Absence of classical long-range order in an $S=\frac{1}{2}$ Heisenberg antiferromagnet on a triangular lattice

Nobuo Suzuki, ${ }^{1, *}$ Fumitaka Matsubara, ${ }^{2}$ Sumiyoshi Fujiki, ${ }^{1}$ and Takayuki Shirakura ${ }^{3}$
${ }^{1}$ Faculty of Science and Technology, Tohoku Bunka Gakuen University, Sendai 980-8551, Japan
${ }^{2}$ Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan
${ }^{3}$ Faculty of Humanities and Social Sciences, Iwate University, Morioka 020-8550, Japan

(Received 22 November 2013; revised manuscript received 30 October 2014; published 14 November 2014)

Abstract

We study the quantum phase transition of an $S=\frac{1}{2}$ anisotropic $\alpha\left(\equiv J_{z} / J_{x y}\right)$ Heisenberg antiferromagnet on a triangular lattice. We calculate the sublattice magnetization and the long-range helical order parameter and their Binder ratios on finite systems with $N \leqslant 36$ sites. The N dependence of the Binder ratios reveals that the classical 120° Néel state occurs for $\alpha \lesssim 0.55$, whereas a critical collinear state occurs for $1 / \alpha \lesssim 0.6$. This result is at odds with a widely held belief that the ground state of a Heisenberg antiferromagnet is the 120° Néel state, but it also provides a possible mechanism explaining experimentally observed spin liquids.

DOI: 10.1103/PhysRevB. 90.184414
PACS number(s): 75.10.Jm

Because an exotic spin state may occur as a result of lowdimensional quantum fluctuations and geometric frustration, the $S=\frac{1}{2}$ quantum antiferromagnetic Heisenberg (QAFH) model on the triangular lattice is one of the central issues in solid-state physics. Anderson proposed a resonating-valencebond (RVB) state or a spin-liquid (SL) state as the ground state (GS) [1]. Since then, many theoretical studies have focused on identifying the GS by using different methods such as spin-wave (SW) theory [2], variational Monte Carlo techniques [3,4], series expansions [5,6], exact diagonalizations (ED) of finite systems [7-11], quantum Monte Carlo techniques [12], density matrix renormalization group theory [13], and diagrammatic Monte Carlo techniques [14]. The GS is now widely believed to be a long-range-order (LRO) state with the 120° sublattice structure (the 120° Néel state) because the results of most numerical studies can be analyzed by using this image [6, 9, 11,12]. However, experimental developments have enabled us to synthesize model compounds such as $\kappa-(\mathrm{ET})_{2} \mathrm{Cu}_{2}(\mathrm{CN})_{3}$ [15], $\mathrm{EtMe}_{3} \mathrm{Sb}\left[\mathrm{Pd}(\mathrm{dmit})_{2}\right]_{2}$ [16], and $\mathrm{Ba}_{3} \mathrm{IrTi}_{2} \mathrm{O}_{9}$ [17]. In these compounds, no spin ordering has been observed down at very low temperatures; several mechanisms have been proposed to resolve this discrepancy, such as spatial anisotropy [18,19], ring exchange [20], and spinon interaction [21].

Before examining these mechanisms, we must first carefully reexamine the GS properties of the QAFH model because the base of the 120° Néel GS is not yet solidly established. In particular, even in the most widely accepted studies, the magnitude of the sublattice magnetization (SMAG) m^{\dagger} is not compatible. SW theory in finite systems [9] and the quantum Monte Carlo technique [12] suggest $m^{\dagger}=0.4 \sim 0.5$ in the classical case units of $m^{\dagger}=1$, whereas numerical series expansions suggest either $m^{\dagger} \sim 0$ [5] or some small value [6]. In the ED technique up to $N=36$ spins, results depend on the scaling functions, which gives either $m^{\dagger} \sim 0.5[9,11]$ or $m^{\dagger} \sim 0$ [10]. The quantum Monte Carlo technique [12] does not satisfactorily reproduce ED results for $N=12$ and 36 .

In the present paper, we report that the GS of the QAFH model differs from the 120° Néel state. We consider

[^0]finite systems with $N(\leqslant 36)$ sites in the usual way, but take a different approach. To investigate the quantum phase transition, we consider an anisotropic model. We calculate the SMAG and the long-range helical order (LRHO) parameter and examine the Binder ratios of these quantities. We find that, in concurrence with recent results, the GS is a critical state with collinear structure in the Ising-like range and a 120° Néel state in the $X Y$-like range. In contrast, the GS is a SL state in the Heisenberg-like range. We estimate an anisotropy threshold for the occurrence of the critical state and for the 120° Néel state.

We start with an anisotropic model on periodic finite lattices described by the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=2 J \sum_{\langle i, j\rangle}\left[S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}+\alpha S_{i}^{z} S_{j}^{z}\right] \tag{1}
\end{equation*}
$$

where $J>0, \alpha \geqslant 0$, and the sum runs over all the nearestneighbor pairs of sites. Note that the model with $\alpha=\infty$ is an Ising model for which the GS is a critical state characterized by a power-law decay of the spin correlation function [22]. At the other limit, the model with $\alpha \sim 0$ is an $X Y$-like model for which the 120° Neel state is suggested to occur [10,23]. We discuss the spin structure of the Heisenberg-like model with $\alpha \sim 1$ by comparing the properties of this model with those of the Ising- and $X Y$-like models. The main issue is whether $m^{\dagger} \neq 0$ or not.

By using a power method, we calculate the GS eigenfunction $\left|\psi_{G}\right\rangle$ for two types of lattices, A and B, with $N \leqslant 36$ sites. Type-A lattices have $N=9,12,21,27,36$, and type-B lattices have $N=15,18,24,30,33$. The shapes of the type-A lattices were presented in Ref. [10]; for this lattice type, the sublattices Ω_{1}, Ω_{2}, and Ω_{3} are equivalent. The type-B lattices are constructed so that the 120° Néel structure is possible in the classical case. The SMAG of the type-A lattices, and in particular their N dependence, have already been studied by several groups [9-11]. However, for these small systems, the data strongly depend on the parity and magnitude of N. In the present work, we add to these the data for type-B lattices.

First, we consider the SMAG. The v component ($v=$ $x, y, z)$ of the square of the magnetization of the Ω_{l} sublattice

FIG. 1. (Color online) z and $x y$ components of the SMAG $\left[\left\langle m_{2}^{z}\right\rangle_{N}\right.$ and $\left\langle m_{2}^{x}\right\rangle_{N}\left(\equiv\left\langle m_{2}^{x y}\right\rangle_{N} / 2\right)$, respectively] in the GS as functions of α.
is defined as

$$
\begin{equation*}
m_{l}^{\nu}=\frac{1}{(N / 6)^{2}}\left(\sum_{i \in \Omega_{l}} S_{i}^{\nu}\right)^{2} \tag{2}
\end{equation*}
$$

and the $x y$ component is defined as $m_{l}^{x y}=m_{l}^{x}+m_{l}^{y}$. Figure 1 shows the $x y$ and z components of the SMAGs $\left\langle m_{2}^{\mu}\right\rangle_{N}(\equiv$ $\left.\frac{1}{3} \sum_{l}^{3}\left\langle m_{l}^{\mu}\right\rangle_{N}\right)(\mu=z, x y)$ as functions of α, where $\langle A\rangle_{N}=$ $\left\langle\psi_{G}\right| A(N)\left|\psi_{G}\right\rangle$. For $\alpha \sim 0,\left\langle m_{2}^{x y}\right\rangle_{N}$ has a large value and is only weakly dependent on size, whereas $\left\langle m_{2}^{z}\right\rangle_{N}$ is small and depends strongly on size. As α increases, $\left\langle m_{2}^{x y}\right\rangle_{N}$ gradually decreases and $\left\langle m_{2}^{z}\right\rangle_{N}$ increases, and $\left\langle m_{2}^{z}\right\rangle_{N}=\left\langle m_{2}^{x y}\right\rangle_{N} / 2$ at $\alpha=1$. The reverse is true for $1 / \alpha \sim 0$. The results at $\alpha \sim 0$ and $1 / \alpha \sim 0$ seem to be compatible with the classical picture of the GS. However, in contrast with the classical case, $\left\langle m_{2}^{z}\right\rangle_{N}$ (or $\left\langle m_{2}^{x y}\right\rangle_{N}$) does not abruptly increase (or decrease) as α is increased across the Heisenberg point $\alpha=1$.

We now examine the quantum phase transition of the model by considering the dependence of α on $\left\langle m_{2}^{z}\right\rangle_{N}$ and $\left\langle m_{2}^{x y}\right\rangle_{N}$. The SMAG at $\alpha=1$ for $N \rightarrow \infty$ has been estimated by several groups [9-11] who used different scaling relations. However, the result depends on both the units of the sublattice magnetization and the scaling functions. Here we consider the Binder ratios [24] of $\left\langle m_{2}^{z}\right\rangle_{N}$ and $\left\langle m_{2}^{x y}\right\rangle_{N}$ which are free from the scaling function and their units. The Binder ratios of $\left\langle m_{2}^{z}\right\rangle_{N}$ and $\left\langle m_{2}^{x y}\right\rangle_{N}, B_{m}^{z}(N)$ and $B_{m}^{x y}(N)$, respectively, are defined as

$$
\begin{gather*}
B_{m}^{z}(N)=\left[3-\left\langle m_{4}^{z}\right\rangle_{N} /\left\langle m_{2}^{z}\right\rangle_{N}^{2}\right] / 2, \tag{3}\\
B_{m}^{x y}(N)=\left[5-3\left\langle m_{4}^{x y}\right\rangle_{N} /\left\langle m_{2}^{x y}\right\rangle_{N}^{2}\right] / 2, \tag{4}
\end{gather*}
$$

where $\left\langle m_{4}^{\mu}\right\rangle_{N} \equiv \frac{1}{3} \sum_{l}^{3}\left\langle\psi_{G}\right|\left(m_{l}^{\mu}\right)^{2}\left|\psi_{G}\right\rangle$.
We first examine the GS of the Ising-like model for $1 / \alpha<1$. In Fig. 2, we plot $B_{m}^{z}(N)$ as functions of $1 / \alpha$. The dependence of $B_{m}^{z}(N)$ on N differs somewhat for N odd or even. For N even, $B_{m}^{z}(N)$ at $1 / \alpha \sim 1$ decreases with increasing N, revealing that $\left\langle m_{2}^{z}\right\rangle_{N}$ vanishes as $N \rightarrow \infty$. As $1 / \alpha$ decreases, $B_{m}^{z}(N)$ for different N increase, come together at $1 / \alpha \sim 0.6$, and then gradually increase thereafter. This

FIG. 2. (Color online) Binder ratios $B_{m}^{z}(N)$ as functions of $1 / \alpha$. The ratios for N even and odd are shown by solid and open symbols, respectively.
result is consistent with the fact that the GS is critical at $1 / \alpha=0$ [22]. For N odd, although $B_{m}^{z}(N)$ are larger than for N even, even at $1 / \alpha \sim 0$ they decrease with increasing N. To resolve this discrepancy, we show in Fig. 3 a plot of $B_{m}^{z}(N)$ as a functions of $1 / N$. We see that, as N increases, $B_{m}^{z}(N)$ for odd N approach those for even N. Thus, we conclude that the decrease of $B_{m}^{z}(N)$ for small N is an abnormal finite-size effect that comes from the difference in the ratio $r_{z}=M_{z} / N$, with M_{z} being the z component of the total-spin number [25]. The slopes of the fitting lines of $B_{m}^{z}(N)$ vs $1 / N$ shown in Fig. 3 are almost zero for $1 / \alpha \lesssim 0.6$. We suggest that the GS is the critical state for $\alpha>\alpha_{c}^{z}$ with $1 / \alpha_{c}^{z} \sim 0.6$.

Next we examine the GS of the $X Y$-like model for $\alpha<1$. Figures 4 and 5 show plots of $B_{m}^{x y}(N)$ as functions of α and of $1 / N$, respectively. We see in Fig. 5 that $B_{m}^{x y}(N)$ for N odd also exhibit the abnormal finite-size effect; they take on values larger than those for N even, and approach the N-even values as N increases. We thus consider the dependence of $B_{m}^{x y}(N)$ on N for N even. At $\alpha \sim 0, B_{m}^{x y}(N)$ increases with N. This result is consistent with the recently reported presence of the LRO in

FIG. 3. (Color online) Binder ratios $B_{m}^{z}(N)$ for different $1 / \alpha$ as functions of $1 / N$. Ratios for N even and odd are shown by circles and crosses, respectively. The straight lines for N even are the leastsquares fits for $N \geqslant 18$.

FIG. 4. (Color online) Binder ratios $B_{m}^{x y}(N)$ as functions of α. Ratios for N even and odd are shown by solid and open symbols, respectively.
the $X Y$ model [10]. However, at $\alpha \sim 1, B_{m}^{x y}(N)$ decreases with increasing N, which reveals that $\left\langle m_{2}^{x y}\right\rangle_{N}$ vanishes as $N \rightarrow \infty$. The most remarkable point is that $B_{m}^{x y}(N)$ for different N cross at $\alpha \sim 0.55$ (see also Fig. 5). Thus, we suggest that a quantum phase transition between the SL state and the LRO state occurs at $\alpha=\alpha_{c}^{x y}(\sim 0.55)$.

We now consider the helicity, which gives a complementary view of the spin ordering (i.e., it is sensitive to the 120° structure). The local helicity [7] for each upright triangle at \vec{R} is defined by

$$
\begin{equation*}
\vec{\chi}(\vec{R})=\frac{2}{\sqrt{3}}\left(\vec{S}_{i} \times \vec{S}_{j}+\vec{S}_{j} \times \vec{S}_{k}+\vec{S}_{k} \times \vec{S}_{i}\right) \tag{5}
\end{equation*}
$$

The order of $i \rightarrow j \rightarrow k$ is counterclockwise. The LRHO parameter in the v component is defined as

$$
\begin{equation*}
\chi_{2}^{v}=\frac{1}{N^{2}}\left[\sum_{\vec{R} \in \Delta} \chi^{\nu}(\vec{R})\right]^{2} \tag{6}
\end{equation*}
$$

FIG. 5. (Color online) Binder ratios $B_{m}^{x y}(N)$ for different α as functions of $1 / N$. Ratios for N even and odd are shown by circles and crosses, respectively. The straight lines for N even are the leastsquares fits for $N \geqslant 18$.

FIG. 6. (Color online) z and $x y$ components of LRHO parameter $\left(\left\langle\chi_{2}^{z}\right\rangle_{N}\right.$ and $\left\langle\chi_{2}^{x y}\right\rangle_{N}$, respectively) in the GS as functions of α.
where the sum is over all upright triangles. We consider the LRHO parameter in the $x y$ plane, χ_{2}^{z}, and in a plane orthogonal to the $x y$ plane (hereinafter called the $y z$ plane), $\chi_{2}^{x y}\left(=\chi_{2}^{x}+\right.$ χ_{2}^{y}). Note that χ_{2}^{z} was already calculated by several authors [7,10,23]. Here we add $\chi_{2}^{x y}$ to examine the occurrence of a distorted 120° structure in the $y z$ plane. In the classical case, $\chi_{2}^{z}=1$ and $\chi_{2}^{x y}=0$ for $0 \leqslant \alpha_{x y}<1$, whereas $\chi_{2}^{z}=0$ and $\chi_{2}^{x y} \lesssim 1$ for $1 / \alpha \lesssim 1$ (i.e., χ_{2}^{z} and $\chi_{2}^{x y}$ suddenly exchange their role at $\alpha=1$).

Figure 6 shows $\left\langle\chi_{2}^{z}\right\rangle_{N}$ and $\left\langle\chi_{2}^{x y}\right\rangle_{N}$ as functions of α. We see that $\left\langle\chi_{2}^{z}\right\rangle_{N}$ has properties similar to those of $\left\langle m_{2}^{x y}\right\rangle_{N}$: it takes on a large value at $\alpha \sim 0$ and decreases with increasing α. However, the dependence of $\left\langle\chi_{2}^{x y}\right\rangle_{N}$ on α differs somewhat from that of $\left\langle m_{2}^{z}\right\rangle_{N}$; although it increases with α, its increment is suppressed for $\alpha>1(1 / \alpha<1)$. In particular, it reaches a maximum at $1 / \alpha \sim 0.4$ and then decreases. This is a consequence of the spin state becoming collinear at the Ising limit $1 / \alpha \rightarrow 0$. Note that, even for $1 / \alpha \sim 0.4,\left\langle\chi_{2}^{x y}\right\rangle_{N}$ depends strongly on N, which reveals the absence of the $x y$ component LRHO in this model. That is, the critical state for $\alpha>\alpha_{c}^{z}$ has a collinear spin structure along the z axis. A remarkable point is that, like $\left\langle m_{2}^{z}\right\rangle_{N}$ and $\left\langle m_{2}^{x y}\right\rangle_{N},\left\langle\chi_{2}^{z}\right\rangle_{N}$ and $\left\langle\chi_{2}^{x y}\right\rangle_{N}$ for $\alpha<1$ are smoothly connected with those for $\alpha>1$. This result supports the finding above that the spin structure does not change abruptly at the Heisenberg point $\alpha=1$.

To examine the presence of the 120° structure in the $x y$ plane, we consider the Binder ratio $B_{\chi}^{z}(N)$ of $\left\langle\chi_{2}^{z}\right\rangle_{N}$, which is defined as

$$
\begin{equation*}
B_{\chi}^{z}(N)=\left(3-\left\langle\chi_{4}^{z}\right\rangle_{N} /\left\langle\chi_{2}^{z}\right\rangle_{N}^{2}\right) / 2 \tag{7}
\end{equation*}
$$

Figure 7 shows plots of $B_{\chi}^{z}(N)$ as functions of α. We see that $B_{\chi}^{z}(N)$ exhibit properties quite similar to $B_{m}^{x y}(N)$; the abnormal finite-size effect of $B_{\chi}^{z}(N)$ for N odd at $\alpha \sim 1 B_{\chi}^{z}(N)$ is smaller as N increases, and at $\alpha \sim 0$ the reverse is true. The most interesting point is that $B_{\chi}^{z}(N)$ for different N even intersect at $\alpha \sim 0.6$. This value of $\alpha \sim 0.6$ is consistent with the critical value $\alpha_{c}^{x y} \sim 0.55$ that is estimated from $B_{m}^{x y}(N)$. That is, the LRHO accompanies the LRO of the SMAG.

FIG. 7. (Color online) Binder ratios B_{χ}^{z} as functions of α. Ratios for N even and odd are shown by solid and open symbols, respectively.

Thus, we conclude that a quantum phase transition from the SL state to the 120° Néel state occurs at $\alpha=\alpha_{c}^{x y} \sim 0.55$. We should note, however, that further studies are necessary to establish the critical value of $\alpha_{c}^{x y}$ as well as that of α_{c}^{z}.

We thus studied the GS property of the anisotropic quantum antiferromagnetic Heisenberg (QAFH) model on a finite triangular lattice with $N \leqslant 36$ sites. We find that the GS of the model is the 120° Néel state for $\alpha<$ $\alpha_{c}^{x y}(\sim 0.55)$ and is the critical collinear state for $1 / \alpha<$ $1 / \alpha_{c}^{z}(\sim 0.6)$. That is, classical LRO is absent at $\alpha \sim 1$. Although this result contrasts strongly with recent theoretical ideas, it is consistent with recent experiments. We hope that our results will stimulate both theoretical and experimental works in low-dimensional frustrated quantum systems.

Some of the results in this research were obtained using the supercomputing resources at Cyberscience Center, Tohoku University.
[1] P. W. Anderson, Mat. Res. Bull. 8, 153 (1973).
[2] S. J. Miyake, J. Phys. Soc. Jpn. 61, 983 (1992), and references therein .
[3] D. A. Huse and V. Elser, Phys. Rev. Lett. 60, 2531 (1988).
[4] P. Sindzingre, P. Lecheminant, and C. Lhuillier, Phys. Rev. B 50, 3108 (1994).
[5] R. R. P. Singh and D. A. Huse, Phys. Rev. Lett. 68, 1766 (1992).
[6] N. Elstner, R. R. P. Singh, and A. P. Young, Phys. Rev. Lett. 71, 1629 (1993).
[7] S. Fujiki and D. D. Betts, Can. J. Phys. 65, 76 (1987); 65, 489 (1987); Suppl. Prog. Theor. Phys. 87, 268 (1986).
[8] H. Nishimori and H. Nakanishi, J. Phys. Soc. Jpn. 57, 626 (1988); 58, 2607 (1989); 58, 3433 (1989).
[9] B. Bernu, C. Lhuillier, and L. Pierre, Phys. Rev. Lett. 69, 2590 (1992); B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Phys. Rev. B 50, 10048 (1994).
[10] P. W. Leung and K. J. Runge, Phys. Rev. B 47, 5861 (1993).
[11] J. Richter, J. Schulenburg, A. Honecker, and D. Schmalfuss, Phys. Rev. B 70, 174454 (2004).
[12] L. Capriotti, A. E. Trumper, and S. Sorella, Phys. Rev. Lett. 82, 3899 (1999).
[13] S. R. White and A. L. Chernyshev, Phys. Rev. Lett. 99, 127004 (2007).
[14] S. A. Kulagin, N. Prokof'ev, O. A. Starykh, B. Svistunov, and C. N. Varney, Phys. Rev. Lett. 110, 070601 (2013).
[15] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys. Rev. Lett. 91, 107001 (2003).
[16] T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato, Phys. Rev. B 77, 104413 (2008).
[17] T. Dey, A. V. Mahajan, P. Khuntia, M. Baenitz, B. Koteswararao, and F. C. Chou, Phys. Rev. B 86, 140405(R) (2012).
[18] H. Morita, S. Watanabe, and M. Imada, J. Phys. Soc. Jpn. 71, 2109 (2002).
[19] S. Yunoki and S. Sorella, Phys. Rev. B 74, 014408 (2006).
[20] O. I. Motrunich, Phys. Rev. B 72, 045105 (2005).
[21] S.-S. Lee, P. A. Lee, and T. Senthil, Phys. Rev. Lett. 98, 067006 (2007).
[22] J. Stephenson, J. Math. Phys. 5, 1009 (1964).
[23] N. Suzuki and F. Matsubara, Phys. Rev. B 51, 6402 (1995).
[24] K. Binder, Z. Phys. B 48, 319 (1982).
[25] As r_{z} increases, B_{m}^{z} increases because the number of basis states decreases. For N odd, $r_{z}(=1 / 2 N)$ decreases with increasing N, which weakens the effect, and it is absent for N even.

[^0]: *nobu@ait.tbgu.ac.jp

