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Abstract

New explicit formulas for A(X) in the Dirichlet divisor problem and P(X) in the Gauss
circle problem are established. Although the formulas are variants of the celebrated
Voronoi type formula, they are no more exponential sums but contain sine integral
functions and furthermore, the expressions for A(X) and P(X) have precisely the same
appearance : denoting the arithmetical function d(#n) or r(n) by a(n), one has an explicit
formula for A(X) or P(X), up to the error term O(X"4+%?*¢) with a constant & satisfying
0<0< 1, expressed by a symmetric sum with the center =X whose summand is given by
a(n)sgn(n-X)z™"! si(}«/rj—w/fiX‘s).

1. Introduction and statement of the results

Let d(n) denote the number of positive divisors of the integer n. Set
(1.1 D(X) =l<z<’xd(n) =X(og X +2r—1)+1/4+A(X),

where 7is the Euler constant and the symbol Yi<n<x denotes that the last term in the sum
is halved if X is an integer. The Dirichlet divisor problem is to find the smallest value 6,
of >0 such that A(X)<X?* holds for arbitrarily small positive constant &.

Also let r(n) denote the number of representations of the integer z as a sum of two
squares. The Gauss circle problem is to find the smallest value 8; of 8>0 such that P(X)
&LX?%*¢ holds, where P(X) is defined by the equation

1.2 R(X)=l$nzs’xr(n)=nx—1+P(X).

It is known that the omega theorems A(X) =Q(X*) and P(X) =Q(X"*) hold from the
‘truncate formulas’
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a.s® A =277 X" % Nd(a’,‘f cos(4m/nX —7:/4)+0(X5+XV”EN_1/2
<n< n
and
1.4 P(X)=—z"'X" ZN’(Z,? cos(Zm/nX +zz/4)+o(xf+X””EN‘”2 _
1<a<N 1

These formulas are the trumcated form of the celebrated formulas, due to Voronoi and
Hardy respectively, which represent A(X) and P(X) by the infinite series with terms
containing the Bessel functions (see (2.1) and (2.2) below). The expressions (1.3) and
(1.4) for A(X) and P(X) stimulated a lot of work on exponential sums in one or several
variables. The relation 7(n) =4, =1 mea(— 1) *’* pointed out by Richert ([8]) shows
that the circle problem is closely related to the divisor problem. As is seen in the
excellent work due to Iwaniec-Mozzochi ([4]), the methods of estimating A(X) and P(X)
were up to now very similar, hence the obtained exponents for both were equal, although
they were not always claimed explicitly in various publications. The famous conjecture
6,=1/4 or 6,=1/4 remains open as one of the most significant problems in number theory.

The aim of the present paper is to give, as variants of the Voronoi formula, new explicit

formulas for A(X) and P(X). Although they are variants of the Voronoi type formulas,

sint
they are no more exponential sums and the sine integral function si(x)= I —dt

occurs:

Theorem. For a constant & satisfying 0<0<1, one has

34
(1.5) A(X)=X7[ Elsgn(n—X) @ Sl(‘f VX |x7) 0o+
and
(1.6) P(X)ZX34 Z}s ‘/7 5 1/4+6/2+¢
. gn(n—X) e~ 3,4 si JX |x°)+o(x

Note that these expressions for A(X) and P(X) have precisely the same appearance:
this may give another evidence for the resemblance of the two classical problems, or for
the lattice point problem for the hybrid arithmetical function b)) =d®) *r(xn), the
relevant error term can be expressed by

E e S

up to Q(X4+912+¢) error term.
Note also that the classical bounds A(X)<X!3+¢ and P(X)<KX?*¢ follow also from the
formulas (1.5) and (1.6).
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Notation.

Throughout the paper, T stands for a large parameter and the abbreviation L =log T is
frequently used. It will be convenient in the proofs to use the letters, ¢, cx to denote
certain positive numerical constants and, € to denote a positive constant which may be
arbitrarily small, but are not necessarily the same ones at each occurrence. For complex
numbers z; and z,, the symbol [z, 2;] stands for the oriented segment from the point z, to
z5. For a real number a#0, sgn(a) =a/lal.

2. The Voronoi formula and the Hardy formula

The Voronoi formula for A(X) is as follows (see, e.g., [3, Chapter 3]); one has

2.1 AX)=—yX ">°=i1 djg) {x(ztm/ﬁ)? +%K1 (4m/ﬁ )}

where Y, is the ordinary Bessel function of the second kind and K, is the modified Bessel
function of the second kind in usual notation and the series is boundedly convergent in
any closed finite subinterval of the interval (0, ), and is uniformly convergent in any
such interval free from integers. The Hardy formula in the circle problem is as follows
(see [3, Chapter 13]);

_rara)
2.2) POO=X ZT L(Znﬁ)

where [, is the ordinary Bessel function of the first kind. It holds the convergence
assertion similar to that for (2.1). By using the asymptotic approximations involving
elementary functions for Y- and K,-Bessel functions (see, e.g., [3, (3.12), (3.13)]), the
expression (2.1) is reduced to the exponential sums: for positive integer K, one has

K o
(2.3) ACD = 2a, XS %sin(wnx — (~1z/4)+0(xX"-")

=1
with computable absolute constants a;, whose first two terms being given by
2.4 a,=1/(27) and a,=—3/(32{27.

As for P(X), one has in a similar way,
(2.5) P(X) =k§1ka3/4"C’zgl%sm@nﬂ +(~1fa/4)+0(X VK1)
with computable absolute constants b, whose first two terms being given by

(2.6) b,=1/7 and b,=1/(167%).
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3. Sine integral function and cosine integral function

To represent the exponential sums of the form (2.3), (2.5) by the sum with non-
exponential terms, we use certain type of special functions which belong to incomplete

. . . . % gint .
gamma functions; namely, the sine integral function si (x)=j Tdt and the cosine

x [4
integral function ci(x) =f %dt (see, e.g., [2, Chapter IX]). In this section we collect

some facts on the functions si(x) and ci(x), and give a simple lemma. From the definition

one has

(3.1 si(n) = —%-l-j:%t
and

3.2 ci(x) =r+logx— :%t,
From these, one has

(3.3) si(X)<X ™" and ci(X)KX ™,

Next, we give an assertion on exponential integrals evaluated by sine and cosine
integral functions,

Lemma. For A >0, one has

J’“’ exp(—AutiA)
0 1tiu

(3.4) u=—si(4) +ici(4).

Proof of Lemma. Firstly, note that from residue calculus by changing the variable x to x,
for a, >0,

= exp(—ax)

(3.5) s dx=%{ci(aﬁ)sin(aﬁ)-si(aﬁ)cos(aﬂ)}

holds. Secondly, by differentiating both sides of (3.5) as functions of a, one has

3.6) J‘“’xexp(—ax)

B dx= —ci(ap)cos(af) —si(af)sin(aB).
Using these formulas by writing a=A and B=1, the left hand side of (3.4) becomes

{ci(4)sin(A)cos(A)} {cos(4) *isin(4)}
+ {—ci(4)cos(A) —si(A)sin(A)} {sin(4) Ficos(4)},
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and this is equal to the right hand side of (3.4).

4. Formulation of the proof

We shall dwell mainly on the proof of the formula (1.5) for A(X). Since the proof of
the formula (1.6) for P(X) can be carried out in much the same way as that of the
formula (1.5), it will be mentioned briefly in the last section.

Starting point of the proof is the truncated formula (1.3) being deleted the first (4z) 2
T% terms;

4.1 AT =a, TV ¥ ig_7fcos(4n T /4> +O(Tl/4+m+e>’

7<n<t,

where a,=2"Y2z7! ;= (47) 2T? and ,=4r) ?T% Put

(4.2) vD=aT" % #’,?exp(mﬁ —m‘/4).

7<n<t, N

By using (1.1), V(T) is transformed, up to O(T**) error term, into

4.3) alTl/4ITZX“3/4exp(4ziJXT —7[1'/4)(10gX+21’ dx
T
+a1T1/“[X"3/“ exp(4m',/XT —m’/4>A(X)]12
7y
—alT‘“fz{— (3/4)X—7/4+2mﬁX‘5/4}exp(4mJXT —m‘/4>A(X)dX,
. Ty

By changing the variable X to X2, the first term in (4.3) is estimated by O(7*¢) from the
first derivative test. The second term is estimated by O(7T"%). The last term with the
integrand — (3/4)X"* exp(4ziv XT —mi/4)A(X) is estimated by O(T'*¢). Hence we
have

.9 V(D) = —2i [ "X exp(4zifXT —i/A)ACOAX +OT**,

In substituting the exponential expression (2.3) for A(X) in (4.4), if we take
K=[1/(26)]+1 series in (2.3), where the symbol [x] stands for the greatest integer not
greater than x the error term O(XY4%/%) contributes to V(7T) an amount O(T"*logT).
For 2<k <K, the series in the formula (2.3) takes the form

o dn 7y 1 . . . y
CkT3/4 ?1 n1/5+2/zj X2 exp{4m(ﬁi“/77)\/)7—m/ AF (= l)km/{l}dX.
n= 7

By changing the variable X to X? integrals in the series are estimated by
O(T 3T £vn|™Y) with n#7T. These contribute to V(7) an amount O(TV%).
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Thus, we are left with the series for k=1

iT3/4 I d(n) 5 1

4.5 V(D) =- P M exp(4mﬁ m/4>cos(4m/ﬁ 7:/4>dX +0(T"***).

Changing the variable 47v/ X by X, up to O(T"*) error term, one has

(4.6) V(D) =V, (D) +V_(T) +0(T"**)

where

4.7) V.(T)=—z~'T¥ _ld(f,?f X" exp(z(f T +dn )X)dX
and

(4.8) V.(T)=—iz"'T% ldg’,?fx exp(i(/T )X )dX.

5. Estimation of the series V.(T)

Note that the sum of the terms with n>T? is estimated by O(TY**¢). For the terms
with #<7T? putting u,=&/T ++vn)~'L? where L=IlogT, we change the contour [T?, T]
of the integrals in the series V4(T) to C,+Cy+Cs; where C,=[T% T°(1+iu)],
Co=[T°(1+iuy), T(1+iu)] and Cs=[T(1+iu,), T]. On the contour C; and Cs, the variable
X is changed into # with 0<u<w, by X=x(1+iu) where x=T° or T. Integrals on the
contours C; and C; are estimated by O(exp(—c L) and O(n~V2T1) respectively. These
contribute to V+(T) an amount O(1). Since the integrals on the contour C, is equal to

iGT +4n) " T exp(iGT +4n)T?)+0( (T +4a) T %),
denoting the sum of the terms with n<T? in the series V. (T) by X, one has,

5.1) T=g"IT¥? Td(a’,? (T +4n)~ exp(z(F T +n )T)+0(T‘/4)

2

To estimate the sum X, by using (1.1) we transform it further;

(5.2) Z=rzT'T%? ITZY‘“(JT +Y )“exp(i(ﬁ +Y )T")(log Y +2rdY
+27 T YT +7) exp(iT +{PHT? A(Y)]ITZ |
—n_lT3/4_5le2{— @/DY =27y YT+ iz Ty
X (T +{7 ) exp(iGT +TIT?)ADIAY +0(T),
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The first and the second terms in (5.2) are estimated by O(TY4). In the third term, the
integrals with the integrand

{= @y "—a 7y YT + V)T +{7 ) exo(i(T +{Y)T)A®)
are estimated by O(T~Y%). To estimate the integral
(5.3) —i2_17:_1T3/4IlT YT +Y )“exp<i(ﬁ +Y )T")A(Y)dY,

we use the formula (2.3) for A(Y) in the case K=1;

= d
5.4 AW =aY"E n(;‘f cos(4mfnY —a/4)+0x ™),
The error term O(Y~/#) contribute to (5.3) an admissible error O(TY*). The integral in
(5.8), substituted by the first term in (5.4), takes the form

(5.5) cT* :ld(a’/? f Y 'WT +Y)” exp{zT1/2+6+z(T +dmin )Y+m/4}

Since the series of integral terms with the integrand

Y“({T—F Y) lexp iTV*+i(TP+4ny'n ) Y—mi/4}
is estimated by O(7'%) and the series with the integrand

Y'Y T+Y) lexp TV +i(T°—dny n )Y +mi/4}

is estimated by O(TY*+92+¢), v, (T) in (4.6) is estimated by O(TV++2+¢),

6. Completion of the proof: evaluation of the series V_(T)

It remains for us to evaluate the series V_(T). The sum of the terms with »>7T? is
estimated by O(T"4*¢). We may suppose that z# T with an admissible error term. Let us
deno‘\te the sum of the terms with n<T—1 by X, and those with T+1<n<T? by X,.

For the integral terms in X,, we change the contour [T?, T] of the integrals to C,+C,+
Cs; where, putting u,=GT —v 7 ) 'T°L? and u,=G T —vVn)'T"'L% C,=[T°% T°(1+
)], C:=[T°(1+1uy), T(1+7uy)] and C:=[T(1+7u;), T]. On the contour C, and C; the
variable X is changed into » with 0<u<w; or u, by X=x(1+17u) where x=T° or T. Thus,
by using the formula (3.4) for A=(/T —v'n ) T?, the integrals on the contour C, is equal
to
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6.1) ijomexp{i(ﬁ—‘/;)T"— (ﬁ—ﬁ)T"u} ¢l +iu)”1du+0(exp(—cL2)>
=i{—si( (/T —d)7° +ici( T —)T°)} +0(exp(—cI?) ).

Also the integrals on the contour C; are equal to
~if—si( (T~ )T )+ici( T —n. )T)}H+0 exp(—c)),

and by using (3.3), these contribute to V(7T) an amount O(1). Contribution from the
contour C; is very small. Thus, one has

6.2 me-z'rh xn 40 {s1((J_ 1)~ wl((J— f)T)}+0(1)

lSn<T 1n

As for the integral terms in X;, we change the contour [7%, T] into C{+C;+Cs where,
putting wi=Gn —vT)'T 0L and wu,=G7n —v/T)'T"'L: C{=[T° T°(1—iu)]
Co=[T°(1—iu), T(1—iu,)] and Cs=[T(1—%u,), T]. Then, by an argument similar to that
in the case for %; one has

(6.3) Ty=z"'T ,dﬁ’,? {s((f {T)H1T° +zc1((f T )T")} +0(1).
T+1<nST

Taking the real part of the series (6.2) and (6.3), combined with (4.1), (4.2), (4.5) and
(4.8), and using (8.3) for the terms in (1.5) with »>T? we complete the proof of the
formula (1.5).

The classical estimation A(X)<KX'?**¢ follows from (3.3), by taking d=1/6 in the
formula (1.5).

As for the circle problem, the sum

-z T % r(n)n'a/Aexp(Zm'JnT +7r/4>

7,<n<1,

with 7,=2n) *T® and 7,= (2%) ~?7T? in the truncated formula (1.4) is transformed, by
using (1.2) with (2.5), into the series

T _lr(,,’,?‘f Xexp z(f+J—)X)dX

—in TS ’(3’,14)] x~exp(i/T —fn )X )dX,

which corresponds to the steps (4.7) and (4.8). From these, one has the formula (1.6) in
much the same way as the proof of the formula (1.5).
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Remarks.

(1) Needless to say, the infinite series expression of the formulas (1.5) and (1.6) is not
essential. The principal part of our explicit formulas consists in the symmetric sine
integral sum with the center X : by investigating into the sine integral sum in the form
of

FT%aT)= % amsgnu—x si(4aldn —{T |1°),
T—aT’<n<T+aT®

where a(n) =d(#) or r(xn), one may shorten the length of the series in Theorem to ¢v/ T

for some ¢ (cf. [7]).

(2) In the duality betweend(n) and | (— +iT)|% the Voronoi phase functlon dmy/ nX —

/4 in (1.3) corresponds to the Atklnson function

9T arsinhyzn/ (2T) +27ny1/4+T/Q2nn) +n/4

in the Atkinson formula or the Jutila formula for | (— +iD)? (11, [5]). The expression
by the function sgn(n—T )51(“7 «/7
correspond to that with the phase function

T ") with center T in the formula (1.5) seems to

9T arcoshyzn/ (2T) —2zny1/A—T/(2mn) +x/4

occurred in the alternative explicit formula for |¢ (% +iT)|? (see [6]).
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