.1.a  z ∈ V (C) 
　As tx︲ , zx︲ ∈ E and G is claw-free, we have tz ∈ E. 
　If σk+2 = xz, then there is a shorter chain Pσk ︲1, △k, tx, {t, x, z}, xz = σk+2P than P , a contradiction. 
　If σk+2 = yz, then there is a shorter chain Pσk︲1, {s, t, y}, ty, {t, y, z}, yz = σk+2P than P , a contradiction. 
　Case 2.1.b  z ∈ V (C) 
　As yz± ∈ E and G is claw-free, we have z︲z⧻ ∈ E. As tx︲ , zx︲ ∈ E and G is claw-free, we have tz ∈ E. 
　If σk+2 = xz, then there is a shorter chain Pσk ︲1, △k, tx, {t, x, z}, xz = σk+2P than P , a contradiction.
　If σk+2 = yz, then there is a shorter chain Pσk︲1, {s, t, y}, ty, {t, y, z}, yz = σk+2P than P , a contradiction. 
　Case 2.2  y ∈ V (C) 
　If y = u, then we can find a shorter chain than P . Thus we may assume that y ≠ u. If y = u︲ or y = u+, 
then we can find a longer cycle than C. Thus we may also assume that y ≠ u±. As sy± ∈ E and G is 
claw-free, it follows that y ︲ y ⧻ ∈ E. As tx︲ , yx︲ ∈ E and G is claw-free, we have ty ∈ E. If σk+1 = sy, 
then there is a shorter chain Pσk ︲1, {s, t, y},σk+1P than P , a contradiction. Thus, we may assume that
σk+1 = xy. Let △k+2 = {x, y, z}. 
　Case 2.2.a  z ∈ V (C) 
　As sy︲ , zy︲ ∈ E and G is claw-free, we have sz ∈ E. As tx︲ , zx︲ ∈ E and G is claw-free, we have tz ∈ E. 
　If σk+2 = xz, then there is a shorter chain Pσk ︲1, △k, tx, {t, x, z}, xz = σk+2P than P , a contradiction. 
　If σk+2 = yz, then there is a shorter chain Pσk︲1, {s, t, y}, sy, {s, y, z}, yz = σk+2P than P , a contradiction. 
　Case 2.2.b  z ∈ V (C) 
　As zy︲ , sy︲ ∈ E and G is claw-free, we have sz ∈ E. If z = u or z = u+, then this argument also holds. 
If z = u ︲ , then take y+ for y ︲ in this argument. As tx+, zx+ ∈ E and G is claw-free, we have tz ∈ E. If z 
= u or z = u ︲ , then this argument also holds. If z = u+, then take x ︲ for x+ in this argument. 
　If σk+2 = xz, then there is a shorter chain Pσk －1, △k, tx, {t, x, z}, xz = σk+2P than P , a contradiction. 
　If σk+2 = yz, then there is a shorter chain Pσk ︲1, {s, t, y}, sy, {s, y, z}, yz = σk+2P than P , a contradic-
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tion. 
　This completes the proof of Theorem 2. 
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