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Abstract

In recent years, there have been several studies of foliations from differential

geometric aspects. Especially, many differential geometric properties of metric

foliations have been studied. In those studies, O'Neill's fundamental equations

played a central role. These equations are derived in the study of differential

geometric properties of Riemannian submersions, which is defined by O'Neill and

is a special class of metric foliations, which we do not treat in this paper. For

general foliations, many results are also obtained. However, the approach is done

from various view points depending on the mathematicians and, at present, there

seems to be no systematic approach.

In this paper, we present some fundamental formulas for the differential geomet-

ric study of arbitrary foliations. These formulas turns out to be useful especially

when curvature conditions are given. We give new proofs of many known results

from this view points, and also give some new results.

1. Introduction

In recent years, there have been several studies of foliations from differentia] geometric
aspects (cf. Reinhart [Rh]). Especially, many differential geometric properties of metric

foliations have been studied (cf. Tondeur [Td]). In those studies, O'Neill's fundamental
equations [ON] played a central role. These equations are derived in the study of

differential geometric properties of Riemannian submersions, which is defined by O'Neill
and is a special class of metric foliations, which we do not treat in this paper. For general
foliations, many results are also abtained. However, the approach is done from various
view points depending on the mathematicians and, at present, there seems to be no

systematic approach.
In this paper, we present some fundamental formulas for the differential geometric
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study of arbitrary foliations. These formulas turns out to be useful especially when 
curvature conditions are given. We give new proofs of many known results from this 
view point, and also give some new results. In 02, some preliminaries and the first 

fundamental formula [FF. I] are given. [FF. I] plays the central role in this paper. In 03, 
codimension-one foliations of compact manifolds are studied by means of the second 
fundamental formula [FF. 111. Theorems 1 and 2 are extension of the author's results from 
closed manifolds to compact manifolds with boundary. In 04, foliations of codimension 
greater than one are studies by means of the third and forth fundamental formulas, [FF. 
1111 and [FF. IV]. Theorems 5 and 9 are reproved from our view point. It is also pointed 
out that Ranjan's results [Rj] are closely related to our study. In 05, we consider foliations 
of complete manifolds, and some new results are given. 

2. Preliminaries 

Let (M,g) be a Riemannian manifold. Set dim(M) =n. Denote by V the Riemannian 

connection of (M, g). The curvature tensor R of (M, g) is defined by 

for X, Y,  Z E TM. Let a be the 2-plane in TxM spanned by linearly independent vectors 
X, Y E TxM. The sectional curvature K, is defined by 

Here (X, Y) means g(X, Y). If X, Yare unit vectors and perpendicular, we denote K, by 
K(X,  Y). A Riemannian manifold (M, g )  satisfying K,20 (resp.<O) for all 2-planes a in 
T,M, x E M, is called a Riemannian manifold of non-negative (resp. non-positive) 
sectional curvature. Let {Vl, V2, -.., Vn) be an orthonormal frame of TM. The Ricci 
curvature tensor Ric(X, Y) of (M, g) is defined by 

Ric(X, Y )  = %(R(x, X)Y, K) 
i=l 

for X, Y E TM. A Riemannian manifold (M, g) satisfying Ric(X, Y) 2 0  for all X, Y E TM 
is called a Riemannian manifold with non-negative Ricci curvature. The scalar curva- 

ture S of (M, g) is defined by 

S= % ~ i c ( x ,  x). 
t = l  

Let X be a vector field on M. The divergence div(X) of X is defined by 
n 

div (XI = ,X (V ,,{X, Y). 
r=l 

Also define a linear map Dx: TJ4 + TJ4, x E M, by Dx(V) = VVX, V € T Z .  Note that 
div(V) =Tr(Dx), where Tr(Dx) is the trace of the linear map Dx. The following is a 
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well-known formula (cf. Kobayashi and Nomizu [KN]). 

Theorem 0.1 (Green's Theorem) If V x X  is tangent to dM in case of dM #a we have 

where we omit the volume element d V  of (M, g )  for simplicity. 

Let F be a codimension-q foliation of a Riemannian manifold (M, g).  Set p=dim(F) = 

n-q, and H the orthogonal complement of F in TM. We also use the same symbols F and 
H to denote the natural projections F : TM -. F and H : TM -+ H. Define two tensors A 
and T of type (1,2)  by 

and 

for V, W E TM. 

The mean curvature H of F is defined by 
P P 

H=,XT,Ei=H(CVEiEi),  
%=I i=l 

where {El, E2..-EP 1 is a local orthonormal frame of F. F is said to be minimal if H - 0, and 
said to be totally geodesic if T -- 0. It is well-known that if F is totally geodesic and H 
is integrable and totally geodesic, then (M, g)  is locally isometric to the Riemannian 
product of (L, glL) and (K, glK) for L E F  and K E H  (see Kobayashi and Nomizu [KN]). 
In this case, we say (M, g )  is locally a product of F and H. For the generalities on 
differential geometric aspects of foliations, see the books of B. Reinhardt [Rhl and P. 

Tondeur [Td]. 

Now we give a formula, which plays a central role in this paper. This is given by 
calculating K(E, X )  for unit vectors E E F  and X E H  as follows. 

K(E,  X )  = ( V E V X X ,  E )  - ( V X v E X ,  E )  - ( V  [E,XIX,  E )  = ( V E V X X ,  E)  - X ( v E x ,  E)  

+(VEX, VXE)-C!=,([E, XI, Ei)(VEiX, E) -CP,=l([~ ,  X I ,  x a ) ( v X a x ,  E),  

where {El, Efi---Ep} is a local orthonormal frame of F and {xl, XZ, me., X,) is a local 
orthonormal frame of H. 

Thus we have 

LFF.11 K ( E , X )  

= (VEVxX ,  E )  -X(GE, X )  - I &X I? - 5 (AxXa, E)(AxaX, E)  
a= 1 

P 

+ 2 c ( v E x ,  i= 1 E,>(E, v ~ E ) -  a=l 5 ( V E X ,  xa )<vxax ,  E)  



In the following sections, we sum up [FF. I], K(Ei Xu), for suitable Eis and Xu's in order 
to get fundamental formulas applicable to our situations. 

3. Case of codimension one 

In this section, we assume that (M, g, F)  is a codimension-one foliation of a compact 
connected Riemannian manifold (M, g), and that the boundary components are leaves of 
F if dM # fl. As the results presented in this paper are valid if we lift everything onto 
a finite covering space of M, we may assume M and F are oriented without loss of 
generality. Hence we can choose a unit vector field N on M perpendicular to F 

everywhere on M so that the orientation of M coincides with the one given by F and N. 
Note that, as the dimension of H is one, H is always integrable and the leaves of H are the 
orbits of N. For simplicity of our calculation, we set dim(M) =n+ 1, thus dim(F) =n. 

Let {El, E2, . .a,  En) be a local orthonormal frame of F. Summing up [FF. I], K(Ei N), for 
i = l , 2 ,  - - a ,  n, we have the second fundamental formula [FF. 111, which is similar to Green's 
theorem for taking X=N. Set h = (H, N). 

[FF. 111 Ric(N, N) +Tr(PN) +N(h) =div(VNN) 

To show this, we have only to note that C:,=l (VE'N, E,)(E, VN El) =0, because (VE,N, 
El) is symmetric in i and j, but (E, VN El) is skew-symmetric in i and j. 

Using [FF. 111, we have the following results. 

Theorem 1 ([Ol]) Let (M, g, F) be a codimension-one minimal foliation. If (M, g) is of 
non-negative Ricci curvature, then F is totally geodesic. Further, N is a parallel vector field. 
Hence, (M, g) is locally a product of F and H. 

(Proof) As VNN is tangent to dM if dM # fl, we have the following by integrating [FF. 
111. 

By assumption, h - 0, Ric(N, N) 2 0  and Tr(T&) 20. It follows that Ric(N, N) = O  and Tr 
(PN) =O. In particular, F is totally geodesic. 

To show the local productness of (M, g) ,  we have only to show that VNN=O. First note 
that div(VNN) = O  by[FF. 111, and that V v N N V ~ N  is tangent to dM as F is totally geodesic. 
Applying Green's theorem for X= VNN, we have 
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As the dual one-form 8 of VNN is closed on each leaf of F, we have 

BY assumption, Ric(VNN VNN) 20. ~ h u s  T~(D$,,) =O. In particular, O= (VNVNX N) = 

- I VNVNI~. This completes the proof. 

Theorem 2 ([Ol]) Let (M, g, F) be a codimension-one totally geodesic foliation. If (M, g)  
is of non-positive sectional curvature, then N is a parallel vector field. Hence, (M, g)  is locally 
a product of F and H. 

(Proof.) In this case, [FF. I] becomes 

By polarization, we have 

VEVNN=(VNN, E)VNN for E E F  

This formula enables us to show Ric(VNN VNN) =O. Thus, by the same argument as in 
the previous theorem, we have VNN=O, which completes the proof. 

Theorem 3 ([BW]) Let (M, g, F) be a codimension-one foliation of a closed Riemannian 
manifold with non-negative Ricci curvature. If the orbits of N are geodesics, then F is also 
totally geodesic. Hence, (M, g)  is locally a product of F and H. 

(Proof.) It suffices to prove that F is totally geodesic. In this case, [FF. 111 becomes 

because H is totally geodesic, thus VNN=O. As h is a smooth function on a closed 

manifold M, h attains a maximum value at, say, xEM. Thus N(h) (x) =O. As Ric(N N) 
2 0  and Tr(TZN) 20, the above formula implies TI-(%) (x) =O. This means h(x)=O. 

Therefore, we have h l 0. The same argument at  a minimum value gives h 20. By these 
two inequalities, we have h-0, that is, F is a minimal foliation. By Theorem 1, we have 
the desired conclusion. 

We say that a codimension-one foliation F is a constant mean curvature foliation if the 

mean curvature H of F is constant on each leaf of F. We can extend Theorem 1 for closed 
manifolds as follows. 



Theorem 4 ([BKO]) Let (M, g, F) be a codimension-one constant mean curvature foliation 
of a closed Riemannian manifold. If the Ricci curvature of (M, g) is non-negative, then F is 
totally geodesic. Hence, N is parallel and (M, g) is locally a product of F and H. 

(Proof.) To prove this, we need a qualitative property of codimension-one foliations 
(for the proof, see [BKO]). 

Set S =  { x ~ M l h  attains its maximum value at  x). If h is not constant on M, then S 

contains a compact leaf of F. 
If h is constant on M, then N(h) E O  on M. Thus the same argument as in the proof of 

Theorem 1 gives the desired conclusion. 
Now assume h is not constant on M. Then S ( #  O )  contains a compact leaf, say, LEF. 

On L, [FF. 111 becomes 

where divL(VNN) is the divergence of the vector field VNN on the Riemannian manifold 
(L, gIL). By integrating this formula over L, we have 

As each term of the integrand is non-negative, we have, in particular, Tr(TN) =O on L, 
that is, L is totally geodesic. Thus h=O on L. This means h 1 0  on M, because h attains its 
maximum value on L. The same argument on the set, where h attains its minimum value, 
gives h20. Therefore, we have h-0, that is, F is minimal. Now, by Theorem 1, this 
completes the proof. 

Note that Theorems 3 and 4 do not hold if dM # O .  In fact, concentric spheres in 
Euclidean spaces give counter examples. 

4. Case of  codimension 22 

In the previous section, we show that codimension-one minimal foliations are totally 
geodesic if (M, g) is of non-negative Ricci curvature. This does not hold if the 
codimension of a foliation is greater than one. In fact, Takagi and Yorozu [TY] gave such 
examples with more restricted conditions. 

Theorem 0.2 ([TY]) There are examples of minimal, but non-totally geodesic foliations F 
on Lie groups with non-negative Ricci curvature. Further, the metric can be chosen to be 
bundle-like with respect to F. 
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In this section, we mainly try to extend the results in 33 for foliations of codimension 
greater than one by using [FF. I]. We assume that (M, g, F) is a codimension-q foliation 
of a closed connected Riemannian manifold (M, g). As the results presented in this paper 
are valid if we lift everything onto a finite covering space of M, we may assume M and F 
are oriented without loss of generality. 

Let {El, Ez, ..., ED} and {X1,Xz, - - a ,  X,} be local orthonormal frames of F and H. For a unit 
(locally defined) vector field XEH, by summing up [FF. I], K(Eb X), for i=  l , 2 ,  a*., P, we 
have 

Here, the summation Ci is taken for i=  l , 2 ,  -- . ,p ,  and C, is taken for a= 1,2,  . - a ,  q. Hereafter 
the indices i, j, k indicate the values 1 ,2 ,  - . a , $  and the indices a, 8,r indicate the values 1, 
2, - - a ,  q when they appear in summations. 

Theorem 5 ([Br]) Let (M, g, F )  be a codimension-two minimal foliation of a closed 
Riemannian manifold with non-negative Ricci curvature. If H is integrable and trivial, then 
F is totally geodesic. 

(Proof.) As H is trivial, we can choose global unit vector fields X, YEH with (X, Y) = 

0. Note that, as dim(H) = 2, {X, Y} is a global orthonormal frame of H. First we calculate 

K(X, Y). 

In this case, as F is minimal, [FF. 1111 becomes 

It follows that 



By the same way 

-IAyY12-(x, V.Y)~-(Y, VxX)2-2C(VE,Y,X)(E,, VyX) 

= d i v ( ~  y ~ )  - % 2 T , , ~  ,=l I'+Y(Y, VXX)-<Y, vXX)' 

-2C(VE,Y, X)(E,, VYX). 

Thus we have 

As F is minimal, div(X) =Ci(V,,X, E,) + (VxX, X) + (V YX, Y) = - (V YY, X) and div(Y) = 

- (VxX, Y). It follows that X(V yY, X) - (V yY, X)2= -X(div(X)) - d i ~ ( X ) ~ =  -div(div 
(X)X) and that Y(Y, VxX) - ( Y ,  VxX)2= -div(div(Y) Y). 

Therefore, we have 

By integrating this formula, we get 

As each term of the integrand is non-negative, we have, in particular, T,,X= T,,Y =0, that 
is, F is totally geodesic. This completes the proof. 

Remark This result does not hold if codim(F)23. In fact, let (S3, go) be the three 
dimensional unit sphere. A suitable deformation of the Riemannian metric of (S3, go) X 

(S3, go) gives a new Riemannian manifold (S3 xS3, g)  with non-negative Ricci curvature, 
so that F =  {S3X (pt)) being minimal but non-totally geodesic and that H= {(pt} xS3) 
being totally geodesic. As TS3 is trivial, H is trivial. 

As a corollary to this theorem, we have the following, which is a codimension-two 
version of Theorem 4. 

Theorem 6 Let (M, g, F) be a codimension-two foliation of a closed Riemannian manifold 
with non-negative Ricci curvature. Assume H is integrable and trivial. If the mean 
curvature H of F is parallel along F, then H=O. Consequently F is totally geodesic. 

(Proof:) By Theorem 5, it suffices to show that H=O. As VJI=O for EEF, we have (VE 
E, H )  =O for EEF. It follows that O = C ,  (VE,E, If) = IHI2, which completes the proof. 
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Now return to the case of codimension q. Ler {Ei) and {Xu} be as in [FF. 1111. By 

summing up [FF. 1111, Ci K(Ei Xu), for a = 1, 2, - - a ,  q, we have 

[FF. IVI CK(E, Xa) 
i a 

=div(Q) + I Q ~ +  x(Vxafz, x a ) - ~ l ~ i ~ j 1 2 - ~ ( A x 8 X a ~  A ~ . X ~ ) 9  
a 5 3 

where Q=F(CaVxaXa). In fact, 

Theorem 7([04]) Let (M, g, F) be a codimension-q minimal foliation of a closed Riemann- 

ian manifold with non-negative Ricci curvature. If H is integrable and the induced normal 

connection of H is flat, then F is totally geodesic. Furthermore, (M, g)  is locally a product of 
F and H. 

(Proof.) As the induced normal connection of H is flat, local orthonormal frame of H can 

be chosen so that (V "X, X8) = O  for V E  TM. In order to show that F is totally geodesic, 
first calculate K(X, XB). 

As F is minimal and H is integrable, [FF. IV] becomes 

Thus we have 

By integrating this formula, we have 



As each term of the integrand is non-negative, we have Ci , I  T,, EjI2=O, which means F is 
totally geodesic. 

In order to prove that (M, g)  is locally a product of F and H, we need a structure 
theorem of Riemannian manifolds with non-negative Ricci curvature given by Cheeger 
and Gromoll [CG] and foliation-preserving property of Killing vector fields given in 
Oshikiri [03]. As our aim in this paper is mainly to present fundamental formulas of 
foliations and their applications to foliations, we omit the proof of local productness. 

Though we do not give a proof of local productness here, we mention that the 
assumption of Theorem 5 implies the same conclusion as Theorem 7. 

Theorem 8 Let (M, g, F )  be a codimension-two minimal foliation of a closed Riemannian 
manifold with non-negative Ricci curvature. If H is integrable and trivial, then (M, g )  is 
locally a product of F and H. 

The first part of Theorem 7 can be extended as follows. 

Theorem 9 ([Sw]) Let (M, g, F)  be a codimension-q minimal foliation of a closed Riema- 
nnian manifold with non-negative Ricci curvature. If H is integrable and the scalar curvature 
SH of each leaf of H is non-positive, then F is totally geodesic. 

(Proof.) Let X,  Y E H  be unit vectors with (X,  Y) =O. By Gauss equation 

where KH(X, Y )  is the sectional curvature of the plane spanned by X and Y in a leaf of H 
with the induced metric. It follows that 

As F is minimal and H is integrable, [FF. IV] becomes 

CK(Ei,  Xu) = ~ ~ V ( Q ) + ~ Q I ~ - C I T , , E ~ I ~ - ~ I A ~ ~ X ~ I ~  
I. a I , J  

It follows that 

Thus, by integrating this formula, we have 
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As each term of the integrand is non-negative, we have Ci j l  T,, EjI2=0, which means F is 
totally geodesic. This completes the proof. 

On the lines of O'Neill's paper [ON], Ranjan [Rj] derived the structural equations for 
foliations and derived some global results. As the results are essentially contained in our 
context, we simply present his main results. 

Theorem 10([Rj]) For foliated closed manifold, we have 

Theorem 11 ([Rj]) Let M be a closed manifold. Let V be a unit tangent vector field on M 
which gives a metric foliation on M, then J M  Ric(V, V )  2 0  with equality i f f  the complemen- 

tary codimension-one subbubdk is  integrable. 

Theorem 12([Rj]) Let (M, g, F )  be a codimension-one minimal foliation. Then J M  Ric(N 

N) I 0  with equality i f f  F is totally geodesic. 

5. Complete case 

In this section, we try to apply our formulas for non-compact cases. There are only a 

few results on differential geometric properties of foliations of non-compact manifolds 

(cf. [BGGI, [Me], [Rhl). 

Theorem 13([Ab]) Let (M, g, F)  be a codimension-q totally geodesic foliation of a complete 

Riemannian manifold with nm-negative sectional curvature. If H is integrable, then Hi s  also 

totally geodesic, and (M, g)  is locally a product of F and H. 

(Proof.) Let 7 be a geodesic along F with r(0) =x€M. Take an orthonormal basis {el, ez, 

. - ,  e,) of H, and let {XI,  Xz;.., X,) be the orthonormal frame field along r obtained by the 
parallel translations of {el, e2, - - 0 ,  e,}. As F is totally geodesic, {XI, X2, ..., X,} is an 
orthonormal frame field of H along 7. By summing up ZL1K(j, Xu), [FF. I] gives 

CK(f, Xu) =f(Q, f )  - C (A.YXb, f )  
a 48 

because V j = O  and V ,X,=O. It follows that 



Set f ( t )  = (Q, f ( t)) .  We  may assume f(0) 20. Then, as the sectional curvature is 
non-negative, we have 

f( tI2 f ( t )  - - 2 0  for tER. 
4 

Now consider the differential equation 

I f  y(t) is the solution of this differential equation with y(0) = f(O), then f ( t )  2 y ( t )  for t 2  
0. The solution y(t) of y' =$/q with y(0) =c is given by 

c4 Y ( t )  = -- q-ct' 

I f  c>O, then y(t)+m as t q/c. As f( t)  is defined for all t€R ,  this is a contradiction. 
Thus c=O. I f  Q f 0 at xEM, then we can choose 7(t)  so that f (0) = (Q, f (0 ) )  >O. This also 
gives a contradiction. Therefore, we have Q=O and 

C K  ( j ,  X,) = - C (AxaXb, j)' 
a 4 8  

As K ( f ,  Xa)20,  it follows that Ax&=O, which means H is totally geodesic. This 
completes the proof. 

Theorem 14 Let (M, g, F) be a codimension-one minimal foliation of a complete Riemann- 
ian manifold with non-negative Ricci curvature. If the growth gr(L) of a leaf LEF is not 
greater than 2, then L is totally geodesic. In particular, if gr(F) 1 2 ,  then F is totally geodesic, 
and (M, g) is locally a Product of F and H. 

(Proof.) Let L be a leaf of F. By assumption, [FF .  111 becomes 

Ric(N, N)  +Tr(TZ,) + I18l2=divL(VNN). 

I f  L is compact, by integrating this formula over L , we have 

As each term of the integrand is non-negative, it follsws that Tr(TN) =0, which means L - 
is totally geodesic. 

Now assume L is a non-compact leaf with the growth gr(L) 1 2 .  Fix xEL. Then, by 
definition, 

for some positive constants a and b, where B(r) =  EL IdL (x, y )  g r ) .  Set f (r) = f B ( ~ )  101" 
and V(r) =vol(B(r)), where 0 is the dual one-form of VNN. I t  is known that f (r )  and V 
(r) are locally Lipschitz, and thus a. e. differentiable. By integrating 
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over B(r), we have 

where u is the outward unit normal vector to dB(r). As Ric(N N )  2 0  and Tr(T"N) 20,  we 

have 

It follows that 

f (r)  Sf (r )  V f  (r), 

because f ' (r) = Jas(,) lei2 and V' (r)  = J a s ( , ) l .  

Assume 0(x) ZO. Then f (r)  >O for r >O. As V f  (r)  >0, we have 

Integrating this on [r, R]  with O<r<R , we get 

The inequality 

implies 

( ~ - r ) '  1 
V (R) - V (r)  fmdr' 

It follows that 

(R  -r) 1 1 < - - --- 
R - V  f f ( R )  

Letting R = 2r, we have 

As f (r)  20 ,  if f ( r )  is bounded above, then the above inequality implies 

1 7.2 <--- o<-<- 1 I 40(asr- -+m),  
8a - 4a7.2+ b - f (r)  f (2r) 

which is a contradiction. If f(r) tends to the infinity as r+m, then we have 



1 P 1 o<-<-<----- -0 (as r - . ~ ) ,  
8a - 4aPf b - f (r)  f(2r) 

which is also a contradiction. Therefore we have f(r) -0, that is VNN-0 on L. This also 
implies L is totally geodesic. 

If gr(F) =max {gr(L) ILEF} 52 ,  then, by the above argument, F is totally geodesic and 
VNNEO on M. Thus (M, g)  is locally a product of F and H. This completes the proof. 

Finally, we see that the formula [FF. 111 can be used to show the stability of some leaves 
of codimension-one constant mean curvature foliations, and leaves of codimension-one 
minimal foliations. 

Theorem 15 (cf. [02]) Let (M, g, F )  be a codimension-one constant mean curvature 

foliation of a complete Riemannian manifold. If N(h)  20, where h= (H, N), on LEF, then L 

is stable. Inparticular, every leaf of a codimension-one minimal foliation is stable. 

(Proof.) Note that, if h is constant on each leaf of F, then either N(h)  -0 or N(h)  ZO on 
LGF. Thus, if N(h)  ZO at a point xGL, then N(h)  >O or N(h)  <O on L. 

A constant mean curvature leaf L E F  with h#O is said to be stable if 

where f is any function having compact support on L with f~ f =O. For a minimal leaf 
L, the definition of the stability of L is given by the same way as above without the 
condition f f = 0 for f. 

By [FF. 111, it follows that 

Thus, we have 

If N(h)  2 0  on L, then Vnf(0)  20 ,  that is, L is stable. 
Note that the condition SL f =O is not used here. Thus, if F is minimal, then, as N(h) r 

0, V"f(0) = f ~ l d f  + f6I220, that is, L is stable. 
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