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Fluctuation properties of strength functions associated with giant resonances
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We performed fluctuation analysis by means of the local scaling dimension for the strength function of the
isoscalar(IS) and the isovectoflV) giant quadrupole resonances¥Ca, where the strength functions are
obtained by the shell model calculation within up to thE2t2 configurations. It is found that at small energy
scale, fluctuation of the strength function almost obeys the Gaussian orthogonal engé@B)erandom
matrix theory limit. On the other hand, we found a deviation from the GOE limit at the intermediate energy
scale of about 1.7 MeV for the IS and at 0.9 MeV for the IV. The results imply that different types of
fluctuations coexist at different energy scales. Detailed analysis strongly suggests that GOE fluctuation at small
energy scale is due to the complicated naturep2hZtates and that fluctuation at the intermediate energy scale
is associated with the spreading width of the Tamm-Dancpfhistates.
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[. INTRODUCTION [10,17. If we adjust the energy of the collective state and the

coupling strength between the collective state and back-

. : ground states, the resultant strength function should be con-

stance, a giant resonancare spread over a certain energy *. : . X

) ; L sistent with the giant resonance strength function at least at

interval due to the coupling to a background which is com- - ) i
both extreme energy scale limits. Therefore, in order to find

plicated and has huge degrees of freedom. As a result, t%ﬁe difference between a realistic strength function and that

Strengths of exciting high lying states in nucléor in-

strength function, at a large energy scale, exhibits a glob : ) ; . .
shape profile like a Lorentzian. The values of the center o rom this model, we must investigate fluctuation properties
. ' . of the strength function at intermediate energy s¢a®k13.

energy or the tptal W!dth _depef‘d on the properties of a probe Recently, we proposed a new method to perform fluctua-
such as multipolarlity, isospin, and so on, and changgi,, analysis of the strength functigit4]. This method is
smoothly as the mass number of a nucleus. Most of thesge,ised to quantitatively characterize a fluctuation property
values are well understood up to ndd-3|. On the other 45 3 function of energy scale by a new measure called the
hand, at small energy scale limit comparable to the levejocal scaling dimensiofLSD), and is suitable to investigate
spacing of the background states, the strength function magctuation at intermediate energy scales. We applied this
rapidly fluctuate from state to state on top of the global promethod to a simple doorway damping model. The doorway
file, if we neglect the escaping width due to the coupling todamping model is different from the above GOE background
the continuum. It is believed that the fluctuation properties amodel with respect to two points. First, unperturbed back-
this energy scale can be well simulated by the random matriground states are divided into two different classes so that
theory of the Gaussian orthogonal ensemi@OE) [4-7], unperturbed states in one class, which are called the doorway
which has been verified by several experimental data: Thetates, couple directly to a collective state, while states in
nearest-neighbor level spacing distributND) of neutron  another class do not. The second point is that doorway states
resonances near the threshold approximately follows thand other unperturbed background states have a finite
Wigner distribution[7,8]. The distribution of the reduced spreading width due to the mixing among theiNote that
width (proportional to an absolute square of a component othe GOE background model corresponds to the large spread-
the wave functiop of these resonances also shows theing width limit.) Fluctuation properties of the strength func-
Porter-Thomas distributiofi7,8]. Furthermore, the NND of tions of both models are same at small energy scale limit.
the nuclear data ensemble shows the Wigner distribution antihe result of the analysis clearly showed that fluctuation
the A5 statistics of them showAs(L)«In L [9]. All of these  properties of both strength functions deviate from each other
are typical signatures of the GOE. at a certain intermediate energy scale, and this energy scale is

Thus, we know well the behavior of the strength functionclosely related to the spreading width of the doorway states
at both extremely small and large energy scales. From this the doorway damping model.
knowledge, one may construct the following model to de- In this paper, we apply the same method to a more real-
scribe the strength function of highly excited states in nucleiistic strength function of the giant resonances in a nucleus.
A collective state couples democratically to each of unperStrength functions of the isoscal@®) and the isovectoflV)
turbed background states, and the background Hamiltoniagiant quadrupole resonan¢€QR) in “°Ca are obtained by
itself is the GOE random matrix. This GOE backgroundthe shell model calculation within up to thepzh configura-
model is closely connected with the pandemonium picturdgions. The strength functions reproduce the experimental cen-

0556-2813/2003/68)/05431610)/$20.00 68 054316-1 ©2003 The American Physical Society



AIBA, MATSUO, NISHIZAKI, AND SUZUKI PHYSICAL REVIEW C 68, 054316(2003
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ter of energy and the total width, and also show the GOBbinned distribution of the strength functi®E) by dividing
fluctuation at the small energy scale limit, as will be shownwhole energy interval under consideration iritdins with
later. Furthermore, in this model, the doorway structure andength e. Strength contained inth bin is denoted byp,,,
the deviation from GOE in the background may be intro-

duced in a natural way, while they are input by hand in the = > S. (2
doorway damping model. Therefore these strength functions ienth bin

may provide the better test for the analysis. To characterize the distribution of the binned strengths,
Note that a similar method of analysis was proposed ange introduce the moments of it, which are called, in lit-

applied to the(e,e’) or (p,p’) experimental data of*Pb  oa4re. the partition functiog(e) defined by

[15,16.
The paper is organized as follows: In Sec. I, we briefly L
explain the LSD. In Sec. Ill, we apply the method to the Xm(€) = 2, pr=L(pM. (3
n=1

strength functions of the IS and the IV GQR. We also discuss
the physical origin of the deviation from the GOE back- cjearly, the partition functions contain, at smallimit,

ground model in detail. Finally, Sec. IV is devoted to €On-ihe information of the strength distribution, as well as the
clusions. energy-strength correlation as a function of a bin width or
an energy scale.
Il. LOCAL SCALING DIMENSION It is then helpful to employ the idea of the generalized
We briefly explain the local scaling dimension in this sec-fr"’mt‘ﬁ’.lI dlmenS|or[18,1q, .Wh'Ch IS derived ffom the partition
: : function and has a definite physical meaning. The concept of
tion. See Ref[14] for detall. th lized fractal di o ful onlv wh
The strength function is expressgty] as e generalized fractal dimension is useful only when a sys-
tem has a multifractal nature, namely, has a self-similar
E) = SE-E +E 1 structure against the change of the scale. Strength functions
SE) 2 S i+ Eo) @ at a nucleus generally do not have such a property. Thus, we

o ) o have to extend the concept of the generalized fractal dimen-
for exciting the nucleus with excitation energy HereE;  sjon and finally reach the LSD defined by
and E, are the energy of discrete levels and the ground

state energy, respectively, aigl denotes the strength of 1 dlog xm(e)
exciting theith energy level. Let us assume that strengths Di(e) = m-1 dloge (4)
are normalized ag; §=1.
In order to quantitatively characterize how the strengthDifferent from the generalized fractal dimension, the local
function fluctuates at various energy scale, we considescaling dimension characterizes “how the partition func-

(a) ISGQR (b) IVGQR
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0.003 - ISGQR(a) and IVGQR(b).
0.005 | 0.002 |
0.001 1
0 Ll bt ! 04
0 10 20 30 40 50 0
E E

054316-2



FLUCTUATION PROPERTIES OF STRENGTH

PHYSICAL REVIEW C 68, 054316(2003

tion scales for different energy scales” and accordingly is 0.06
a function of a bin width or an energy scaée The local
scaling dimension, however, has an easily understandable 0.05- I
physical meaning similar to those of the generalized frac- : o
tal dimension. For instance, the value Df,(e) close to I
unity means that the strength function looks like a one- 0.04 + 0in
dimensional object distributed smoothly over an energy Fh
interval when we look at the strength function at an en- @ 0.03- o I
ergy scalee. On the other hand, it looks like a zero- o AT
dimensional object, namely, a dot if the value®f(e) is 0.02 -
close to zero. Note that the local scaling dimension re- ’
duces to the generalized fractal dimension when the value ]
of D,(e) is constant over a whole interval ef 0.011

In actual calculation of the local scaling dimension, we {
define it by means of the finite difference under the change 0+
of a factor 2, 0 3

s
D ‘E - 1 logxm(2¢) —logxm(e) 5 . . S
m(\2¢€) m-1 log2 ! (5 FIG. 3. The nearest-neighbor level spacing distribution for lev-

els between 20 and 30 MeV. Level spacings were unfolded by the
Strutinsky method with a smoothing width of 5 MeV. The dashed

rather than the derivative in E@4). Using the finite dif-
ference, the calculation is very simple for all the mo-
ments.

curve represents the Wigner distribution.

Hamiltonian within this model space and obtained the

One of the important strength functions may be the onestrength functions for the isoscalar and the isovector quadru-
obtained from the GOE random matrix. The local scalingpole operators.
dimension of this GOE strength function can be used as a Figures 2a) and 2b) show the strength functions for IS-
reference to study other strength functions which are supGQR and IVGQR, respectively. The mean energy and the
posed to have fluctuation properties similar to the GOE, as iotal width (the standard deviatiorare 23 MeV (31 MeV)
the case of nuclear strength functions in the highly excitecand 4.0 MeV (7.0 MeV) for the ISGQR(IVGQR). The ef-
region. We show in Fig. 1 an example of the GOE strengthfective massn’/m=0.9 was used to reproduce the empirical

function and the local scaling dimensidd,,(l), where |

mean energy for IVGQR irt%Ca [3]. These strength func-

= ¢/d (the bin width measured in the unit of the level spacingtions were already used in Ref®1] and[22] to study the

d) is used as the scaling parameter.

ll. ANALYSIS OF THE GIANT QUADRUPOLE
RESONANCES IN “°Ca

generic properties of nuclear giant-resonance decay.

B. Several measures

Before going to the detailed discussion for the local scal-

ing dimension, we briefly show other fluctuation measures.

We apply the local scaling dimension to the strength func-
tions of the giant quadrupole resonance$%da.

A. Numerical calculation of strength functions

We calculated the strength functions of the isoscalar and
the isovector giant quadrupole resonance®@a within the
second Tamm-Dancoff approximation including thpli
and D2h excitations. Single-particle wave-functions and en-
ergies were obtained in terms of a Woods-Saxon potential
including the Coulomb interaction. To simulate the bare
(Hartree-Focksingle-particle energies,g, the above single-
particle energies,ys were scaled by the effective mass/m
asepr=gyd/(M/m). As the residual interaction, the Landau-
Migdal-type interaction [20] including the density-
dependence was adopted. The model space was constructed
in terms of single-particle states within the four major shells,
two below and two above the Fermi surface, and included all
1plh and 22h states whose unperturbed energies were less
than 50 MeV. Resultant number ofplh states and [2h
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FIG. 4. TheA; statistics. The dashed curve representsithtor

states are 34 and 4144, respectively. We diagonalized thiae GOE level fluctuation. Same as Fig. 3 for others.
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Figure 3 shows the NND, where levels between 20 MeVp(E)=3,; S(E-E;+Ey), respectively, by the Strutinsky
and 30 MeV are consideredhe number of levels is 804 method. We adopted 5 MeV as a smoothing widthis an
and are unfol_ded by means of the Strutinsky method with g&verall normalization factor to guarant@ézl for the
smoothing width of 5 MeV[23]. The NND follows the considered energy interval. Moreover, we adopt as energy
Wigner distribution rather well, which indicates that at the |eyels the equidistant ond44], namely, E;=id, whered
very small energy scale the level fluctuation almost obeys thgenotes average level spacing. By adopting these levels,
GOE. The importance of the particle-hole type residual inye can neglect global energy dependence of the level den-
teraction among [@2h states to generate GOE level fluctua- sity and the local level fluctuatior\We verified that the
tion was discussed in Ref24]. We also plotin Fig. 4 thés  inclusion of the local level fluctuation affects only the
statistics. We again find that at small energy rangeABe pehavior of the LSD at small energy scales, and this effect

follows the GOE line. AtLM®= 15, hOWeVer,Ag starts to can be described by the GQthUS, we obtain the nor-
deviate from the GOE line to upward. This value BF® o0y strength functioé(E)'

roughly corresponds to the energy scike0.18 MeV. B B

Figure 5 shows the strength distribution where the distri- SEE)=3,SSE-E +E). (7)
bution of the square root of normalized strengiis plotted . . L . .
as a histogram; strengths are normalized also by StrutinskThe local scaling dimension is derived from this normal-

method, detailed procedure of which will be explained in the')émj strength function. Finally, since t_he visible strengths
of ISGQR are almost concentrated in the energy range

following section. We can see that the strength distributio . ;
follows considerably well the Porter-Thomas distribution. rbetween 20 M'.EV and 3MeV, we adopt this energy inter-
val for analysis. The normalized strength functions for

ISGQR and IVGQR are plotted in Figs.(& and @b),
respectively.

Since we are not interested in the global shape of the First, let us discuss the ISGQR case in detail. The case of
strength function, it is convenient to introduce the normal-the IVGQR will be discussed in Sec. Ill D 4. Figuregay
ized strength function where the global smooth energy deand 7b) show the partition functiong,(e) defined by Eq.
pendence is removed from the original strength function ag3) and the local scaling dimensior3,(¢) defined by Eqg.

C. Results of the local scaling dimension

follows: (5), respectively. The horizontal axes in both figures repre-
- sent the bin width of energy axis in unit df whered rep-
ézNﬁp(Ei)_ (6) resents the average level spacing over the energy range
SE) 20-30 MeV(d=12 keV). From the partition function(e),

_ one sees that the fluctuation does not follow the power scal-
Here, S(E) andp(E) are obtained by averaging the calcu- ing law (or linear relation in the log-log plgt Correspond-
lated strength functiofEq. (1)] and the level density ingly, the local scaling dimensioD,(e) varies as a function

(a) ISGQR (b) IVGQR
0.012 0.018
0.016 |
0.01
0.014 4
0.008 1 0.012+ _ FIG. 6. The normalized strength functions
@ 0006 g > S(E) corresponding to the original ones for the
& ? 0.008 ISGQR(a) and for the IVGQR(b) plotted in Fig.
0.004 1 0.006 1 2. A summation of strengths within an energy in-
0.004 1 terval 20—30 MeV is normalized to unity.
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@)

FIG. 7. (a) The partition functiony(e) for
m=2-5 for the ISGQRcorresponding to the nor-
malized strength function plotted in Fig. @) Its
local scaling dimensio,(e) for m=2-5. The
dashed curve represerids(e) for the GOE.
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of e. At small energy scale, the values Df,(e) gradually D. Origin of the deviation from the GOE
increase as the energy scaléncreases, and almost follow
the GOE line. As the energy scakeincreases further, the
values ofD,(e) bend downwards and then again turn to in-
crease. The behavior dD,(e) around this energy scale
clearly deviates from the GOE limit. The value of the energy ) .
scale where the deviation is maximum is rouglgy-140d 1. Doorway damping mechanism

=1.7 MeV . From these observations, we again find that at For this purpose we consider a damping mechanism by
small energy scale, fluctuation of the strength function isseparating the shell model space tplfi and %2h sub-
essentially governed by the GOE, as one knows from othegpaces, and we focus on the residual interactions within and
measures such as the NND or the strength distribution. Theetween the subspaces. The giant resonance is a collective
scaling analysis by means of the local scaling dimensionvibrational state whose dominant component is a coherent
however, can reveal the new feature which may not be reakuperposition of filh configurations. The collective state
ized by other measures. Namely, the GOE fluctuation is limcan be described by the Tamm-Dana@fD) approximation,

ited to the small energy scale, while, at intermediate energwhich corresponds to a truncated shell model where only
scales, a different fluctuation from the GOE arises. 1p1h configurations are taken into account. The result of the

One may wonder that the statistical error could produce D approximation(TDA) is shown in Fig. 8), and is com-
fictitious dip, since the number of levels considered 804 ipared with the full shell model calculation including up to
not so large. Of course, there may be a statistical error. Ac2p2h’s [Fig. 2a)]. It is seen that the peak position is well
cordingly, we should take the energy scal=140d reproduced by the TDA. Note also that the isoscalar quadru-
=1.7 MeV mentioned above as a rough estimate. The exigpole strength in the TDA is spread over many eigenstates,
tence of the dip itself, however, is not due to a statisticawhich are correlatedfilh states. This spreading of the quad-
error. This would be verified from a systematic analysis inrupole strength amongplh states is often called the Landau
the following section. Note that the simple estimate of thedamping. Comparing Figs(& and 2a), the Landau damp-
standard deviation of thenth local scaling dimension is ing is found to give dominant contribution to the total full
(D) =V3mM/VNy [14], and in the present case for the sec-width at half maximum(FWHM) of the strength function.
ond local scaling dimensiom(D,)=0.12. If we take into account the2h configurations, the inter-

A type of the smoothing procedure to obtain the normal-action acting betweenplh and 22h states(abbreviated as
ized strength function does not much affect the results. InV;,) takes part. Since thep2h states have much more de-
deed, we verified that the Gaussian smoothing instead of thgrees of freedomyV,, causes spreading of the TDplh
Strutinsky smoothing leads to the essentially same results. states. Because of this spreading pflii states, the quadru-

We shall investigate the origin of the observed energy
scaleg=1.7 MeV characteristic to the fine structures in the
isoscalar quadrupole strength function.

@) (b)
0.4 0.2
0.35 0181
0.16 q
0.3
0.14 1 )
0.25 012 1 FIG. 8. (@ The strength function for the
T o024 o 0414 ISGQR obtained within the Tamm-Dancoff ap-
o 015 .. proximation andb) the strength function for the
' 0.06 ISGQR by omitting the coupling among the un-
011 0.04 1 perturbed p2h states.
0.05 4 0.02 ‘ L
0 . ' “M\ 1\“ 0 . M nwh w ' i
0 10 20 30 40 50 0 10 20 30 40 50
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054316-5



AIBA, MATSUO, NISHIZAKI, AND SUZUKI PHYSICAL REVIEW C 68, 054316(2003

(a) A=0.1 (b) A2=2.0
o8 08 FIG. 9. TheA; statistics with rescaling the
0.77 2 0.7 interaction strength/,, by a factor),,, for (a)
0.6 0.6 N\2,=0.1 and(b) \,,=2.0. The dashed curve rep-
0.5 05 A resents the\; for the GOE level fluctuation. We
2 044 B I 04l can find the large dependence of thg on the
g g o value of V,,. We also verified that thés is in-
034 J 7 0.3 g P
ey sensitive to the change of the value Wf,,
029 7 0.2 ;, namely, the behavior of\; at A;,=0.1 or A,
0-11;'( 0.1/ =2.0 is almost same as thatNb=1.0, wherex,
o o+ represents the rescaling factor of the interaction
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 strengthvlz.
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pole strength is also fragmented Wy, on top of the Landau turbed configurations. We found that the energy level fluc-
damping at the TDA level. To see the effect\df,, we per-  tuation is governed by/,,, but not byV,,, as shown in Fig.
formed a calculation where unperturbepl states and the 9. Thus we can consider another possibility that the energy
interactionV, is introduced. The resultant strength distribu- scale of the deviation from the GOE limit may be related to
tion, shown in Fig. &), appears similar to the final result the spreading widthy,, of the 202h states. In the following,
[Fig. 2@)] as far as the gross profile of the strength distribu-we shall focus on the effects &f;, andV,, which are con-

tion is concerned. nected to the two spreading widthg, and y,,.
Note also that there exists the residual interaction acting
among d2h states, which we cal/,, in the following. V5, 2. Spreading widths ofiplh and 2p2h states

causes configuration mixing among thp2@ states. Com-
parison between Figs(I8 and Za) indicates effects o¥/y,

on fine details of strength distribution, although the gross’ | ———— 5~ S TR R Pl
profile of strength distribution is not influenced very much. =2m(1p1h|V152p2h)*/dppon, Where(1plh|Vi;2p2h) is a root

The above observations lead us to the following doorwa))“ean square vglge of the matrix elements be,tW‘*‘?"“ and
damping picture. The quadrupole strength distribution is2p2h sFates..SlmllarIy, wg carwgmatlon of the
fragmented first in the filh subspace. Theplh TD states SPreading widthy,, as Va5 =2m(2p2h|V52p20)%/dpp,. The
then spread further overp2h states through/y,. Here the —above estimate gives;5=5.3 MeV and 755=6.0 MeV.
1p1lh TD states may be considered as doorway states in theere we have inserted (1p1lh|V,,2p2h)=98 keV,
whole damping processes. Thp2 states on the other hand (2p2h|V,,|2p2h)=104 keV, andd,»,=11.3 keV, which are
may be regarded as states that play roles of background ivaluated for all the unperturbe@lh and 22h states in the
the main damping processes since they do not dominate théhergy interval of E=20-30 MeV. Note also dipin
total damping width, but they influence the fine structures~0.5 MeV for the plh states in the same interval. Very
through the coupling to the doorway states. similar values are obtained f¢tp1h|V,2p2h) when we use

Assuming the above picture, we can consider energyhe correlated fith states(TD states instead of unperturbed
scales that may be relevant to the fine structures of the quagppys,
rup_ole strength_distribution. Concerning thplh TD states It is also possible to evaluatg, and y,, in a more direct
which are considered as the qloorwqy states, we have as &Ray by using the strength functions oplh and 22h states.
ergy scalegl) the spreading widtkwhich we denotey;o) of  gtrength function of alh state|i, 1p1h) is given by
the TD Iplh states caused by the interactidp,, in addition
to (2) the average level spacind,,;, between the filh - ; 25 ,
states. Concerning the2h states(3)pthe level spacinglyyon, S 2p10(8) % (i, tpthja)°oe~Ea* Espm),  (8)
between Pp2h states is to be notedd,;, is almost identical
to the level spacingl for the whole set of energy spectra Where|a) andE, are the eigenstates of the full calculation
since the number of @2h states is much larger than that of and their energies, respectivelydenotes the relative en-
1plh states. Note also that mixing amongp2h states ergy from the energy centroi&; ;,;, of the Iplh state
caused by the interactioN,, is characterized by4) the considered. Evaluating an averageS,(e) over all the
spreading width(y,, named in the followingof 2p2h states.  1plh states, the average strength function pii states is
We have found previously that, in the case of a schematiobtained, as shown in Fig. (&. Its FWHM gives an
model which incorporates doorway states coupled to backevaluation of the average spreading widif, of 1plh
ground states, the spreading width of doorway st&tesre-  states. Similar method can be used to evaluate the spread-
sponding toy;, in the present contextletermines the energy ing width vy,, of the 2p2h states[cf. Fig. 1Qb)]. This
scale where the local scaling dimension deviates from theirect method gives/i5'=1.5 MeV andy35'=5.2 MeV.
generic GOE limif14]. Note also that the deviation from the It is noted that the values of the spreading wigth are
GOE is seen in the energy level fluctuation by the analysis o¥ery different between the golden rule and the direct method.
the A; statistics. The energy level fluctuation is sensitive toTo investigate the difference, we evaluated root mean square
the residual interaction that causes mixing among unperalues of interaction matrix elements Wf, for individual

Let us quantify y;, and y,,. If we assume the Fermi
Sgolden rule, we obtain a simple estimate ¢f, by 3)1:2(.3
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1plh states, and found that about one-third of tipdHstates  easy in the present model due to fluctuation in the LSD. The
have significantly large value=120—200 keV as compared energy scales=1.7 MeV found for the original interaction
with the other plh states which have small value (i.e.,\,,=1) agrees with the spreading widih, of the 1plh
=30-70 keV. Corresponding golden rule estimates of thestates if we adopt the valug/T'=1.5 MeV obtained by the
spreading width ~are /;$=8.3-22MeV and %7  direct evaluation. The agreement is a little worse if we refer
=0.5-2.8 MeV, respectively. The FWHM of the averagetq the valuey;$=5.3 MeV derived from the golden rule es-
strength function of p1h states used in the direct method is timate. We expect that the fine structures are dominated by
dominated by the (i1h states having small FWHM. Accord- the group of plh states having smaller spreading width
ingly, the direct method gives much smaller val(gD yi,~1MeV, while the remaining flh states with

=1.5 MeV) than that of the golden rulg)j5=5.3 MeV). y12>10 MeV, which is larger than the total width of the
giant resonance, do not contribute to the fine structure. The
3. Dependence of LSD on ) and V, comparison with the spreading widi§J' by the direct evalu-

In order to identify the origin of the observed energy scaleation would be more appropriate singé)' reflects mainly
&=1.7 MeV, we shall analyze the dependence of the finghe first group.(On the other handy;$ based on the root
structures of the strength functions ¥p, andV,,, which are  mean square of interaction matrix elements puts emphasis on
intimately related to the spreading widthg, and y,,. For  the other group. See the preceding secjidie \,, depen-
this analysis we rescale the interaction strendgthandV,, dence and the comparison with, indicate an approximate
by factors\;, and \,,, respectively, and look into the local relation &~ yi,, for which we estimate an ambiguity by a
scaling dimension to see how the fine structures change. factor of 2.

It is seen from Fig. 11 that the fine structures probed by Figure 12 shows.,, dependence of the LSD. We imme-
the local scaling dimensio®,,(e) strongly depend on;». diately see that dependence X3 is much weaker than that
When the value o, is small,\;,=0.1, the LSD exhibits 0N Aj5. For \,,<<0.2, the LSD exhibits deviation from the
very strong deviation from the GOE limit in almost all en- GOE limit for rather wide interval of energy scale, but the
ergy scales except at very small energy seéde-1. As the  deviation itself is not very large. Ak,, increases, the LSD
value of\;, increases, the deviation becomes smaller and thapproaches the GOE limit at small energy scai@d. \,,
LSD at small energy scales coincides with the GOE limit.=0.5, for instance, the local scaling dimensions almost fol-
The energy scale’ where the LSD start to deviate from the low the GOE whene=<10d.) For A,,>0.5 the LSD is not
GOE limit moves to larger values as, increases. If\;,is  Sensitive to the change iy, and there remains the same
increased more than the original val(®@g., A;,=1.7), the  deviation from the GOE limit even up to the maximal choice
LSD almost reaches the GOE limit over almost whole energyf A»,=2.0.
scales. The above dependence\gnagrees very well with a The insensitivity to\,; for A;,>0.5 may be understood as
similar behavior found in the simple doorway dampingfollows: We first note that the energy scale of the mixing
model[14]. (In that schematic model one can account for theamong 22h states is given by the spreading widy of the
spreading widthyg, of the doorway states analyticalyjwe  2p2h states, and that the mixing properties are expected to
found in the schematic model that the energy sadlés  show up in the GOE behaviors for small energy scales satis-
proportional t0yg, as € ~vyy/5 and the energy scalé”  fying €<y In the case of the original strengty,=\»,
where the LSD decreases most steeply correspongig,te’ =1, the spreading widthAT=5.2 MeV of the 2h states is
and €* moves with the interaction between the doorway larger than the spreading widtf5'=1.5 MeV of the bih
states and the background states sipgg<v?. This behavior TD states. IfA,,<<0.5, the opposite relatiom,,< yy, is real-
is consistent with the\;, dependence in the present model.ized (n.b. moc)\gz and ylzoc)\iz), and hence the energy scale
For quantitative evaluation, we compare the spreading widthvhere the deviation from the GOE limit starts is determined
1, Of the IJplh TD states, which are considered here as théby y,.. In the case ofr,,>0.5 (including the case of the
doorway states, and the energy scalevhere the deviation original strength, on the other hand, we hawg,< y,,, and
of the LSD from the GOE limit is maximum. Here we adopt the deviation from the GOE limit is governed by,. In
the energy scale; in place ofe”, whose extraction is not principle, we can consider a possibility that the LSD exhibits
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FIG. 11. The local scaling dimensio,(e)
(m=2-5 for the ISGQR calculated by changing
values of\ 15, which is chosen a&) \1,=0.1,(b)
)\1220.4, (C) )\1220.7, (d) )\12:1.0, (e) )\12:1.4,
and(f) A,=1.9. Here\, represents the ratio be-
tween the adopted values of the Hamiltonian ma-
trix elements between the TDplh states and
2p2h states, and those of original values. The
dashed curve represerids(e) for the GOE.

the two energy scaleg;, and y,, separately. However, the interval E=20—30 MeV. The behavior of the LSD is similar

deviation related toy,, is small even wheny,<y,

to that of isoscalar strength function. Namely, the local scal-

(A\,»<0.5), making it difficult to extract the energy scale as- ing dimension almost follows the GOE limit at smaller en-
sociated withy,,. In the case of the original interaction ergy scales whereas the deviation from the GOE limit is
strength, the spreading width§2'=5.2 MeV is close to the recognized at intermediate energy scales. We also verified
total width ygg (—5 MeV) of the giant resonance, and thus it that the change of the value @f is quite sensitive to the
is difficult to be probed(Notice that we adopted a smoothing change of;, compared to the change b$, as in the case of
the ISGQR. Characteristic energy scale of the deviation
Summarizing the above two analyses, the characteristiteadse;~70d~0.9 MeV. This value is smaller than that for
energy scale of the fine structures is related to the spreadirthe isoscalar strengthig;~ 1.7 MeV) by about a factor of 2.
width vy, of the 1plh TD states, which are considered as theWe have investigated the rms value of the interaction matrix
elements to see the isospin dependence of the spreading
width of the Tamm-Dancoff states, but we could not find
clear difference between the IS and IV modes.

width of 5 MeV.)

doorway states in the giant resonance decay.

4. Isovector strength function

We have also analyzed the strength distribution for the
isovector quadrupole operator. Figuregadd&and 13b) show
the partition function and the local scaling dimension, re-
spectively, for the isovector strength function in the energyresonances described by means of the microscopic shell

054316

IV. CONCLUSIONS

We have analyzed fine structures of the giant quadrupole
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FIG. 12. The local scaling di-
mensionsD,(e) (m=2-5 for the
ISGQR calculated by changing
values of\,,, which is chosen as
(@ A22=0.1, () A2=0.4, () N2
:0.7, (d) )\22:1.0, (e) )\22:1.6,
and (f) A»»,=1.9. Here\,, repre-
sents the ratio between the
adopted values of the Hamiltonian
off-diagonal matrix elements be-
tween 22h states and those of
original values. The dashed curve
represent®,(e) for the GOE.

model including up to @2h configurations. By applying the of the characteristic energy scale in terms of the spreading
scaling analysis of strength fluctuations that utilizes the locaWidths of the blh and 22h states. We found a clear corre-

scaling dimension, we extracted the energy scale
=1.7 MeV for the ISGQR an&=0.9 MeV for the IVGQR,

lation between the characteristic energy scale and the spread-
ing width y;, of the Jplh Tamm-Dancoff states, which play

which characterize the fine structure. We discussed the origia role of doorway states in the present shell model descrip-
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FIG. 13. (a8 The partition
function x(e) (m=2-5 for the
IVGQR corresponding to the nor-
malized strength function plotted
in Fig. 6b). (b) Its local scaling
dimensionD,(€) for m=2-5. The
dashed curve represerits(e) for
the GOE.
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tion of the giant quadrupole resonancesi@a. scaling analysis provides a general tool for quantitative in-
In the present paper, we intended to illustrate how thevestigation of the fine structures, and the scaling analysis
scaling analysis can be utilized to investigate the fine strucitself can be applied to any kinds of models which exhibit
tures and their origin. Although the adopted model has soméne structures in the strength functions.
realistic features, we do not claim that the present shell
model predicts all the quantitative features of the quadrupole
strength distributions since the particle escaping width, for
instance, is neglected in the present model. Also, other The authors acknowledge helpful comments by K. Mat-
mechanisms such as the surface phonon coupling are nstiyanagi. The numerical calculations were performed at
explicitly taken into account in the present model. Appar-Yukawa Institute Computer Facility and on SX-5 at RCNP,
ently, one may need a more realistic model if one intends t@®saka University. This research was partly supported by
make a quantitative prediction or comparison with the ex-Grant-in-Aid for Science Research from the Japan Society
periment. Instead, we would like to emphasize that the localor the Promotion of SciencéNo. 14540272
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