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DECOMPOSITION OF AN ORDER ISOMORPHISM
BETWEEN MATRIX-ORDERED HILBERT SPACES

YASUHIDE MIURA

{Communicated by David R. Larson)

ABsTRACT. The purpose of this note is to show that any order isomorphism
between noncommutative L2-spaces associated with von Neumann algebras
is decomposed into a sum of a completely positive map and a completely co-
positive map. The result is an L? version of & theorem of Kadison for a Jordan
isomorphism on operator algebras.

1. INTRODUCTION

In the theory of operator algebras, a notion of self-dual cones was studied by A.
Connes {1}, and he characterized a standard Hilbert space. In {9} L. M. Schmitt
and G, Wittstock introduced a matrix-ordered Hilbert space to handle a non-
commutative order and characterized it using the face property of the family of
setf-dual cones. From the point of view of the complete positivity of the maps, we
shall consider a decomposition theorem of an order isomorphism on matrix-ordered
Hilbert spaces.

Let H be a Hilbert space over a complex number field C, and let H* be a self-
dual cone in H. A set of all n x n matrices is denoted by M,,. Put H, = H® M,.(=
M, (H)) for n € N. Suppose that (H, H,n € N) and (¥, H,, n € N} are matrix-
ordered Hilbert spaces. A linear map A of ‘H into H is said to be n-positive (resp.
n-co-positive) when the moultiplicity map An(= A ® id,) satisfies A, Mt ¢ HY
(resp. *(AnHE) € HI). Here ¥(.) denotes a set of all transposed matrices. When A
is n-positive (resp. n~co-positive) for all n € N, A is said to be completely positive -
(resp. completely co-positive). We refer mainly to {11] for standard results in the
theory of operator algebras. We use the notation as introduced in [9] with respect
to matrix-ordered standard forms.

2. RESULTS

We first generalize a theorem of A. Connes [1] for the polar decomposition of an
order isomorphism to the case where a von Neumann algebra is non-o-finite.
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Proposition 1. Let (M, H,J,H*) and (M, H, J, H*) be standard forms, and
let A be a linear bijection of H onto H satisfying AHt = H*. Then for a polar
decomposition A = U|A| of A we obtain the following properties:
(1) There exists o unique invertible operator B in M™ such that |A| = BJBJ
(cf. {4, Corollary I1.3.2]). _
(2) There exists a unigue Jordan x-isomorphism o of M onto M such that

(a(X)€,6) = (XU, U™g)
forall X € M, £ €H*.

Proof. (1) Let M be non-o-finite. Choose an increasing net {p;};er of o-finite
projections in M converging strongly to 1. Put ¢; = p;Jp;J. By {1, Theorem 4.2]
g H* is a closed face of H*. Since A is an order isomorphism, A(gi/H™) is a closed
face of H*. There then exists a o-finite projection p} € M such that A{g/HT) =
g/H where ¢] denotes p}JpiJ. Hence g)Ag; is an order isomorphism of ;H™ onto
g/H*. These cones appear respectively in the reduced standard forms (g; Mg,
oM, e.Ja, g’HY) and (¢iMgl, ¢iH, ¢lJq}, giH*). Put A = (g}Aq) gjAgi. Then
A; € g;M™g, is an order automorphism on ¢;H*. By [3, Theorem 3.3] there exists a
unique invertible operator B; € ¢;M™¢g; such that A; = B;J; B; J;, where J; denotes
g;Jg;. Taking a logarithm of both sides, we have log A; = log B; + J;(log; Bi)J;.
Since {A;} is bounded, {log B;} is bounded. Indeed, we have in a standard form
that a map
Xméx=LUX+IXT)

is a Jordan isomorphism of a selfadjoint part of M into a selfadjoint part of a set of
all order derivations D(H*)} by [4, Corollary V1.2.3]. It is known that any isomor-
phism of a JB-algebra into another JB-algebra is an isometry (see {3, Proposition
3,4.3]). Hence

H ox |l = “ X “r X € Mg,
Thus {log B;} is bounded. It follows that {p;Bip;} is bounded because p;Mp; and
g;Mg; are =-isomorphic. Therefore, one can find & subnet of {p;log B;p;} that
converges to some element C € M™ in the o-weak topology. We may index the
subnet as the same ¢ € 1. We then have for £, € H,

((C + JCT)q;€,q;m) = lim((ps{log B;)p: + Jpi(log Bi)piJ )5, 45m)

= ((log B; + J;(log B;)J;)g;€, 45m)
= lim(iog A:g;€, ¢;7)
= (log A" Ag;8, g;m),
using the facts that ¢; X ¢;JgXqJg = p:XpiJp: XpiJg; for all X € M, and un-
der the strong topology {A:} converges to A*A; hence {g;(log A;)q:} converges to
log A™A. Since | J;¢; ¢:H is dense in H, we obtain the equality C+ JCJ = log A*A.
Therefore, e“Je€J = A*A. Thus there exists an element B € M such that
Al = BJBJ. Since, in addition, ¢;B¢;Jg;Bq;Jg = g;14|q;, one easily sees the
invertibility and the unicity of B using the same properties as in the g-finite case.
(2) From (1) we have U = AB~Y'JB~'J. It follows that U/ is an isometry
satisfying UH™ = Ht. Let p; and g; be as in (1). There then exists a o-finite
projection p} € M such that U(gH*) = g/H™ with ¢ = plJp,J. Using also [1,
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Theorem 3.3], one can find a unique Jordan *—1somorphlsm a; of g; Mg, onto q; fvtq1
‘such that

(ai(gi X )€, &) = (@ XuU™E, U“Ié')
for all X € M,¢ € g/H*. Now fix X € M,,. Since p/Mp, and g/Mg! are
s-isomorphic, there exists a unique operator Y; € pE.A;fs_a,p; such that Y| an =
o;{g;:Xq;). Using an isometry between the Jordan algebras, one sees that
{ai{g:X @)} is bounded, because || oi(g: X g} || = | ¢ Xq: | £ | X ;i € 1. Thus
{Y;} is bounded. We may then say that {Y;} converges to some operator Y € Mg,
in the g-weak topology. We then have for £ € Ht,

(Yg;¢, g;€) = Lim(Yiq3¢, g5€) = lim{oi(: X ¢:)g;€, 45¢)
=lim(g: XU ™ 3¢, U g;€)
= (XU g}, U g;6).
Taking a limit with respect to 7, we obtain
(YE,6) = (XU, U

for all £ € H*. Tt is known that any normal state on the von Neumann algebra M
is represented by a vector state with respect to an element of H* (see [2, Lemma
2.10 (1)]). Therefore, the above element Y is uniquely determined. Moreover, we
have ¢;Yq; = a;(q: X ¢). It follows that {oyg: X¢:)} converges to Y in the strong
topology. Hence one can define a(X) = Y for all X € M. It is now immediate
that (X%} = a(X)? for all X € M,, . Considering the inverse order isomorphism
U=, we have a{M) = M. This completes the proof. O

In the following lemma we deal with a reduced matrix-ordered standard form by
a completely positive projection.

Lemma 2. With (M, H, M) a matriz-ordered standard form, let E be a completely
positive projection on H. Then (EME, EH, E,H}) is o matriz-ordered standard
form.

Proof. The statement was shown in [8, Lemma 3] where M is o-finite. In the
case where M is not o-finite, since E is a completely positive projection, there
exists a von Neumann algebra A such that (N, EH, E,H;) is a matrix-ordered
standard form by {6, Lemma 3]. Hence EM|gy = N and (EME, EH, E,H})
is a matrix-ordered standard form by using the same discussion as in the proof in
. 0

Now, we shall state the decomposition theorem for an order isomorphism between
noncommutative L?-spaces.

Theorem 3. Let (M, H,H}) and (M, R, H}) be matriz-ordered standard forms.
‘Suppose that A is a 1-positive map of H into H such that AH™ is o self-dual cone
in the closed range of A. If both the support projection E and the range projection
F of A are completely positive, then there exists a central projection P of EME
such that AP is completely positive and A(E — P) s completely co-positive.

In particular, if A is an order isomorphism of H onto H, then there exists ¢
central projection P of M such that AP is completely positive and A(l — P) is
completely co-positive.
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Proof. We first consider the case where A is an order isomorphism. Let U, B and
a be as in Proposition 1. It follows from a theorem of Kadison [5] that there exists
a central projection P of M satisfying

o Mp— Ma(p;, onto *-isomorphism

and _
a: Mi_p— .A;!a(l_ P), onto x-anti-isomorphism.

Indeed, a(P) is a central projection of M. Since o preserves a *-operation and
power, a{P) is a projection. Suppose that Q is an arbitrary projection in M.
Since a is order preserving, we have a(QFP) < a(P) and a{Q(1 - P}) < a(1-P). It
follows that two projections o(P) and o{@Q P) are commutative, and so are a(1—P)
and a(@{1 — P)). Hence, (@) = a(QP + Q{1 — P}) and a(P) commute. Since
o is bijective, a set () generates a von Neumann algebra M. Therefore, a(P)
belongs to a center of M. Now, there then exists a unique completely positive
isometry u : PH — o{P)H such that

w(PHY) = o{PYH*) and ofz)=uzu™, z€Mp

‘by {7, Proposition 2.4], which is also valid for the non-o-finite case. Hence (UzU !¢,

¢) = (uau~1,€),z € Mp,£ € a( PYH+. We have from the unicity of a completely
positive isometry that UP = u. Note that a(P)UP = UP. Indeed, we have for
¢ € o{1 — PYH* the equality

| PUTE = (UPU™2E,£) = (a(P)E,£) = 0.

This yields PU (1 — P) = O, and so PU~! = PU~1a(P). Therefore, we obtain
that AP = UBJBJP = uBJBJP and AP is completely positive.

We next consider a *-isomorphism o' : My_p — M]_ —alP) defined by o/ (X) =
Jo:( * J, X € Mi_p. '}.:here then exists a unique completely positive isometry
v: (1 - PYH — afl — P)H such that

v(l— PYH* = (1 - o(P))H* and o'(z) =vav™), z€ Mi_p.

Then we have a(z) = Juz*v~1J,2 € M;_p. Note that the complete positivity
above means vn{l — P)aHSt = (1 — (P NnHi!, where H' denotes the self-dual
cones associated with M’ (cf. {10]). Hence v is a completely co—pomtwe map under
the setting (M, H, H) and (M, H, H). Hence

(UzU¢,8) = (Juz*v™ £, €)
= (J¢, vz v 1 JE)
= (vzv™ ¢, €)

for all z € Mi_p,€ € (1 — PYHT. It follows that U(1 — P) = v. We conclude by
the equality A(l — P) = vBJBJ(1 — P) that A(1 — P) is completely co-positive.
We now consider a general A. Since AHY C ?:L’*‘_, we have AHt C FH*.
Since F is & projection, FH™ is a self-dual cone in FH. It follows from the self-
duality of AH* that AH*T = FH*. This yields from Lemma 2 that FAF is an
order isomorphism of EH onto FH in the sense of matrix-ordered standard forms
(EME, EH, E,H}) and (FMPF, FH, F,H). Using the first part of the proof,
we obtain the desired result. Indeed, there exists a central projection P € EME
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such that FAP is completely positive and FA(E — P) is completely co-positive
under the reduced matrix-ordered standard forms. We obtain the inclusion

t(An(En - P,,)‘H:) = t(FnAn(En - Pn)H::) - Fﬂﬂg C ?:Z:
This completes the proof. _ O

Finally, the author wishes to express his sincere gratitude to Professor Y. Kata-
yama for having pointed out this problem to him. He also thanks the members
of Sendai Seminar, especially Professors T. Okayasu and K. Saitd for their useful
suggestions. '
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