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§0. INTRODUCTION. A locally product Riemannian space is formally-
analogous to a Kahlerian space in some sense. Let us consider an w-dimensional
locally product Riemansnian space. Then, by definition, there exist a system
of coordinate neighborhoods [U] such that in each U the line element is given
by the form

(0. 1) dsl = gab(xc) dx«dxb + g^x^dx'dx1

and in UnU' the coordinte transformation {xa,xt)-*(xa',xi') is given by xa'
=xaXx6), x1' =xl'{xj), where the Greek indices X,/*, •E•E•Erun over the range 1,2,
•E•E•E,n and the Latin indices a,b,-•E•E(resp. i,j•E•E•E) run over the range 1,2,•E•E•E, p
resp. p+1, p+2,•E•E•E, p+q=n). Such a coordinate system (xa,xl) will be
called a separating coordinate system.

If we define by

0 .2) (<pl) =
8?

0

0
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in each U, then they define a tensor field over a locally product Riemannian
space and satisfy

(0. 3) s)cpl<px
v = 8£, b)gA<pl = g^cpl, c)V^if = 0 ,

where Va. denotes the operator of the Riemannian covariant derivative. (0,3) a)
shows that tp\ assigns an almost-product structure to the space.
Under the above situation, Reinhart [9] has introduced operators d', 8' and
A' = d'S' + h'd' on differential forms on the space, all of them differentiating
with respect to xa alone. Under some additional conditions, he has studied the
operator A' and defined Green's operator G' and proved an analogous theorem
of Hodge theorem which asserts that each cohomology class contains one and

only one form satisfying A'a = 0.
On the other hand, in a Riemannian space some of the infinitesimal auto-



morphisms, i.e., infinitesimal isometries and infinitesimal conformal transfor- 
mations are characterized by the usual operators d, 6 and A [2,7]. Therefore in 
the present paper, we shall ask the relations between the special operators d', a', 
a', a", 6" and A" and the infinitesimal automorphisms. 

51. PRELIMINARY REMARKS 

1.1. Now and in the sequel, let M be a connected paracompact differenti- 
able manifold of dimension n and of class C". Let M be also a locally product 
Riemannian space, for brevity, an LPR-space. Let a be a (p,q)-forml) on M 
represented locally by 

a = a (,,...,, , ,...,,, dxal A A dxav A dxE1 A A dxiu , 

where now and in thee sequel (a, apil . . . i,) implies a ,  < . < a, < i, < . 
< i,. If we write 

(1.1) d'a = (&a)(),, ,... a ,,,,... l.qldxal . . /\ dxa-1 A dxil A A dxia 

then 

(1.2) (d'a), ,... ,... i, = &(,!!:;I::! vCa(, ,... bp)i ,... is 

and 

where 

Then, the special Laplacian operator 

is given by 

1) See Reinhart [9]. 



Similarly we can define operatore d ,  6" and A" with regard to variables (x". 
1.2. According to Reinhart [9], we introduce the sheaves E and B on a 

compact LPR-space. Let D: be the sheaf of germs of r-forms which depend on 
the first type variables, i.e., the variables (xa) and similarly for a. Let E be the 

direct sum G A D : .  Thus there exists a coherent subsheaf B of E such that 
7 , s  

any section of B depends on a finite number of fixed forms in the second 
variables and that a finite set of sections of E is sections of B. It is known the 
following theorem [9]. 

THEOREM 1. (Reinhart) Let M be a compact LPR-space. Then the space 
o f  d'-cohomology classes of  sections of  the sheaf E on M is isomrphic to the 
space of A'-harmonic sections of E, i.e., A'a = 0 ,  the isomorphism being given 
by assinging to each cohomology class the unique A'-harmonic form contained 
i n  it. 

This theorem is an analogue to Hodge theorem. In the proof of the 
theorem, Reinhart defined the Green's operator G' for a' and showed the 
formula 

(1.6) a = d'6'G'a + G'd'G'a + H'a , 

where H'a = H a  is the projection on the kernel of A' for a €  B,(B) and B,(B) 
is the space of the completion in a usual norm of the set of C- sections of B. 

g2. CURVATURE AND LPR-SPACES 

2.1. Let us discuss the relations between the d'-cohomology and the 
curvature of M .  

LEMMA. Let + be a (1,O)-form w i t h  a compact carrier on an orientable 
and integrable LPR-space. Then w e  obtain 

where dM denotes the volume element of  M 

In fact, since + is of type (1, O), J, St+dM = 6+dM = 0 by the Green's 

theorem. 
Let R = (Rag) be a Ricci curvature tensor with respect to a Riemannim 

connection on M. We employ the notation < t, t' > to mean the local scalar 
product of the covariant tensors t and t'. We may introduce the Ricci operator 
S on 1-forms 4 of M by 



The quadratic form < S+, + > is called a Ricci quabratic form. 
Then we have RaBp$P = Rab+a+b + Ri1+(+>. The quadratic form Rab+a+b 

(resp. R,,+V5) is called the Jirst (resp. second) Ricci quadratic form. 
Let + be a (1,O)-form on M. The Riemannian metric on M admits to 

identify a contravariant vector field of type (1,O) with a (1,O)-form. We have 

for a a'-harmonic + and a compact orientable M. On the other hand, by the 
above Lemma, 

hence we have 

Assum that the first Ricci quadratic form is strictly positive definite, then the 
(1,O)-form + vanishes. Hence the following conclusion. 

PROPOSITION 1. Let M be a compact and orientable LPR-space. 
Assume that the Jirst Ricci quadratic form with respect to a Riemannian 
connection on M is everywhere positive dejinite. Then there exists no form + 
of type  (1,O) such that A'+ = 0 . 

If + is a Cw section of the sheaf E, we have an analogue to Myers- 
Bochner's theorem. 

THEOREM 2. Let M be a compact and orientable LPR-space. Assume 
that the jirst Ricci quadratic form wi th  respect to a Riemannian connection 
on M is everywhere positive dejinite. Then the dimension of  the space of  the 
d'-cohomology classes consisting of sections of type (1,O) of the sheaf E is 
zero. 

Proof. Let + be a C- section of type (1,O) of the sheaf E and let B any 
coherent subsheaf of E having + as a section of B considered in Paragraph 1.2. 
For +, Proposition 1 holds . By Theorem 1 we can get the theorem. q.e.d. 

Moreover the formula (2.1) shows that in a compact and orientable LPR- 
space M a A'-harmonic vector field of type (1,O) for which the first Ricci 
quadratic form is positive semi-definite is necessarily a parallel vector field. 

2.2. We now seek a result analogous to Theorem 2 for general case. Let + 
be a (r, s)-form such that a'+ = 0. Since 



we obtain the formula 

r(r - 1) + 0 
- R +abaa...a,5~...j,+cd 

abeb a,...ar51.. .a. 

by a method similar to [Z]. Setting 

F(+) = Rab+aa*...&.h...js b + a,... a,j ,... J, 

we have 

since (A'+,+) = 0. Then we obtain 
THEOREM 3. Let M be a compact and orientable LPR-spabe. Assume 

that the quadratic form F'(+) is positive dejinite for all diflerential forms + 
on M. Then there exists no A'-harmonic forms on M. 

$3. INFINITESIMAL AUTOMORPHISMS 

Let M be an LPR-space. A diffeomorphism of M which leaves a induced 
almost-product structure invariant is said to be an almost-product transformation. 
Since the Lie algebra gt(p,q) of a Lie subgroup GL(p,q) contains a matrix of rank 
one, by the theorem in [8,10], the group of almost-product transformation of M is 
not a Lie group. But we can define an infinitesimal almost-product transformation. 
It is called that a vector field X = Xa(a/axa) on M generates injinitesimal 
almost-product transformations or, for brevity, X is an Ap-transformation if 
(asX") E gt(p,q), where (a/axa) is the distinguished frame. A vector field X said 
to be decomposable if X generates AP-transformations. 

Let (Xu, Xt)r(X1,.  . . XP, Xp+l,. . , Xn), (Xa,O) and (0, X" be components 
of vector fields X, X' and X" respectively with respect to a distinguished frame. 
It is called that a vector field X' generates injinitesimal product isometries of 
the jirst type or, for brevity, X' is a PI-isometry if &(X')g = 0, where &(X')  
denotes the Lie derivative with respect to X'. Similarly we can define a P2- 



isometry with respect to X". It is called that a vector field X(=X'+X") generates 
infinitesimal product isometrics or, for drevity, X is a P-isometry if &(X')g 
=E(X'')  = 0 .  

It is easily show that if X is a P-isometry X is decomposable. If X is a 
P-isometry, X is an infinitesimal isometry. Conversely if X is a decomposable 
vector field an infinitesimal isometry X is a P-isometry. 

Let p(Xa) be a C- function such that ap(Xa) = 0. It is called that X' 
generates infinitesimal product conformal transformations of the Jirst type or, 
for brevity, X' is a PC,-transformation if &(X')g = pg. Similarly we can define 
a PC,-transformation with respect to X" aad a C- function o(xt) such that 
aab(x" = 0. It is called that X(= X' + X") generates injinitesinzal product 
conformal transformations or, for brevity, X is a PC-transformation if &(X')g 
= pg and if &(X")g = og . 

If a vector field X is a PC-transformation, X is decomposable. Moreover 
if a vector field X is a PC-transformation and if p = cr = constant, X is decompo- 
sable and is an injinitesimal homothetic transformation. It is clear that the 
Poisson bracket of two decomposable vector fields is also decomposable. Then all 
the infinitesimal automorphisms above defined admit a structure of Lie algebra$. 

4.1. Let M be an LPR-space. The Riemannian metric on M admits to 
identity a rector field X with a 1-form f on M. Hence we can define the Lie 
derivative with respect to a vector field defined by and it is denoted by &(E). If 
5 is a 1-form on My 5 is decomposed into two forms t' and g", where 5' is a 
form of type (1,O) and t" of type (0,l). 

We cnn easily show the following results by the method similar to [7] 
and the proofs are omitted. 

According to [7], we shall define a symmetric tensor field t(5') and t(t") by 

t(5')tj = 0, 

and similarly for t(t"). 
PROPOSITION 1. On an LPR-space, a (1,O)-form 5' is a PC,-tramfor- 

mation if and only if E' satisfies t(t') = 0 . 
For a (0,l)-form t", We can get a similar proposition. By Propostion 1, 

we have the following characterization. 
PROPOSITION 2. On an LPR-space, in order that a 1- for?)^ f(=E' +f") 

is a PC-transformation, i t  is necessary and sufiient that t' satisjies t(t') = 0 



and 5'' satisfis t(5") = 0, where t' is a (1,O)-form and 5" a (0,l)-form, provid 
p > l  and q > l .  

PROPOSITION 3. Let 5 be a 1-form generating PC-transfirmations on an 
LPR-space M. In order that is a P-isometry, it is necessary and suficient 
that 5 s a t i s - s  6'5'=6"5" = 0, where 5' (resp. 5") is a (1, 0)-form (resp. (0,l)-form) 
wi th  5 = f '  + 5". 

4.2. In this paragraph, we assume that M is compact and orientable. Let 
L be a subalgebra of Lie algebra T of tangent vector fields on M. A p-form on 
M is said to be L-invariant if it is a zero of all the derivations % ( X )  for X E L. 
We shall consider A'-harmonic forms on sections of E defined in $1. We can 
easily show the following propositions. 

PROPOSITION 4. The A'-harmonic sections of  the sheaf E defined in  
Paragraph 1.3 on a compact and orientable LPR-space M are L-invariant, 
where L is the Lie algebra of PI-isometrics on M .  

PROPOSITION 5. On a cornpact and orientable LPR-space, a A'-harmonic 
(r, s)-section + of the sheaf E is L-invariant, i f  and only i f ,  P = 2r or, 6'5' 4 
i s  8'-closed, where L is the Lie algebra of  PC,-transformations. 

4.3. In this paragraph we characterize the PC-transformations of a compact 
- - 

and orientable M as solutions of a system of differential equations on M. 
Let t(5') and t(ti') be symmetric tensor fields defined in Paragraph 4.1. We 

shall calculate the covariant derivative of t(5') and t(5"). By the Ricci identity, 
we have 

On the other hand, (6'd'f')b = - V a V a f f b  -k v " v ~ ~ ' , ,  hence we obtain 
I 

(4.2) 
2 

V a t ( E ' ) , b  = ( S f ' ) ,  - (ay),  - (1  - T )  (d'8'tr)b. 

LEMMA. On a compact and orientable LPR-space M ,  a (1,O)-form 5' is 
a fC,-transformation, i f  and only iif, 5' is decomposable and satisJies 

provided r > 1 . 
Proof. Consider a (1,O)-form u(f') defined by 



8 

We have 

By integration, we have 

Hence if f '  satisfies the equation ( 4 3 ,  we can conclude t ( f ' )  = 0 by using the 
decomposability of f ' .  Conversely if t ( f f )  = 0, f '  satisfies the equation (4.3) by 
the formula (4.2) and is decomposable. This completes the proof. 

For a (0, 1)-form f " ,  we have similar lemma. 
From the equation (4.3), we have 

PROPOSITION 6. There are no non-trivial (global) 1-parameter groups 
of  PC,-transformations on a compact and orientable M with the first negative 
definite Ricci quadratic form. 

If < Sf ' ,  f '  > = 0, for p = 0, we have < Sf ' ,  f' > = 0, 6 = 0 and V,Xb 
= 0. Hence, if the first Ricci quadratic form is negative semi-definite, then a 
vector field X' on M generating PCl-transformations of M necessary a parallel 
field. 

PROPOSITION 7. There are no non-trivial (global) 1-parameter gr-oups 
of PI-isonzetries on a compact and orientable M with the first negative definite 
Ricci quadratic form. 

PROPOSITION 8. Let f '  be an PC,-transformation on a compact and 
orientable M. If a'f' = 0 ,  then < St ' ,  f '  > = 0 .  

By Lemma, we have the following characterization. 
THEOREM 4. Let f be a 1-form such that f = f' + f" on a compact 

and orientable LPR-space, where f'  (resp. 5") is a (l,O)-for?n (resp. (O,l)-form). 
In order that a 1-form If is a PC-transformation, it is necessary and suficient 
that f is decomposable and, f '  and f" satisfy 

2 2 
A'f' + ( 1  - ?) d'8'f8 = Sf '  and nt'f"+ (1 - -) d.,&,f" = s f f ,  

4 

respectively. 



Theorem 4 is a characterization of a PC-transformation by the differential 
equation. 

COROLLARY. Let 5 be a I-form such that f = 5' + t" on a compact and 
orientable LPR-space, where t' (resp. f") is a (1,O)- form (resp. (0, 1)-form). In 
order that 5 is a P-isometry, it i s  necessary and suficient that t is decom- 
posable and 5' and 5" satisfy A'f' = S t ' ,  d'6'f' = 0 and A"5" = S', d'8''t1' = 0 
respectively. Consequently, i f  5 is an isometry, f is &closed. 

$5. PRODUCT EINSTEIN SPACE 

5.1. Let M be a compact and orientable LPR-space. In this section we 
assume that p> 2 and q > 2. Let + be a section of a sheaf E defined in §1 on 
M. We can construct a coherent subsheaf B' (resp.BU) having + as a section 
which depends upon a finite number of fixed forms in variables of the second 
(resp. first) type. 

Reinhart [9] showed that there exists the Green's operator G' independent 
from the choice of B'. But G' may be densely defined without being everywhere 
defined, hence it must in general be unbounded. Thus G' is not always completely 
continuous. 

Let B' be a coherent subsheaf of E. Assume that G' is completely con- 
tinuous on B,(B'). Consider an equation ~ ' + = h + ,  where + E B,(B'). Hence the set 
of eigenvalues of A' is at most countable and does not converge to bounded value. 

Let X be an eigenvalue of A' and + a corresponding eigenform in Q,(B'). 
By the equation (1.6), we have $ = +, -i- +,, where $,, +, E B,(B') and a'+, = 0, 
d+, = O .  

Let S be a Ricci operator on (1,O)-forms in 9,(B'). Assume that S is 
defined on everywhere and that positive definite. Let X,(b) be the minimal eigen- 

value of S at b E M and define X I  = min X,(b). We set X ,  = X I  
a a d l  

PROPOSITION 9. Let M be a compact and orientable LPR-space. Let 
B' be an arbitrary coherent subsheaf of E on M having + as a section, where 
+ is a section of  E. Assume that the Green's operator G' on 2,(B') is comp- 
letely continuous. Let X ,  and A, be real numbers dejined above. I f  the Ricci 
operator S on (1,O)-forms in  2,(B') is positive dejinte, then eigenvalues X and 
p of A', to which correspond (1,O)-forms +, and +, respectively, as eigenforms, 
such that 6'ql=0 and d'+,=O, are not Less than A, and A, respectively. More- 
over, i f  there exist an eigenform +,(resp. q2) corresponding eigenvalue X of 
A' such that X = X ,  (resp. p = X,(, t($,) = 0 (resp. t(+,) = 0 )  holds good. 

We can easily prove this prpposition by the method similar to [7] and the 
proof is omitted. 

5.2. In this paragraph we shall consider an Einstein space. An LPR-space 
is called a product Einstein space, for brevity, a PE-space, if the Riemannian 
metric is Einsteinian. We shall consider a special PE-space with a metric such 



that RaB = (X1/2)gap, where A, is a positive constant. Hence the dimension of a 
space of d'-cohomology class of (1, 0)-forms contained in B,(B') is zero, where. B' 
is a coherent subsheaf of E as before. Let f = f '  + f" be an arbitrary decompo- 
sable 1-form on M where t' (resp. f") is a (1,O)-form (resp. (0,l)-form) in &(B') 
(resp. 2,(B")). In this case, we can take a subsheaves B' and B" arbitlary. On 
the other hand, f' is written by f '  = c' + of,  where 6'5' = 0, d'w' = 0. If 6' 

defines an PCl-transformation, we have ~ ' ( c '  + a') + d'6'o' = X1(c' +or), 

X,(r + o'). Hence we get a'c = and A'o' 

= Xh', where Xi  = A, 2 - -- -'. The last equations mean that X,(resp.X;) is 
- ( ;) 

an eigenvalue of A' and 5' (resp. w') is a corresponding eigenform. Therefore, 5' 
is a PI-isomitry and o' is a PC,-transformation with d'o' = 0. For a (0,l)-form 
5'' in i?,(B"), similarly we have A"q' = Xc" and A"o" = X2"o", where 5" = t" 

+ o", 8°C" = 0, drro" = 0 and A," = X I  - I .  Therefore r' corresponds to 

an eigenvalue of A" and is a P,-isometry and w" corresponds to an eigenvalue 
A," of a" and o" is a PC,-transformation. If we set & = r + c" and w =o'-t-o", 
t: is a P-isometry and o is a PC-transformation. Then we have the following 
proposition. 

PROPOSITION 10. Let M be a conzpact and orientable PE-space such 
that R,, = (X1/2)gap, )L, > 0 and p> 2, b > 2. ~f a 1-form f on M is a PC- 
transformation, f is decomposed into f = [ + o and 1: is a P-isometry and o 

is a PC-transformation, where C and o are 1-forms satisfying 65 = d w = 0. 
In general it is known that all the infinitesimal automorphisms of a G- 

structure admit a structure of Lie algebra. We shall consider a structure of Lie 
algebra in our case. 

It is clear that the Poisson bracket [t, 51 of two decomposable 1-forms 5 
is and t also decomposable. 

Let L' (resp. L") be a Lie algebra of (1,O)-forms (resp. (0,l)-forms) 
generating PC,-transformation (resp. PC,-transformations). Let L be a Lie algebra 
of 1-forms generating PC-transformations. Hence we have L =  L' x L". Let L, be 
a Lie algebra of decomposable 1-forms satisfying A[ = A,[ and 6'c' = 6"5" = 0. 
Let L', (resp. L",) be a Lie algebra of decomposable (1,O)-froms C' (resp. (0,l)- 
forms 6") satisfying n'r = X,c' and 6'c = 0 (resp.b"t" = X,r' and 6"r' = 0). We 
have L, = L', x L",. Let L',(resp. L",) be a space of decomposable (1,O)-forms w' 

(resp. (0, 1)-forms a") satisfying a'o' = X',o' and d'w' = 0 (resp. A"w" = X",ot' 
and d"w"=O). If we set L , =  L', +L",, we have L =  L,@L,, [L,,L,]cL,,  [L,, 
L,] c L,, [L,,L2] c L, by Theorem of p. 138 of [7]. 

36. REMARKS ON DECOMPOSABLE 1-FORMS 

Let M be an LPR-space. The almost-product structure on M is charac- 



terized by a tensor field 9 = (p;)  defined by (Jv)" = p;va. We can easily show 
that a 1-form f is decomposable if and only if & ( f ) p  = 0. Now we construct a 

components of a tensor a ( f )  are given by 

Therefore aag(f )  = O is the necessary and sufficient condition that f is decompo- 
sable. 

If M is compact and orientable, we have 

where = f '  + f" and f '  (resp. f" )  is a (1,O)-form (resp. (0, 1)-form). On the 
other hand, we have 

Hence we have the following conclusion. 
PROPOSITION 11. On a compact and orientable LPR-space, i n  order 

that a 1-form f such that f = f '  -t f " ,  where f '  (resp, 5") is a (1,O)-form (resp. 
(0,l)-form), is decomposabLe it is  necessary and sufficient that A"[' = A'f" =O. 
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