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Abstract

Let G be a connected claw-free simple graph with |G| > 3. We show that if the
2-dimensional simplicial complex A (G) associated to G is simply connected then G is
hamiltonian. A graph G is said to be A!-connected if every pair of edges are connected
by some chain consisting of edges and triangles. We also show that if G is /A '-connected

then G is hamiltonian.

1 Introduction.

Recently, a new homotopy theoretical approach has been used to study graphs by many authors such
as X. Kramer and R. Laudenbacher [9], H. Barcel and X. Kramer [4], and E. Babson et al. [3]. These
approaches have been originated from Atkin’s papers [1], [2]. On the other hand, as is well-known, L.
Lovasz used a homotopy theoretical method to solve the Kneser Conjecture [10], and this area has also
been studied extensively (cf. [5], [6], [8], [11]). In this paper, we try to use this approach, so called
Topological Combinatorics” , to find hamiltonian cycles of claw-free graphs. Note that the complete
bipartite graph K3 is called a claw, and that a graph is called claw-free if it does not contain any claws
as induced subgraphs. A graph is called hamiltonian if it contains a cycle passing through all vertices of
the graph (see [7] for the fundamentals on graphs).

Let G be a connected simple graph with |G| > 3. Attach a triangle (i.e., a 2-simplex) to every triangle
of G and denote the resulting 2-dimensional simplicial complex by A (G). We show the following.

Theorem 1 If G is a 2-connected claw-free graph with A (G) being simply-connected, then G is

hamiltonian.
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Two edges @ and w are said to be 1-connected if there is an alternating sequence of edges 0; and

triangles A j of G
P:a=o00, A1, 01, As,02, Az, , Ak, 0= @

such that each triangle A; contains 0;-1 and 0; as edges. Such a sequence will be called a A -chain.
We denote by | P| the length of the chain P, that is, | P| = k in the above case. A graph G is said to be
Al-connected if every pair of edges are connected by some A\ -chain. Note that if G is A!-connected,
then G has no cut-vertices and bridges, thus G is 2-connected and 2-edge connected. Though every edge
is contained in a triangle if G is AA'-connected, G is not necessarily locally-connected as the following
example shows: G = C%\{e}, where Cs is a 6-cycle, C is the square of Cs, and e is an edge of CZ\ Cé.
Also, a A'-connected graph may contain some claws: consider three triangles and glue them along one

edge, which produces a A'!-connected non-hamiltonian graph with claws. We also show the following.
Theorem 2 Let G be a A'-connected claw-free graph with |G| > 3, then G is hamiltonian.

2 Proofs of Theorems.
Let G be a connected simple graph with |G| > 3. We shall use the notations defined in § 1.

(Proof of Theorem 1.) We shall show that G is locally-connected. Then by the following theorem of D.
Oberly and D. Sumner [12], we have the proof of Theorem 1.

Theorem OS A connected, locally connected claw-free graph of |G| > 3 is hamiltonian.

Let v € V (G) be a vertex of G. To show that G is locally connected, by definition, it is sufficient to
show that the neighborhood N(v) is connected. Take two vertices u, w € N(v). Then vu, vw € E(G). As
G is 2-connected, there is a path P in G from u to w, which does not contain v. Thus we have a closed
circuit P U {uv, vw}. As A (G) is simply connected, there is a continuous map f: D* — A (G) with
f(SY) C P U {uy, vw}, where D? is the 2-dimensional disk and S'= dD? . We take a p € S' so that /' (p)=
v and denote it by po. Considering D? as a 2-dimensional simplicial complex, and applying the theorem
on simplicial approximation, we can regard f itself a simplicial map. Take the connected component Co
of £~1(v) that contains the vertex po. Collect all simplexes in D? which intersects with Co, and denote
it by No. As  df (No) is contained in A (< N (v) U v>), and 9f (No) contains uv and wv, we have a
trail between u and w in N(v). This shows that G is locally connected, and this completes the proof of

Theorem 1.

(Proof of Theorem 2.) We shall prove the theorem by reductio ad absurdum. Let G =(V, E) be a A!
-connected claw-free simple graph with |'] > 3, and C be one of the longest cycle/of G. If ¥ (C)= V then
there is nothing to prove, we assume ¥\ V' (C) #@. Then there are u € V (C) and v & V (C) with uv €
E. Orient C, and for u € V (C) denote by u+ (1~ ) the successor (the predecessor) of u on C under the
orientation of C. Note that if u € V (C) and v & V (C) with uv € E, then vu* € E, and as G is claw-
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free, u"u™ € E. We set & =uvand w =uu~ . As the argument given below is also valid if we
replace w = uu~ by @ = uu®, we consider only the case w = uu~ . As G is A'-connected, there is a
chain P connecting @ and w.Amongu € V (C) and v & V (C) with uv € E, and P connecting & and w,

we assume that P is the shortest one.
P:a =00, A1, 01, Ae,09, Ag, -, A, Ok = @

Thus we can assume 0; = 0;and A; = A fori # j. We denote by ;P the part
gi, Nis1, =, Ak, 0= w of P. We also use the notations A\; P, P o; and P /\;to denote the similar
chains.

Now we have to consider several cases according as the vertices in A;’s are in ¥ (C) or not. Firstly,
note that if | P| =1 then A1 ={u, v, u~ } and the new cycle u"Cu~ vuu™ is longer than C, which
contradicts the maximality of the length of C. Here we use the notation xCy for x, y € ¥ (C) that means
the part of C beginning at x and ending at y along the given orientation of C.

Assume that | P|> 2 and let A1 = {&, v, w}. We may also assume that w # u* .

Caselw e V(0

In this case, as G is claw-free, w~ w" € E.

Case 1.1 01 =uw

Let Ay = {u, w, x}. We may assume that x # u*, w*, for if x is one of them, we can find a cycle
longer than C, which contradicts the maximality of C: e.g., if x = w™ , then uw™ € E, and w~ uvwCu~
u™Cw~ is a cycle longer than C.

If x & V(C) and 02 = ux, then the chain ux, AP would be a shorter chain than P , which contradicts
the minimality of P . Thus, if x € V (C), we may also assume that 02 = wx. But, in this case, we can
also find a shorter chain ux, AP , a contradiction. Therefore, x € V (C).

Ifux™ € E or ux™ € E, then we would have a longer cycle, a contradiction: e.g., if ux™ € E, then x~
uwwxCu~ uCw™ w*Cx™ is a longer cycle than C. Thus, as G is claw-free and ux* € E, it follows that
x~x* € E. Ifu" x € E, then we would have a longer cycle xu *Cw™ w*Cx~ x *Cuvwx, a contradiction.
Thus, u'x €& E. As it is easy to see that vu* € E, it follows that vx € E because G is claw-free. If 03 =
ux, then P can be shorten to 0o, {u, v, x}, 02P , a contradiction. We may assume that 02 = wx, and let A3
={wmx y}.

Casel.lay e V(0

It is easy to see that ux* & Eand yx* € E. As G is claw-free, uy € E. If 03 =wy, then

00, A1, 01 =uw, {u, w, ¥}, 03 =wy, A4P
is a shorter chain than P, a contradiction. If 03 =Xxy, then

oo, {u, v, x}, ux, {u, x, y}, 0s =xy, A4P
is a shorter chain than P , a contradiction.

Case 1.1.b y € V(O)

As the triangles in P are mutually different, it follows that u # y. If y = u", then there is a cycle y =
u~ Cw™ w+Cx™ x*Cuvwxy longer than C, a contradiction. Similarly, if y = u*, then there is a cycle longer
than C. Thus y # u, u™ .
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If wy™ € E, then there is a cycle y"Cu~ u™Cw™ w*Cx~ x"Cyxvuwy™ longer than C, a contradiction.
Similarly, if wy~ € E, then there is a cycle longer than C. Thus, wy™ € E. As G is claw-free, it follows
that y~ y* € E. If ux” € E, then there is a cycle x"Cui u"Cw w*Cx” uvwxx" longer than C, a contradiction.
Thus ux~ € E. Similarly, if yx € E, then there is a cycle longer than C. Thus, yx~ & E. As G is claw-
free, it follows that uy € E. Therefore, if g3 = wy, then there is a shorter chain oo, A1, o1, {u, w, y},
03 =wy, A4P than P, a contradiction. If 03 = xy, then there is a shorter chain oo, {u, v, x}, ux, {u, x, v},
03 =xy, A4P than P, a contradiction.

Case 1.2 01 =ww

Let Ag={v, w, x}.

Case 1.2.a x & V(C)

If uw™ € E, then there is a cycle w uvxwCu u"Cw™ longer than C, a contradiction. Similarly, if xw™ €
E, then there is a cycle longer than C. Thus, uw™, xw~ & E. As G is claw-free, it follows that ux € E. If

09 = vx , then there is a shorter chain 0o, {u, v, x}, 02P than P, a contradiction. Thus we may assume
that 02 =wx. Let Az = {w, x, y}.

Case 1.2.a.() y € V(C)

As xy* & E and G is claw-free, it follows that y y* € E. If vw~ € E, then there is a cycle w vxywCy~
y*'Cw longer than C, a contradiction. Similarly, if yw~ € E, then there is a cycle longer than C. Thus,
w, yw €& E. As G is claw-free, it follows that vy € E. If 03 =xy , then there is a shorter chain oo, {u,
v, x}, vx, {v, X, y}, 03P than P, a contradiction. If g3 =wy , then there is a shorter chain 0o, A1, 01, {v W,
v}, 03P than P, a contradiction.

Case 1.2.a.(i) y & V()

As v, yw & E and G is claw-free, it follows that vy € E. If uw~ € E, then there is a cycle w™
uvxywCu u"Cw longer than C, a contradiction. Similarly, if yw™ € E, then there is a cycle longer than C.
Thus, uw, yw & E. As G is claw-free, it follows that uy € E.If 03 =xy, then there is a shorter chain 0o,
{u, v, x}, vx, {v, x, y}, 03P than P, a contradiction. If 03=wy, then there is a shorter chain 0o, A1, 01, {,
w, ¥}, 03P than P, a contradiction.

Case 1.2b x € V(O)

We may assume that x # u, u*. As vx* & E and G is claw-free, we havex x* € E.

Case 1.2.b.G) o09=wx

Let Ag={v x, y}.

Assume y & V (O). As yx , wx” & E and G is claw-free, we have yw € E. As yw™ , uw™ & E and
G is claw-free, we have uy € E. Thus, if 03 = vy, then there is a shorter chain 0o, {u, v, ¥}, vv = 03P
than P, a contradiction. If g3 = xy, then there is a shorter chain 0o, {u, v, y}, vy, A, 03P than P , a
contradiction.

Assume y € V (C). Itis easy to see that y # u,u™* w. As vy* & E and G is claw-free, we have y y* € E.
Also, as yw™ ,uw” & E, yx o wx~ & E, and G is claw-free, we have uy, yw € E. Thus, if 03 = vy, then
there is a shorter chain 0o, {u, v, ¥}, vw= 03P than P, a contradiction. If 03 = xy, then there is a shorter
chain oo, {u, v, ¥}, v, {v, X, ¥}, xy = 03P than P, a contradiction.

Case 1.2.b.Gi) 07 =wx

Let Az = {w, x, y}.
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Assume y € V (C). As xy* & E and G is claw-free, we have y y* € E. Also, as yw™ , uw~ & E,
v ,yw & E, and G is claw-free, we have uy, vy € E. Thus, if 03 = wy, then there is a shorter chain
00, A1, 01, {¥, w, ¥}, wy= 03P than P, a contradiction. If 03 = xy, then there is a shorter chain oo, {u, v,
v}, v, {v, x, y}, xy = 03P than P ,a contradiction.

Assume y & V (C). Asuw , yw & E, vx ,yx & E, and G is claw-free, we have uy, vv € E. Thus,
if 03 =wy, then there is a shorter chain 0o, {u, v, ¥}, uy, {u, w, y}, wy = 03P than P, a contradiction. If
03= xy, then there is a shorter chain 0o, {u, v, ¥}, vy, {v, x, y}, xy = 03P than P, a contradiction.
Case 2 w e V(O

Let x be the first vertex of ¥ (C) appearing in the chain P, that is, ¥ (C) N ;=@ for i =0,---,k— 1
and V' (C) N Ax #@. We set 01 =stand Ax = {s, , x}. If x = u, then we can find a shorter chain than
P . Thus we may assume that x # u. If x =4 or x =u", then we can find a longer cycle than C. Thus we
may also assume that x = u* . As G is claw-free, it follows that x x* € E. In the following, we may
assume that 0 = sx, because the same argument holds for o = &x. Let A1 = {s, x, y}.

Case 2.1 y & V(C)

As X, yx & E and G is claw-free, we have ty € E. If 0x+1 = sy, then there is a shorter chain P 04-1, {s,
t, ¥}, 0 1P than P, a contradiction. Thus, we may assume that 01 =xp. Let Az = {x, 3, z}.

Case 2.1.a z & V(O)

As tx, zx” & E and G is claw-free, we have 1z € E.

If 042 = xz, then there is a shorter chain P 0x-1, Ay, tx, {t, X, z}, Xz = Ok+2P than P, a contradiction.

If Ok+2 = yz, then there is a shorter chain P 04, {s, ¢, ¥}, ty, {t, ¥, z}, ¥z = Ok2P than P | a contradiction.

Case 2.1b z€ V (CO)

Asyz® €& E and G is claw-free, we have 7 z* € E. As tx', zx & E and G is claw-free, we have iz € E.

If 02 = xz, then there is a shorter chain P 0x-1, Ay, tx, {t, X, z}, Xz = Ox2P than P, a contradiction.

If Ok+2 = yz, then there is a shorter chain P 01, {s, ¢, v}, tv, {t, ¥, z}, vz = Oks2P than P , a contradiction.

Case 2.2 y € V(O)

If y = u, then we can find a shorter chain than P . Thus we may assume thaty # u. If y =t~ or y = u",
then we can find a longer cycle than C. Thus we may also assume that y %= u®. As sy* & E and G is
claw-free, it follows that y"y* € E. As t&x”, yx* & FE and G is claw-free, we have 1ty € E. If 041 = sy,
then there is a shorter chain P 0x-1, {s, t, y}, 01 P than P , a contradiction. Thus, we may assume that
O =xp. Let Az = {x, y, z}.

Case 2.2.a z & V (C)

As sy, zy & E and G is claw-free, we have sz € E. As &X', zx & E and G is claw-free, we have &z € E.

If Ok+2 =xz, then there is a shorter chain P 0i-1, Ay, X, {t, X, z}, Xz = Ok+2P than P, a contradiction.

If Ok+o = yz, then there is a shorter chain P 01, {s, £, ¥}, sy, {s, », z}, yz= Ok+2P than P, a contradiction.

Case 2.2.b z € V(0O

Aszy , sy & Eand G is claw-free, we have sz € E. If z = u or z = u", then this argument also holds.
If z=u —, then take y* for y~ in this argument. As &x*, zx* & E and G is claw-free, we have 1z € E. If z
=wuorz=u", then this argument also holds. If z = ", then take x ~ for x" in this argument.

If 042 = xz, then there is a shorter chain P 0k —1, A, tx, {t, X, z}, X2 = O2P than P , a contradiction.

If Ox+2 =yz, then there is a shorter chain P 01, {s, t, ¥}, sy, {s, ¥, z}, ¥z = O2P than P, a contradic-
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tion.

This completes the proof of Theorem 2.
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