Hamiltonian Property of Claw-free Graphs from the View Point of Topological Combinatorics

Gen-ichi OSHIKIRI *
(Received Nov. 20, 2008)

Abstract

Let G be a connected claw-free simple graph with $|G| \geq 3$. We show that if the 2-dimensional simplicial complex $\triangle(G)$ associated to G is simply connected then G is hamiltonian. A graph G is said to be \triangle^{1}-connected if every pair of edges are connected by some chain consisting of edges and triangles. We also show that if G is \triangle^{1}-connected then G is hamiltonian.

1 Introduction.

Recently, a new homotopy theoretical approach has been used to study graphs by many authors such as X. Kramer and R. Laudenbacher [9], H. Barcel and X. Kramer [4], and E. Babson et al. [3]. These approaches have been originated from Atkin's papers [1], [2]. On the other hand, as is well-known, L. Lovász used a homotopy theoretical method to solve the Kneser Conjecture [10], and this area has also been studied extensively (cf. [5], [6], [8], [11]). In this paper, we try to use this approach, so called " Topological Combinatorics" , to find hamiltonian cycles of claw-free graphs. Note that the complete bipartite graph $\mathrm{K}_{1,3}$ is called a claw, and that a graph is called claw-free if it does not contain any claws as induced subgraphs. A graph is called hamiltonian if it contains a cycle passing through all vertices of the graph (see [7] for the fundamentals on graphs).

Let G be a connected simple graph with $|G| \geq 3$. Attach a triangle (i.e., a 2 -simplex) to every triangle of G and denote the resulting 2 -dimensional simplicial complex by $\triangle(G)$. We show the following.

Theorem 1 If G is a 2-connected claw-free graph with $\triangle(G)$ being simply-connected, then G is hamiltonian.

[^0]Two edges α and ω are said to be 1 -connected if there is an alternating sequence of edges σ_{i} and triangles \triangle_{j} of G

$$
\mathrm{P}: \alpha=\sigma_{0}, \triangle_{1}, \sigma_{1}, \triangle_{2}, \sigma_{2}, \triangle_{3}, \cdots, \triangle_{k}, \sigma_{k}=\omega
$$

such that each triangle \triangle_{i} contains σ_{i-1} and σ_{i} as edges. Such a sequence will be called a \triangle-chain. We denote by $|P|$ the length of the chain P, that is, $|P|=k$ in the above case. A graph G is said to be \triangle^{1}-connected if every pair of edges are connected by some \triangle-chain. Note that if G is \triangle^{1}-connected, then G has no cut-vertices and bridges, thus G is 2 -connected and 2 -edge connected. Though every edge is contained in a triangle if G is \triangle^{1}-connected, G is not necessarily locally-connected as the following example shows: $G=C_{6}^{2} \backslash\{e\}$, where C_{6} is a 6-cycle, C_{6}^{2} is the square of C_{6}, and e is an edge of $C_{6}^{2} \backslash \mathrm{C}_{6}$. Also, a \triangle^{1}-connected graph may contain some claws: consider three triangles and glue them along one edge, which produces a \triangle^{1}-connected non-hamiltonian graph with claws. We also show the following.

Theorem 2 Let G be a \triangle^{1}-connected claw-free graph with $|G| \geq 3$, then G is hamiltonian.

2 Proofs of Theorems.

Let G be a connected simple graph with $|G| \geq 3$. We shall use the notations defined in $\S 1$.
(Proof of Theorem 1.) We shall show that G is locally-connected. Then by the following theorem of D. Oberly and D. Sumner [12], we have the proof of Theorem 1.

Theorem OS A connected, locally connected claw-free graph of $|G| \geq 3$ is hamiltonian.

Let $v \in V(G)$ be a vertex of G. To show that G is locally connected, by definition, it is sufficient to show that the neighborhood $N(v)$ is connected. Take two vertices $u, w \in N(v)$. Then $v u, v w \in E(G)$. As G is 2 -connected, there is a path P in G from u to w, which does not contain v. Thus we have a closed circuit $P \cup\{u v, v w\}$. As $\triangle(G)$ is simply connected, there is a continuous map $f: D^{2} \rightarrow \triangle(G)$ with $f\left(S^{1}\right) \subset P \cup\{u v, v w\}$, where D^{2} is the 2 -dimensional disk and $S^{1}=\partial D^{2}$. We take a $p \in S^{1}$ so that $f(p)=$ v and denote it by p_{0}. Considering D^{2} as a 2 -dimensional simplicial complex, and applying the theorem on simplicial approximation, we can regard f itself a simplicial map. Take the connected component C_{0} of $f^{-1}(v)$ that contains the vertex p_{0}. Collect all simplexes in D^{2} which intersects with C_{0}, and denote it by N_{0}. As $\partial f\left(N_{0}\right)$ is contained in $\triangle(<N(v) \cup v>)$, and $\partial f\left(N_{0}\right)$ contains $u v$ and $w v$, we have a trail between u and w in $N(v)$. This shows that G is locally connected, and this completes the proof of Theorem 1.
(Proof of Theorem 2.) We shall prove the theorem by reductio ad absurdum. Let $G=(V, E)$ be a \triangle^{1} -connected claw-free simple graph with $|V| \geq 3$, and C be one of the longest cycle/of G. If $V(C)=V$ then there is nothing to prove, we assume $V \backslash V(C) \neq \emptyset$. Then there are $u \in V(C)$ and $v \notin V(C)$ with $u v \in$ E. Orient C, and for $u \in V(C)$ denote by $u+\left(u^{-}\right)$the successor (the predecessor) of u on C under the orientation of C. Note that if $u \in V(C)$ and $v \notin V(C)$ with $u v \in E$, then $v u^{ \pm} \in E$, and as G is claw-
free, $u^{-} u^{+} \in E$. We set $\alpha=u v$ and $\omega=u u^{-}$. As the argument given below is also valid if we replace $\omega=u u^{-}$by $\omega=u u^{+}$, we consider only the case $\omega=u u^{-}$. As G is Δ^{1}-connected, there is a chain P connecting α and ω. Among $u \in V(C)$ and $v \notin V(C)$ with $u v \in E$, and P connecting α and ω, we assume that P is the shortest one.

$$
P: \alpha=\sigma_{0}, \triangle_{1}, \sigma_{1}, \triangle_{2}, \sigma_{2}, \triangle_{3}, \cdots, \triangle_{k}, \sigma_{k}=\omega
$$

Thus we can assume $\sigma_{i} \neq \sigma_{j}$ and $\triangle_{i} \neq \triangle_{j}$ for $i \neq j$. We denote by $\sigma_{i} P$ the part $\sigma_{i}, \triangle_{i+1}, \cdots, \triangle_{k}, \sigma_{k}=\omega$ of P. We also use the notations $\triangle_{i} P, P \sigma_{i}$ and $P \triangle_{i}$ to denote the similar chains.

Now we have to consider several cases according as the vertices in \triangle_{i} 's are in $V(C)$ or not. Firstly, note that if $|P|=1$ then $\triangle_{1}=\left\{u, v, u^{-}\right\}$and the new cycle $u^{+} C u^{-} v u u^{+}$is longer than C, which contradicts the maximality of the length of C. Here we use the notation $x C y$ for $x, y \in V(C)$ that means the part of C beginning at x and ending at y along the given orientation of C.

Assume that $|P| \geq 2$ and let $\triangle_{1}=\{u, v, w\}$. We may also assume that $w \neq u^{ \pm}$.

Case $1 w \in V(C)$

In this case, as G is claw-free, $w^{-} w^{+} \in E$.
$\underline{\text { Case } 1.1 \sigma_{1}=u w}$
Let $\triangle_{2}=\{u, w, x\}$. We may assume that $x \neq u^{ \pm}, w^{ \pm}$, for if x is one of them, we can find a cycle longer than C, which contradicts the maximality of C : e.g., if $x=w^{-}$, then $u w^{-} \in E$, and $w^{-} u v w C u^{-}$ $u^{+} C w^{-}$is a cycle longer than C.

If $x \notin V(C)$ and $\sigma_{2}=u x$, then the chain $u x, \triangle_{2} P$ would be a shorter chain than P, which contradicts the minimality of P. Thus, if $x \notin V(C)$, we may also assume that $\sigma_{2}=w x$. But, in this case, we can also find a shorter chain $u x, \triangle_{2} P$, a contradiction. Therefore, $x \in V(C)$.

If $u x^{-} \in E$ or $u x^{+} \in E$, then we would have a longer cycle, a contradiction: e.g., if $u x^{-} \in E$, then x^{-} $u v w x C u^{-} u^{+} C w^{-} w^{+} C x^{-}$is a longer cycle than C. Thus, as G is claw-free and $u x^{ \pm} \notin E$, it follows that $x^{-} x^{+} \in E$. If $u^{+} x \in E$, then we would have a longer cycle $x u^{+} C w^{-} w^{+} C x^{-} x^{+} C u v w x$, a contradiction. Thus, $u^{+} x \notin E$. As it is easy to see that $v u^{+} \notin E$, it follows that $v x \in E$ because G is claw-free. If $\sigma_{2}=$ $u x$, then P can be shorten to $\sigma_{0},\{u, v, x\}, \sigma_{2} P$, a contradiction. We may assume that $\sigma_{2}=w x$, and let \triangle_{3} $=\{w, x, y\}$.

Case 1.1.a $y \notin V(C)$

It is easy to see that $u x^{+} \notin E$ and $y x^{+} \notin E$. As G is claw-free, $u y \in E$. If $\sigma_{3}=w y$, then

$$
\sigma_{0}, \triangle_{1}, \sigma_{1}=u w,\{u, w, y\}, \sigma_{3}=w y, \triangle_{4} P
$$

is a shorter chain than P, a contradiction. If $\sigma_{3}=x y$, then

$$
\sigma_{0},\{u, v, x\}, u x,\{u, x, y\}, \sigma_{3}=x y, \triangle_{4} P
$$

is a shorter chain than P, a contradiction.
Case 1.1.b $y \in V(C)$
As the triangles in P are mutually different, it follows that $u \neq y$. If $y=u^{-}$, then there is a cycle $y=$ $u^{-} C w^{-} w+C x^{-} x^{+} C u v w x y$ longer than C, a contradiction. Similarly, if $y=u^{+}$, then there is a cycle longer than C. Thus $y \neq u, u^{ \pm}$.

Gen-ichi OSHIKIRI

If $w y^{+} \in E$, then there is a cycle $y^{+} C u^{-} u^{+} C w^{-} w^{+} C x^{-} x^{+} C y x v u w y^{+}$longer than C, a contradiction. Similarly, if $w y^{-} \in E$, then there is a cycle longer than C. Thus, $w y^{ \pm} \notin E$. As G is claw-free, it follows that $y^{-} y^{+} \in E$. If $u x^{-} \in E$, then there is a cycle $x^{+} C u^{-} u^{+} C w^{-} w^{+} C x^{-} u v w x x^{+}$longer than C, a contradiction. Thus $u x^{-} \in E$. Similarly, if $y x^{-} \in E$, then there is a cycle longer than C. Thus, $y x^{-} \notin E$. As G is clawfree, it follows that $u y \in E$. Therefore, if $\sigma_{3}=w y$, then there is a shorter chain $\sigma_{0}, \triangle_{1}, \sigma_{1},\{u, w, y\}$, $\sigma_{3}=w y, \triangle_{4} P$ than P, a contradiction. If $\sigma_{3}=x y$, then there is a shorter chain $\sigma_{0},\{u, v, x\}, u x,\{u, x, y\}$, $\sigma_{3}=x y, \triangle_{4} P$ than P, a contradiction.

Case $1.2 \sigma_{1}=v w$
Let $\triangle_{2}=\{v, w, x\}$.
Case 1.2.a $x \notin V(C)$
If $u w^{-} \in E$, then there is a cycle $w^{-} u v x w C u^{-} u^{+} C w^{-}$longer than C, a contradiction. Similarly, if $x w^{-} \in$ E, then there is a cycle longer than C. Thus, $u w^{-}, x w^{-} \notin E$. As G is claw-free, it follows that $u x \in E$. If $\sigma_{2}=v x$, then there is a shorter chain $\sigma_{0},\{u, v, x\}, \sigma_{2} P$ than P, a contradiction. Thus we may assume that $\sigma_{2}=w x$. Let $\triangle_{3}=\{w, x, y\}$.

Case 1.2.a.(i) $y \in V(C)$
As $x y^{ \pm} \notin E$ and G is claw-free, it follows that $y^{-} y^{+} \in E$. If $v w^{-} \in E$, then there is a cycle $w^{-} v x y w C y^{-}$ $y^{+} C w^{-}$longer than C, a contradiction. Similarly, if $y w^{-} \in E$, then there is a cycle longer than C. Thus, $v w^{-}, y w^{-} \notin E$. As G is claw-free, it follows that $v y \in E$. If $\sigma_{3}=x y$, then there is a shorter chain $\sigma_{0},\{u$, $v, x\}, v x,\{v, x, y\}, \sigma_{3} P$ than P, a contradiction. If $\sigma_{3}=w y$, then there is a shorter chain $\sigma_{0}, \triangle_{1}, \sigma_{1},\{v, w$, $y\}, \sigma_{3} P$ than P, a contradiction.

Case 1.2.a.(ii) $y \notin V(C)$
As $v w^{-}, y w^{-} \notin E$ and G is claw-free, it follows that $v y \in E$. If $u w^{-} \in E$, then there is a cycle w^{-} $u v x y w C u^{-} u^{+} C w^{-}$longer than C, a contradiction. Similarly, if $y w^{-} \in E$, then there is a cycle longer than C. Thus, $u \bar{w}, y w_{\bar{w}}^{\in E}$. As G is claw-free, it follows that $u y \in E$. If $\sigma_{3}=x y$, then there is a shorter chain σ_{0}, $\{u, v, x\}, v x,\{v, x, y\}, \sigma_{3} P$ than P, a contradiction. If $\sigma_{3}=w y$, then there is a shorter chain $\sigma_{0}, \triangle_{1}, \sigma_{1},\{v$, $w, y\}, \sigma_{3} P$ than P, a contradiction.

Case 1.2.b $x \in V(C)$
We may assume that $x \neq u, u^{ \pm}$. As $v x^{ \pm} \notin E$ and G is claw-free, we have $x^{-} x^{+} \in E$.
Case 1.2.b.(i) $\sigma_{2}=v x$
Let $\triangle_{2}=\{v, x, y\}$.
Assume $y \notin V(C)$. As $y x^{-}, w x^{-} \notin E$ and G is claw-free, we have $y w \in E$. As $y w^{-}, u w^{-} \notin E$ and G is claw-free, we have $u y \in E$. Thus, if $\sigma_{3}=v y$, then there is a shorter chain $\sigma_{0},\{u, v, y\}, v y=\sigma_{3} P$ than P, a contradiction. If $\sigma_{3}=x y$, then there is a shorter chain $\sigma_{0},\{u, v, y\}, v y, \Delta_{2}, \sigma_{3} P$ than P, a contradiction.

Assume $y \in V(C)$. It is easy to see that $\mathrm{y} \neq u, u^{ \pm}, w$. As $v y^{ \pm} \notin E$ and G is claw-free, we have $y^{-} y^{+} \in E$. Also, as $y w^{-}, u w^{-} \notin E, y x^{-}, w x^{-} \notin E$, and G is claw-free, we have $u y, y w \in E$. Thus, if $\sigma_{3}=v y$, then there is a shorter chain $\sigma_{0},\{u, v, y\}, v y=\sigma_{3} P$ than P, a contradiction. If $\sigma_{3}=x y$, then there is a shorter chain $\sigma_{0},\{u, v, y\}, v y,\{v, x, y\}, x y=\sigma_{3} P$ than P, a contradiction.

Case 1.2.b.(ii) $\sigma_{2}=w x$
Let $\Delta_{2}=\{w, x, y\}$.

Assume $y \in V(C)$. As $x y^{ \pm} \notin E$ and G is claw-free, we have $y^{-} y^{+} \in E$. Also, as $y w^{-}, u w^{-} \notin E$, $v w^{-}, \mathrm{yw}^{-} \notin E$, and G is claw-free, we have $u y, v y \in E$. Thus, if $\sigma_{3}=w y$, then there is a shorter chain $\sigma_{0}, \Delta_{1}, \sigma_{1},\{v, w, y\}, w y=\sigma_{3} P$ than P, a contradiction. If $\sigma_{3}=x y$, then there is a shorter chain $\sigma_{0},\{u, v$, $y\}, v y,\{v, x, y\}, x y=\sigma_{3} P$ than P, a contradiction.

Assume $y \notin V(C)$. As $u w^{-}, y w^{-} \notin E, v x^{-}, y x^{-} \notin E$, and G is claw-free, we have $u y, v y \in E$. Thus, if $\sigma_{3}=w y$, then there is a shorter chain $\sigma_{0},\{u, v, y\}, u y,\{u, w, y\}, w y=\sigma_{3} P$ than P, a contradiction. If $\sigma_{3}=x y$, then there is a shorter chain $\sigma_{0},\{u, v, y\}, v y,\{v, x, y\}, x y=\sigma_{3} P$ than P, a contradiction.

Case $2 w \notin V(C)$

Let x be the first vertex of $V(C)$ appearing in the chain P, that is, $V(C) \cap \sigma_{i}=\emptyset$ for $i=0, \cdots, k-1$ and $V(C) \cap \triangle_{k} \neq \emptyset$. We set $\sigma_{k-1}=s t$ and $\triangle_{k}=\{s, t, x\}$. If $x=u$, then we can find a shorter chain than P. Thus we may assume that $x \neq u$. If $x=u^{-}$or $x=u^{+}$, then we can find a longer cycle than C. Thus we may also assume that $x \neq u^{ \pm}$. As G is claw-free, it follows that $x^{-} \mathrm{x}^{+} \in E$. In the following, we may assume that $\sigma_{k}=s x$, because the same argument holds for $\sigma_{k}=t x$. Let $\Delta_{k+1}=\{s, x, y\}$.

Case $2.1 y \notin V(C)$
As $t \bar{x}, y \bar{x} \notin E$ and G is claw-free, we have $t y \in E$. If $\sigma_{k+1}=s y$, then there is a shorter chain $P \sigma_{k-1},\{s$, $t, y\}, \sigma_{k+1} P$ than P, a contradiction. Thus, we may assume that $\sigma_{k+1}=x y$. Let $\Delta_{k+2}=\{x, y, z\}$.

Case 2.1.a $z \notin V(C)$
As $t x^{-}, z x^{-} \notin E$ and G is claw-free, we have $t z \in E$.
If $\sigma_{k+2}=x z$, then there is a shorter chain $P \sigma_{k-1}, \Delta_{k}, t x,\{t, x, z\}, x z=\sigma_{k+2} P$ than P, a contradiction.
If $\sigma_{k+2}=y z$, then there is a shorter chain $P \sigma_{k-1},\{s, t, y\}, t y,\{t, y, z\}, y z=\sigma_{k+2} P$ than P, a contradiction.
Case 2.1.b $z \in V(C)$
As $y z^{ \pm} \notin E$ and G is claw-free, we have $z^{-} z^{+} \in E$. As $t \bar{x}, z \bar{x} \notin E$ and G is claw-free, we have $t z \in E$.
If $\sigma_{k+2}=x z$, then there is a shorter chain $P \sigma_{k-1}, \Delta_{k}, t x,\{t, x, z\}, \mathrm{xz}=\sigma_{\mathrm{k}+2} P$ than P, a contradiction.
If $\sigma_{k+2}=y z$, then there is a shorter chain $P \sigma_{k-1},\{s, t, y\}, t y,\{t, y, z\}, y z=\sigma_{k+2} P$ than P, a contradiction.
Case $2.2 y \in V(C)$
If $y=u$, then we can find a shorter chain than P. Thus we may assume that $y \neq u$. If $y=u^{-}$or $y=u^{+}$, then we can find a longer cycle than C. Thus we may also assume that $y \neq u^{ \pm}$. As $s y^{ \pm} \notin E$ and G is claw-free, it follows that $y^{-} y^{+} \in E$. As $t x^{-}, y x^{-} \notin E$ and G is claw-free, we have $t y \in E$. If $\sigma_{k+1}=s y$, then there is a shorter chain $P \sigma_{k-1},\{s, t, y\}, \sigma_{k+1} P$ than P, a contradiction. Thus, we may assume that $\sigma_{k+1}=x y$. Let $\Delta_{k+2}=\{x, y, z\}$.

Case 2.2.a $z \notin V(C)$
As $s \bar{y}, z \bar{y} \notin E$ and G is claw-free, we have $s z \in E$. As $t \bar{x}, z \bar{x} \notin E$ and G is claw-free, we have $t z \in E$.
If $\sigma_{k+2}=x z$, then there is a shorter chain $P \sigma_{k-1}, \Delta_{k}, t x,\{t, x, z\}, x z=\sigma_{k+2} P$ than P, a contradiction.
If $\sigma_{k+2}=y z$, then there is a shorter chain $P \sigma_{k-1},\{s, t, y\}$, sy, $\{s, y, z\}, y z=\sigma_{k+2} P$ than P, a contradiction.
Case 2.2.b $z \in V(C)$
As $z y^{-}, s y^{-} \notin E$ and G is claw-free, we have $s z \in E$. If $z=u$ or $z=u^{+}$, then this argument also holds. If $z=u-$, then take y^{+}for y^{-}in this argument. As $t x^{+}, z x^{+} \notin E$ and G is claw-free, we have $t z \in E$. If z $=u$ or $z=u^{-}$, then this argument also holds. If $z=u^{+}$, then take x^{-}for x^{+}in this argument.

If $\sigma_{k+2}=x z$, then there is a shorter chain $P \sigma_{k-1}, \Delta_{k}, t x,\{t, x, z\}, x z=\sigma_{k+2} P$ than P, a contradiction. If $\sigma_{k+2}=y z$, then there is a shorter chain $P \sigma_{k-1},\{s, t, y\}, s y,\{s, y, z\}, y z=\sigma_{k+2} P$ than P, a contradic-

Gen-ichi OSHIKIRI

tion.
This completes the proof of Theorem 2.

References

[1] R.H. Atkin, An algebra for patterns on a complex I, Int. J. Man-Machine Studies 6 (1974), 285307.
[2] R.H. Atkin, An algebra for patterns on a complex II, Int. J. Man-Machine Studies 8 (1976), 483498.
[3] E. Babson, H. Barcelo, M. De Longueville and R. Laubenbacher, Homotopy theory of graphs, J. Algebraic Combin. 24 (2006) 31-44.
[4] H. Barcelo and X. Kramer, Foundations of a connectivity theory for simplicial complexes, Advances in Appl. Math. 26 (2001), 97-128.
[5]A. Björner, J. Matoušek and G.M. Ziegler, Topological combinatorics, Book in preparation, 2001.
[6]A. Björner and V. Welker, The homology of "k-equal" manifolds and related partition lattices, Advances in Math. 110 (1995), 277-313.
[7] R. Diestel, Graph Theory, Springer, 1999.
[8] D. Kozlov, Combinatorial Algebraic Topology, Springer, 2007.
[9] X. Kramer and R. Laubenbacher, Combinatorial homotopy of simplicial complexes and complex information systems, Proc. Symp. in Appl. Math. 53 (1998), 91-118.
[10] L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Combinat. Theory, Ser.A 25 (1978), 319-324.
[11] J. Matoušek, Using the Borsuk-Ulam Theorem, Springer, 2002.
[12] D.J. Oberly and D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is hamiltonian, J Graph Theory 3 (1979), 351-356.

[^0]: * The author is partially supported by Academic Group Research Project(No.14) from Iwate University.

 Faculty of Education, Iwate University

