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We performed fluctuation analysis by means of the local scaling dimension for the strength function of the
isoscalar(IS) and the isovector(IV ) giant quadrupole resonances in40Ca, where the strength functions are
obtained by the shell model calculation within up to the 2p2h configurations. It is found that at small energy
scale, fluctuation of the strength function almost obeys the Gaussian orthogonal ensemble(GOE) random
matrix theory limit. On the other hand, we found a deviation from the GOE limit at the intermediate energy
scale of about 1.7 MeV for the IS and at 0.9 MeV for the IV. The results imply that different types of
fluctuations coexist at different energy scales. Detailed analysis strongly suggests that GOE fluctuation at small
energy scale is due to the complicated nature of 2p2h states and that fluctuation at the intermediate energy scale
is associated with the spreading width of the Tamm-Dancoff 1p1h states.
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I. INTRODUCTION

Strengths of exciting high lying states in nuclei(for in-
stance, a giant resonance) are spread over a certain energy
interval due to the coupling to a background which is com-
plicated and has huge degrees of freedom. As a result, the
strength function, at a large energy scale, exhibits a global
shape profile like a Lorentzian. The values of the center of
energy or the total width depend on the properties of a probe
such as multipolarlity, isospin, and so on, and change
smoothly as the mass number of a nucleus. Most of these
values are well understood up to now[1–3]. On the other
hand, at small energy scale limit comparable to the level
spacing of the background states, the strength function may
rapidly fluctuate from state to state on top of the global pro-
file, if we neglect the escaping width due to the coupling to
the continuum. It is believed that the fluctuation properties at
this energy scale can be well simulated by the random matrix
theory of the Gaussian orthogonal ensemble(GOE) [4–7],
which has been verified by several experimental data: The
nearest-neighbor level spacing distribution(NND) of neutron
resonances near the threshold approximately follows the
Wigner distribution [7,8]. The distribution of the reduced
width (proportional to an absolute square of a component of
the wave function) of these resonances also shows the
Porter-Thomas distribution[7,8]. Furthermore, the NND of
the nuclear data ensemble shows the Wigner distribution and
the D3 statistics of them showsD3sLd~ ln L [9]. All of these
are typical signatures of the GOE.

Thus, we know well the behavior of the strength function
at both extremely small and large energy scales. From this
knowledge, one may construct the following model to de-
scribe the strength function of highly excited states in nuclei:
A collective state couples democratically to each of unper-
turbed background states, and the background Hamiltonian
itself is the GOE random matrix. This GOE background
model is closely connected with the pandemonium picture

[10,11]. If we adjust the energy of the collective state and the
coupling strength between the collective state and back-
ground states, the resultant strength function should be con-
sistent with the giant resonance strength function at least at
both extreme energy scale limits. Therefore, in order to find
the difference between a realistic strength function and that
from this model, we must investigate fluctuation properties
of the strength function at intermediate energy scale[12,13].

Recently, we proposed a new method to perform fluctua-
tion analysis of the strength function[14]. This method is
devised to quantitatively characterize a fluctuation property
as a function of energy scale by a new measure called the
local scaling dimension(LSD), and is suitable to investigate
fluctuation at intermediate energy scales. We applied this
method to a simple doorway damping model. The doorway
damping model is different from the above GOE background
model with respect to two points. First, unperturbed back-
ground states are divided into two different classes so that
unperturbed states in one class, which are called the doorway
states, couple directly to a collective state, while states in
another class do not. The second point is that doorway states
and other unperturbed background states have a finite
spreading width due to the mixing among them.(Note that
the GOE background model corresponds to the large spread-
ing width limit.) Fluctuation properties of the strength func-
tions of both models are same at small energy scale limit.
The result of the analysis clearly showed that fluctuation
properties of both strength functions deviate from each other
at a certain intermediate energy scale, and this energy scale is
closely related to the spreading width of the doorway states
in the doorway damping model.

In this paper, we apply the same method to a more real-
istic strength function of the giant resonances in a nucleus.
Strength functions of the isoscalar(IS) and the isovector(IV )
giant quadrupole resonance(GQR) in 40Ca are obtained by
the shell model calculation within up to the 2p2h configura-
tions. The strength functions reproduce the experimental cen-
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ter of energy and the total width, and also show the GOE
fluctuation at the small energy scale limit, as will be shown
later. Furthermore, in this model, the doorway structure and
the deviation from GOE in the background may be intro-
duced in a natural way, while they are input by hand in the
doorway damping model. Therefore these strength functions
may provide the better test for the analysis.

Note that a similar method of analysis was proposed and
applied to these, e8d or sp, p8d experimental data on208Pb
[15,16].

The paper is organized as follows: In Sec. II, we briefly
explain the LSD. In Sec. III, we apply the method to the
strength functions of the IS and the IV GQR. We also discuss
the physical origin of the deviation from the GOE back-
ground model in detail. Finally, Sec. IV is devoted to con-
clusions.

II. LOCAL SCALING DIMENSION

We briefly explain the local scaling dimension in this sec-
tion. See Ref.[14] for detail.

The strength function is expressed[17] as

SsEd = o
i

SidsE − Ei + E0d s1d

for exciting the nucleus with excitation energyE. HereEi
and E0 are the energy of discrete levels and the ground
state energy, respectively, andSi denotes the strength of
exciting theith energy level. Let us assume that strengths
are normalized asoi Si =1.

In order to quantitatively characterize how the strength
function fluctuates at various energy scale, we consider

binned distribution of the strength functionSsEd by dividing
whole energy interval under consideration intoL bins with
lengthe. Strength contained innth bin is denoted bypn,

pn ; o
iPnth bin

Si . s2d

To characterize the distribution of the binned strengths,
we introduce the moments of it, which are called, in lit-
erature, the partition functionxmsed defined by

xmsed ; o
n=1

L

pn
m = Lkpn

ml. s3d

Clearly, the partition functions contain, at smalle limit,
the information of the strength distribution, as well as the
energy-strength correlation as a function of a bin width or
an energy scalee.

It is then helpful to employ the idea of the generalized
fractal dimension[18,19], which is derived from the partition
function and has a definite physical meaning. The concept of
the generalized fractal dimension is useful only when a sys-
tem has a multifractal nature, namely, has a self-similar
structure against the change of the scale. Strength functions
at a nucleus generally do not have such a property. Thus, we
have to extend the concept of the generalized fractal dimen-
sion and finally reach the LSD defined by

Dmsed ;
1

m− 1

] log xmsed
] log e

. s4d

Different from the generalized fractal dimension, the local
scaling dimension characterizes “how the partition func-
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FIG. 1. (a) An example of the GOE strength
function with matrix dimension of 2048.(b) The
local scaling dimensionDmsed for the GOE
strength function obtained after the ensemble av-
erage. The curves correspond toDmsed for m
=2–5 from upper to lower.
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FIG. 2. Strength functions for
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tion scales for different energy scales” and accordingly is
a function of a bin width or an energy scalee. The local
scaling dimension, however, has an easily understandable
physical meaning similar to those of the generalized frac-
tal dimension. For instance, the value ofDmsed close to
unity means that the strength function looks like a one-
dimensional object distributed smoothly over an energy
interval when we look at the strength function at an en-
ergy scalee. On the other hand, it looks like a zero-
dimensional object, namely, a dot if the value ofDmsed is
close to zero. Note that the local scaling dimension re-
duces to the generalized fractal dimension when the value
of Dmsed is constant over a whole interval ofe.

In actual calculation of the local scaling dimension, we
define it by means of the finite difference under the change
of a factor 2,

DmsÎ2ed =
1

m− 1

logxms2ed − logxmsed
log2

, s5d

rather than the derivative in Eq.s4d. Using the finite dif-
ference, the calculation is very simple for all the mo-
ments.

One of the important strength functions may be the one
obtained from the GOE random matrix. The local scaling
dimension of this GOE strength function can be used as a
reference to study other strength functions which are sup-
posed to have fluctuation properties similar to the GOE, as in
the case of nuclear strength functions in the highly excited
region. We show in Fig. 1 an example of the GOE strength
function and the local scaling dimensionDmsld, where l
;e/d (the bin width measured in the unit of the level spacing
d) is used as the scaling parameter.

III. ANALYSIS OF THE GIANT QUADRUPOLE
RESONANCES IN 40Ca

We apply the local scaling dimension to the strength func-
tions of the giant quadrupole resonances in40Ca.

A. Numerical calculation of strength functions

We calculated the strength functions of the isoscalar and
the isovector giant quadrupole resonances in40Ca within the
second Tamm-Dancoff approximation including the 1p1h
and 2p2h excitations. Single-particle wave-functions and en-
ergies were obtained in terms of a Woods-Saxon potential
including the Coulomb interaction. To simulate the bare
(Hartree-Fock) single-particle energies«HF, the above single-
particle energies«WS were scaled by the effective massm*/m
as«HF=«WS/sm*/md. As the residual interaction, the Landau-
Migdal–type interaction [20] including the density-
dependence was adopted. The model space was constructed
in terms of single-particle states within the four major shells,
two below and two above the Fermi surface, and included all
1p1h and 2p2h states whose unperturbed energies were less
than 50 MeV. Resultant number of 1p1h states and 2p2h
states are 34 and 4144, respectively. We diagonalized the

Hamiltonian within this model space and obtained the
strength functions for the isoscalar and the isovector quadru-
pole operators.

Figures 2(a) and 2(b) show the strength functions for IS-
GQR and IVGQR, respectively. The mean energy and the
total width (the standard deviation) are 23 MeV s31 MeVd
and 4.0 MeV s7.0 MeVd for the ISGQR(IVGQR). The ef-
fective massm*/m=0.9 was used to reproduce the empirical
mean energy for IVGQR in40Ca [3]. These strength func-
tions were already used in Refs.[21] and [22] to study the
generic properties of nuclear giant-resonance decay.

B. Several measures

Before going to the detailed discussion for the local scal-
ing dimension, we briefly show other fluctuation measures.
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FIG. 3. The nearest-neighbor level spacing distribution for lev-
els between 20 and 30 MeV. Level spacings were unfolded by the
Strutinsky method with a smoothing width of 5 MeV. The dashed
curve represents the Wigner distribution.
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Figure 3 shows the NND, where levels between 20 MeV
and 30 MeV are considered(the number of levels is 804),
and are unfolded by means of the Strutinsky method with a
smoothing width of 5 MeV[23]. The NND follows the
Wigner distribution rather well, which indicates that at the
very small energy scale the level fluctuation almost obeys the
GOE. The importance of the particle-hole type residual in-
teraction among 2p2h states to generate GOE level fluctua-
tion was discussed in Ref.[24]. We also plot in Fig. 4 theD3
statistics. We again find that at small energy range theD3
follows the GOE line. AtLmax.15, however,D3 starts to
deviate from the GOE line to upward. This value ofLmax

roughly corresponds to the energy scaleE.0.18 MeV.
Figure 5 shows the strength distribution where the distri-

bution of the square root of normalized strengthsSi is plotted
as a histogram; strengths are normalized also by Strutinsky
method, detailed procedure of which will be explained in the
following section. We can see that the strength distribution
follows considerably well the Porter-Thomas distribution.

C. Results of the local scaling dimension

Since we are not interested in the global shape of the
strength function, it is convenient to introduce the normal-
ized strength function where the global smooth energy de-
pendence is removed from the original strength function as
follows:

Si = NSir̃sEid

S̃sEid
. s6d

Here, S̃sEd and r̃sEd are obtained by averaging the calcu-
lated strength functionfEq. s1dg and the level density

rsEd=oi dsE−Ei +E0d, respectively, by the Strutinsky
method. We adopted 5 MeV as a smoothing width.N is an
overall normalization factor to guaranteeoi Si =1 for the
considered energy interval. Moreover, we adopt as energy
levels the equidistant onesf14g, namely,Ei = id, whered
denotes average level spacing. By adopting these levels,
we can neglect global energy dependence of the level den-
sity and the local level fluctuation.sWe verified that the
inclusion of the local level fluctuation affects only the
behavior of the LSD at small energy scales, and this effect
can be described by the GOE.d Thus, we obtain the nor-
malized strength functionSsEd;

SsEd = SiSidsE − Ei + E0d. s7d

The local scaling dimension is derived from this normal-
ized strength function. Finally, since the visible strengths
of ISGQR are almost concentrated in the energy range
between 20 MeV and 30MeV, we adopt this energy inter-
val for analysis. The normalized strength functions for
ISGQR and IVGQR are plotted in Figs. 6sad and 6sbd,
respectively.

First, let us discuss the ISGQR case in detail. The case of
the IVGQR will be discussed in Sec. III D 4. Figures 7(a)
and 7(b) show the partition functionsxmsed defined by Eq.
(3) and the local scaling dimensionsDmsed defined by Eq.
(5), respectively. The horizontal axes in both figures repre-
sent the bin width of energy axis in unit ofd, whered rep-
resents the average level spacing over the energy range
20–30 MeVsd.12 keVd. From the partition functionxmsed,
one sees that the fluctuation does not follow the power scal-
ing law (or linear relation in the log-log plot). Correspond-
ingly, the local scaling dimensionDmsed varies as a function
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of e. At small energy scale, the values ofDmsed gradually
increase as the energy scalee increases, and almost follow
the GOE line. As the energy scalee increases further, the
values ofDmsed bend downwards and then again turn to in-
crease. The behavior ofDmsed around this energy scale
clearly deviates from the GOE limit. The value of the energy
scale where the deviation is maximum is roughlyef.140d
.1.7 MeV . From these observations, we again find that at
small energy scale, fluctuation of the strength function is
essentially governed by the GOE, as one knows from other
measures such as the NND or the strength distribution. The
scaling analysis by means of the local scaling dimension,
however, can reveal the new feature which may not be real-
ized by other measures. Namely, the GOE fluctuation is lim-
ited to the small energy scale, while, at intermediate energy
scales, a different fluctuation from the GOE arises.

One may wonder that the statistical error could produce a
fictitious dip, since the number of levels considered 804 is
not so large. Of course, there may be a statistical error. Ac-
cordingly, we should take the energy scaleef.140d
.1.7 MeV mentioned above as a rough estimate. The exis-
tence of the dip itself, however, is not due to a statistical
error. This would be verified from a systematic analysis in
the following section. Note that the simple estimate of the
standard deviation of themth local scaling dimension is
ssDmd.Î3m/ÎNtot [14], and in the present case for the sec-
ond local scaling dimension,ssD2d.0.12.

A type of the smoothing procedure to obtain the normal-
ized strength function does not much affect the results. In-
deed, we verified that the Gaussian smoothing instead of the
Strutinsky smoothing leads to the essentially same results.

D. Origin of the deviation from the GOE

We shall investigate the origin of the observed energy
scaleef=1.7 MeV characteristic to the fine structures in the
isoscalar quadrupole strength function.

1. Doorway damping mechanism

For this purpose we consider a damping mechanism by
separating the shell model space to 1p1h and 2p2h sub-
spaces, and we focus on the residual interactions within and
between the subspaces. The giant resonance is a collective
vibrational state whose dominant component is a coherent
superposition of 1p1h configurations. The collective state
can be described by the Tamm-Dancoff(TD) approximation,
which corresponds to a truncated shell model where only
1p1h configurations are taken into account. The result of the
TD approximation(TDA) is shown in Fig. 8(a), and is com-
pared with the full shell model calculation including up to
2p2h’s [Fig. 2(a)]. It is seen that the peak position is well
reproduced by the TDA. Note also that the isoscalar quadru-
pole strength in the TDA is spread over many eigenstates,
which are correlated 1p1h states. This spreading of the quad-
rupole strength among 1p1h states is often called the Landau
damping. Comparing Figs. 8(a) and 2(a), the Landau damp-
ing is found to give dominant contribution to the total full
width at half maximum(FWHM) of the strength function.

If we take into account the 2p2h configurations, the inter-
action acting between 1p1h and 2p2h states(abbreviated as
V12) takes part. Since the 2p2h states have much more de-
grees of freedom,V12 causes spreading of the TD 1p1h
states. Because of this spreading of 1p1h states, the quadru-
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pole strength is also fragmented byV12 on top of the Landau
damping at the TDA level. To see the effect ofV12, we per-
formed a calculation where unperturbed 2p2h states and the
interactionV12 is introduced. The resultant strength distribu-
tion, shown in Fig. 8(b), appears similar to the final result
[Fig. 2(a)] as far as the gross profile of the strength distribu-
tion is concerned.

Note also that there exists the residual interaction acting
among 2p2h states, which we callV22 in the following. V22
causes configuration mixing among the 2p2h states. Com-
parison between Figs. 8(b) and 2(a) indicates effects ofV22
on fine details of strength distribution, although the gross
profile of strength distribution is not influenced very much.

The above observations lead us to the following doorway
damping picture. The quadrupole strength distribution is
fragmented first in the 1p1h subspace. The 1p1h TD states
then spread further over 2p2h states throughV12. Here the
1p1h TD states may be considered as doorway states in the
whole damping processes. The 2p2h states on the other hand
may be regarded as states that play roles of background in
the main damping processes since they do not dominate the
total damping width, but they influence the fine structures
through the coupling to the doorway states.

Assuming the above picture, we can consider energy
scales that may be relevant to the fine structures of the quad-
rupole strength distribution. Concerning the 1p1h TD states
which are considered as the doorway states, we have as en-
ergy scales(1) the spreading width(which we denoteg12) of
the TD 1p1h states caused by the interactionV12, in addition
to (2) the average level spacingd1p1h between the 1p1h
states. Concerning the 2p2h states,(3) the level spacingd2p2h
between 2p2h states is to be noted.(d2p2h is almost identical
to the level spacingd for the whole set of energy spectra
since the number of 2p2h states is much larger than that of
1p1h states.) Note also that mixing among 2p2h states
caused by the interactionV22 is characterized by(4) the
spreading width(g22 named in the following) of 2p2h states.
We have found previously that, in the case of a schematic
model which incorporates doorway states coupled to back-
ground states, the spreading width of doorway states(corre-
sponding tog12 in the present context) determines the energy
scale where the local scaling dimension deviates from the
generic GOE limit[14]. Note also that the deviation from the
GOE is seen in the energy level fluctuation by the analysis of
the D3 statistics. The energy level fluctuation is sensitive to
the residual interaction that causes mixing among unper-

turbed configurations. We found that the energy level fluc-
tuation is governed byV22, but not byV12, as shown in Fig.
9. Thus we can consider another possibility that the energy
scale of the deviation from the GOE limit may be related to
the spreading widthg22 of the 2p2h states. In the following,
we shall focus on the effects ofV12 andV22 which are con-
nected to the two spreading widthsg12 andg22.

2. Spreading widths of1p1h and 2p2h states

Let us quantifyg12 and g22. If we assume the Fermi
golden rule, we obtain a simple estimate ofg12 by g12

FG

=2pk1p1huV12u2p2hl2/d2p2h, wherek1p1huV12u2p2hl is a root
mean square value of the matrix elements between 1p1h and
2p2h states. Similarly, we can make an estimation of the
spreading widthg22 as g22

FG=2pk2p2huV22u2p2hl2/d2p2h. The

above estimate givesg12
FG.5.3 MeV and g22

FG.6.0 MeV.
Here we have inserted k1p1huV12u2p2hl=98 keV,
k2p2huV22u2p2hl=104 keV, andd2p2h=11.3 keV, which are
evaluated for all the unperturbed 1p1h and 2p2h states in the
energy interval of E=20–30 MeV. Note also d1p1h
<0.5 MeV for the 1p1h states in the same interval. Very
similar values are obtained fork1p1huV12u2p2hl when we use
the correlated 1p1h states(TD states) instead of unperturbed
1p1h’s.

It is also possible to evaluateg12 andg22 in a more direct
way by using the strength functions of 1p1h and 2p2h states.
Strength function of a 1p1h stateui, 1p1hl is given by

Si,1p1hsed = o
a

ki, 1p1hual2dse− Ea + Ei,1p1hd, s8d

whereual andEa are the eigenstates of the full calculation
and their energies, respectively.e denotes the relative en-
ergy from the energy centroidEi,1p1h of the 1p1h state
considered. Evaluating an average ofSi,1p1hsed over all the
1p1h states, the average strength function of 1p1h states is
obtained, as shown in Fig. 10sad. Its FWHM gives an
evaluation of the average spreading widthg12 of 1p1h
states. Similar method can be used to evaluate the spread-
ing width g22 of the 2p2h statesfcf. Fig. 10sbdg. This
direct method givesg12

dm=1.5 MeV andg22
dm=5.2 MeV.

It is noted that the values of the spreading widthg12 are
very different between the golden rule and the direct method.
To investigate the difference, we evaluated root mean square
values of interaction matrix elements ofV12 for individual
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1p1h states, and found that about one-third of the 1p1h states
have significantly large value.120–200 keV as compared
with the other 1p1h states which have small value
.30–70 keV. Corresponding golden rule estimates of the
spreading width are g12

FG=8.3–22 MeV and g12
FG

=0.5–2.8 MeV, respectively. The FWHM of the average
strength function of 1p1h states used in the direct method is
dominated by the 1p1h states having small FWHM. Accord-
ingly, the direct method gives much smaller valuesg12

dm

=1.5 MeVd than that of the golden rulesg12
FG=5.3 MeVd.

3. Dependence of LSD on V12 and V22

In order to identify the origin of the observed energy scale
ef=1.7 MeV, we shall analyze the dependence of the fine
structures of the strength functions onV12 andV22, which are
intimately related to the spreading widthsg12 and g22. For
this analysis we rescale the interaction strengthV12 andV22
by factorsl12 and l22, respectively, and look into the local
scaling dimension to see how the fine structures change.

It is seen from Fig. 11 that the fine structures probed by
the local scaling dimensionDmsed strongly depend onl12.
When the value ofl12 is small, l12=0.1, the LSD exhibits
very strong deviation from the GOE limit in almost all en-
ergy scales except at very small energy scalee/d,1. As the
value ofl12 increases, the deviation becomes smaller and the
LSD at small energy scales coincides with the GOE limit.
The energy scalee* where the LSD start to deviate from the
GOE limit moves to larger values asl12 increases. Ifl12 is
increased more than the original value(e.g., l12=1.7), the
LSD almost reaches the GOE limit over almost whole energy
scales. The above dependence onl12 agrees very well with a
similar behavior found in the simple doorway damping
model[14]. (In that schematic model one can account for the
spreading widthgdw of the doorway states analytically.) We
found in the schematic model that the energy scalee* is
proportional togdw as e* <gdw/5 and the energy scalee**

where the LSD decreases most steeply corresponds togdw. e*

and e** moves with the interactionv between the doorway
states and the background states sincegdw~v2. This behavior
is consistent with thel12 dependence in the present model.
For quantitative evaluation, we compare the spreading width
g12 of the 1p1h TD states, which are considered here as the
doorway states, and the energy scaleef where the deviation
of the LSD from the GOE limit is maximum. Here we adopt
the energy scaleef in place ofe** , whose extraction is not

easy in the present model due to fluctuation in the LSD. The
energy scaleef=1.7 MeV found for the original interaction
(i.e., l12=1) agrees with the spreading widthg12 of the 1p1h
states if we adopt the valueg12

dm=1.5 MeV obtained by the
direct evaluation. The agreement is a little worse if we refer
to the valueg12

FG=5.3 MeV derived from the golden rule es-
timate. We expect that the fine structures are dominated by
the group of 1p1h states having smaller spreading width
g12,1 MeV, while the remaining 1p1h states with
g12.10 MeV, which is larger than the total width of the
giant resonance, do not contribute to the fine structure. The
comparison with the spreading widthg12

dm by the direct evalu-
ation would be more appropriate sinceg12

dm reflects mainly
the first group.(On the other hand,g12

FG based on the root
mean square of interaction matrix elements puts emphasis on
the other group. See the preceding section.) The l12 depen-
dence and the comparison withg12 indicate an approximate
relation ef,g12, for which we estimate an ambiguity by a
factor of 2.

Figure 12 showsl22 dependence of the LSD. We imme-
diately see that dependence onl22 is much weaker than that
on l12. For l22,0.2, the LSD exhibits deviation from the
GOE limit for rather wide interval of energy scale, but the
deviation itself is not very large. Asl22 increases, the LSD
approaches the GOE limit at small energy scales.(At l22
=0.5, for instance, the local scaling dimensions almost fol-
low the GOE whene&10d.) For l22.0.5 the LSD is not
sensitive to the change inl22, and there remains the same
deviation from the GOE limit even up to the maximal choice
of l22=2.0.

The insensitivity tol22 for l22.0.5 may be understood as
follows: We first note that the energy scale of the mixing
among 2p2h states is given by the spreading widthg22 of the
2p2h states, and that the mixing properties are expected to
show up in the GOE behaviors for small energy scales satis-
fying e,g22. In the case of the original strengthl12=l22

=1, the spreading widthg22
dm=5.2 MeV of the 2p2h states is

larger than the spreading widthg12
dm=1.5 MeV of the 1p1h

TD states. Ifl22,0.5, the opposite relationg22,g12 is real-
ized (n.b. g22~l22

2 andg12~l12
2 ), and hence the energy scale

where the deviation from the GOE limit starts is determined
by g22. In the case ofl22.0.5 (including the case of the
original strength), on the other hand, we haveg12,g22, and
the deviation from the GOE limit is governed byg12. In
principle, we can consider a possibility that the LSD exhibits
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FIG. 10. (a) The strength func-
tion of the 1p1h state averaged
over all 1p1h states within the en-
ergy intervalE=20–30 MeV and
(b) the strength function of the
2p2h states averaged over the
same energy interval.
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the two energy scalesg12 and g22 separately. However, the
deviation related tog22 is small even wheng22,g12
sl22,0.5d, making it difficult to extract the energy scale as-
sociated withg22. In the case of the original interaction
strength, the spreading widthsg22

dm=5.2 MeV is close to the
total widthgGR s,5 MeVd of the giant resonance, and thus it
is difficult to be probed.(Notice that we adopted a smoothing
width of 5 MeV.)

Summarizing the above two analyses, the characteristic
energy scale of the fine structures is related to the spreading
width g12 of the 1p1h TD states, which are considered as the
doorway states in the giant resonance decay.

4. Isovector strength function

We have also analyzed the strength distribution for the
isovector quadrupole operator. Figures 13(a) and 13(b) show
the partition function and the local scaling dimension, re-
spectively, for the isovector strength function in the energy

interval E=20–30 MeV. The behavior of the LSD is similar
to that of isoscalar strength function. Namely, the local scal-
ing dimension almost follows the GOE limit at smaller en-
ergy scales whereas the deviation from the GOE limit is
recognized at intermediate energy scales. We also verified
that the change of the value ofef is quite sensitive to the
change ofl12 compared to the change ofl22 as in the case of
the ISGQR. Characteristic energy scale of the deviation
readsef,70d,0.9 MeV. This value is smaller than that for
the isoscalar strengthssef,1.7 MeVd by about a factor of 2.
We have investigated the rms value of the interaction matrix
elements to see the isospin dependence of the spreading
width of the Tamm-Dancoff states, but we could not find
clear difference between the IS and IV modes.

IV. CONCLUSIONS

We have analyzed fine structures of the giant quadrupole
resonances described by means of the microscopic shell
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FIG. 11. The local scaling dimensionsDmsed
sm=2–5d for the ISGQR calculated by changing
values ofl12, which is chosen as(a) l12=0.1, (b)
l12=0.4, (c) l12=0.7, (d) l12=1.0, (e) l12=1.4,
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dashed curve representsD2sed for the GOE.
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model including up to 2p2h configurations. By applying the
scaling analysis of strength fluctuations that utilizes the local
scaling dimension, we extracted the energy scaleef
=1.7 MeV for the ISGQR andef=0.9 MeV for the IVGQR,
which characterize the fine structure. We discussed the origin

of the characteristic energy scale in terms of the spreading
widths of the 1p1h and 2p2h states. We found a clear corre-
lation between the characteristic energy scale and the spread-
ing width g12 of the 1p1h Tamm-Dancoff states, which play
a role of doorway states in the present shell model descrip-
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tion of the giant quadrupole resonances in40Ca.
In the present paper, we intended to illustrate how the

scaling analysis can be utilized to investigate the fine struc-
tures and their origin. Although the adopted model has some
realistic features, we do not claim that the present shell
model predicts all the quantitative features of the quadrupole
strength distributions since the particle escaping width, for
instance, is neglected in the present model. Also, other
mechanisms such as the surface phonon coupling are not
explicitly taken into account in the present model. Appar-
ently, one may need a more realistic model if one intends to
make a quantitative prediction or comparison with the ex-
periment. Instead, we would like to emphasize that the local

scaling analysis provides a general tool for quantitative in-
vestigation of the fine structures, and the scaling analysis
itself can be applied to any kinds of models which exhibit
fine structures in the strength functions.
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