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Abstract 

Reversible computing is generally considered to be an unconventional form of com

puting, which has drawn considerable attention from researchers in order to design 

low-power computing devices. Furthermore, reversible logic plays an important role 

in the field of quantum computation. However, the synthesis of reversible logic for 

building quantum circuits is notably dissimilar from the synthesis of non-reversible 

logic. In the process of reversible logic synthesis, the design of reversible functions is 

very important and the embedding of irreversible functions into reversible functions 

is required before they can be applied to existing synthesis methods. 

In this thesis, we focus on logic synthesis and optimization of reversible and quan

tum circuits for arithmetic logic units (ALUs). The main concept of our approach is 

different from those of existing related studies; in particular, we put emphasis on func

tion design. ALU is a key element for any programmable computing device. In the 

design of AL Us, an adder/subtractor block is another important key element. A faster 

adder/subtractor block help improve the efficiency of the AL Us performance and that 

of the whole system. In this thesis, we propose a design of reversible adder/subtractor 

blocks and ALUs. Our approach to investigate the reversible functions includes (a) 

the embedding of irreversible functions into incompletely-specified reversible func

tions, (b) the operation assignment (OA), and (c) the permutation of function out

puts. Moreover, we provide some extensions of these techniques to further improve 

the design of reversible functions. 

We propose a minimization algorithm to obtain minimum multiple-control Toffoli 

(MCT) circuits. The algorithm comprises the OA and the permutation of function 

outputs to reduce the number of gates in a circuit. We use hash tables of minimum 

MCT circuits, which are simply constructed using an exhaustive enumeration of gate 

combinations. The resulting reversible circuits are smaller than existing designs in 

terms of the number of MCT gates. To evaluate the quality of the reversible circuits, 

we also propose a greedy algorithm and obtain reduced quantum circuits. The results 
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demonstrate the superiority of our realization of adder/subtractor blocks and ALUs 
with respect to quantum cost. 
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Chapter 1 

Introduction 

1.1 Introduction 

In the modern age of science and technology, the world of computing is in a transition 

period. As chips become smaller and faster, the amount of dissipated heat, which 

is the energy that is entirely wasted, is increasing. According to Rolf Landauer's 

principle, the thermodynamic cost of a bit of information acquisition or destruction 

is, at least, kTln2 [Joule], where k is the Boltzmann's constant and T is the tem

perature [2]; at room temperature, the amount of dissipated heat per bit is small 

(i.e., 2.9 x 10-21 [Joule]). According to Moore's Law, the advancement of technolo

gies is achieved by the exponential downscaling of transistors and the doubling of 

the number of transistors per area unit every 18 months [3]. However, reducing the 

transistor's size and placing a high volume of transistors on a chip can lead to severe 

problems related to stable computing in nanoscale devices. 

Logic synthesis is the process of realizing logic functions in terms. of primitives 

(gates). In today's computers, whenever a logical operation is performed part o� 
the information is erased. Logic operations in computing devices with conventional 

technology are performed using the logic gates AND, OR, and NOT. The AND and 

OR gates are irreversible in the sense that they destroy infori:nation as they give a 

single output for multiple inputs. To recover the destroyed information, additional 

computation is needed, which means the system will eventually dissipate heat to 

generate the destroyed information. Hence, it is essential to find more efficient forms 

of computation or alternative forms of computation to overcome such problems. One 

of the outside runners in the race to take the world of logic by storm is reversible 

computing. Reversible computing is the path to future computing technologies, which 

all happen to use reversible logic. 
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I Design of Reversible Functions I 
i 

I Reversible Circuit Synthesis I 
i 

I Quantum Circuit Synthesis I 

Figure 1.1: Overview of the design flow of reversible synthesis 

Synthesis of reversible logic has been an active research area. Reversible logic has 
the same number of inputs and outputs with a one-to-one mapping between vectors of 
inputs and outputs; thus, the vector of input states can always be reconstructed from 
the vector of output states. Consequently, a computation is reversible if it is always 
possible to uniquely recover the input for a given output. Designs with information 
loss are not logically reversible [2]. Bennet [4] showed that reversible computation . 
can be potentially performed without losing energy. Systems that are not reversible 
can be transformed into reversible systems by storing all the input information. This 
promising approach reduces energy loss: However, many computational problems, 
such as integer factoring, are exponentially hard to solve. 

Recently, several studies have investigated reversible circuit synthesis [5, 6, 7, 
8]. Figure 1.1. shows an overview of the design flow of reversible synthesis. The 
primary goal of designing cost-efficient reversible circuits is to minimize the cost of 
the circuits in terms of a few metrics such as the number of constant inputs, garbage 
outputs [9, 10] , reversible gates [11] , and quantum cost (QC) [12, 13, 14, 15]. Constant 
inputs are lines that exist on the input side with a certain fixed logical value, either 
0 or 1, whereas garbage outputs exist on the output side and do not perform any 
useful operation to facilitate further computations. Both constant input� and garbage 
outputs are simply added to the circuit at the design stage of reversible functions to 
maintain reversibility. 

From published studies, it was observed that multiple-control Toffoli (MCT) gates 
can be extensively used to synthesize a reversible circuit [16, 17, 18]. Therefore, the 
number of MCT gates is generally used as the cost metric during the stage of reversible 
circuit synthesis. A reversible circuit is further decomposed into cascades of elemen
tary quantum gates [19, 20, 2_1] , which is called a quantum: circuit. Recently, much 
attention has been given to the synthesis-of quantum circuits because of the potential 
to exponentially speed-up quantum computation. At the stage of the quantum circuit 
synthesis, the QC is the most common cost metric, which is measured by counting 
the number of elementary quantum gates required to implement the quantum circuit. 
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The fundamental unit of information in quantum computation is the qubit. The 
computational basis states of a qubit are analogous to the states of a bit in classi
cal computation [22]. According to the principles of quantum mechanics, the logic 
operation of quantum systems is entirely different from its classical counterpart [22]. 
The qubit can be described by a state vector in a two-dimensional complex vector 
space. An infinite state space can be found in this computation by superposition of 
states [22]. The transition between states of a quantum system is described by a 
unitary transformation. Unitary operations are reversible and no information is lost 
in the process. In building a general-purpose quantum computer, it is important to 
embed Boolean logic functions into quantum gates and devices. 

Quantum gates are represented by unitary matrices, which may include com-. 
plex elements [22], and many sets of gates are unive�sal. The most commonly used 
quantum gate library includes Toffoli and NCV (NOT, CNOT, Controlled-V, and 
Controlled- vt gates). The underlying methods for synthesis include embedding irre
versible functions into reve:['.sible functions, realizing reversible circuits from reversible 
functions, and mapping reversible circuits into quantum circuits. Reversible functions 
are a special case of multiple output Boolean log;ic functions and can be realized by 
quantum circuits by cascading quantum gates. The cost factors for quantum circuits 
are the number of elementary quantum gates used and the number of qubits. More
over, the QC is the most prevalent criteria to measure the quality of circuits. The 
resulting decomposed quantum circuits can be further optimized in order to reduce 
the QC. 

The most promising application of reversible logic is quantum computation. Quan
tum operations are all reversible, and every classical reversible circuit may be imple
mented in quantum technology. Researchers have used quantum computation to solve 
many practically relevant problems faster than traditional computing machines. For 
example; the factorization problem in polynomial time can be $olved by quantum com
putation, whereas, only exponential algorithms are known for traditional machines. 
Even. though research in this area is still on its early stages, promising applications 
to future computing devices motivate further research. · 

Reversible computing is considered as an unconventional form of computing, but 
it has recently drawn considerable attention from researchers in order to design low
power computing devices. The arithmetic logic unit (ALU) is a key element for any 
programmable computing devices. In the design of ALUs, an adder/subtractor blo�k 
is an important key element. A faster adder/subtractor block helps improve the 
efficiency of the ALUs performance and that of the whole system. In this thesis, 
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we focus on logic synthesis and optimization of reversible and quantum circuits for 
AL Us by putting emphasis on the function design, which .makes our approach different 
from those of existing related studies. Our approach to investigate reversible func
tions includes (a) the embedding of irreversible functions into incompletely-specified 
reversible functions, (b) the operation assignment ( OA) , and ( c) the permutation of 
function outputs. We also give some extensions of these techniques to further improve 
the design of reversible functions. The objective of this research is to design AL Us or 
adder/subtractor blocks that have better performance and lower power consumption 
than existing systems. Therefore, it is important to have fast reversible ALUs and 
adder hmbtractor blocks because their performance could affect the efficiency of the 
whole system. 

Over the last decades, Toffoli, Peres, and Fredkin are conventionally used to syn
thesize reversible circuits. Here, we adopt the MCT gate library to design reversible 
adder/subtractor and simple ALU circuits. As far as we know, there are no exist
ing works on the optimization of reversible full adder/subtractor -circuits ·using only 
the MCT gate library with the lowest possible number of working lines, constant 
inputs, and garbage outputs though the MCT gate library is the most fundamen
tal and widely-used gate library for the synthesis of reversible circuits. The major 
contributions of this work are as follows: 

1. Embedding of irreversible functions into incompletely-,.specified reversible func
tions. The functions of the adder/subtractor and ALU are irreversible. To 
obtain a reversible circuit of an irreversible function, we embed the irreversible 
function into1 an incompletely-specified function to make it reversible. We _set 
a restriction in which only the minimum necessary ancilla lines are added for 
embedding. Ancilla lines refer to when additional input Boolean variables are 

. needed to construct the output function. Minimization of the number of re
versible gates, ancilla lines, and garbage outputs is one of the major goals in 
reversible logic design and synthesis. 

2. The operation assignment: This is the unique and interesting point is our idea 
of · improvement of reversible circuits. We introduce a new approach called 
synthesis with OA. It is a permutation of groups of rows in a truth table. Even 
if the set of operations is the same, the functions consisting of the operations 
vary according to the assignment of the operations. Our approach is to try all 
permutations of operations and find the minimum circuit realization. 
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3. Permutation of function outputs. The idea of permutation · of outputs of a re
versible function was originally introduced by Wille et al. [23] , called as Synthe-

. sis with Output Permutation (SWOP). SWOP can be easily applied by encoding 
all output permutations, synthesizing each in one turn, and keeping the best 
one. 

4. Minimization algorithm. We propose a minimization algorithm to obtain the 
minimum MCT circuits. It consists of the OA and the permutation of function 
outputs to further reduce the number of gates in a circuit. We use the hash 
tables of minimum MCT circuits with up to seven gates for 4-bit functions and 
five gates for 5-bit functions. The tables are constructed by enumerating all 
possible gate combinations. 

5. Quantum circuit synthesis. We obtain quantum circuits of our reversiblE: adder/subtractors 
and ALUs by applying a greedy algorithm. The algorithm performs the trans-
formation of a given MCT circuit into a quantum circuit, searches a pair of 
adjacent gates in the circuit by moving the gate according to the moving rule , 
and applying different rules to obtain the reduced quantum circuit. The ex-
ecution of moving and reducing gate is repeated if the quantum gates in the 
quantum circuit are reduced successively. 

This thesis is organized as follows. 

• In Chapter 2, we outline some preliminaries of reversible and quantum circuits. 
We also defineirreversible and reversible logic functions. The fundamentals of 
quantum computation will- help readers to understand logic representations in 
quantum computations. 

• In Chapter 3, we analyze and identify problems of previous synthesis and opti
mization approaches. 

• In Chapter 4, we propose design techniques specific to reversible functions , of 
adder/subtractor blocks and ALUs. 

• In Chapter 5, we discuss the proposed minimization algorithm for MCT circuits 
and obtain the minimum MCT circuits of adder/subtractor and ALUs. We also 
discuss the experimental results of minimum MCT circuits as compared with 
existing counterparts. 
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• In Chapter 6, we describe the transformation of MCT circuits into quantum 
circuits with the NCV gate library and the reduction of the quantum circuits 
with a simple greedy algorithm. We also show how the experimental results 

. demonstrate the superiority of our realization of adder/subtractor blocks and 
ALUs with respect to the QC. 

• In Chapter 7, we summarize our contributions, culminating with suggestions 
for future works. 
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Chapter 2 

Basic Definitions 

This chapter provides basic definitions and notations to keep this thesis self-contained. 
In this chapter, �ome important factors of Boolean logic functions, reversible com
puting, and quantum computation are explained. 

2.1 Boolean Logic Functions 

A logic function can be a top-level design entity, which is a logic function that is the 
root of a design hierarchy, or a lower-level logic function. In binary relation from the 
set A to B, a function is denoted by 

f:A---tB, 

where for each element a EA there exists a uni9.ue element b EB. The relation may 
be many-to-one or one-to-one. A k-input Boolean logic function 

defined over the set B = {O, 1}, represents certain propositions whose results would 
either be 1 (true) or O (false). 

Table 2.1: Truth table of a 2-input OR gate Input Output 
00 0 
01 1 
10 1 11 1 

Logic synthesis is the process of realizing logic functions in terms of primitives 
(gates). Logic operations in computing devices with conventional technology are 
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Table 2.2: Truth table of a NOT gate 
Input Output 

-0 1 
1 0 

performed by using the logic gates AND, OR, and NOT. Table 2.1 shows the logic 
function of a 2-input OR gate. The AND and OR gates are not reversible because 
they destroy information whenever as they provide a single output for two inputs. On 
the other hand, the logic function of the NOT gate has a one:-to-on� correspondence 
between input and output. That is, nD information is lost in the logic operation of the 
NOT gate, and hence, it is reversible. An example of a reversible function is shown 
in Table 2.2. 

2.2 Reversible Logic Functions 

The main object in reversible logic theory is the reversible function, defined as fol
lows [5, 9]. 

Definition 1 The function f(x1, x2, ... , Xn) of n Boolean variables is called reversible 
if: 

1. the number of outputs is equal to the number of inputs. 

2: any input pattern maps to a unique output pattern. 

In the literature, reversible functions are also referred to as classical reversible 
. functions [22]. Table 2.3 shows a classical reversible function. 

Table 2.3: Classical reversible function 
Input Output 

00 00 
01 01 10 11 11 10 

In other words, the output of a reversible function is a permutation of the set of 
its input [5], [24]. For an (n, k) function, i.e., a function with n-inputs k-outputs, it 
is necessary to add inputs and/or outputs to make it reversible: This leads to the 
following definition. 
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a ---+(D-+-. +-_ - a El:l 1 
(a) 

a� a 

b----EB- b El:l a 

(b) 

a

l

a 

b b 

c c El:l a.b 

(c) 

Figure 2.1: MCT gate library: (a) NOT, (b} CNOT, and (c) Toffoli. 

Definition 2 "Garbage" is the number of outputs added to make an (n, k) function 
reversible. While the word "constant inputs" is used to denote the preset value inputs 
that were. added to an ( n, k) function to make it reversible. The constant inputs are 
known as ancilla inputs. 
The relation between garbage outputs and constant inputs is as follows [5], [24]. 
# input + # constant input = # output + # garbage 

2.3 Reversible Gates 

Several reversible gates have been proposed in the last few decades, from which 
the Toffoli, Peres, Feynman, arid Fredkin are conventionally used to synthesize re
versible circuits. Recently, researchers have proposed different gate libraries such as 
MCT; multiple-control Fredkin (MCF); Peres (P); NOT, CNOT, and Toffoli (NCT); 
multiple-control Toffoli and Peres (MCT+P); multiple-control Toffoli and multiple
control Fredkin (MCT+MCF). Among them, the MCT gate library is the most widely 
used for reversible logic synthesis. Thus, we use it to design a reversible circuit. 

Definition 3 A multiple-control Toffoli (MCT) gate has (k-l) control lines {x1,x2, 

... , Xk-1} and one target line Xk, whose function is a mapping from (x1, x2, .. . , Xk-1, 

xk) fo (x1, x2, ... , Xk-1, (x1x2 · · · Xk-1) EB xk)- For the case k = l, the gate maps x1 to 
1 EB X1. 

Here, an MCT gate with ( k - l) controls is denoted by Toffoli-k. Toffoli-1 and Toffoli-
2 are also called NOT and Controlled-NOT (CNOT), respectively, whereas Toffoli-3 
is the original Toffoli gate. The schematics of MCT gates ar_e shown in Fig. 2.1. The 
control lines are denoted by black dots ( • ), whereas the target line is denoted by E9. 
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a-----------------,---91 

b-a1-+-t--1-�-o 1 

C-+-t-+----J--g 2 

o------+-+-02 

Figure 2.2: Reversible circuit. 
2.4 Reversible Circuits 

A reversible function can be realized by cascading reversible gates where fan-out and 
feedback are not directly allowed in the realization of a reversible circuit. In reversible 
circuits, each variable of the function is represented using a circuit line. A Boolean 
function that is not reversible can be transformed into a reversible function by adding 
extra-working lines to ensure reversibility. The extra inputs in a reversible function 
can be preset to a constant value, which can either be O or 1. The extra outputs 
are referred to as· garbage outputs. Figure 2.2 shows a reversible circuit with three 
reversible gates, one constant input (0), two garbage outputs (g1, g2), and two outputs 
(o1 , o2). Minimum numbers of reversible gates, constant inputs, and garbage outputs 
are the properties of a good quality of reversible circuit. In this work, we focus on 
minimizing the MCT gate count in reversible circuits. 

2.5 Quantum Computation 

The logic representation in quantum computation is quite different from that in clas
sical computation. The basic unit of information in quantum computation is a qubit 
represe�ted by a state vector. The states IO) � ( �) or I 1) = ( �) are known as the 
computational basis states. The state of an arbitrary qubit a ID)+ (3 II) is described 
by the vector (;) , where a and (3 are complex numbers that satisfy the constraint 
lai2 + lf31 2 = 1. The measurement of a qubit can either be O with probability lal2 or 
1 with probability lf31 2 . Similarly, a generalized 2-qubit state can be described [1] as · (A1) 

I"') - A, 100) + A, 101) + A, 110) + A, 111) - �: '
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Table 2.4: Quantum gate symbols and unitary matrices [1]. 
Gate Name Gate Symbols Matrix 

a G) ol (0 
t) NOT 1 

a
4

01 '1 0 0 O' 

CNOT b o2 D l 0 0 
0 0 D 1 

,o 0 1 o, 

a
�

ol 

(� 
D D 

(l
�

i)) Controlled-V .b V o2 1 D 
0 (Hi) 

2 

0 (1-i) (Hi) 
� 

a 
' 

ol 

(� 
D D 

(l
�

i)) Controlled-vt b---@-02 1 D 
0 (1-i) 

-2-

0 (Hi) (1-i) 
� 

where A1A4 = A2A3 for non-entanglement. 
On the contrary, a classical bit has a state that can either be O or 1, which is 

analogous to the measurement of a qubit state of ID) or 11) respectively. The main 
difference between bits and qubits is that the former can be in the state O or 1, 
whereas the latter can be in a superposition of ID) and 11). 

2.6 Quantum Gates 

Quantum gates are the building blocks of quantum circuits, similar to classical logic 
gates, e.g., AND, OR, and NOT, being the building blocks of conventional digital 
circuits. Several quantum gates have been defined and studied, but we concentrate 
on the elementary quantum gates NOT, CNOT, Controlled-V, and Controlled-Vt, 
which are also known as quantum primitives. This set of gates is known as the NCV 
gate library. These gates have been widely used in the synthesis of binary reversible 
functions. Elementary gates are represented by unitary matrices. A gate which acts 
on k qubits is represented by a 2k x 2k unitary matrix [22] , which may include complex 
elements, as shown in Table 2.4. 

The 2-line Controlled-V gate changes the target line using the transformation 
defined by the matrix V = 1ti ( �

i 
�i) if the single -control line has. a value of 

1. The 2-line Controlled-Vt gate changes the target line using the transformation 
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a~ -,------,--01 a~ -,------,--01 
. b--ffi-= ---{y]-{y}--02 b--ffi-= ---@-@-02 

(a) (b) 

a-,-, --,----,-o 1 a-,-, -,------,--o 1 · 

b{SZ}-= --El:t--@-02 bfil = ----4---{y}- o2 

a CD CD 
(a) 

(c) (d) 

Figure 2.3: Splitting and merging rules 

a--,..-.,.-o 1 a 

o 1 b-E9--E9-02 b 
(b) 

Figure 2.4: Deletion rule. 

o1 

o2 

defined by the matrix vt = v-1 = 1
~i G i) if the single control line has a value 

of L The gates V and vt are referred to as square-root-of-NOT gates because V2 = 

(Vt)2 = (~ ~). . 

The Controlled-V and Controlled-Vt gates are inverses of each other, whereas 

NO(I' and CNOT (generally MCT gates) are self-inverse gates. Two adjacent Controlled

V ( or Controlled-Vt) gates with the same target and control can be replaced by a 

CNOT. A primitive fromCNOT, Controlled-V, and Controlled-Vt can be represented 

by a pair of other primitives, as shown in Fig. 2.3; this is referred to as the splitting 

rule. The inverse of the splitting rule is the merging rule. 

If ,two adjacent gates form the identity function, then they can be deleted, this 

known as the deletion rule. Therefore, two NOT gates, two CNOT gates, and an 

adjacent (Controlled-V, Controlled-Vt) pair (any order) with the same target and 

control can be eliminated, as depicted in Fig. 2.4. 

The mobility of gates is determined using the following property [11], which is 

called the moving rule. 

Property 1 (Moving rule) Two adjacent gates g 1 and g2 with controls ci and c2 

and targets l 1 and l 2 , respectively, can be interchanged if t2 ~ c1 a.nd l 1 ~ c2, 
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b 
(a) 

o2 

(c) 

Figure 2.5: M_erged 2-qubit gate. 

Example 1 An elementary quantum gate has zero or one control and one target. 
Only a NO T gate has no control. In Fig. 2. 7 ( a)

1 
gates 91 and g2 with controls {a} 

and { b} and targets c and c 1 respectively, can be interchanged because c (/. {a} and 
c (/. {b }. Subseqµently1 gates g1 and g3 with controls {a} and {a} and targets c and b 1 

respectively, can be interchanged because they satisfy the same condition. Thus, the 
gate g1 can be moved to any other location in the circuit. 

The deletion and merging rules reduce the quantum gates in· a circuit, whereas 
the moving rule enhances the applicability of the deletion and merging rules. 

Hung et al. [25] showed that when both CNOT and Controlled-V ( or Controlled
vt) are operating on the same two qubits in a symmetric pattern as shown in Fig. 2.5, 
their total QC is considered to be one as well. We call this the 2-qubit gate rule in 
the QC metrics. 

The main concept of Hung et al. [25] came from the work by J. Smolin and 
D. DiVincenzo [26]. They considered the merged 2-qubit gate as another type of 
fundamental 2x2 reversible logic gate referred to as the integrated qubit gate [26]. This 
gate is implemented with a Feynman gate with either a Controlled-V or Controlled 
V + gate. The QC of the integrated qubit gate is 1 ,- and its worst-case delay is 1. 
They also presented an analytic construction of 3-bit quantum Fredkin gate that uses 
orrly five quantum gates, each acting on only two qubits. It is realized using two 
Feynman gates, a Controlled-V gate, and two integrated qubit gates. The quantum 
representation of the Fredkin gate is shown in Fig. 2.6. The second and third gates 
in Fig. 2.6 are each acting on the same two bits, and therefore can be replaced by a 
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a-----+----+-t---... --+--�-p 

.....-1-+-- q 

Figure 2.6: Quantum gate representation of the Fredkin Gate. 
single 2-bit gate. Similarly, the last two gates are two adjacent gates acting on the same two bits. By merging these two gates, a 5-gate design is produced. 
2. 7 Quantum Circuits 

A quantum circuit is a model for quantum computation and can be realized using cascading quantum gates. Quantum operations are all reversible, and every classi-
1 cal reversible circuit may be implemented in quantum technology. The number of elementary quantum gates required to implement a reversible circuit is the QC of a reversible circuit. The QC is an important parameter to determine the quality of quantum and reversible circuits. Note that a reversible circuit may have multiple quantum circuit realizations. For example, Figure 2. 7 shows four realizations of the Toffoli-3 gate. Figure 2. 7 (b) is.the reverse representation of Figure 2.7 (a). Figures 2.7 (c) and (d) are obtained by interchanging the Controlled-V and Controlled-Vt in Figures 2.7 (a) and (b), respectively. The QC of the circuits in Figure 2. 7 is 5 as they each consists of five quant�m gates. However, during the transformation of MCT circuits, into quantum circuits, the QC of MCT circuits may differ according to the selection of the quantum gate realization of Toffoli gates. For example, consider the MCT circuit in Figure 2.2. The circuit has two Toffoli-3 gates. If the two Toffoli gates are replaced by the realization in Figure 2.7 (a), the QC of the circuit becomes 9. However, if the first Toffoli gate is replaced by the realization in Figure 2.7 (a) and if the second gate is replaced by the realization in Figure 2. 7 (b), the QC becomes 8. The selection of an appropriate realization of the Toffoli gate does not affect the· functionality of the circuits; however, it may provide better quality circ�its in terms of the quantum gate count. This concept is used in the reduction of the QC in Chapter 6. 
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Figure 2. 7: Quantum circuit. 
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Chapter 3 

Literature Review 

This chapter provides previous synthesis and optimization approaches used to design 
the AL Us and adder/subtractor block. We know that the logic unit is a key element in 
programmable computing devices and an adder/ sub�ractor block is also an important 
element in designing ALU. A faster adder/subtractor block will increase the efficiency 
of the ALUs performance and that of the whole system. Here, the objective is to 
design ALUs or adder/subtractor blocks that have better performance and lower 
power consumption than existing systems. In this chapter, we discuss several designs 
of ALUs and adder/subtractor blocks based on reversible logic. 

3.1 Related Works 

Rangaraju et al. [27] proposed three designs for reversible half and full adder /subtractor 
circuits using a different gate library that includes Feynman [28], Fredkin, TR, and 
Peres gates. In some of the cases, their designs require five or more working lines, a 
large number of reversible gates, constant inputs, and garbage outputs with a high 
QC. Moghimi et al. [29] proposed a new 4x4 universal reversible gate as a cost-efficient 
full adder/subtractor in terms of reversible and quantum metrics. They have shown 
improvements over existing full adder/subtractor designs by comparing the number 
of reversible gates, garbage outputs, constant inputs, and the QC. Sultan et al. [30] 
proposed a full adder/subtractor circuit using Feynman and Peres gates, showing im
provements over the previous work [27] in terms of the number of reversible gates, 
garbage outputs, constant inputs, and the QC. Table 3.1 shows a summary of related 
works on reversible adder/subtractor circuits. 

Gupta et al. [33] proposed areversible LU with eight operations using five inputs. 
The Mini-ALU reported in Revlib [34] can perform four operations, i.e., OR, AND, 
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Table 3.1: Comparison of existing reversible adder/subtractor circuits. 
Reversible and quantum metrics Design Reversible Constant Garbage QC Gates Inputs Outputs 

Design 1 [27] 8 3 5 21 
Design 2 [27] 4 1 3 14 
Design 3 [27] 4 1 3 10 Design 1 [31] 8 5 

.. 

28 
Design 2 [31] 10 5 8 24 

Design [32] 3 2 4 18 
Design [29] 1 0 2 11 
Design [30] 4 3 1 10 

ADD, and Identity. Both ALUs were implemented using the MCT gate library. 
Table 3.2 shows a summary of related works on reversible AL Us. 

Table 3 2· Related works on reversible ALUs . . . Reversible Gates QC Design [33] 18 114 
Design [34] 6 62 

As seen in Figure 1: 1, the design flow of reversible synthesis comprises three stages. 
We found that related works for reversible adder/subtractors and ALUs have limited 
the analysis of the level of reversible function design. Here, we investigate the func
ti�n design thoroughly to improve reversible circuits. The minimization problem for 
MCT circuits is also extended accordingly. As a result, we obtain the minimum MCT 
circuits of the adder/subtractors and the ALUs. We also provide the quantum cir
cuits of our reversible adder/subtractors. There were very few works that proposed 
the quantum circuit implementation for the adder/subtractors, while obtaining the 
quantum circuit is the goal of the reversible synthesis. 

In this thesis, we adopt th.e MCT gate library to design reversible adder/subtractor 
and simple ALU circuits. As far as we know, there are no existing works on the 
optimization of reversible full adder/subtractor circuits using only the MCT gate 
library with the lowest possible number of working lines, constant inputs, and garbage 
oµtputs even though the MCT gate library is the most fundamental and widely-used 
gate library for the synthesis of reversible circuits. 
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Chapter 4 

Design of Reversible Functions 

In the process of reversible logic synthesis, the design of reversible functions is very 
important and the embedding of irreversible functions into reversible functions is 
required before they can be applied to existing synthesis methods. Irreversible func
tions can be embedded into incompletely-specified or completely specified reversible 
functions [23] depending on which synthesis methods used. In this chapter, we em
bed irreversible functions into incompletely-specified reversible functions because the 
synthesis method we used supports it. Note that many syntheses approaches require 
a completely specified function so that often all don't care must be assign�d to a 
concrete value. 

This chapter also discusses the unique · and interesting method to improve re
versible circuits. The whole process of reversible circuit synthesis is different from 
that of related works; we try improvements on the level of the functional design. Our 
approq,ch to investigate the reversible functions includes the following: 

• Embedding irreversible functions into incompletely-specified reversible functions 
• OA, 

• Permutation of the function outputs 
Moreover, we provide some extensions of these techniques . to deal with a set of 
incompletely-specified reversible functions. 

4. 1 Embedding Irreversible Functions into 

Incompletely-Specified Reversible Functions 

The functions of the adder/subtractor and ALU are irreversible. To obtain a re
versible circuit of an irreversible function, we embed the irreversible function into an 
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incompletely-specified function to make it reversible. Here, we set a restriction in which only the minimum necessary ancilla lines are added for embedding. Ancilla lines refer to when additional input Boolean variables are needed to construct the output function. Consider the functional specification of ALU in Table 4.1, where '- ' 
denotes the don't-care value. We added two garbage outputs to the irreversible function to.embed it into a reversible function. The garbage outputs are the columns of the don't-care values in the truth table. Therefore, this function is called an incompletelyspecified reversible function .. The required garbage outputs depend on the maximum number of repetition of an output pattern in the truth table. If the number of repetitions is M, flog2 Ml garbage outputs are necessary [10]. In Table 4. 1, the output patterns (0) and (1) are repeated four times for the input {0100, 1000, 1001, 1010} and {0101, 0110, 0111, 1011}, respectively, which is the maximum number of repetitions. When flog2 41 = 2, two garbage outputs are added. However, no additional lines are required in this reversible circuit be.cause the number of outputs is equal to the number of inputs. Generally, an irreversible function can be embedded into a reversible function by adding necessary garbage outputs; the resulting reversible function is incompletely 

. ' specified. To discuss incompletely-specified functions, we provide some necessary definitions : Hereafter, 'a reversible function' indicates a fully-specified reversible function unless otherwise noted. 
Definition 4 An incompletely-specifi,ed reversible function is abbreviated as ISRF. 
Let F be a (fully-specified) reversible function. We say that F matches an ISRF F '  if 
F(X) = F'(X) for all inputs X E  {O, l }n except when F'(X) = '- ', where '- ' is the 
don't-care value. F E: F'  denotes that F matches F'.  As an extension, for a set of 
ISRFs F, F E: F denotes that P E: F' holds for some ISRF F' in F. We also say 
that F matches F if F E: F. 

The minimality, in this thesis, is defined by the gate count of MCT circuits . .  Below, an extension of the minimality to a set of ISRFs is given. 
Definition 5 Let F be a reversible function of n variables. Among all n-bit MCT 
circuits that realize F ,  those with the exact minimum number of MCT gates are called the minimum MCT circuits of F .  The size of F is defined by the gate count of the 
minimum MCT circuit of F, which is denoted by 'Y(F). We extend 'Y to · that for 
a set of ISRFs F; ,'(F) is defined by the minimum 'Y(F) for dll F E:  F, namely, ,'(F) = min{ ,'(F) I F E:· F}. OPT(F) is the set of reversible functions F E : F with 
the minimum size 'Y(F); OPT(F) = {F I F E : F, 'Y(F) = 'Y(F)}. 
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Table 4.1: Incompletely-specified function ALU. S1 S2 A B 91 92 01 02 0 0 0 0 0 0 0 0 0 1- 0 1 
0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 
1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 

4.2 Operation Assignment (OA) 

In this thesis, we introduce a new approach called synthesis with OA. It is a permu-
tation of groups of rows in the truth table. This approach is applicable to circuits 
that have more than one operations such as adder/subtractor and ALU. This type of 
circuit has selector bits to choose the desired operation. Even if the set of operations 
is the same, the functions with those operations vary according to the assignment of 
the selector bits to the operations. Our approach is to try all permutations of opera� 
tions and find the minimum circuit realization. If a function has m selector bits, then 
2m ! variants are considered. To utilize the concept of the permutation of operations, 
we give a formal definition of an equivalence relation to OA. 
Definition 6 Suppose that a multiple-output function F has m selector bits { S1 ,S2, 
. . .  , Sm} and is represented by F(S1 , S2 , . . .  , Srn, X) . F may be an ISRF. For a non
negative integer i (0 ::; i ::;  2m - 1), Fi (X) denotes the cofactor F (i1 , i2 , . . .  , irn, X), 

where (i1 , i2 , . . .  , im) is an m-bit binary representation of  i .  The cofactors Fi (X) are 
called operations of F(S1 , S2 , . . .  , Sm, X) . The literals S and S are denoted by S0 and 
S1

, respectively. By using these notations, the Shannon expansion of F with respect 
to variables S1, S2 , . . .  , Sm is represented by F(S1, S2 , . . .  , Srn, X) = V O:Si9m-1 S�1 s;2 

. . .  s:; . Fi (X). We say that a function defined by Vo::;i9m-1 S�1 s;2 • • •  s:; . F'Tf(i) (X) 
is QA-equivalent to F(S1 , S2 , . . .  , Sm, X) if 1r is a permutation of {O, 1, . . .  , 2m - 1}. 
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Table 4.2: Four operations of ALU. 
B g1 g2 01 02 

ADD: 0 0 0 0 
Fo (A, B) = 

0 1 0 1 1 0 0 1 1 1 1 0 
A B gl g2 01 02 

OR: 0 0 0 

F1 (A, B) = 
0 1 1 1 0 1 1 1 1 
A B g1 g2 01 02 

AND: 0 0 0 
F2 (A, B) = 

0 1 0 1 0 0 1 1 1 
A B g1 g2 01 02 

SUB: 0 0 - 0 0 
F3 (A, B) = 

0 1 1 1 1 0 0 1 1 1 0 0 
The set of all functions DA-equivalent to F is called the OA-equivalence, class of F 
and denoted by 0AEC(F ) ,  in which the selector bits {S1 , S2 , . . .  , Sm} of F is assumed 
to be specified in the definition of F_. 
Nate that m selector bits can identify up to 2m operations. Therefore, for a function with m selector bits, there exist at most 2m l QA-equivalent functions by the permutation of 2m operations. 
Property 2 For a function P with m selector bits, I0AEC(F)I ::; 2m ! .. 
For a function F and a circuit C, it is commonly said that C realizes Fif the function of C is equal to F. We also extend the concept of circuit realization from a reversible function to a set of ISRFs. 
Definition 7 Let C be a reversible circuit and F be a set of ISRFs. We say that C realizes F if the function of C matches F. 
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Table 4.3: OA for ALU. 
S1 S2 ALU ALU' 
0 0 ADD OR 
0 1 OR ADD 
1 0 AND SUB 
1 1 · SUB AND 

51------+-f-++-_.~.._- gl 51----• -Hrt--.~,-- gl 

52 g2 52 g2 

A 01 A 01 

B 02 B 02 
(a) (b) 

Figure 4.1: (a) Circuit realizing ALU. (b) Circuit realizing OAEC(ALU). 

Example 2 Consider the function of an ALU shown in Table 4.1, in which S1 and S2 

are the selector bits. Table 4.2 shows the four operations F0 , ... , F3 of the ALU. With 

these operations, the ALU is represented by S1S2F0(X) V S1S2F1(X) V S1S2F2(X) V 

.S1S2F3 (X). For exa_mple, the/unction ALU'= S1S2F1(X)VS1S2F0 (X)VS1S2F3 (X)V 

S1S2F2(X) made by a permutation of operations is QA-equivalent to ALU. The dif

ference between ALU and ALU' is the assignment of operations, which is summarized 

in Table 4-3. A function that is DA-equivalent to ALU provides the same set of op

erations as ALU. However, the cost related to· their circuit realizations are generally 

different. A minimum MCT circuit of ALU with the original assignment in Table 4.3 

is shown in Figure 4.1 (a) using seven reversible gates (one NOT gate, two CNOT, 

and four Toffoli-3 gates) with a QC of 23. If we use a different assignment. of op

erations as ALU', a different circuit realization using six gates (two CNOT and four 

Toffoli-3 gates) with a QC o/22 is obtained, as shown in Figure 4-1 (b). This example 

demonstrates that permutation of operations directly affects on the cost of reversible 

circuit realizat-ion. 

4.3 Permutation of Function Outputs 

The idea of permutation of outputs of a reversible function was originally introduced 

by Wille et al. [23), called as Synthesis with Output Permutation (S\¥OP). The 

following definition is the ISRF version of SWOP and its extension to a set of ISRFs. 
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S 1 -----1--f-+-l------i--------- g 1 

52 01  

A g2 

B 02 

Figure 4. 2: Circuit realizing P EC (ALU). 

Definition 8 For a given ISRF F, the set of variants made by the permutation of 
outputs in F is called the P-equivalence class of F denoted by PEC(F). We extend 
PEG so that it accepts a set of ISRFs F: PEC(F) = LJFEF PEC(F). 

P-equivalence is a permutation of columns in the truth table, whereas QA-equivalence 
is a permutation of groups of rows in the truth table. 

IPEC(F) I for an n-output ISRF F is at maximum n !  because PEC(F) is a 
permutation of the outputs of F. 

Property 3 For an n-output ISRF F, IPEC(F) I :s; n! .  

Note that t:p.e P-equivalence class of a reversible function F is  different from the 
conjugacy class [35] of F ( also called the line reordering). In the conjugacy class, the 
inputs and outputs in F are relabeled simultaneously. In the P-equivalence class, the 
outputs in F are relabeled, but the inputs are not altered. It is known that every 
function in the conjugacy class of F can be realized in a circuit with the same gate 
count. However, the gate count of the circuit of a function in the P-equivalence class 
of F is generally not the same as that of F (e.g. , Example 3). This means that 
there may be a smaller function in the gate count than F among functions matching 
PEG(];). 

Example 3 Consider that the ALU shown in Table 4.1 maps the input (S1 , S2 , A, B) 
to the output (g1 , g2 , 01, 02) .  The minimum MCT circuit shown in Fig. 4.1  (a) 
consists of seven gates. ' Figure' 4.2 shows an MCT circuit realizing P EC(ALU) ,  in 
which the four outputs of the function are reordered to another position. More pre
cisely, the MCT circuit shown in Fig. 4 .2 maps the input (S1 , S2, A, B) to the output 
(g1, 01, g2 , 02).  This reduces the overall number of gates from seven to six. · 
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Chapter 5 

Synthesis of Minimum Reversible 

Circuits 

The two techniques, 0 AEC and P EC, discussed in Chapter 4 can be combined to 

further reduce the number of gates in a circuit. In this chapter, we discuss the mini

mization of MCT circuits realizing PEC(OAEC(F)) for a given F. By Definition 8, 

PEG is extended to accept a set of ISRFs like OAEC(F). 

5.1 . Minimization Algorithm 

The adder/subtractor and ALUs proposed in this sections are 4-bit or 5-b_it functions. 

The minimum MCT circuits for all �he 4-bit reversible functions have been obtained 

by Golubitsky et al. [35]. Their algorithm, however, does not support ISRFs. An 

SAT-based algorithm [16] can be applied to ISRFs. The algorithm produces one 

minimum circuit for a given ISRF; however, it does not provide a list of minimum 

circuits for other reversible functions that match the ISRF. Thus, instead of using 

these sophisticated algorithms, we use the hash tables of minimum MCT circuits 

with up to seven gates for 4-bit functions and five gates for 5-bit functions. The 

tables are constructed by enumerating all possible gate combinations. The procedure 

MAKETABLE in Fig. 5.1 is used to construct such tables. Although the applicability of 

this simple strategy is limited to small circuits because of high memory consumption, 

it is sufficient to achieve our purpose. 

In the algorithm, the number of input/output lines, or bits, are denoted as n, 

and minimum MCT circuits with i gates are stored in hti . The function FINDOPT 

obtains OPT(F) and its minimum MCT circuits in pairs by searching for ht1 , ht2 , . . .  

successively. A memory saving technique with symmetry [35] is used, however, the 

description of this technique is omitted from Fig. 5.1. We combine the hash tables 
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of t.hese minimum circuits and the techniques proposed in Chapter 4, to obtain the minimum MCT realization of the adder/subtractor and ALU circuits. 
We.also compare the results obtained using FINDOPT with those using the SATbased algorithm. The results reveal that the list of minimum MCT circuits obtained using FINDOPT has a better circuit in terms of QC as compared to the one obtained using the SAT-based algorithm. 

5.2 Reversible Adder /Subtractor 

In this section, we obtain the minimum MCTcircuits of half and full adder/subtractors using our proposed technique. An adder/subtractor has two operations, i.e., 'adder' and 'subtractor', and the 1-bit selector S decides the operations to be performed. 
Possible assignments of operations are shown in Table 5.1. Along with half and full adders, there are half and full adder/subtractors. 

Table 5.1: OA for adder/subtractor. 
S Assignment 1 Assignment 2 0 Adder Subtractor 1 · Subtractor Adder 

5.2.1 Half Adder /Subtractor 

According to the QA shown in Table 5.1, two QA-equivalent functions of the half adder/subtractor exist for Assignments 1 and 2. Equations (5.1) and (5.2) provide the logical expressions of these functions. 'C / B' and 'S / D' denote Carry /Borrow and Sum/Difference, respectively. 
{ C/B = SAB v S(AB tJJ B) 

S/D=AtJJB 
(5.1) 

{ C/B = S(AB tJJ B) v SAE 
S/D=AtJJB 

(5.2) 
Equation (5.1) is embedded in the truth table, as in Table 5.2, which is denoted 

by hAS1. During embedding, two garbage outputs, 91 and 92, are added because 
they are required by the maximum number of repetitions of an output pattern in the truth table. To balance the numbers of inputs and outputs, a constant input c = 0 is added. Similarly, Equation (5.2) is embedded in the truth table as in Table 5.3, 

. which is denoted by hAS2. 
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1: var ht0 , ht1 , ht2 , . . .  : Hash Table; 
2: procedure MAKETABLE(m) 
3: 

4: 

!> Input: m is an integer. 
!> Side Effect: minimum MCT circuits with up to m gates are stored in the hash tables hto, ht1, ht2 , . . . . 

5: 

6: 

7: 

8: 

9: 

if m = 0 then ht0 [iientity] +- the empty circuit; else 
MAKETABLE(m - 1); for all entry CE htm-1 do for all G E Yn do 

10: 

11: 

12: 

if htm [func (C I G)] = 0 then htm [func (C I G)] +-CI G; end if 
13: end for 
14: end for 
15: end if 
16: end procedure 
17: function F'INDOPT (F) 
18: !> Input: F is a set of ISRFs. 
19: !> Output: OPT(F) and its minimum MCT circuits in pairs. 
20: var i +-- 1 : Integer; 
21: var S +-0 : Set; 
22: while (S = 0) or (hti is not empty) do 
23: for all key F E hti do 
24: if FE: F then S +- { (F, hti [F])} US; 
25: end if 
26: end for 27: i +-- i + 1; 
28: end while 
29: return S; 
30: end function Yn : set of all MCT gates with up to n bits. CI G: concatenation of circuit C and gate G. func (C I G) : reversible function of the circuit CI G. 

Figure 5. 1: Simple minimization algorithm with up to m gates 
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Table 5.2: Incompletely specified half adder/subtractor function hAS1. 
C s A B 91 92 C/B S/D 
0 0 0 0 0 0 

0 0 0 1 0 1 
0 0 1 0 0 1 
0 0 1 1 1 0 

0 1 0 0 0 0 

0 1 0 1 1 1 
0 1 1 0 0 1 
0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 o· 1 1 1 ·1 -

Table 5.3: Incompletely specified half adder/subtractor function hAS2. 

C s A B 91 92 C/B S/D 
0 0 0 0 0 0 

0 0 0 1 1 1 
0 0 1 0 0 1 
0 0 1 l 0 0 

0 1 0 0 0 0 

0 1 0 1 0 1 
0 1 1 0 0 1 
0 1 1 1 1 0 1 0 0 0 1 0 0 1 
l 0 1 0 1 0 1 - 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 
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Table 5.4 shows the minimum MCT realization of the P-equivalence class of hAS1 , 

or OPT(PEC(hAS1 )), obtained by our FINDOPT program. The six reversible functions have minimum MCT circuits with three gates. On the right-hand side of Ta
·ble 5.4, a circuit is represented by a sequence of reversible gates, in which (x y) represents a CNOT gate and (x y z) represents a Toffoli gate. The last parameter is 
the target line, and the remaining parameters are the control lines. For example, "(2 1) (3 2) (1 3 O)" in the -first row represents the MCT circuit of Fig. 5.2, where the numbering of the lines is (c , S, A, B) = (0, 1, 2, 3) . 

Ta.ble 5.4: OPT(PEC(hAS1)) and its minimum MCT circuits Reversible Function Minimum MCT Circuit (0 3 6 13 4 15 2 1 8 11 14 5 12 7 10 9) (2 1) (3 2) (1 3 0) (0 3 2 13 4 15 6 1811 10 5 127 14 9) (2 3 1) (3 2) (1 3 0) (0 3 2 9 4 15 6 5 8 11 10 1 12 7 14 13 ) (2 3 0) (3 2) (1 3 0) (0 17 14 4 13 3 2 8 9 15 6 12 5 1110) (2 1) (1 3 0) (2 3) (0 1 3 14 4 13 7 2 8 9 11 6 .12 5 15 10) (2 3 1) (1 3 0) (2 3) (0 1 3 10 J 13 7 6 8 9 11 2 12 5 15 14) (2 3 0) (1 3 0) (2 3) 
c ------- Carry/Borrow 

S -f-++-___;______ g 1 

A Sum/Diff 

B g2 

Figure 5.2: Proposed reversible half adder/subtractor circuit with MCT gates. 

Table 5.5: OPT(PEC(hAS2)) and its minimum MCT circuits Reversible Function Minimum MCT Circuit (0 15 6 1 432 1387 14 9 12 11 10 5) (3 2) (2 1) (1 3 0) (0 11 2 1 47 6  13 8 3 10 9 12 15 14 5) (1 3 0) (3 2) (2 3 0) (0 15 2 1 4 3 6 1387 10 9 12 11 14 5) (3 2) (2 3 1) (1 3 0). 
Similar experiments are conducted for hAS2. The results, however, are not better than those for hAS1. The OPT(PEC(hAS2)) are shown in Table 5.5. Three functions have minimum MCT circuits with three gates. Since the possible OAs for the half adder/subtractor are hAS1 and hAS2, we have 

. OAEC(hASi ) = {hAS1, hAS2}. Based on the experiments performed using hAS 1 and hAS2, we have confirmed that their minimum size is --y(PEC(OAEC(hAS1))) = 
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'Y(PEC(hAS1)) = 'Y(PEC(hAS2)) = 3; additionally, hAS 1 and hAS2 can be realized 
by MCT circuits using two CNOT gates and one Toffoli gate. 

5.2.2 Full Adder /Subtractor 

A full adder/subtractor acts as a full adder or a full subtractor depending on the 
value of the selector bit S. As seen in Table 5.1, two full adder/subtractor functions 
are possible, whose logic expressions can be represented using Equations (5.3) and 
(5.4), respectively. 

{ 
C / B = 

.
S(AB v AC v BC) v S(AB v BC v AC) 

S/D=AffiBffiC 

·{ 
C/B =·S(ABV BCV AC) VS(ABV ACV BC) 

·. S/D=AffiBffiC 

Table 5.6: Incompletely specified full adder/subtractor function fAS1 . 
C s A B 91 92 C/B S/D 
0 0 0 0 0 0 
0 0 0 1 0 1 
0 0 1 0 0 1 
0 · 0 1 1 1 0 
0 1 0 0 0 1 
0 1 0 1 1 0 
0 1 1 0 1 0 
0 1 1 1 1 1 
1 0 0 0 0 0 
1 0 0 1 1 1 
1 0 1 0 1 1 
1 0 1 1 1 0 
1 1 0 0 0 1 
1 1 0- 1 0 0 
1 1 1 0 0 0 
1 1 1 1 1 1 

(5.3) 

(5.4) 

Similarly to half adder/subtractor, Equations (5.3) and (5.4) are embedded in 
the truth table, as in Tables 5.6 and 5.7, denoted by fAS1 and fAS2, respectively. 
To balance the number of inputs and outputs, two garbage outputs, 91 and 92, are 
added, but no additional lines are added. fAS1 and fAS2 can be realized in 4-line 
MCT circuits. 
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Table 5.7: Incompletely specified full adder/subtractor function fAS2 . 

C s A B 91 92 C/B S/D 
0 0 0 0 0 0 
0 0 0 1 1 1 
0 0 1 0 1 1 
O· 0 1 1 1 0 
0 1 0 0 0 1 
0 1 0 1 0 0 
0 1 1 0 0 0 
0 1 1 1 1 1 
1 0 0 0 0 0 
1 0 0 1 0 1 
1 0 1 0 0 1 
1 0 1 1 1 0 
1 1 0 0 0 1 
1 1 0 1 1 0 
1 ·1 1 0 1 O· 

1 1 1 1 1 1 

In Table 5.8, the list of OPT(PEC(fAS1))  is presented; the list is obtained using 
the FINDOPT program. It is observed that 30 functions have minimum MCT circ;uits 
with five gates, i.e., 'Y(PEC(fAS 1)) = 5. As an example of the minimum MCT circuit 
of the full adder/subtractor, "(1 0) (3 2) (2 1) (3 0) (0 2 3)" is shown in Fig. 5.3, 
where the numbering of the lines is (S, A, B, C) = (0, 1, 2, 3). The circuit comprises 
four CNOT gates and one Toffoli gate. 

We also obtained the list of OPT(PEC(fAS2)) , as shown in Table 5.9. How
ever, the results are not better than those for OPT (PEC(fAS1 )). In summary, 
OPT(PEC(fAS2)) comprises 26 functions and 'Y(PEC(fAS2)) = 5. Thus, we have 'Y(PEC(OAEC(fAS1))) = "!(PEC(fAS1)) = 'Y(PEC(fAS2)) = 5. 

S -+-+--+----+-+-+----,---g 1 

A Sum/Diff 

B g2 

C Carry/Borrow 

Figure 5.3: Proposed reversible full adder/subtractor circuit with MCT gates. 
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Table 5.8: OPT(PEC(fAS1)) and its minimum MCT circuits. 
Reversible Function Minimum MCT circuit 

(0 14  6 9 12 3 1 1  5 8 7 1 5  1 4 10  2 13) (1 0) (3 2) (2 1) (3 0) (0 2 3) 
(0 5 13 10  12 1 1  3 6 8 15  7 2 4 1 9 14) (1 0) (2 3) (3 1) (2 0) (0 3 2) 
(0 1 4  6 1 12 3 1 1 13 8 7 15  9 4 10  2 5) (3 2) (1 0) (2 1) (2 3 0) (0 2 3) 
(0 5 13 2 12 1 1  3 14 8 15  710 4 1 9 6) (2 3) (1 0) (3 1) (2 3 0) (0 3 2) 
(0 1 0  2 9 14  5 13 7 8 3 1 1  1 6 12 4 15) (3 0) (1 0) (3 2) (0 2 3) (1 2) 
(0 1 9 10  13 14 6 7 8 11 3 2 5 4 1 2 15) (2 0) (1 0) (2 3) (0 3 2) (1 3) 
(0 14  6 9 4 3 11 13 8 7 1 5  1 12 10 2 5) (3 2) (1 2 0) (2 1) (3 0) (0 2 3) 
(0 5 13 10  4 11  3 14 8 15  7 2 1 2 1 9 6) (2 3) (1 3 0) (3 1) (2 0) (0 3 2) 
(0 1 0  2 114 5 13 15 8 3 11 9 6 12 4 7) . (3 2) (1 0) (2 3 0) (0 2 3) (1 2) 
(0 1 9 2 13 14  6 15 8 1 1  3 10' 5 4 12 7) (2 3) (1 0) (2 3 0) (0 3 2) (1 3) 
(0 14  6 9 4 1 1  3 13 8 7 15  1 12 2 10  5) (3 0) (3 2) (1 2 3) (2 1) (0 2 3) 
(0 5 13 10  4 3 1 1  14 8 15  7 ,2 1 2 9 1 6) (2 0) (2 3) (1 3 2) (3 1) (0 3 2) 
(0 1 9 10  5 6 14 15 8 1 1  3 2 13 12 4 7) (2 0) (2 3) (1 3 2) (0 3 2) (1 3) 
(0 1 0  2 9 6 1 3 5 15  8 3 1 1  1 14  4 12 7) (3 0) (3 2) (1 2 3) (0 2 3) (1 2) 
(0 1 0  2 9 6 513 15  8 3 1 1  1 14  12 4 7) (3 2) (3 0) (1 2 0) (0 2 3) (1 2) 
(0 1 9 10  5 14  6 15 8 11 3 2 1 3 4 12 7) (2 3) (2 0) (1 3 0) (0 3 2) (1 3) 
(0 6 14  9 4 3 11 13 8 1 5  7 1 1 2 10  2 5) (2 0) (3 2) (2 1) (1 2 3) (0 2 3) 
(0 13 5 10  4 11 3 14 8 7 15  2 1 2 1 9 6) (3 0) (2 3) (3 1) (1 3 2) (0 3 2) 
(0 5 13 10  12  11  2 7 8 1 5  6 3 4 1 9 14) (2 1) (1 0) (3 1) (0 2 3) (0 3 2) 
(0 1 4  6 9 12 1 1 1 7 8 5 1 5  3 4 10  2 13) (3 1) (1 0) (2 1) (0 3 2) (0 2 3) 
(0 5 1 3 2 4 11 3 6 8 15  7 10  1 2 1 9 14) (1 3 0) (2 3) (3 1) (1 2 0) (0 3 2) 
(0 14  6 1 4 3 11 5 8 7 15 9 1 2 10  2 13) (1 2 0) (3 2) (21) (1 3 0) (0 2 3) 
(0 14  6 1 4 3 11  13 8 7 15  9 1 2 10  2 5) (1 2 0) (3 2) (2 1 ) (1 2 3 0) (0 2 3) 
(0 5 13 2 4 1 1  3 14 8 1 5  7 1 0  12  1 9 6) (1 3 0) (2 3) (3 1 ) (1 2 3 0) (0 3 2) 
(0 5 1 3 2 4 3 11  6 8 15  7 10. 12 9 ·1 14) (2 3) (2 3 0) (1 3 2) (3 1) (0 3 2) 
(0 14 6 1 4 1 1  3 5 8 7 15  9 1 2 2 1 0  13) (3 2) (2 3 0) (1 2 3) (2 1) (0 2 3) 
(0 lQ 2 1 6 5 13 7 8 3 1 1  9 14  1 2 4 15) (3 2) (2 3 0) (1 2 0) (0 2 3) (1 2) 
(0 1 9 2 5 14  6 7 8 1 1  3 10  13 4 1 2 15) (2 3) (2 3 0) (1 3 0) (0 3 2) (1 3) 
(0 1 9 2 5 6 14 7 8 11  3 10  13 1 2 4 15) (2 3) (2 3 0) (1 3 2) (0 3 2) (1 3) 
(0 1 0  2 1 6 13 5 7 8 3 1 1  914 4 1 2 15) (3 2) (2 3 0) (1 2 3) (0 2 3) (1 2) 
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Table 5.9: OPT(PEC(fAS2)) and its minimum MCT circuits. Reversible Function (0 15 7 10 12 1 9 6 8 5 13 2 4 11 3 14) (0 7 15 9 12 10 2 5 8 14 6 1 4 3 11 13) (0 15 7 9 4 10 2 13 8 6 14 1 12 3 11 5) (0 7 15 10 4 1 9 14 8 13 5 2 12 11 3 6) (0 15· 7 10 4 1 9 14 8 5 13 2 12 11 3 6) (0 7 15 9 4 10 2 13 8 14 6 1 12 3 11 5) (0 3 11 914 12 4 7 8 10 2 1 6'5 13 15) (0 11 3 10 13 4 12 7 8 1 9 2 5 14 6 15) (0 15 7 10 9 4 12 3 8 5 13 2 1 14 6 11) (0 7 15 9 10 12 4 3 8 14 6 1 2 5 13 11) (0 15 7 2 12 1 9 14 8 5 13 10 4 11 3 6) (0 7 15 1 12 10 2 13 8 14 6 9 4 3 11 5) (0 15 6 10 12 1 9 7 8 5 13 3 4 11 2 14) (0 5 15 9 12 10 2 7 814 6 3 4 1 11 13) (0 15 3 10 9 4 12 7 8 1 13 2 5 14 6 11) (0 3 15 9 10 12 4 7 8 14 2 1 6 5 13 11) (0 15 7 1 4 10 2 5 8 6 14 9 12 3 11 13) (0 7 15 2 4 1 9 6 8 13 5 10 12 11 3 14) (0 15 7 2 4 1 9 6 8 5 13 10 12 11 3 14) (0 7 15 1 4 10 2 5 8 14 6 9 12 3 11 13) (0 15 7 10 4 9 1 14 8 5 13 2 12 3 11 6) (0 7 15 9 4 2 10 13 8 14 6 1 12 11 3 5) (0 3 11 9 6 4 12 15 8 10 2 1 14 13 5 7) (0 11 3 10 5 12 4 15 8 1 9 2 13 6 14 7) (0 3 11 96 12 4 15810 2 1 14 5 13 7) (0 11 3 10 5 4 12 15 ,8 1 9 2 13 14 6 7) 

Minimum MCT circuit (0 1) (2 0) (3 1) (3 2) (1 0 3) (1 0) (2 1) (3 0) (3 2) (0 1 3) (1 0) (2 1) (3 0) (0 1 3) (0 1 2) (0 1) (2 0) (3 1) (1 0 3) (1 0 2) (0 1) (2 0) (3 1) (3 0 2) (1 0 3) (1 0) (2 1) (3 0) (3 1 2) (0 1 3) (3 1) (3 2) (1 0) (0 1 3) (1 2) (3 0) (3 2) (0 1) (1 0 3) (0 2) (0 2) (3 0) (0 1) (2 0) (1 2 3) 
(1 2) (3 1) (1 0) (2 1) (0 2 3) (0 1) (2 0) (3 2) (3 0 1) (1 0 3) (1 0) (2 1) (3 2) (3 0 1) (0 1 3) (2 0) (3 2) (2 1) (0 1 3) (1 0 3) (2 1) (3 2) (2 0) (1 0 3) (0 1 3) 
(o 2) (3 o) (o 1) (2 o 3) (1 2 3) (1 2) (3 1) (1 0) (2 1 3) (0 2 3) (1 0) (2 1) (3 0 1) (0 1 3) (0 1 2) (0 1) (2 0) (3 0 1) (1 0 3) (1 0 2) (0 1) (2 0) (3 0 1) (3 0 2) (1 0 3) (1 0) (2 1) (3 0 1) (31 2) (0 1 3) (3 0) (0 1) (1 0 2) {2 0) (1 0 3) (3 1) (1 0) (0 1 2) (2 1) (0 1 3) (3 1) (1 0) (0 1 2) (0 1 3) (1 2) (3 0) (0 1) (1 0 2) (1 0 3) (0 2) (3 1) (1 0) (3 1 2) (0 1 3) _(1 2) (3 0) (0 1) (3 0 2) (1 0 3) (0 2) 

5.3 Simple Reversible Arithmetic Logic Units {ALUs) 

The OA works more efficiently fo,r the design of AL Us than adder/ subtractors since 
an ALU has more operations assigned by the selector bits: This section reports the minimum MCT circuits of some benchmarks of simple reversible AL Us consisting of only four or eight 1-bit operations. It should be noted that this is not a limitation of 

- the OA technique but of the minimizer. Instead of the exact minimizer, it is possible 
to use a fast heuristic synthesizer supporting ISRFs to obtain MCT circuits of larger 
ALUs without guaranteeing the minimality. In this thesis, however, we focus on obtaining minimum MCT circuits. The minimum results are valuable as :;,cientific 
and theoretical data in related fields. Our next task is to apply a heuristic method 
to equivalence classes for larger ALUs [36]. 
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5.3.1 1-bit Arithmetic Logic Unit .(ALU) Benchmarks 

Vve applied our function design technique to 1-bit ALU benchmarks, i.e., Mini-ALU [34] 

and Gupta's-LU [33]. The embedding in the truth table of the reversible ALU is sim

ilar to that of the reversible adder/subtractor. In this chapter, we do not show the 

truth table representation of the reversible ALUs. The truth table representation of 

those reversible ALUs; it can be found in Appendix A. 

The FmnOPT program confirmed that ,(PEC(OAEC(Mini-ALU)) = 5. The 

list of OPT(PEC(OAEC(Mini-ALU))) is omitted, but its number is IOPT(PEC( 

OAEC(Mini-ALU)))I = 266. One of the.minimum MCT circuits is shown in Fig. 5.4. 

The MCT circuit reported by Revlib [34] consists of six gates. Here, we reduced the 

number of reversible gates to five. 

For Gupta's-LU, ,(PEC(OAEC(Gupta's-LU))) = 3 and IOPT(PEC(OAEC(Gupta's-LU)))I = 
48. One of the.minimum MCT circuits is shown in Fig. 5.5. Originally Gupta's-LU [33] 

was constructed using 18 reversible gates. Here, we reduced the number of reversible 

gates to three. 

51---+-+-l-----.... -

s2-+++---ll---1---+---
A 

B 

gl 

01 

02 

g2 

S1S2 
0 0 
0 1 
1 0 
1 1 

Operation 
OR 

ADD 
AND 

ID 

Figure 5.4: Mini-ALU: Minimum MCT circuit and its OA. 

51 -1-1-+---1-1-+-- output 
83 

S1S2 0 1 
52 gl 0 0 Constant 0 Constant 1 
53 g2 0 1 AND NAND 
A g3 1 0 XOR XNOR 
B g4 1 1 OR NOR 

Figure 5.5: Gupta's-LU: Minimum MCT circuit and its OA. 

5.3.2 Revised Arithmetic Logic Units (ALUs) 

As seen in Sec. 5.2, the additioi;i and subtraction operations are essential in computa

tion. It is preferable for an ALU to have these two operations. Since Mini-ALU does 

not have subtraction, we propose a revised ALU, denoted by ALU, where subtraction 
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is adopted instead of ID in Min i-ALU . Using the truth tables in Tables 4.1 and 4.2 as examples of the OA and output permutation, we confirmed that 1(ALU) = 7, 
1(0AEC(ALU))  = 6, and 1(PEC(ALU)) = 6, as in Examples 2 and 3. By combining 
OAEC and PEG, further reduction to 1(PEC(OAEC((ALU))) = 5 is possible. The 
list of OPT(PEC(OAEC(ALU ) ) )  is omitted, but its number is IOPT(PEC(OAEC( ALU))) ! = 48. One of the minimum MCT circuits is shown in Fig. 5.6. 

51--+-+-+---------- gl 

52 01 

A g2 

B 02 

S1S2 0 0 0 1 1 0 1 1 

Operation ADD OR SUB AND 
Figure 5.6: ALU : Minimum MCT circuit and its OA. 

In contrast, we consider a simpler version of Gupta 's-LU.  Gupta 's-LU implements 
eight operations with five inputs. By reducing the operations to AND, OR, and XOR, a compact version with four inputs can be defined, which is denoted by LU .  We select AND, OR, and XOR because they are the most fundamental and common logic operations. The NOT operation is included in XOR. NOT can be executed by assigning the value 1 to one of the XOR operands: x = x EB 1 .  The compact LU is useful when this set of operations are sufficient for the use of logic units. The FINDOPT program confirmed that 1(PEC(OAEC(LU ) ) )  = 3 and IOPT(PEC(OAEC( LU)) ) !  = 28. One of the minimum MCT circuits is shown in Fig. 5.7. 

51 -+-t-+------- g l  

52 g2 

A 0 1  

B g3 

S1S2 0 0 0 1 1 0 1 1 

Operation XOR OR N/A AND 
Figure 5.7: LU :  Minimum MCT circuit and its OA. 

5.4 Experimental Results 

In this section, .a comparison of our proposed adder/subtractor and ALUs and their . existing counterparts is performed. Then, we discuss the results and show the superiority of the proposed reversible circuits against other reversible structures in the literature in terms of reversible metrics. 
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The proposed minimization algorithm was implemented using the Common LISP 

programming language. The program was run on a computer with specifications 

given in Table 5. 10. Since the adder/subtractors and ALUs function specifications 

are different, we executed the program separately for adder/subtractors and ALUs. 

Our algorithm provides a list of minimum circuits for reversible functions, and we 

recorded all the minimum circuits for analysis. Table 5.4 shows six reversible functions 

that are minimum MCT circuits with three gates for the half adder/subtractor hASl .  

Table 5 .5  shows another three reversible functions that are minimum MCT circuits 

with three gates for the half adder/subtractor hAS2 . In addition to Tables 5.4 and 

5.5, we also recorded 254 and 166 reversible functions with a size of 4 gates and 5858 

and 4325 reversible functions with a size of 5 gates for hAS1 and hAS2 , respectively. 

The results of Table 5.5 and other recorded reversi.ble functions are not better than 

those of Table 5.4. Hence, we confirmed that the half adder/subtractor minimum size 

is 3. Figure 5 .2 shows the proposed reversible realization of half adder/subtractors 

using two CNOT gates and one Toffoli gate. 

Table 5. 10: Computer specifications. 
CPU Intel Core i7-3820 @ 3.60GHz 

Memory 32GB 
OS Linux: Ubuntu 16.04 LTS 

Language Common LISP (SBCL 1 .3 .1 .debian) 

Table 5 . 1 1 :  Summary of all generated reversible functions for adder/subtractors . 

Design 

Half adder/subtractor (hAS1 ) 
Half adder/subtractor (hAS2) 
Full adder/subtractor (fAS1 ) 
Full adder/subtractor (fAS2) 

Gate Count 
Three Four Five Six 

6 254 5858 95915 
3 166 4325 76694 

30 
26 

662 
609 

Table 5 .12 :  Computation time [second] of experiments in Table 5 . 11 .  

Design 

Half adder/subtracto:r (hAS1 ) 
Half adder/subtractor (hAS2) 
Full adder/subtractor (fAS1 ) 
Full adder/subtractor (fAS2) 
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Three 
0 .9  
0 .9  

Gate Count 
Four Five Six 
11 .8 185.9 2764.6 
11 .8  183.8 2726.5 

- 198.6 2632.9  
- 189 .1  2599.8 



Table 5.8 shows 30 reversible functions that are minimum MCT circuits with 
five gatesfor the full adder/subtractor fASl. Table 5.9 shows another 26 reversible 
functions that are minimum MCT circuits with five gates for the full adder/subtractor 
fAS2 . In addition to Tables 5.8 and 5.9, we also recorded 662 and 609 reversible 
functions with a size of 6 gates for f AS 1 and f AS2 , respectively. The results of Table 5.9 
and other recorded reversible functions are not better than those of Table 5.8. Hence, 
we confirmed that the full adder/subtractor minimum size is 5. Figure 5.3 shows the 
proposed reversible realization of full adder/subtractors using four CNOT gates and 
one Toffoli gate. A summary of all the generated reversible functions for · half and , 
full adder/subtractors are shown in Table 5.11. Precisely, the figures in Table 5.11 
represent l { F' I F' E: PEC(F), 'Y(F') = r } I  for design F and gate count r. Table 5.12 
shows the computation time of the experiments in Table 5.11. Note that we recorded 
all the generated reversible functions for ALUs, but only the essential functions are 
discussed in here . 

.Table 5.13 shows the comparison of the proposed reversible adder/subtractor and 
existing counterparts. The results in Table 5.13 are obtained by evaluating our pro
posed one-bit reversible full adder/subtractor unit using our minimization algorithm 
versus other similar designs described in [27] , [29], and [30]. Our proposed structure 
includes the lowest numbers of reversible gates, constant inputs and garbage outputs 
among all existing designs cons1dered. 

Table 5.13: Comparison of the proposed reversible full adder/subtractor and existing 
counterparts. 

Cost Metrics 
Design Input Reversible Constant Garbage 

Lines Gates Inputs Outputs 
1 [27] 7 8 3 5 
2 (27] 5 4 1 3 
3 [27] 5 4 1 3 

_ [29] 4 4 0 2 
[30] 5 3 1 2 

Proposed 4 5 0 2 

Note, however, that the number of reversible gates of our proposed design is not the 
lowest because we only used the MCT gate library as opposed to existing works t.hat 

· used different types of gate libraries. In particular, the proposed full adder/ su btractor 
design in (27]used Fredkin, CNOT, TR, and Peres gates. The proposed design in [29] 
used CNOT, Fredkin, and Peres gates. Finally, the proposed design in [30] used 
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CNOT,and Peres gates . Our proposed reversible full adder/subtractor block is de

signed to optimize all significant criteria in reversible logic without imposing high 

costs to other parameters. 

A summary of all the generated reversible functions for 1-bit ALUs is detailed in 

Table 5 . 14 ,  showing the number of.functions with minimum size and the computation 

time in second. The specifications of the computer used in the experiments are the 

same as in Table 5 .10
'. 

Although the applicability of our minimizer is limited to small 

benchmarks, it can minimize 1-bit ALUs in practical computation time. 

Table 5. 14: IOPT(PEC(OAEC(F))) I  of 1-bit ALUs and computation time. 
Design /OPT(PEC(OAEC(F))) I Time [second] 

Gupta's-LU 48 47.7 
M ini-ALU 266 197.4 

ALU 48 194.8 
LU 28 0 .9 

Table 5.15 shows the comparison of 1-bit ALUs ·of the proposed ALUs and exist

ing implementations. All the existing implementations are performed by cascading 

reversible gates , hence the circuits are not optimized, which translates to higher costs. 

In Table 5. 15, Gupta 's-LU [33] can perform eight operations, which require five work

ing lines and 18 reversible gates. Min i-ALU [34] can perform four operations, which 

require four working lines and 6 reversible gates. By implementing the same design 

our minimization algorithm obtains 3 and 5 reversible gates for Gupta 's-LU [33] and 

Min i-ALU [34] , respectively. These results are shown in the fifth column of Table 5. 15. 

The proposed LU realizes basic logic operations such as AND, OR,. XOR, and N/ A. 

The proposed ALU realizes the basic logic operations, such as AND and OR, and the 

basic arithmetic operations such as ADD and SUB; note that SUB is not realized by 

existing ALUs [34] . 

The costs of the proposed reversible ALU are shown in Table 5. 15, including the 

number of operations, working lines , original gates for the existing design, and pro

posed gates with our minimization algorithm. Considering these costs, the proposed 

reversible ALU is much better and optimized than existing ones. We can consider that 

the proposed design complies with the standard of reversible optimization circuit as 

we only used the MCT gate library. Implementing more arithmetic/logic operations 

in a reversible ALU needs a more complex circuit structure. More powerful ALUs 

with more arithmetic/logic functions are needed to design a quantum computer. 
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Table 5.15: Comparison of 1-bit ALUs. Original Our Gates Design Operations Lines Gates 
Gupta 's- AND, -NAND, 5 18 3 
LU [33] OR, NOR, XOR, XNOR, Constant 1, · 0 

Min i-ALU AND, OR, 4 6 5 [34] ADD, ID Proposed ADD, OR, 4 5 
ALU AND, SUB Proposed XOR, OR, 4 3 
LU AND, N/A 
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Chapter 6 

Quantum Circuit Synthesis 

Circuit synthesis is an integral part of the compilation process. Quantum circuit 
synthesis is the process where an arbitrary unitary operation is decomposed into a 
sequence of gates from a universal set. There are several procedures for quantum 
circuit synthesis with made for a single qubit and others for multiple qubits. Many 
of the algorithms can perform exact synthesis and heuristic search technique, but the 
time and space used exponentially increases, which highly depend on the number of 
qubits and the depth of the circuit. In this work, we propose a simple greedy algorithm 
for quantum circuit synthesis to transform reversible circuits into quantum circuits 
and reduce the quantum circuit by applying different quantum circuit reduction rules. 
The algorithm performs the transformation of a given MCT circuit into a quantum 
circuit, searches a pair of adjacent gates in the circuit by moving the gate according to 
the moving rule, and applies different reduction rules to obtain the reduced quantum 
circuit. The execution of moving and reducing gates is repeated if the quantum gates 
in the quantum circuit are reduced successively. The experimental results show that 
our proposed design is better than existing ones in terms of the numbers of input 
lines, constant inputs, garbage outputs, and the QC., 

Several reversible circuits of adder/subtractor blocks [27, 29, 30] have been pro
posed that use various reversible gate libraries and impose different constraints of 
constant and garbage lines. To compare the quality of the circuits, calculation of their 
QCs is commonly performed. In this chapter, we describe our proposed greedy algo
rithm, discuss how quantum circuits of our reversible adder/subtractors and ALUs 
are obtained using the algorithm, and compare the QCs of our proposed design with 
existing counterparts. 
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6.1 Reduction of Quantum Costs (QCs) 

1: function OBTAINQUANTUMCIRCUIT( mete) 
2: 1> Input: mete is an MCT circuit. 
3: 1> Output: a reduced quantum circuit. 
4: return a circuit with the smallest QC in {REDUCEQUANTUM(qe) I qe E 

QUANTUMCIRCUITS( mete)}; 
5: end function 

6: function REDUCEQUANTUM(qe) 
7: 
8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

1> Input: qe is a quantum circuit. 
1> Output: a reduced quantum circuit. 

var e : Circuit; 
var e* +-- qe : Circuit;. 
repeat 

e +-- e*; 
for all gate g in e do 

e* +-- MovEGATEANDREDUCE(e,g); 
if le*I < ICI then 

break; 
17: end if 
18: end for 
19: until le*I = 1e1 
20: return e*; 
21: end function 

1e1: the number of gates in the quantum circuit e. 

1> Exiting the for loop. 

Figure 6.1: Simple algorithm to obtain reduced quantum circuits. 

This section describes the transformation of MCT circuits into quantum circuits 
with the NCV gate library and the reduction of the quantum circuits· with a simple 
greedy algorithm. The algorithm is shown in Fig. 6.1. In this algorithm, the function 
OBTAINQUANTUMCIRCUIT takes an MCT circuit as the argument and returns the 
reduced quantum circuit. Unlike the MCT circuits in Chapter 5, the resulting quan
tum circuits are sub-optimal. Although optimality is not guaranteed, the QCs of our 
quantum d:r:cuits of reversible adder/subtraGtors and ALUs are lower than those of 
existing counterparts. 

The function QUANTUMCIRCUITS tram;forms an MC� circuit mete into a set of 
initial quantum circuits. For Toffoli gates in mete, QUANTUMCIRCUITS generates 
all possible combinations of Toffoli decomposition described in Sec. 2. 7 during the 
transformation. 
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The function REDUCEQUANTUM reduces the QC of ·a quantum circuit qC via 

the greedy approach. In REDUCEQUANTUM, the function M0VEGATEANDREDUCE 

searches a pair of adjacent gates in C by moving the gate g according to the moving 

rule of Property 1. If a pair of gates forms the identity function ( according to the 

deletion rules shown in F'ig. 2.4), then the pair is deleted. If a pair of gates can be 

merged into a single gate (according to the merging rules shown in Fig. 2.3), then 

the pair is replaced by a single gate. The execution of MovEGATEANDREDUCE is 

repeated if the quantum gates in the circuit C are reduced successively. 

; m=V · V V ~:rry/Borrow 

A! ! ~Sum/Diff 

B - ' g2 

· Figure 6.2: Reduced half adder/subtractor circuit with quantum gates. 

S+++---lf++-.-f--+--.... -gl 

A Sum/Diff 

B g2 

C Carry /Borrow 

Fig0:re 6.3: Reduced full adder /subtractor circuit with quantum gates. 

Sl--+f+t-4H .... --• ------+---+----tl-----~J-gl 
; 52 01 

A g2 

B 02 

Figure 6.4: Reduced ALU circuit with quantum gates. 

In Chapter 5, we discussed the minimization algorithm and obtained a list of 

reversible functions for adder/subtractors and AL Us. The 1 algorithm returned the 

minimum MCT circuits for adder/subtractors and ALUs when compared among 

all the obtained reversible functions. In. the experimental results section, we illus

trated the improvements offered by the proposed design over existing counterparts. 

In this chapter, we discuss the greedy algorithm that obtains reduced quantum cir

cuits from MCT circuits. We transform all reversible circuits_into quantum circuits for 
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adder/ subtractors and ALU s, which are obtained through our proposed minimization 
algorithm. Our proposed greedy algo:r;ithm returns the best quantum circuit realiza
tion among all the transformed reversible circuits. In this work, the best quantum 
circuit is determined by counting the required number of quantum gates. The less the 
number of quantum gates is needed to realize a reversible circuit, the better the quan
tum circuit is. Figures 6.2, 6.3, and 6.4 show the reduced quantum gate realization 
of half adder/subtractor, full adder/subtractor, and ALU, respectively. The square 
box in Figs. 6.3 and 6.4 is the 2-qubit gate rule in the QC metrics, as described 

 in Sec. 2.6. According to the 2-qubit gate rule, if both CNOT and Controlled-V 
. (or Controlled-Vt) are operating on the same two qubits in a symmetric pattern, as 
shown in Fig. 2.5, their total QC is considered to be one as well. 

6.2 Comparison of Quantum Costs (QCs) 

In this section, we discuss further details of the transformation of reversible circuits 
into quantum circuits. Since there are multiple ways to realize a reversible gate into 
quantum circuits, it is difficult to definitely say whether the realization is optimal 
or minimal. Moreover, we show that there are multiple reversible functions for any 
particular function specificati.on. Several techniques can be used to return exactly 
one circuit for any particular function specification, but that reversible circuit may 
not provide better quantum gate realization. our approach obtains a list of reversible 
. . 
functions for any particular function specification, and all those functions are mini-
mum reversible circuits. To determine the quality of the obtained reversible circuits, 
we transform them into quantum circuits. In the previous section, we proposed a 
greedy algorithm and implemented it using MATLAB, as shown in Fig. 6.1. The 
program was run on a computer with specifications described in Table 6.1. In this 
section, we only discuss the adder/subtractor and omitted details of the results for 
ALUs. Tables 6.2 and 6.3 show the QC of half and full adder/subtractors for all 
minimum MCT circuits shown in Tables 5.4 and 5.8, respectively, where the 'Af
ter Reduction' columns indicate the QC after executing our program. The smallest 
quantum circuits in Tables 6.2 and 6.3 are shown in Figs. 6.2 and 6.3, respectively. 
Although, the number of elementary quantum gates in Fig. 6.3 is nine, we calculated 
the QC to be eight according to the 2-qubit gate rule in Fig. 2.5 of Sec. 2.6. 

Tables 6.2 and 6.3 sho") the effect of t1sing our proposed greedy algorithm. The 
second column (QC) of each table is divided into two columns, i.e., 'Before Reduc
·tion' and 'After Reduction'. As shown in Table 6.2, the QC .of circuit no. 2 before 
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Table 6.1: Computer specifications. 
CPU Intel Core i7-4770S @ 3.10GHz 

Memory 16GB 
OS Windows 7 Professional 64 bit Operating System 

Language MATLAB R2018a 

Table 6.2: Reduction of QC in the half adder/subtractor hAS1. 
Circuit QC 
No Before Reduction After Reduction 

1 7 7 
2 11 8 
3 11 8 
4 7 7 
5 11 10 
6 11 10 

applying the greedy algorithm is 11, and it becomes 8 after applying the algorithm, 
which means that the reduced quantum circuit requires 3 fewer gates. Note that there 
are no reduced quantum circuit realizations for circuits no. 1 and 4. The reduced 
quantum gates are over 25% of the original quantum gates. As shown in Table 6.3, 
the QC of circuit no. 26 before applying the greedy algorithm is 17, and it becomes 
1� after applying the algorithm, which means that the reduced quantum circuit re
quires 6 fewer gates. There are only few circuits where only 1 gate can be reduced 
after applying the algorithm. From Table 6.3, the maximum possible quantum gates 
reduction is over 30%, and the minimum possible quantum gates·reduction is around 
10%. Table 6.4 shows the computation time of the experiments in Tables 6.2 and 6.3. 

6.3 Experimental Results 

Table. 6.5 shows the comparison of existing full adder/subtractor designs with dif
ferent reversible gate libraries. As far as we know, the proposed desig� of the 
adder/subtractor is better than existing counterparts in terms of the QC, number 
of constant inputs, and garbage outputs. As shown in Table 6.5, the number of re
versible gates in [30, 29,. 27] is less than that in our proposed design because of the 
use of different gate libraries; we only used the MCT gate library in this work. The 
'QC' column of Table 6.5 demonstrates that our proposed design requires the least 
number of quantum gates to realize the full adder/subtractor block without imposing 
any high costs to other parameters. 
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Table 6.3: Reduction of QC in the full adder/subtractor fAS1. 

Circuit QC 
No Before Reduction After Reduction 

1 9 8 
2 9 8 
3 13 11 
4 13 11 
5 9 8 
6 9 8 
7 13 10 
8 13 10 
9 13 9 

10 13 11 
11 13 9 
12 13 9 
13 13 11 
14 13 11 
15 13 11 
16 13 11 
17 13 12 
18 13 12 
19 13 12 
20 13 12 
21 17 16 
22 17 16 
23 26 23 
24 26 23 
25 17 13 
26 17 11 
27 17 12 
28 17 14 
29 17 15 

. 30 17 13 

Table 6.4: IOPT(PEC(F))I of adder/subtractor and computation time for QC re
duction. 

Design IOPT(P EC(F))I Time [second] 
hAS1 6 0.4 
fAS1 30 0.5 
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Table 6.5: Comparison of the proposed reversfble full adder/subtractor and existing 
counterparts. 

Cost Metrics 
Design Input Reversible Constant Garbage QC 

Lines Gates Inputs Outputs 
1 [27] 7 8 3 5 21 
2 [27] 5 4 1 3 14 
3 [27] 5 4 1 3 10 

[29] 4 4 0 2 11 
[30] 5 3 1 2 9 

Proposed 4 5 0 2 8 

Table 6.6 shows the comparison of 1-bit ALUs, in which 'Gates' and 'QC' denote 
the nuniber of MCT gates and the QC, respectively. 'QC*' is the quantum cost of the 
2-qubit gate rule. If both CNOT and Controlled-V ( or Controlled-Vt) are operating 
on the same two qubits in a symmetric pattern, as shown in Fig. 2.5, their total QC 
is considered to be one as well. The QC of Gupta's-LU and Mini-ALU are significantly 
reduced in our design. The original number of reversible gates required to realize 
Gupta's-LU is 18 with a corresponding QC of 114. When our minimization algorithm 
is applied, only 3 reversible gates are enough to realize the Gupta's .. LU with a QC of 
15. VVhen the 2-qubit gate rule is considered, the QC is 14. Over 85% QC is reduced 
in our design compared to that of the original Gupta's-LU. 

Table 6.6: Comparison of 1-bit ALUs. 
Original Our Gates 

Design Operations Lines Gates/QC /QC(QC*) 
Gupta's- AND, NAND, 5 18/114 3/15(14) 
LU [33] OR, NOR, 

XOR, XNOR, 
Constant 1, 0 

Mini-ALU AND, OR, 4 6/62 5/15(14) 
[34] ADD, ID 

Proposed ADD, OR, 4 5/17(15) 
ALU AND, SUB 

Proposed XOR, OR, 4 3/11(10) 
LU AND, N/A 
QC*: QC under the merged 2-qubit gate rule. 

The original reversible gates required to realize the Mini-ALU is 6with a corre
sponding QC of 62. When our minimization algorithm is applied, 5 reversible gates 
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are enough to realize the Gupta's-LU with a QC of 15. When the 2-qubit gate rule is 

considered, the QC is 14. Over 75% QC is reduced in our design compared to that 

of the original Mini-ALU. The last two rows of Table 6.6 show the proposed ALU and 

LU. The best QC cost of the proposed ALU is 17 (15, when the 2-qubit gate rule is 

considered), which requires 5 reversible gates, and the best QC of the proposed LU 

is 11 (10, when the 2-qubit gate rule is considered), which requires only 3 reversible 

gates. 
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Chapter 7 

Conclusions and Future Works 

For most computing devices, adder/subtractor blocks and ALUs are crucial, and the 
development of cost-efficient arithmetic blocks helps improve the efficiency of the 
whole system. In this thesis, we studied the logic synthesis and optimization of re
versible and quantum circuits for ALUs by putting an emphasis on the function design. 
Toffoli, Peres, arid Fredkin are conventionally used to synthesize reversible circuits, 
and we have adopted the MCT gate library to design reversible adder/subtractor and 
simple ALU circuits. As f ar as we know, there are no existing works on the optimiza
tion of reversible full adder/subtractor circuits using only the MCT gate library with 
the lowest possible number of working lines, constant inputs, and garbage outputs 
even though the MCT gate library is the most fundamental and widely-used gate 
library for the synthesis of reversible circuits. 

To. obtain a reversible circuit of an irreversible function, we embedded the irre
versible function into an incompletely-specified f unction to make it reversible. We 
introduced a new approach called synthesis with QA, where the set of all functions 
that is QA-equivalent ·to Fis called the QA-equivalence class of F and denoted by 
OAEC(F). We also used the idea of permutation of outputs of a reversible function, 
originally introduced by Wille et al. [23], call�d as SWQP. For a given ISRF F, the set 
of variants made by the permutation of outputs in F is called the P-equivalence class 
of F denoted by PEC(F). To improve the function design of the arithmetic blocks, 
we proposed a combination of the equivalence classes PEC(OAEC(F)) of ISRFs F 

and extended the minimization problem of Finto ,(F) and OPT(F) for the set of 
ISRFs F. 

We proposed a minimization algorithm to obtain the minimum reversible circuits. 
We also used a greedy algorithm to perform the transformation of a given reversible 
circuit into a quantum circuit. These techniques allowed us to obtain the reduced 

49 



quantum circuit. The usefulness of our proposed technique, algorithms, and ap

proaches were verified through experiments. In this work, we applied our function 

design approach and provided the minimum MCT circuits that realize half and full 

adder/subtractors and some benchmark ALUs. The experimental results showed that 

our proposed reve,rsible designs and quantum designs are better than existing ones in 

terms of the number of input lines, constant inputs, garbage outputs, and the QC. 

Even though research in this area is still on its early stages, promising applications 

to future computing devices motivate further research. In this thesis, the function 

design for reversible logic synthesis using several approaches was proposed, and the 

presented synthesis approach can be further investigated. Some possible future works 

are listed below. 

• The minimization algorithm needs to be improved because it is currently limited 

to small circuits because of high memory consumption. However, even with this 

limitation, it is sufficient to achieve the purpose of this work. 

• The proposed OA approach is very efficient only when the number of operations 

is small. Hence the proposed approach can be further improved to be used on 

larger number of operations. 

• We focused on the function design of reversible and quantum logic synthesis. 

The proposed design of ALUs can only perform four operations b.ecause im

plementing more arithmetic/logic operations in a reversible ALU requires more 

complex circuit structure. More powerful· AL Us with more arithmetic/logic 

operations are needed to design a quantum computer. Our proposed function 

design approach to optimize reversible circuits can still be further improved, 

especially for adopting more arithmetic/logic operations. 

• We only used the NCV gate library into transform MCT circuits to quantum 

circuits. Recently, a universal quantum· gate set {H, Z, S, T, CNOT} has been 

taken into account in the design of fault-tolerant quantum circuits. Further in

vestigation to test whether the proposed approach to transform of MCT circuits 

into quantum circuits can be adopted for such circuits is needed. 

• Recently, the linear nearest neighbor (LNN) .architecture has received signifi

cant attention because of its practical uses especially in various nanotechnolo

gies, such as quantum optics, linear ion Trap, and nuclear magnetic resonance 

(NMR), where every qubit can interact with at most one neighbor above and 
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below it. Therefore, it is important to develop a design methodology for this 

new architecture. From the different technological constraints, our future plan 

is to revise our synthesis approach and design mpre practical reversible and 

quantum adder/subtractors and ALUs. 
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Appendix A 

Truth Table Representation of 
Reversible Arithmetic Logic Units 
(ALUs) 
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Table A.1: Truth table represent'ation of reversible LU. 
S1 S2 A B G1 G2 G3 Output 
0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

Table A.2: Truth table representation of reversible ALU. 
S1 S2 A B G1 G2 Output1 Outpuf2 
0 0 0 0 0 0 
0 0 0 1 0 1 
0 0 1 0 0 1 
0 0 1 1 1 0 
0 1 0 0 0 
0 1 0 1 1 
,0 1 1 0 1 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 0 0 
1 1 0 1 1 1 
1 1 1 0 0 1 
1 1 1 1 0 0 
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Table A.3: Truth table representation of Gupta's-LU, 

So S1 S2 A B Go G1 G2 G3 Output 
0 0 0 0 0 i 

0 0 0 0 1 1 
0 0 0 1 0 1 
0 0 0 1 1 1 
0 0 1 0 0 0 
0 0 1 0 1 1 
0 0 1 1 0 1 
0 0 1 1 1 1 
0 1 0 0 0 1 
0 1 0 0 1 1 
0 1 0 1 0 1 
0 1 0 1 1 0 
0 1 1 0 0 0 
0 1 1 0 1 1 
0 1 1 1 0 1 
0 1 1 1 1 0 
1 0 0 0 0 1 
1 0 0 0 1 0 

1 0 0 1 0 0 

1 0 0 1 1 1 
1 0 1 0 0 0 
1 0 1 0 1 0 
1 0 1 1 0 0 
1 0 1 1 1 1 
1 1 0 0 0 1 
1 1 0 0 1 0 
1 1 0 1 0 0 
1 1 0 1 1 0 
1 1 1 0 0 0 
1 1 1 0 1 0 

1 1 1 1 0 0 
1 1 1 1 1 0 
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Table A.4: Truth table representation of Mini-ALU. 
S1 S2 A B G1 G2 Output1 Output2 
0 0 0 0 0 0 

0 0 0 1 0 1 

·o 0 1 0 1 0 

0 0 1 1 1 1 

o .  1 0 0 0 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 1 

1 1 0 0 0 0 

1 1 0 1 0 1 

1 1 1 0 0 1 

1 1 1 1 1 0 
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