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Abstract 
In this dissertation, a technique for multispectral incoherent holography based on 

measuring differential wavefront curvature is proposed. The differential wavefront curvature 
is measured and the principle of Fourier transform spectrometry is applied to provide a set of 
spectral components of three-dimensional (3D) images and continuous spectra for spatially 
incoherent, polychromatic objects. The mathematical formulation of the principle and the 
experimental results are presented. Spectral resolution and 3D imaging properties are 
investigated based on a four-dimensional ( 4D) impulse response function (IRF). The 
dissertation consists of the following six chapters. 

In chapter 1 ,  an overview of the dissertation is provided. The research background is 
introduced, the research objectives are stated, and the structure of the dissertation is presented. 

In chapter 2 ,  the theoretical background of the research is summarized. The properties of 
light are derived from the wave equation, including optical interference based on the 
superposition principle of two optical waves, optical coherence, diffraction theory, angular 
spectrum method and Fourier transform spectrometry. 

In chapter 3 ,  the concept of multispectral incoherent holography is presented. An 
interferometer similar to the Michelson interferometer with one plane mirror replaced with a 
concave mirror is described. This interferometer detects the differential wavefront curvature 
between two split wavefronts. After the volume interferogram is obtained, the spectral profile 
of an object can be found in a way analogous to Fourier transform spectrometry. A 
mathematical theory that can be used to retrieve spectrally resolved 3D images is described. 
The optical intensity of interferograms is first expressed in terms of a spatial correlation 
function of the optical field. This function represents the interference of optical fields 
reflected by the plane mirror or the concave mirror. For a stationary field, the spatial 
correlation function recorded in the volume interferogram can be expressed as the 
superposition integral of the cross-spectral density function, where the cross-spectral density 
function is defined as the cross correlation between the monochromatic components of the 
optical field. This cross-spectral density function can be expressed in terms of the spectral 
density function of the measured object and is equivalent to a spectral component of the 
complex incoherent hologram. Thus, the 3D image for each spectrum can be reconstructed 
from the complex incoherent hologram by applying conventional inverse propagation 
techniques. 



In chapter 4 ,  two experiments are described. In the first experiment, the measured object is 
polychromatic. The 3D volume interferogram is measured with the interferometer. By 
performing a Fourier transform of the volume interferogram with respect to thickness, the 
spectral profile of the object and the complex incoherent hologram for each spectral 
component are obtained. The 3D image at the spectral peak is reconstructed from the complex 
incoherent hologram. The second experiment uses two polychromatic objects. The spectral 
profiles of the objects are analyzed at a point on the plane perpendicular to the optical axis. 
The experimental results show that the shape of the measured object is reconstructed well, the 
size of the object is close to that of the original, and the depth distance of the object is 
recovered. 

In chapter 5 ,  the imaging properties of multispectral incoherent holography are investigated 
theoretically by deriving an analytical solution of the IRF. The derivation is performed under 
the paraxial approximation. To confirm the mathematical analysis, the 3D images obtained 
from the analytical solution of the IRF are compared with the experimental results. In the 
mathematical analysis, the measured object is assumed to be a monochromatic point source. 
The cross-spectral density function is expressed as a Fourier transform of the product of the 
spatial correlation function and the window function, the latter of which represents the spatial 
extension of the image detector. To find the IRF and reconstruct the 3D image, the inverse 
propagation formula is applied to the cross-spectral density function. Consequently, the final 
expression for the reconstructed image appears as the superposition integral of the input 
spectral density function and the IRF, with the IRF expressed in terms of the Fresnel integrals. 

For comparison, the image is reconstructed as the IRF prediction. Another experiment is 
performed, in which the measured object is a monochromatic point source and the 
corresponding image is reconstructed. The two images are compared. The analytical solution 
of the IRF and the experimental results agree well, validating the method. The images 
obtained demonstrate the performance of the method. 

The conclusions are provided in chapter 6. 
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I Introduction 

1.1 Research background 

Incoherent holography is a measurement technique that uses light. The amplitude and phase 
information of light waves from an object is measured according to the incoherence of the 
light. In contrast to a photograph, the distance to the object is recorded in an incoherent 
hologram. Incoherent holography is based on diffraction theory and the self-interference 
principle, in which light originating from each point on the object interferes with itself. 

The conventional method of interferometric spectral imaging for three-dimensional (3D) 
objects illuminated with a natural light source1) was followed by the development of the 
synthetic aperture technique for digital holographic 3D imaging spectrometry.2'

3) This method 
is also called the spherical-type method because the fringe patterns recorded in the volume 
interf erogram are arranged in the same way as spherical wavefronts propagating from the 
object. Variations of the method have been developed, including the hyperbolic-type method 
(H-type)4) and the rotated hyperbolic-type method5)

. The method has also been extended to 
single-pixel imaging, in which an H-type volume interferogram can be measured directly 
without using a synthetic aperture.6) Each variation has its own advantages; however, all these 
methods generally have a long measurement time. 

In this dissertation, a method is proposed called multispectral incoherent holography, which 
requires a simple system and a short measurement time compared with previous methods, and 
thus is better suited for unstable objects, such as biological samples. A set of spectral 
components of the 3D images and continuous spectra for spatially incoherent polychromatic 
objects are obtained from the volume interferogram. Because the method is based on 
measuring differential wavefront curvature, it is a generalization of Fresnel incoherent 
correlation holography7) combined with Fourier transform spectrometry. 
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1.2 Objectives of the research 

Interferometric 3D spectral imaging is performed usmg a two-wavefront folding 

interferometer and synthetic aperture processing. The two-wavefront folding interferometer 

obtains a five-dimensional data set and a volume interferogram is generated by performing 

synthetic aperture processing on the data set. Then, multispectral images are generated from 

this volume interferogram. However, this interferometer generally has a long measurement 

time and the data sizes are large. Thus, the objective of this research is to resolve these 

problems by measuring differential wavefront curvature. The method is validated by 

comparing the experimental results and the analytical solution of the impulse response 

function (IRF). 

1.3 Structure of this dissertation 

This dissertation has six chapters. Chapter 1 provides a research overview and describes the 

research objectives. Chapter 2 contains the related theory of the properties of optical waves, 

the principle of interference, the interference of two optical waves, the propagation of optical 

waves, Fourier transform spectrometry, the reconstruction of spectrally resolved 3D images, 

and signal processing methods. The theory is included to demonstrate that the properties of 

light can be expressed mathematically in terms of the wave equation. Thus, the properties of 

the interference and propagation of optical waves are discussed based on the interference 

principle and the diffraction phenomena. In addition, the methods of image reconstruction are 

based on the angular spectrum method. 

Chapter 3 describes a demonstration of the proposed method. A 3D volume interferogram 

is obtained from an interferometer. The reconstruction process for multispectral components 

of 3D images based on the generalized Wiener-Khinchin theorem is presented. Chapter 4 

shows the experimental conditions, interferometric measurements, and experimental results. 

Chapter 5 presents a theoretical investigation of the 3D imaging properties of incoherent 

holography using a new analytical solution of the IRF defined over four-dimensional (4D) 

space. The primary result obtained in the chapter explains the full derivation of the 4D IRF, 

which is expressed mathematically in closed form. The theoretical predictions obtained from 

the analytical solution of the IRF are also shown for comparison with the experimental results. 

Chapter 6 gives the conclusions based on the results. 
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II Basis concepts of optical wave 

2.1 Introduction 

For coherent holography, the interference pattern of two coherence waves, namely, the 
object wave and the reference wave, are captured on a recording medium. Subsequently, the 
image is reconstructed by illuminating the hologram with coherent light. In digital incoherent 
holography, the hologram is constructed from incoherent waves and an optical sensor is used 
to record the information and a mathematical method is used to reconstruct the image. 

First, a brief summary of the mathematical description of optical waves is given. Then, the 
interference of the optical waves that correspond to produce the hologram is explained. The 
reconstruction of the image is discussed in the overview of the mathematical method. The 
chapter is then summarized. 

2.2 Mathematical description of optical waves 

An electromagnetic field is described by two related vector fields: the electric field E(r, t) 

and the magnetic field B(r, t). Both are vector functions of position and time. In general, six 
scalar functions of position and time are therefore required to describe light in free space. 
Fortunately, these functions are related since they must satisfy a set of coupled paratial 
differential equations known as Maxwell's equations. 
The electric and magnetic fields in free space satisfy the following partial differential 
equation, known as Maxwell's equations: 

aB(r, t) 
rotE(r, t)+--- =0 , 

at 

aE(r, t) 
rotB(r, t)-µ0E0 --- = 0, 

at 

divE(r, t) =0 , 

div B(r, t) = 0 ,  

(2. 1 ) 

(2.2 )  

(2.3 ) 

(2.4 ) 

where r is a vector position in space and t is time. The constants e
0 

=(1/36.n) x 10 -9 and 
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� ""'4.n x 10 -7 (MKS units) are, respectively, the electric permittivity and the magnetic 
permeability of free space; and div and rot are the divergence and the curl operations. In a 
Cartesian coordinate system divE(r, t )  = aEJr, t )/ax+aE/r, t ) jay+aE

z<r, t )/az and 
rotE(r, t )  is a vector with Cartesian components (aE

z
<r, t )/ay-aE/r, t )jaz, 

aEx (r, t )/az-aEz<r, t ) /ax, aE/r, t )jax -aEJr, t ) /ay). 

A necessary condition for E(r, t) and B(r, t) to satisfy Maxwell's equations is that each 
of their components satisfy the wave equation 

V2 
-!!:__ E(r t) = 0 

( 2 
a

2 ) 
c2 at2 ' , 

V2 
---- B(r t) =0 ( n2 

a
2

) 

c2 at2 ' , 

where, n is the index of refraction of the medium, defined by 

(2.5)  

(2.6) 

(2.7 ) 

where c is the electric permittivity in the medium, and c is the speed of light in vacuum, 
given by 

(2.8 ) 

By using these equations, the behavior of the electric field E(r, t) and magnetic field 
B(r, t) can be summarized in three dimensions as single electromagnetic waves. For scalar 
theory of optical field, the optical wave can be represented by a complex optical field V (r, t), 

which corresponds to one component of the electric field vector. 
The equation of motion is given by 

V2 
---- V(r t) =0 ( n2 

a
2

) 

c2 at2 ' ' 

Note that in free space, the index of refraction, n, is unity. 
For a monochromatic field, we find a solution of the wave equation of the form 

V(r, t) = U(r; cv )exp(-icvt) , 

(2.9 ) 

(2. 10 ) 

where U(r;cv) is the complex amplitude of a monochromatic field and cv = ck is the 
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angular frequency. Substituting Eq. (2 .10 ) into the wave equations in Eq. (2 .9 ), yields the 
Helmholtz equation, expressed as a special case of the wave equation 

(V2 +k2 )U(T; w) =0 , 

where, k is the wavenumber given by 

k = 2 :rr 
;.,,' 

and ). is the wavelength in the propagation medium. 

(2 .11 )  

(2 .12 ) 

If we solve the Helmholtz equation in spherical coordinate we remind that the Laplacian 
operator in spherical coordinate is given by 

(V2 +k2 )U(T; w) 

( 1 a2 1 a a 1 a2 ) = --2 r+ 
2 . sin8-+ 

2 • 2 2 +k2 U(r,8,cp; w), 
r ar r sm e ae ae r sm e acp 

and we can find solution as a spherical wave 

exp(ik IT -T0 1) U(T; w) = U
0

-----, 

IT-T
0 

I 

(2 . 13) 

(2 .14 ) 

which is a wave traveling from a point source. It is important to note the difference in the 
argument of the exponential. In the case of a spherical wave we have a simple product kr 
where r = I T - T

0 
I and in the case of the plane wave this a scalar product 

k· T = kxx + k
y
y + kz

z. It originates from a source and its wavefront consist of spheres centered 
about the point source (Fig. 2.1 ). As previously due to the convention of time oc exp(-iwt) 

the wave described with the complex amplitude presented on Eq. (2 .14 ) travels from the 
source point outwardly. On the other hand a spherical wave traveling inwards (toward the 
point source) is described by 

exp(-ik IT -T0 1) U(T;w) = U
0

-�--�, 

IT-T
0 

I 
(2 .15) 

the intensity of the spherical wave decays with the distance from the point source as 
l(T) = (I U

0 
1

2 
/ r2

). 
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' ' ' ' 
' ' ' ' ' ' ' ' '

,�. ,.,.l 
Fig. 2.1 Representation of a spherical wave. 

2.3 Interference of optical waves 

r 

This section describes the interference phenomena. Among electromagnetic waves, visible 
light has a frequency that is too high, and there is a problem in that the wave itself cannot be 
detected. It is the optical intensity that can be detected, and the nature of the amplitude and 
phase of the optical wave can be examined from the detectable optical intensity. It is the 
interference effect of waves that can observe this optical wave most directly. When two 
optical waves are superimposed, the optical intensity changes both temporally and spatially. 
This is called an interference phenomenon. Measurement methods using interference 
phenomena are widely used and are now known as very important phenomena when dealing 
with light. 

2.3.1 Superposition of two optical waves 

When two or more optical waves overlap, an intensifying or weakening interference action 
occurs. If each wave is a plane wave, it is expressed as 

V(r, t) = aexp[i(k· r - cvt + ¢) ], (2.16) 

since waves with vibration directions orthogonal to each other do not interfere, the amplitude 
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a is represented by a scalar quantity. Here, w is the angular frequency, t is the time, and ¢ 
is the initial phase. 

The superposition of the two optical waves can be expressed as shown in Fig. 2.2. It is 
assumed that plane waves with initial phases ¢1 

and ¢2 
are generated from points Pi_ and 

P
2 

at position vectors r
1 

and r2
. Here r-r

1 
is the position vector up to point D starting 

from point P,. Thus, r in Eq. (2.9) can be replaced by r -r
1

• In this case, k· (r -r1
) 

represents the phase delay when the plane wave passing through point P
1 

propagates to point 

D. 

Fig. 2.2 Superposition of two light wave. 

The two plane waves at observation point D and time t can be expressed as 

½ (r, t) = lli exp{ i[ k1 • (r -r 
1 ) - OJ/ + ¢1 ]}, 

Vz(r, t) = a2 
exp{i[k2 • (r -r 

2)- W2t + ¢2 ]} , 

the observed light intensity is 

l(r, t) = jV(r, t)J2 

= l½(r, t) + Vz(r, t}i
2 

=l½(r, 01
2 

+IVzCr, t}i
2 

+½*(r, t)V2 (r, t)+½(r, ov;cr, t) 

(2.17) 

(2.18) 

= 11 + /2 +2..J1/i cos[ k
2 • (r -r2 )-k1 • (r -r1

)-(w2 -w
1 )t + (¢2 - ¢1)]. (2.19) 
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Here, * represents a complex conjugate, which is denoted by /
1 

= a}, 1
2 

= a;. The first and 
second terms are the light intensity when the optical wave is present alone, and the third term 
is the interference term. The interference light intensity is not simply the sum of the light 
intensities, and becomes stronger or weaker. This phenomenon is called interference. The 
interference term changes with the phase difference. 

2.3.2 Interference of two optical waves 

Even if the optical waves from one light source are divided and made parallel to each other 
to be k

1 
/lk2 , if the frequency is slightly different and is w1 

¢ c.o2, the interference fringes 

fluctuate in time. We consider the case of detecting interference fringes formed by continuous 
optical waves, although the frequencies are different. The two optical waves are plane waves 
with constant amplitude, and the angular frequency is c.o

1 
and w

2
• The observed interference 

light intensity changes temporally due to the beat phenomenon. Let the observation time be T 
and the average value be ( ) , then 

( ) 2N,JT 
[ l..1 I(r, t) =11 +/2 +�-- cos -(W2 -W1 )trt. 

T o 
(2.20) 

If the observation time is sufficiently longer than the fluctuation period of the beat 
frequency, the interference term is averaged and becomes 

(2.21) 

and no interference fringes are observed. Whether the optical waves interfere in this way 
depends on whether they can be observed. 

Generally, visible light with two wavelengths can be separated by a spectrometer when the 
wavelength difference is about 0.1 nm. Suppose that two lights whose wavelengths are close 
come from the same direction. Let their wavelengths be � = 500 .0 nm and Ai = 500 .1 nm. 

If this light is expressed by frequency, it is 

CO C 
V=-=-

2:n ;.,' 
(2.22) 

so the frequency L1v = (w
1 -c.o

2
)/2n = 120 GHz. The interference term fluctuates in time at 

high frequency. Considering the extreme, the observation time is assumed to be the response 

time of the light detector. Even if the detector responds to the speed of light up to about 10-9 

seconds, the time-varying interference fringes are not observed because they are averaged 
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over 120 cycles. Generally, it is evaluated by the average intensity for a sufficiently long time. 
Therefore, two optical waves with different wavelengths are treated as not interfering. 
Therefore, it can be understood that two optical waves with different wavelengths may be 
treated as incoherent. 

2.3.3 Mutual coherence function 

Consider an interference term for optical fields that originate from two points, where the 
travel times from the original point to the superposed point are t1 and t

2
• The space-time 

correlation function, I'(ri, ti
, r2 , t

2
), of the interference is expressed as 

(2.23) 

At a fixed point with different paths, the longer path requires additional time r = t
1 

- t
2 

to 

traverse, and the space-time correlation function ( or mutual coherence function) of these 
optical fields is expressed as 

(2.24) 

The normalized mutual coherence function can be expressed as 

(2.25) 

This is called the complex degree of coherence. In the case of I y(ri , r2
, r) I= 1, the light 

fields at two points in space-time are said to be coherent and have perfect correlation. Also, in 
the case of I y(r1 , r2 , r) I= 0, it is said to be incoherent, and the amount of field at the two 
points has no correlation. Furthermore, the case of 0 <I y(ri , r2

, r) I< 1 is said to be partially 

coherent. Although coherent optical waves can clearly observe interference phenomena, 
incoherent optical waves cannot observe interference phenomena. These two optical waves 
are both ideal, and many optical waves are partially coherent light. For two optical waves, 
when the positions are the same (r1 

= r2 = r) and only the time is different (t1 = t, t
2 

= t + r), 

(2.26) 

is obtained, and I'(r, r) = I'(r, r, r) shows the temporal correlation function of the optical 
waves at position r. This is called the temporal coherence function. This is the time domain 
autocorrelation function, and the inverse Fourier transform of this autocorrelation function 
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gives the spectral density function. In general, it is expressed as 

1 J
'° 

S(r;w)=- I'(r, r)exp(ic.vr)dr. 
2n -"" 

(2.27) 

Also, the autocorrelation function can be obtained from the spectral density function, which 
is expressed as 

I'(r, r) = (v* (r,O)V(r, r)) = f
0
s(r;c.v )exp(-ic.vr)dw . (2.28) 

This is called the Wiener-Khinchine theorem. The mutual coherence function I'(lj_, r2
, r) 

of equation (2.24) is considered to satisfy 

2n 
lrl<<Llw 

(2.29) 

if the time difference r ( coherence time) of the two light fields is sufficiently small 
compared to Llc.v , which is the spread of the spectral density function S( r; c.v). At this time, 
it can be regarded as the time difference r = 0. Therefore, if the position is different (1j_ ¢ r2 ) 
in Eq. (2.24) and the time is the same (t1 = t2 = t), then 

(2.30) 

It represents the spatial correlation of the optical field at different locations, and is called 
the spatial coherence function. 

2.4 Propagation of optical waves 

This section describes the diffraction phenomenon. Electromagnetic waves propagate as 
they propagate through space. This phenomenon is called diffraction, and optical waves also 
have diffraction effects. Optical waves have extremely high frequency, small diffraction 
effects compared to radio waves, and strong directivity of propagation. Therefore, spatial 
distribution of amplitude and phase, that is, image information can be transmitted directly. 

2.4.1 Diffraction phenomenon 

An optical wave propagate in space by repetition of one wavefront serving as a light source, 
generating the next wavefront, and the wavefront generating the next wavefront. As shown in 
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Fig. 2.3, it is assumed that a spherical wave is generated at point 0. The equiphase surface is 
spherical around the point 0. It is assumed that point P is on the spherical surface and 
secondary wave is generated from a minute region near it. The secondary generated from a 
minute region is a spherical wave. Since spherical waves propagate isotropically in space, 
there is a light wave component traveling in the direction of the observation point Q. 
Therefore, the optical wave reaching point Q is the superposition of all optical wave 
components generated on the spherical surface including point P. The phenomenon that 
optical waves wrap around like this is called diffraction . 

0 

•• •• • • • • • 
�x • . 

Fig. 2.3 Diffraction phenomenon. 

Q 

The spherical wave that propagates the distance R from the point light source is expressed as 

V(P, t) = �exp[i(kr0 -wt+ <p)]. 
ro 

(2.31) 

Since the diffraction phenomenon does not deal with the passage of time, the optical wave 
is represented by a complex amplitude. The complex amplitude that is the coefficient of the 
temporal vibration term is 

U(P;w )  = �exp[i(kr0 
+ ¢)]. 

ro 
(2.32) 

A secondary wave is generated from a small area dS (near point P) on a spherical surface of 
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radius r
0 

centered on point 0. The complex amplitude of the secondary wave reaching point 

Q is 

dU(Q; cv) = _!:!:_K(x)exp(ikr
0
)exp(ikR)dS, 

r0
R 

(2.33) 

considering the phase lag. Here, the initial phase at point O is ¢ = 0. It is important to note 

that the secondary wave is generated from all over the spherical surface in Fig. 2.3, and the 
optical wave component that changes the direction of travel has its complex amplitude 
reduced and its ratio is represented by the inclination factor K(x). In other word, the optical 

wave component that travels in the angular direction from the micro area dS shows the value, 
assuming that the complex amplitude is twice the original spherical wave. 

Then, given that the point P is in a finite aperture, is given by 

f l+cosx a [ · ] U(Q;w) = . exp zk(r0 + R) dS, z2),, r
0R (2.34) 

by Frensnel-Kirchhoffs diffraction equation. Integration is over the diffractive sphere in the 
aperture. If the size of the aperture is small and the aperture center is on the straight line 
connecting the light source O and the observation point Q, cos(x) can be approximated as 1. 
Focusing on the fact that the optical wave distribution near the aperture is expressed as 

U(P;w) = �exp(ikr
0

), (2.35) 
ro 

Eq. (2.34) is expressed as, 

1 J 1 U(Q;w) = 
iJ,,, U(P;w) 

R 
exp(ikR)dS. (2.36) 

The optical wave at point Q is given by the composition of the optical wave generated by 
U (P; cv) on the aperture plane. Even if the optical wave distribution in the process of 
propagating to the aperture plane in unknown, the diffracted light reaching the observation 
point Q can be obtained if the complex amplitude U(P;w) on the aperture plane is given. 

The integration in Eq. (2.36) should be performed along the diffractive sphere centered at 
point 0, but since x can be approximated to be 0, it is performed over the same plane as the 
screen surface. Thus, Eq. (2.36) is simplified using some approximations, but it holds quite 
generally. These are summarized in Fig. 2.4 and the following Eq. (2.37). The light emitting 
surface is distributed near the optical axis on the x-y plane with z = 0 . The complex 
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amplitudes are distributed in two dimensions, so they reach a point (X, Y) near the optical axis 
of ( z = z

0
) of U (P; w )  . If the amplitude distribution of the diffracted light is expressed as 

U(X,Y,z0 ;w) = i�J U(x,y,O;w) !exp(ikR)d\_, (2.37) 

where d2r1- = dxdy. This is a basic equation that deals with diffraction phenomena. Here, R is 
the distance between the point (x, y) on the light source and the point (X, Y) on the 
observation surface, and the exponent is the phase delay due to the propagation of the optical 
wave there. 

_v 

Aperture 

2.4.2 Fresnel diffraction 

X R 

-o 

y 

U(X,Y,z0 : cu) 
X 

Observation plane 

Fig. 2.4 Optical wave propagation. 

The aperture at position z = 0 is shown in Fig. (2.4). When a plan wave is irradiated along 
the z-axis, the optical wave is diffracted by the aperture and reaches the observation plane 
(z = z0). The complex amplitude on the observation plane is given by the diffraction equation 

of Eq. (2.37). However, this formula looks simple, but it is difficult to perform the integration. 
The variable R included in the integral is the distance from each position (x, y) in the aperture 
to the observation point (X, Y). Therefore, the size of the aperture and the observation area are 
assumed to be sufficiently smaller than the distance z

0
. Representing R in a Cartesian 

coordinate system, 
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(2.38) 

where g _  = (X,Y) and r
j_ 

= (x, y). This 1s known as paraxial approximation. Equation_ 
(2.3 7) reduce to 

(2.39) 

This diffraction phenomenon is called Fresnel diffraction. 

2.5 Angular spectrum method 

There exists an alternative treatment of the propagation of optical field, which is called the 
angular spectrum method. To begin, we consider a monochromatic field. The optical field is 
represented by the complex scalar function, U(r

J_
, z;cv). Throughout the space, the optical 

field satisfies the Helmholtz equation in Eq. (2.11) 
(2.40) 

where k = cv/c. Let us define the position vectors r
j_ 

= (x, y), where r = (x, y, z) = (rj_ , z). 
To treat the propagation of the optical field, we express the optical field, U(r

j_
, z; cv) and 

U(r
j_

, O; cv) on the aperture, as a two-dimensional (2D) Fourier integral with respect to r
j_ 

as 

1 J- . 2 U(r
J_
,O;cv) = - U(k

j_
, O;cv)exp(ik J_ • rj_

)d k
j_

, 
2n 

(2.41) 

(2.42) 

where U(k
J_

,z;cv) is called the angular spectrum. k=(k
x
,k

y
,k

z
)=(k

J_
,k

z
) is the 

wavenumber of the wavelength and d2 k J_ = dk
x
dk

Y
. The optical field in the Fourier domain, 

U(k
J_
, z;cv), is related to the optical field in the spatial domain, U(r

J_
,z;cv) and U(r

J_
,O;cv), 

via the inverse Fourier transform as 

(2.43) 

(2.44) 

Substitution of Eq. (2.41) into Eq. (2.40) gives an equation that describes the z evolution of 
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the angular spectrum, 0 (k .L, z; w), as 

(2.45) 

where 

(2.46) 

is the z component of the wavenumber vector as a function of k .L. Then, the angular spectrum, 

traveling in the direction of increasing z, obeys the propagation law 

(2.47) 

Equation (2.46) implies that where k .L s k, the waves are traveling waves and where k .L � k, 

the waves are evanescent waves. For our purposes, we ignore the evanescent waves. The 
function exp(ikzz) in Eq. (2.47) is called the optical transfer function in free space. This 

equation (2.4 7) represents the relationship between the angular spectrum on a reference plane 

z = constant > 0 and that on the aperture z = 0. 
Propagation law of the optical field in real space can be obtained by the Fourier transform 

of Eq. (2.47). If we take the paraxial approximation in the exponent of the optical transfer 
function, we obtain 

Then, 

k2 
= kz _ ___.!_z . 

2k 

exp(ik,z) - exp(ikz)exp(-i�t ,). 
The Fourier transform of this function gives 

(2.48) 

(2.49) 

(2.50) 
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Thus, the Fourier transform of Eq. (2.47) takes the form 

U(r1-, z; w) = -.
1-f u(r�, O; w )exp[-i..!5._(r1- - r�)2 ]d2r�. 

lA,z 2z 
(2.51) 

This expression of the propagation law of optical field is equivalent to the Fresnel diffraction 

formula in Eq. (2.39). 

2.6 Fourier transform spectroscopy 

Fig. 2.5 Michelson interferometer 

The coherence function of a light source can be measured by usmg a Michelson 

interferometer. Figure 2.5 shows a schematic of a Michelson interferometer. Consider a light 
source with a continuous spectrum and intensity distribution S( w). Suppose a Michelson 
interferometer is illuminated with a light source. The light propagates from point P to lens L

1
, 

where it is collimated onto the beam splitter (BS). At the BS, the collimated light is split into 
two parts (Fig. 2.5). Each split wavefront is reflected by either mirror M

1 
or M

2
• The 

optical waves are superposed on the BS again. Each frequency component produces an 
interference pattern. Lens L

2 
focuses the light on the detector D. The detector records the 

intensity distribution, which is given by 
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/(r)- ! [2I'(r, O)+ r(<) + r'(,, !) ] 
1 Joo 1 J '° ( Z) 1 Joo ( Z) =- S(r;w')dw+- S(r;w)exp iw- dw+- S(r;w)exp -iw- dw 
2 o  4 o  c 4 o  c 

CJ"' 

C Joo 

=- S(r;ck')dk+- S(r;ck)cos(kZ)dk, 
2 0 2 0 

(2.52) 

since the time difference is r = Z/ c . In this equation, the first term is a constant term, where 
S(r; ck) is the time-averaged intensity of each optical wave, and the second term represents 

the interference between two optical waves and can be considered as a positive or negative 
deviation from the constant term that depends on the path difference, Z. The intensity 
fluctuation about the constant bias forms the spectral distribution, given by 

c 
J

oo 

/(Z) = - S(r; ck)cos(kZ)dk. 
2 0 

(2.53) 

The interferogram is obtained by detecting the output intensity, /(Z), as a function of path 
difference Z at a point on the optical axis of the system. Then, by taking the Fourier 
transform of the interferogram, the spectral irradiance distribution, S(r; ck), is found as a 
function of wavenumber as 

S(r;ck) = � f l(Z)cos(kZ)dZ. 

The minimum resolvable wavelength interval is given by 

;.,,2 
L1A=-

l 
, 

z 

where [_ is the total path difference. 

2.7 Summary 

(2.54) 

(2.55) 

The mathematical expression of the behavior of light can be obtained from Maxwell's 
equations. Interference is a property of optical waves that is based on the superposition 
principle. The mathematical representation of interference between two optical waves has 
three terms to consider. The first two terms are constant terms that depend on the intensities 
of the individual optical waves. The last term is the interference term that depends on the 
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interference between the two optical waves and was used to confirm the wave nature of light. 

The interference term depends on the coherence of the optical waves, and there are temporal 

and spatial coherence functions. Coherence can be identified by the degree of coherence or by 

a normalized space-time correlation function. Temporal coherence length can be measured by 

a Michelson interferometer and the spectral distribution of the light source can be revealed by 

taking a Fourier transform of an interferogram. 

The treatment of the wave propagation by angular spectrum method was described. 

Propagation of the angular spectrum is performed by the optical transfer function. Under the 

paraxial approximation, it gives mathematically the same expression as in the Fresnel 

diffraction formula. 
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III Multispectral incoherent holographic 

3.1 Introduction 

In this chapter, the concept of multispectral incoherent holography is outlined. First, the 

measurement system is introduced, which measures the differential wavefront curvature 

between two split wavefronts. The system obtains a volume (3D) interferogram that records a 

3D spatial correlation function. The signal processing procedure for spectral decomposition to 

obtain a set of complex incoherent holograms for different spectral components is described. 

The 3D image at each spectrum can be reconstructed from the complex incoherent hologram 

by applying conventional inverse propagation techniques. 

3.2 Measurement of 3D volume interferogram 

Figure 3 . 1  shows a schematic of the optical system. This system is similar to a Michelson 

interferometer, but one of the mirrors is replaced with a concave mirror. The origin of 

Cartesian coordinate system is set close to the measured 3D object. This object, assumed to be 

polychromatic and spatially incoherent, is localized within a finite volume I centered at the 

origin. The optical wave that is propagated from the object is divided into two parts by the 

beam splitter (BS). Each split wavefront is reflected by either a concave mirror (M1 ) of focal 

length Ji or plane mirror (M
2
). Those optical waves are superposed on the BS again. A 2D 

interference pattern, /(g_), is created and recorded by the image sensor (D). Here, 

A= (X,Y) is the 2D coordinate system across the observation plane. The optical path 

difference, Z, between the two wavefronts is introduced by moving the piezoelectric translator 

(PZT) along the optical axis stepwise. The 2D interferogram at each position of the PZT is 

recorded. This procedure is like that of Fourier transform spectrometry. The recorded data 

create a 3D volume interferogram. We write p = (g_, Z) = (X,Y, Z) as the coordinate 

system taken in the volume interferogram. Let the distance between M1 and D be d1 and let 

the distance between M2 and the origin of Cartesian coordinate system be d0 + Z/2, and 

defining the distance between D and the origin of Cartesian coordinate system as z0 = d0 + d1 , 
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the optical intensity of volume interferogram, /(p), is given by 

/(p) = (Iv; (pj_, Zo, t) + Vz(A, Zo + Z, t)l2) 

(3.1) 

where the angle brackets indicate an ensemble average and the asterisk denotes a complex 

conjugate. We suppress the time t in I' because the optical field is assumed to be 

stationary m time. In Eq. (3.1), r, i(pJ = (Iv, (pJ_, Zo, t)n and I'2zCP) 

= (lv2
(P

J_
, Zo +Z, t)n are the optical intensities of optical fields v;(p_i' Zo,t) reflected by the 

concave mirror and VzCP.i, z0 + Z, t), reflected by the plane mirror. The 3D spatial correlation 

function, I', z(p) = (v,*cA, z
0

, t) V2(A, z
0 

+ Z, t) J, of the optical field contains both 3D spatial 

information and spectral information of the polychromatic object. 

/ 

d
0 
+ Z/2/ ./ 

/ 
/ 

/ 

_,--+-____ -0 
,,,:i'-

-
-,,-,,:-; ... -:..'_ .. _ ---

M2 

Fig. 3.1 Schematic of optical system. BS: beam splitter, Ml: concave mirror, 

M2: plane mirror; and D: image sensor. The optical distance between Ml and 
D is d, , the optical distance between M2 and the origin of Cartesian 

coordinate system is d0 + Z/2, and the optical distance between D and origin 

of Cartesian coordinate system is z0 = d0 + d, . The optical path difference, Z, 

is introduced by the PZT. 

20 



3.3 Reconstruction of 3D images for many spectral 

components 

The spatial correlation function I'1z(p) for the stationary optical field recorded in the 

volume interferogram is expressed as a superposition of the cross spectral density function, 
W12

, in the form 

I'izCP) = foooWli
(p;c.v)dcv, (3.2) 

where c.v = ck is the angular frequency, c is the speed of light in free space, and k = 2nj}., 

is the wavenumber of wavelength A. Equation (3.2) is a special case of the Wiener-Khinchin 
theorem, in which temporal difference is set to be zero. This equation means that for a 
stationary optical field, spectral components of the optical fields for different frequencies are 
mutually uncorrelated. The cross-spectral density function on the right-hand side of Eq. (3.2) 
is defined as the cross-correlation of monochromatic components U

1 
and U 2 of V

1 
and V

2 

as 

(3.3) 

Under the paraxial approximation and the assumption z
0 

>> Z, this cross-spectral density 

function can be written as 

(3.4) 

where 

(3.5) 

is the cross-spectral density function defined over the observation plane z = z0
• Substituting 

Eq. (3.4) into Eq. (3.2) gives the relationship between the spatial correlation function I'12 , 

and the cross-spectral density function across the observation plane as 

I'1zCP) =Cf 0

00 

w
l
�Zo)(g_; c.v)exp(ikZ)dk. (3.6) 

It is then clear that Eq. (3.6) may be inverted to express the cross-spectral density function 
across the observation plane as the Fourier transform of the spatial correlation function, 
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(3.7) 

In Eq. (3.7), the integrand has taken over the actual extension of the interferogram with 
respect to Z. 

From Eq. (3.1 ), the 3D interferogram being recorded includes two intensity distribution 
terms and two interference terms. These interference terms can be separated from the intensity 
distribution terms during the retrieval of the cross-spectral density functions because 
cross-correlation term I'1z(p) contains only positive-frequency spectral components, as 
shown in the integral region in Eq. (3.6), and r;i(p) contains only negative-frequency 
components. On the other hand, the intensity distribution terms I'11 and I' 22 do not change 
rapidly within the volume interferogram. This means that the spectra of I'11 and I' 22 appear 
close to the zero spatial-frequency region, separate from those of I'12 and r:

2
. By choosing 

the positive frequency components, we obtain the information of I'12 , separated from other 

terms. 

3.4 Propagation of optical coherence from spatially 

incoherent source 

The cross-spectral density function, W1�zol(p.L; cv), across the observation plane in Eq. (3.5) 

is defined as the cross correlation of the monochromatic component of the optical field, 
U

1
(g_, z

0 ;cv) and Uz(g_, z
0;cv) . The optical field Uz(p.L , z

0;cv) is expressed as a 

superposition of the spherical wave propagated from a point rs = (xs , Ys , zJ = (rs.L' zJ on the 
3D object to the observation plane z = z0 = d0 + cf,_, and is written as 

U ( ) I A(rs.1• z) ( 'kR)d. 3 
2 P.1, z0

;cv = R 
exp i �- (3.8) 

Here, A(rs.1• zJ is the amplitude at the point rs and R is the distance between the point on 
the object rs and the point (A, z0) = (X, Y, z0) on the observation plane. Under the paraxial 

approximation, R may be expressed as 
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(3.9) 

where z
0 

-Zs is the optical distance of the point rs, as measured from the observation plane. 

Substitution of Eq. (3.9) into Eq. (3.8) gives the following expression of the optical field 
Ui(g_, z0

;cv), 

(3.10) 

where we omit zs in the numerator because z
0 

>>Zs . To obtain the expression of 
U,(g_, z

0
;c.v), we consider the optical field, Ui(r{, d0;cv), across the plane z = d0 

in front of 

the concave mirror. Replacing z
0 

by d0 
in Eq. (3.10), we obtain 

(3.11) 

Then, the optical field immediately after reflecting by the concave mirror of focal length 
Ji is expressed as 

(3.12) 

The optical field U,(A, z0 ;c.v) is related with U{(r{, d0;cv) by the usual propagation law 

for the distance di_, 

(3.13) 

I 

Substituting Eqs. (3.12) and (3.11) into Eq. (3.13), and carrying out the integration by rj_ , 

we may write the optical field across the observation plane after modulating by the concave 
mirror as 

[ ( 
)2 ] 

ik Ji - ( d -
z ) /i x exp - , o s p - , r' 

2 fid, + (Ji - d,)(do - z) J_ 
Ji - (do -Zs ) sJ_ 
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[ ik I 2] 
3 x exp ------r;J_ d r;. 

2J;-(d0 - z) 
(3.14) 

On substituting Eqs. (3.10) and (3.14) into Eq. (3.5), and changing order of integration and 
averaging, we may write the cross-spectral density function in Eq. (3.5) as 

[ik I 2] 3 3 x exp ----r' d rd r'. 
2 .r _ (d _ ) sJ_ s s 

JI o Zs 
(3.15) 

Because the measured object is incoherent in space, the amplitudes at different points on 
the object are mutually uncorrelated. Thus, 

(3.16) 

Substituting Eq. (3.16) into Eq. (3.15) and intregrating by r;, we obtain the final expression 

of the cross-spectral density function as 

<z > • 
f 

[ ik I 2] 
3 

W12° (A,W) = K S(rsJ_• z)exp ---(A -mrsJ_) d r,, 
1 

2 y(z) 

1 (do - zs )2 

y(z) 
= 

(d1 + d0 - zs )[J;d 1 + (J; - d1 )(d0 - z)]' 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Here, K is a coefficient, rs = (rsJ_,Zs ) = (xs , Ys ,Zs ) is a point on the polychromatic object, 
y(z) is the radius of the differential wavefront curvature as a function of Zs, and m is the 

lateral magnification. 
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3.5 Reconstruction of 3D image 

Equation (3. 7) allows us to retrieve the cross-spectral density function across the 
observation plane. This cross-spectral density function, which is expressed as Eq. (3.17), is 
equivalent to the complex incoherent hologram of a spectral component. Thus, the 3D image 
for each spectrum can be reconstructed from the complex incoherent hologram by applying 
the usual inverse propagation formula, 

• _ (z0) • 

[ __j!_ 
2 

l 

O(r1. ,z,w)-W,2 (PJ.,w)@exp - A , 
2y(z) 

where, @ is the convolution integral. Or, it can be expressed explicitly as 

. 

J 
(z0) • 

[ 

ik 2

] 

2 
O(r1.,z,w) = W,2 (PJ.,w)exp ---(A -r1.) d P1. . 

2y(z) 

(3.21) 

(3.22) 

The objects that are located across plane z = zs are in focused and other objects are 

defocused. 

3.6 Summary 

In this chapter, we show the interferometer used in this study. The relationship between the 
volume interferogram and the spatial correlation function can be obtained from this 
measurement method. Next, the cross-spectral density function across the observation plane 
can be expressed as the Fourier transform of the spatial correlation function. The spectral 
profile of the object is also obtained. 

This cross-spectral density function is equivalent to the complex incoherent hologram of 
spectral component. Thus, we can reconstruct the 3 D image for each spectrum from the 
complex incoherent hologram by applying the usual inverse propagation formula. 
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IV Experiment 

4.1 Introduction 

This chapter presents the experimental conditions and results. The object being measured is 

polychromatic. An interferometer is used to measure the volume interferogram. The spectral 

profiles of the objects and the complex incoherent hologram for each spectral component are 

obtained by applying a Fourier transform to this volume interferogram with respect to the 

optical path difference, Z. The performance of the method for reconstructing multispectral 

images is discussed. 

4.2 Experiment 1 

4.2.1 Experimental conditions 

_,,. 

_,,. 

d Z/? ,,.,, 0 + -.,,· ,,.,, _,,. 

--� - -

/ 

-���------

Object 

Fig. 4.1 Schematic of the experiment setup. 

The optical distance between M2 and the origin of the Cartesian coordinate 
system is d0 + Z/2, the optical distance between Ml and D is di , and the 

optical path difference, Z, is introduced by the PZT. BS: beam splitter, Ml: 

concave mirror, M2: plane mirror; and D: image sensor. 
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In this section the experiment used to obtain the volume interferogram is described. A 
schematic of the experimental setup is shown in Fig. 4.1. The measured object is a mask 
screen of the number 3 that is illuminated from behind by a metal halide lamp (MHL) as a 
white light source, so that the measured object is a planar polychromatic object. Figure 4.2 
shows the spectral profile of the MHL obtained by Fourier transform spectrometry. The 
spectral resolution is 61.09 cm-1 and the spectral range is 3.13 x 104 cm-1

• Figure 4.3 shows 
a photograph of the mask screen, which is 0.8 x 0.9 mm in size. Other parameters are listed in 
Table 4.1. 

.-::: 
1.0 ::l 

� 
0.8 i:s! 

-

0.6 ·oo 
C: 
C) 

0.4 -

C: 

i:s! 
0.2 

C) 

0.0 
r:/) 

400 500 600 700 800 

Wavelength [nm] 

Fig. 4.2 Spectral profile of the MHL measured by Fourier transform 
spectrometry. 

Fig. 4.3 Photograph of the mask screen of the number 3. 
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Table 4.1. System settings for experiment 1. 

Parameter 

do 100 mm 

d1 120 mm 

f1 524 mm 

Zs 0mm 
Number of steps 256 

PZT 
Step interval 80nm 

D 
Number of pixels 1024 square 

Pixel size 6.9µm 

4.2.2 Experimental results 

Fig. 4.4 Volume interferogram obtained in experiment 1. 

Figure 4.4 shows the volume interferogram obtained in experiment 1. A quarter of the 
interferogram has been omitted to show the inner fringe arrangement. Figure 4.5 shows the 
intensity distribution of the volume interferogram along the optical path difference, Z, at the 
center point of the interference fringe space. Figure 4.6 shows the continuous spectral profile 
of the object. This spectral profile is obtained by taking the Fourier transform of the intensity 
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distribution in Fig. 4.5. The number of data points is 53, which covers the wavelength range 

of visible light. The spectral resolution is limited by the step interval and number of steps of 

the PZT. A spectral peak is located at 538.9 run, and the spectral resolution at the wavelength 

is 7.11 run. Within the spectral resolution, the spectral profile agrees with that in Fig. 4.2. 
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Fig. 4.5 Intensity distribution of the volume interferogram along the optical 

path difference, Z, at the center point of the interference fringe space. 
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Fig. 4.6 Continuous spectral profile recorded on the observation plane by 

taking the Fourier transform of the intensity distribution in Fig. 4.5. 
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Fig. 4.7 (a) Phase distribution and (b) absolute value of the complex incoherent 

hologram at spectral peak A = 538.9 nm . ( c) Phase distribution of the 

reconstructed image and (d) in-focus image over the x-y plane at z = -1 mm. 

Figure 4.7(a)-(d) show the complex incoherent hologram at A= 538.9 nm. Figure 4.7(a) 

shows the phase distribution and Fig. 4.7(b) shows the absolute value of the complex 

incoherent hologram. Figure 4.7(c) shows the phase distribution of the reconstructed image 

and Fig. 4.7(d) shows the in-focus image over the x-y plane, where the reconstruction distance 

is z = -1 mm. The shape of the measured object is reconstructed and the size of the number 3 

is close to the original size of the 3 in Fig. 4.3. Figures 4.8(a) and (b) show the intensity 
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distributions over the x-z and y-z planes and Fig. 4.8(c) shows the intensity profile along the 

z-direction at A= 538.9 run. The intensity peak is close to z = -1 mm , which is in 
agreement with object position z5 = 0 mm. 
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Fig. 4.8 Intensity distribution of the number 3 mask screen over the (a) x-z and 
(b) y-z planes. ( c) Intensity profile of the reconstructed image along the 
z-direction at A = 538.9 nm. 

32 



4.3 Experiment 2 

4.3.1 Experimental conditions 
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Fig. 4.9 Schematic of the experimental setup. The origin of the Cartesian 

coordinate system is set between object 1 and object 2. 
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Fig. 4.10 Spectral profiles of the (a) MHL and (b) blue LED light sources 

measured by Fourier transform spectrometry. 

This section describes the experiment in which a set of the spectral components of the 3D 

images is obtained. The measured objects are two mask screens of the letter K and number 2 

that are illuminated by incoherent light sources, namely an MHL and a blue LED, so that the 

measured objects are planar polychromatic objects located at different depths (Fig. 4.9). 

(a) (b) 

Fig. 4.11 Photographs of the mask screens. (a) K (0.8 x 0.8 mm) and (b) 2 (0.7 

x 0.8 mm) mask screens. 

34 



Figure 4.10 shows the spectral profiles of the MHL and blue LED, which were measured 

separately by Fourier transform spectrometry. The spectral resolution was 61.09 cm-1 and 

the spectral range was 3 .13 x 104 cm-1
• Figure 4.11 shows photographs of the K (0.8 x 0.8 

mm) and 2 (0.7 x 0.8 mm) mask screens. Other parameters are listed in Table 4.2. 

Table 4.2. System settings for experiment 2 

Parameter 

do 

di 

Ii 

Z1 

Z2 

PZT 
Number of steps 

Step interval 

D 
Number of pixels 

Pixel size 

4.3.2 Experimental results 
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Fig. 4.12 Intensity distribution at point (X, Y) of the volume interferogram 

plotted with respect to optical path difference Z. 
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Fig. 4.13 Continuous spectral profile retrieved over the observation plane 

obtained by taking the Fourier transform of the intensity distribution in Fig. 

4.12. 

Figure 4.12 shows the intensity distribution of the volume interferogram along the optical 

path difference, Z, at a particular point in (X, Y) space. Figure 4.13 shows the continuous 

spectral profile over the observation plane that was obtained by taking the Fourier transform 

of the intensity distribution in Fig. 4.12. The number of data points is 52, which covers the 

spectral range from 400 to 800 nm. The spectral resolution is limited by the step interval and 

number of steps of the PZT. According as the spectral profiles of the MHL and blue LED in 

Fig. 4.10, we focus on two spectral peaks located at 470.8 and 553.5 nm. The spectral 

resolutions at these wavelengths are 5.43 and 7.50 nm, respectively. 

Figure 4.14(a)-(f) show the complex incoherent hologram at A= 553.5 nm and the 

corresponding reconstructed results for the K mask screen. Figure 4.14(a) shows the phase 

distribution and Fig. 4.14(b) shows the absolute value of the complex incoherent hologram 

w1��0 )(A; OJ). This phase distribution only recorded the wavefront shape of the optical field 

propagated from the K mask screen because the contribution from the 2 mask screen is small 

at this spectral component. Figure 4.14( c) shows the phase distribution of the reconstructed 

image and Fig. 4.14(d) shows the in-focus image over the x-y plane, where the reconstruction 

distance is z = 4 mm. The images of K and 2 are separated clearly. Because the wavefront 

shape of the 2 mask screen recorded in the phase distribution of the complex incoherent 

hologram, has been eliminated, this reconstruction distance specifies the in-focus plane of K. 
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Figures 4.14(e) and (f) show the intensity profiles along the x- and y-directions in the object 

position of Fig. 4.14( d). From these intensity profiles, the size of the reconstructed object is 

0.7 x 0.8 mm. The shape of the measured object was reconstructed and the size of the letter K 

was close to the original size of the K in Fig. 4.1 l(a). Figure 4.15(a) and (b) show the 

intensity distributions over the x-z and y-z planes and Fig. 4.15( c) shows the intensity profile 

along the z-direction at )., = 5535 nm. The intensity peak is close to z = 4 mm, which is in 

agreement with the object position, z
1 

= 5 mm. 
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Fig. 4.14 (a) Phase distribution and (b) absolute value of the complex 

incoherent hologram at spectral peak A= 553.5 nm. (c) Phase distribution of 

the reconstructed image and (d) in-focus images over the x-y plane at 

z = 4 mm. Intensity profiles along the (e) x- and (f) y-directions at the object 

position in ( d). 
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Fig. 4.15 Intensity distributions of the K mask screen over the ( a) x-z and (b) 

y-z planes. ( c) Intensity profile of the reconstructed image along the z-direction 

at ). = 553.5 nm. 

Similarly, Fig. 4.16(a)-(f) show the complex incoherent hologram at ). = 470.8 nm and 

the reconstructed results for the 2 mask screen obtained from the complex incoherent 

hologram. Figure 4.16(a) shows the phase distribution and Fig. 4.16(b) shows the absolute 

value of the complex incoherent hologram. Because the two objects have this spectral 

component, the wavefront shapes of the optical field propagated from both objects are 

recorded. Figure 4.16(c) shows the phase distribution of the reconstructed image and Fig. 

4.16(d) shows the in-focus image, where the reconstruction distance is z = -6 mm . From 

these reconstructed results, the reconstructed images of the 2 and K mask screens were 

obtained. However, K was obviously blurred and 2 was focused, which means that the depth 

distance of the two objects can be distinguished. Figure 4.16(e) and (f) show the intensity 

profiles along the x- and y-directions in the object position of Fig. 4.16(d). From these 

intensity profiles, the size of the reconstructed object is 0.7 x 0.9 mm. The shape of the 

measured object was reconstructed. Figures 4.17(a) and (b) show the intensity distributions 

over the x-z and y-z planes and Fig. 4.17(c) shows the intensity profile along the z-direction at 

). = 470.8 nm. The intensity peak is close to z = -6 mm, which is in agreement with object 

position, z
2 

= -5 mm. 
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Fig. 4. 16 (a) Phase distribution and (b) absolute value of the complex 

incoherent hologram at spectral peak )., = 470.8 nm. (c) Phase distribution of 

the reconstructed image and (d) in-focus images over the x-y plane at 

z = -6 mm. Intensity profiles along the (e) x- and (f) y-directions at the object 

position in ( d). 
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Fig. 4. 1 8  Reconstructed in-focus spectral images of the object shapes of the K 

and 2 mask screens for narrow ranges of multiple spectral bands. The in-focus 

images and the phase distribution are (a) z = 4 mm for 

A = 470.8 - 6 02.3 nm, and (b) z = -6 mm for A- = 431.1-499.S nm. 

The measured polychromatic objects in this experiment were the Kand 2 mask screens that 

have different continuous spectra (Fig. 4. 1 0). Figure 4. 1 8( a) and (b) show the reconstructed 

in-focus spectral images and the phase distributions of K and 2 at different spectral 

components. The object shapes of the K and 2 mask screens are clearly seen at spectral peaks 

of 470.8 and 553.5 nm, respectively. Changes in the object intensity and shapes of the Kand 

2 mask screens are visible at A= 470.8 -499.5 nm because this wavelength range covers 

the contribution of the spectral components of both the MHL and blue LED, and the positions 

of the K and 2 mask screens are different. In contrast, only the object shape of the K mask 

screen is visible at A = 525 .1 - 6 02.3 nm because the wavelength range only covers the 

spectral components of the MHL. These results agree with the combined spectral profile of 

the MHL and blue LED (Fig. 4.1 3). 
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Fig. 4.19 Separated spectral profiles of the mask screens of the polychromatic 

objects at the 3D spatial positions on the 3D images of (a) K, z = 4 mm and 

(b) 2, z = -6 mm. 

Figure 4.19 shows the separated spectral profiles of the in-focus images of the K and 2 at 

fixed points on the characters. The profiles are obtained by tracking the variation of intensities 

across the wavelength region, thereby obtaining the continuous spectrum at a specific point 

on the 3D images. The experimental results agree with the spectral profiles in Fig. 4.10 
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obtained separately. 

Finally, we note that the measurment time of this experiment is 256 seconds for 256 frames. 

This is about 2 95 times shorter than our previous work [6] that takes 21 hours, because the 

present method uses single-axis PZT scan instead of the 3D scan by a single-axis PZT and 

independent two-axes stages. Measurement time of the previous method is quite long because 

each stage stops at every sampling point for measuring. In principle, measurement time of the 

present method may be realized as short as that of Fourier transform spectroscopy. 

4.4 Summary 

In this chapter, an experimental setup was used to measure mask screens illuminated with 

incoherent light sources. Based on the interferograms, the volume interferogram was 

measured directly. By taking the Fourier transform of the volume interferograms with respect 

to the optical path difference, Z, the spectral profiles of the objects and the complex 

incoherent hologram for each spectral component were obtained. Subsequently, the 3D image 

for each spectrum was reconstructed from the complex incoherent hologram by applying the 

usual inverse propagation techniques. The reconstructed images for each spectrum 

demonstrated that multispectral images were obtained, validating the method. 
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V Comparison of imaging properties predicted by the 

impulse response function and experimental results 

5.1 Introduction 

This section presents a derivation of the analytical solution of the 4D impulse response 
function (IRF) of this method. The derivation is performed under the paraxial approximation. 
For the analytical solution, the measured object is a monochromatic point source represented 
by a 4D Dirac delta function. For experimental comparison, the measured object is a 
monochromatic point source with a wavelength of 632.8 nm composed of He-Ne laser light 
guided by a single-mode optical fiber. To validate the IRF solution, the imaging properties 
predicted by the IRF are compared with the experimental results. 

5.2 Mathematical analysis of 4D IRF of multispectral 

incoherent holography 

This chapter derives an analytical solution of the 4D IRF. Let us first assume that the object 
to be measured is a monochromatic point source with angular frequency OJ 

s 
= ck

s 
= 2n:c /A

s
, 

located at position rs
= (x

s
, Ys

, z,), and the spatial correlation functions along the x-, y-, and 
z-axes are measured within baseline lengths of lx , Z

Y
, and l

z
. We may write 

(5.1) 

(5.2) 

where S/r;w) is the spectral density of the monochromatic point source located at rs
, 

with unit intensity and the 3D window function, A(p), assigns the size of the volume 

interferogram. This window function takes unit value in the measurement area and zero 
outside. From Eq. (3.7), the measured cross-spectral density function, wtz0 i, across the 
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observation plane may be expressed as the Fourier transform of the product of the spatial 
correlation function in Eq. (3.6) and the window function. Then, the measured cross-spectral 
density function is expressed as 

W�z0>(g_;cv) = -
1-J A(p)I'12(p)exp(-ik;Z)dZ 

2:n:c 

= -1-fA(p.L)W1�
zo>(g_;cv)J�:p[i(k- k)Z]dZdk 

2n o -1,;2 

= 
2� J0

00 

sine[�� (cv -cv) ]A(p.L )W1�
z
0>(g_;cv)dcv, (5.3) 

where sincx = (sinx)/ x .  In this equation, subscript i indicates that the parameters are used 
for the reconstruction, so that the angular frequency for reconstruction is CV; = ck; = 2:n:c/ A;. 
In Eq. (5.3), the product of coefficient lz/2:n:c and the sine function represents the spectral 
IRF that is characterized by the limited baseline length, lz. Using Eqs. (3.17) and (5.1), we 

may rewrite Eq. (5.3) as 

Wif0>(g_, cv)= _l__f"" 

sinc[�(cv -cv)]A(Pi_) 
2:n:c o 2c 

x K'f S/r;cv)exp[�(P.L-mrj2 ld3rdcv 
}: 2y(z) 

1<:fz . [ lz ( ] [ 
iks 2] = -smc - cvs -cv) A(Pi_)exp --(p.L -mrs.L) 

2:n:c 2c 2y(z) 
(5.4) 

In this equation, the measured cross-spectral density function is expressed as a product of 
the spectral IRF, the 2D aperture function, A(Pi_) = rect(X/lx )rect(Y jly ), that specifies the 

size of the complex incoherent hologram, and the quadratic phase factor for the 
monochromatic point source. From this cross-spectral density function, we reconstruct the 3D 
image of the monochromatic point source. This image corresponds to the IRF. By applying 
the inverse propagation formula in Eq. (3.22), the IRF, denoted h, is expressed as 

h(ril. , zi;cvi; rs , cv) = f wt0>(p.L , cv)exp[-___!!s__ (p.L -ril.)
2
]d

2p.L" (5.5) 
2y(z) 

where d2P.L = dXdY. We define the 3D space vector, 'i = (x;, Y;, z) = (Ji.L, z),  which 
specifies the location of the reconstructed image at a reconstruction frequency cv;. On 

substituting Eq. (5.4) into Eq. (5.5), we may rewrite the IRF after a straightforward 
calculation as 
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h( . K:[z • 
[ 

[z l 'i ,W;, r,, cv) = -smc -(c,os -w;) 
2:n:c 2c 

{ ik [ 2 2 2 2 2 2 ]} x exp --- (Mm xs -X; )+(Mm Ys -y; ) 
2y(z;) 

J 
l

x
/2 

[ 
ik l [ ik l X exp __ ; (Mmxs-x;)x exp _i_(M-l)X 2 dX 

-l
x
/2 y(z;) 2y(z;) 

J 
1,/2 [ ik l [ ik l x exp __ ;_(Mmys -y;)Y exp _;_(M -l)Y2 dY. 

-1,;2 r(z;) 2y(z;) 

Here, we introduce the degrees of focusing, M, as 

M = ksy(z;) = A;y(z;) . 
k;y(zs) Asy(z) 

(5.6) 

(5.7) 

In Eq. (5.7), M is defined as the ratio of the product of wavelength and differential 
curvature radius of the object and the reconstructed image. Next, let us consider Eq. (5.6), the 
integral term of which is classified into three cases as follows. 

Case 1: Degrees of focusing M = 1, that is, A;y(z;) = Asy(zs) 
In this case, the quadratic phase factors in the integrations by X and Y on the right-hand 

side ofEq. (5.6) vanish. Thus, after simple calculation, Eq. (5.6) is expressed as 

[ l k. l [ lyki l X Sine _x_•-(mxs -x;) sine --(mys -y;) 
2y(z;) 2y(z;) 

Case 2: Degrees of focusing M ?! 1, 0 < M < 1, that is, A;y(z;) ?! Asy(zs) 

(5.8) 

In this case, M -1 = -JM -IJ, and the integral term in Eq. (5.6) is transformed into a perfect 
square expression, 

h( . ) K:[z . 
[ 

[z 

)] 
fi,W;, rs, Ws =-SlilC -(c,os -W; 

2:n:c 2c 

� 
ik [ 2 2 2 2 2 2 ]} 

xex --- (Mm xs -x; )+(Mm Ys -y; ) 
2y(z;) 
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X f lx/2 

exj_ik; (M-l)[x--'--(Mmx----'-s -x;)l2 } 
-lx/2 12r(z;) M -1 

x ex -------- dX 1 ik; (Mmxs -x/} 
2y(z;) M -1 

f ly/2 

1 ik; ( )[ 
(Mmys-Y;)l

2

} x ex -- M-1 Y--'-----....:.. 
-t

y/2 2y (z;) M -1 

1 ik. (Mmys -y/} x ex ' �-----'-- dY. 
2y (z;) M -1 

(5.9) 

Here, we introduce new parameters Tx and Ty that are expressed as 

tn
2

Tx = k;(M-1) [
x 
_ (Mmxs -x;)l 

Vi 2y (z;) M -1 

,n
2

TY = k;(M -1) [Y _ (Mmys -y;)l· 
Vi 2y (z;) M -1 

(5.10) 

(5.11) 

Substituting Eqs. (5.10) and (5.11) into Eq. (5.9) yields 

where 

� 
ik. [ 2 2 2 2 2 2 ]} x ex --'-(Mm xs -X; )+(Mm ys -y.) 

2y (z;) 

n y (z;) 
[ 

ik; 2 ]f;a• (· Jr 2p x i  I 1 exp I l
(Mmxs-x;) expz-Tx Tx k; M -1 2y (z;) M -1 ;a- 2 

a±= k; I M-11
(± lx _ Mmxs-xi), 

ny (z;) 2 M -1 

/3"= k; IM-ll(±
ly _Mmys-Y;)· 

ny (z;) 2 M -1 
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The integral with respect to 1:x in Eq. (5.12) is represented as an expression of the Fresnel 
integrals, C(a) and S(a), as 

f��• exp(i; 'ix 2 f 1:x = [ C(ia+) -iS(ia+) ]-[ C(ia-) - iS(ia-)] 

= i-J2 exp(-i :){ F*l(a+ ) -p*l(a-)}, (5.15) 

where the terms indicated by (*) appears only if O < M < I. The function F(a) S) is defined 
as 

where 

F(a) = -1-. fa 

exp(i n 1:2)d1: 
l+z -00 2 

- }zex� -i:){½+C(a) +i[½ +S(a) ]}, 

C(a) = f cos(; 1:2 )d1:, 
0 

(5.16) 

(5.17) 

(5.18) 

are the Fresnel integrals.9) Substituting Eq. (5.15) into Eq. (5.12), and then using a similar 
procedure for the integral with respect to 1:y, the analytical solution of the cross-spectral 

density can be written as 

[ ik; 2 2 2 ] [ 
ik; 2] x exp --( Mm rs1- -'i1- ) exp ----'---( Mmrs1--r;1_) 2y(z;) 2y(z;) I M -11 

(5.19) 

Case 3: Degrees of focusing M ¢ I, M > I, that is, A;Y(z;) ;<! ).s y(z) 
In this case, M -1 =IM-II, Eq. (5.12) is represented as 
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h( . ) 1dz . [ lz )] 'i 'W;, rs, IXJS = -smc -(c.vs -IXJ; 

2n:c 2c 

� 
ik. 

[ 
2 2 2 2 2 2 ]

} xex --1- (Mm xs -X; )+(Mm ys -y; ) 
2y(z;) 

n y(z;) 
[ 

ik; 2 ]f;a• (· n 2p x 
I 1

exp -
I l

(Mmxs-x;) expi-rx rx k; M -l 2y(z;)M -1 ;a- 2 

ny(z;) 
[ 

ik; 2]f;p• (· n 2p x I I exp - I l(Mmys -y) exp 1-1:Y rY . 
k; M -l 2y(z;) M -l ;µ- 2 

(5.20) 

The integral with respect to rx in Eq. (5.20) is represented by 

(5.21) 

Therefore, Eq. (5.20) can be expressed as 

[ 
ik; 2 2 2 

] [ 
ik; 2

] x exp -- (Mm rs1. -'i1. ) exp -----=----(Mm's1. -ril. ) 
2y(z;) 2y(z) I M -11 

x [ F(a+ )- F(a-) ][ Ji*l(P) - p*l(/j)] • (5.22) 

Thus, the final expression of the 4D IRF as found by the proposed method is written 

1d y(z ) 
• (

. n) . [ l 
] 

h(l';,W;; 7s,w) = z 
s exp<) 1- smc _z (c.vs -w;) k; IM-1 I 2 2c 

[ 
ik. 2 2 2 

] x exp -'-( Mm rs1. -'i1. ) 
2y(z;) 

xex I Mmr -r 
(
•
)
[ 

ik. 2] p 
2y(z;)IM-1 1 ( s 1. ;1.) 
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5.3 A unified expression of the IRF and system response 

From the special cases investigated in the subsection 5.2, 4D IRF may be expressed as in the 
following unified form: 

h( . ) ,clzy(z) <•>( .:rr) . [ lz ( )] r;,CO;, r
s
,CO

s 
= exp i- SlilC - cos -CO; 

k; I M-11 2 2c 

[ 
ik; 2 2 2 ] c•> [ 

ik; 2] x exp --(Mm rs1. -ru. ) exp ----'---(Mmrs1. -ril.) 
2y(z;) 2y(z) I M -11 

(5.24) 

where (*) appear only if O < M < 1. The function F(a) is defined by 

where 

F(a) = �f�xp(i n -r2)d-r 
l+l -00 2 

C(a) = f
0

° cos( ;-r2 )d-r, 

S(a) = f
0
\in( ; -r2 )d-r, 

(5.25) 

(5.26) 

(5.27) 

are the Fresnel integrals.9) Function F(a) in Eq. (5.25) represents the complex amplitude of 
Fresnel diffraction with an infinite linear edge.8) Arguments a and /3 of function F in Eq. 

(5.24) are expressed as 

a±= k; IM-ll(±
lx _Mmxs-xi), 

ny(z;) 2 M -1 

� = 
k; I M -11 (± ly _ Mmy s -y;). 

ny(z;) 2 M -1 

In Eq. (5.24), if we take the limit of M -1, this equation reduces to 
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• 7<:l)/z [ ik; 2 2 2 ] • [ lz 
] 

h(r;, w;,1',, 0J) = -...a,..._exp --(m rs1- -ru) smc -(ws -w;) 
2:rr 2y(z;) 2c 

[ l k. l [ iii l xsinc _x_'- (mxs -x;) sine --(mys -y;) 
2y(z;) 2y(z;) 

(5.30) 

This expression of 4D IRF corresponds to the diffraction-limited in-focus image of the 
monochromatic point source. 

Because the optics and signal processing in our system are linear, the output image, 0, is 
generally expressed as the superposition integral of the input spectral density function and 
IRF, 

(5.31) 
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5.4 Comparison of properties predicted by IRF and 

obtained by experiment 

This chapter compares the 4D IRF in Eq. (5.23) and the experimental results. The 

measured object is a monochromatic point source with a wavelength of 632.8 nm composed 

of He-Ne laser light guided by a single-mode optical fiber. This monochromatic point source 

is set close to the origin of the Cartesian coordinate system. Thus, the 3D image obtained 

experimentally can be compared directly with the 3D point spread function. All the 

experimental parameters are shown in Table 5.1. The conditions assumed in the numerical 

calculation by the 4D IRF are the same as the experimental conditions. 

The experimental spectral profile is shown in Fig. 5.1. The spectral peak appears near 640 

nm, and the spectral resolution is limited by the first zero point of sine function on the 

right-hand side of Eq. (5.23). The spectral resolution is i1f = 1/l
z 

= 244.14 cm-1, where 

f = k/2:rr = If}.,, is the wavenumber. In the wavelength region, the spectral resolution is 

written as 

(5.25) 

For }.,, = 640 nm, we find '1}.,, = 9.77 nm. This value agrees with the intervals of spectral 

channels around the peak, as shown circles in Fig 5.1. These expressions of spectral 

resolution are common in the field of Fourier transform spectrometry. 
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Table 5.1. System settings for comparing the imaging properties 

predicted by the IRF and obtained experimentally. 

Parameter 

do 375 mm 

c1i 120 mm 

Ii 524 mm 

Zs 0 mm  

Number of steps 256 
PZT 

Step interval 80 nm 

D 
Number of pixels 1024 square 

Pixel size 6.9µm 

.--:: 

1.0 � 

.D 

0.8 

>--. 
0.6 ·-

0.4 

0.2 

0.0 

400 500 600 700 800 

Wavelength [nm] 

Fig. 5.1. Spectral profile retrieved over the observation plane. Circles indicate 

data obtained by taking the Fourier transform of the intensity distribution at the 

center of the volume interferogram with respect to the optical path difference, 

z. 

The phase distributions of the complex incoherent holograms at the spectral peak calculated 

using Eq. (5.4) and obtained experimentally agree well (Fig. 5.2(a) and (b)). Figures 5.3-5.5 
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compare the reconstructed results from the 4D IRF and the experimental results. The in-focus 

image over the X; - Y; plane at Z; = 0 mm calculated from an analytical solution of the 4D 

IRF in Eq. (5.23) (Fig. 5.3(a)) and the corresponding image reconstructed from the complex 

incoherent hologram whose phase distribution is shown in Fig. 5.2(b) (Fig. 5.3(b)) agree well. 

These images are enlarged for detailed comparison. Figure 5.4 shows the intensity profiles 

along the x-axis in Fig. 5.3; the solid curve shows the experimental results and the dotted 

curve shows the theoretical results based on the 4D IRF. Figures 5.3 and 5.4 correspond to the 

intensity profile of a diffraction-limited image of a point source. The experimental and 

theoretical results both show that for a hologram with a rectangular aperture, the 2D point 

spread function is represented by the second and third sine functions of the IRF in Eq. (5.8). 

Figure 5.5(a) shows the intensity distribution over the X; - Z; plane calculated from an 

analytical solution of the 4D IRF and Fig. 5.5(b) shows the corresponding image obtained 

from the experimental complex incoherent hologram (Fig. 5.2(b)). Figure 5.6 compares the 

experimental intensity profile (solid curve) with the analytical solution of the 4D IRF (dotted 

curve) along the z-axis across the object position of Fig. 5.5. The peak positions and the 

distribution shapes agree well. We conclude from these results that the 4D IRF specifies the 

spectral resolution and 3D imaging properties in multispectral incoherent holography. 

r--, 

E 
E 

3 3 

2 2 

I r--, I 
E 

0 s 0 

-1 ::.... -1 

-2 -2 

-3 -3 

-3 -2 -1 0 I 2 3 -3 -2 -1 0 I 2 3 
X[mm] X[mm] 

(a) (b) 

Fig. 5.2. (a) Theoretical and (b) experimental phase distributions of the 

complex incoherent holograms. 
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Fig. 5.3. In-focus images over the X; - Y; plane at A of 640 run and a 

reconstruction distance of Z; = 0 mm from (a) the analytical solution of the 

4D IRF in Eq. (5.30) and (b) the experimental phase distribution of the 

complex incoherent hologram shown in Fig. 5.2(b). 

= 1.0 
"8 � 0.8 
0 "ci.i 0.6 

� 0.4 

-3 -2 -1 0 
X; [mm] 

1 2 3 

Fig. 5.4. Comparison of the intensity profiles obtained experimentally (solid 

curve) and from the analytical solution of the 4D IRF in Eq. (5.30) (dotted 

curve) along the X; axis. 
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Fig. 5.5. Intensity profiles along the X; - Z; plane from the (a) analytical 

solution of the 4D IRF in Eq. (5.24) and (b) the experimental complex 

incoherent hologram shown in Fig. 5.2(b). 
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Fig. 5.6. Comparison of intensity profiles obtained experimentally (solid 

curve) and from the analytical solution of the 4D IRF in Eq. (5.24) (dotted 

curve) along the Z; axis. 

5.5 Summary 

The spectral resolution and 3D imaging properties observed experimentally agreed well 

with the theoretical prediction of the 4D IRF. Thus, these results demonstrate that the 4D IRF 

can be used to specify the spectral resolution and 3D imaging properties in multispectral 

incoherent holography. 
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VI Conclusions 

Multispectral incoherent holography, which is based on measuring differential wavefront 

curvature, was investigated theoretically and experimentally. In this method, a volume 

interferogram is measured directly by an appropriately designed interferometer. The 

experimental results showed that 3D spatial information at every spectral component of the 

measured object was acquired properly with the method. A paraxial IRF defined over the 

space-frequency domain was derived. Based on this IRF solution, the imaging properties of 

multispectral incoherent holography were investigated. The spectral resolution and 3D 

imaging properties observed experimentally agreed well with the theoretical predictions of the 

4D IRF. The measurement time of the present method was considerably smaller than those of 

our previous methods. This simplified lensless optical system is expected to be useful in a 

wide range of applications, such as biological observation, to provide spectrally resolved 3D 

images. 
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