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ABSTRACT 

Nowadays, images and videos are increasingly popular and appear in people's daily 

life frequently. Institutes carry a surprisingly large number of images, the number 

of which is still growing fast. It often occurs that people intend to find their desired 

elements and factors in the massive images. In this case, the approaches to retriev­

ing the images that contain various visual information and detecting the objects 

in such images accurately and fast are necessary. Therefore, image retrieval (IR) 

and object detection (OD) has been studied for decades. Content-based image re­

trieval (CBIR), also known as content-based visual information retrieval (CBVIR), 

has achieved noticeable successes in the last decades. The term content represents 

numerous visual information that can be possibly extracted from images, such as 

color, texture, and shape, rather than semantic meta-data such as tags or descrip­

tions. The CBIR system requires a query and measures the similarity between the 

query and each database image to rank the database images. OD aims at locating 

known instances (objects) in images or image sequences. Common OD detects se­

mantic objects of classes with the preknowledge. One extreme situation of OD is 

when each semantic training class has only one training image. Such a problem is 

defined as one-shot OD or template matching, where the image for training is also 
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named as the template. Another extreme situation is named zero-shot OD, mean­

ing there is no image for direct training. The classifier for zero-shot OD is usually 

trained by the relationship with other known classes. 

The query for IR is an input image, representing visual information and treated 

as a precise request. The query for IR can be an RGB image, depth image, sketch 

image, contour image, etc., involving various categories of objects. On the other 

hand, for OD, the semantic objects of classes are considered as queries in this re­

search. 

In order to systematize and find the commonalities of the multiple categories of 

queries, in this thesis, three of them are discussed, including the two for IR and the 

one for OD. 

1) The image containing one whole-body human for IR. Instead of visual sim­

ilarity defined by colors, shapes, or textures, this research aims to retrieve images 

with respect to the visual similarity defined by the human pose. In this framework, 

all the poses are derived from images, which is inspired by the recent development 

of 3D human pose reconstruction. Furthermore, to make the retrieval more robust 

against reconstruction error, a recurrent bidirectional similarity measure named re-

current best-buddies similarity (RBBS) is proposed. Both of the qualitative and 

quantitative results show the usefulness of this framework, especially the quantita­

tive results evaluated by mean average precision (MAP or mAP) exhibit RBBS is 

improved by 14.13% compared to the most competitive alternative methods. 

2) The simplified drawing with only strokes, named sketch for IR. Sketch-based 

image retrieval (SBIR) is a popular research field that is to rank database images 

by comparing the similarity between query sketch and database images. This thesis 
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proposes to compress binary line drawing (sketch) by approximation automatically, 

considering that it can be applied to SBIR. Specifically, a sketch contains several 

strokes, each of which can be segmented into several segments by extracting break­

points according to the curvature. The approximation of the segments is recorded 

for the compression. The experiment reveals that the relationship between a certain 

pair of segments can be represented by some geometrical functions approximately 

in a rather low dimension. The proposed compressed representation is not only in­

variant with respect to rotation, scaling, and translation but can also filter out the 

noise of wobbly lines in some cases if applying it to SBIR. 

3) Product images for OD. Product recognition performs a significant role be­

cause of its benefits to the compliant arrangements of stores, which further affects 

the commercial contracts, customer satisfaction, and sale achievement. Automatic 

recognition systems have been proposed owing to the high cost of the manual in­

spection by clerks currently. Because of the difficult collection of product images, 

the systems are commonly in one-shot cases, in which the training data is template 

product images actually. However, despite the development of one-shot recogni­

tion, the systems rarely utilize special characteristics of products on retail store 

shelves, and the frequent updating of templates is still challenging. Furthermore, 

it is considered that the product detection can be the basis of product recognition. 

In this research, instead of the present workflow, a novel product detection system, 

named TemplateFree is proposed, which combines product segmentation and zero­

shot learning. It detects products on retail store shelves by single store shelf images, 

i.e., corresponding template product images are not necessary. TemplateFree con­

centrates on the characteristic that a store shelf can be segmented horizontally into 
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layers then vertically into products so that each product can be detected according to 

the segmentation. Double zero-shot deep learning frameworks are employed to im­

prove the segmentation. In experiments, TemplateFree achieves better results than 

the present method. 
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Chapter 1 

Introduction 



1.1 Purpose 

Nowadays, images, audios, and videos are increasingly popular and appear in peo­

ple's daily life frequently. Institutes carry a surprisingly large amount of images, the 

number of which is still growing fast. It often occurs that people intend to find their 

desired elements and factors in the massive images. In this case, the approaches 

to retrieving the images that contain various visual information and detecting the 

objects in such images more accurately and fast are necessary. Therefore, image 

retrieval (IR) and object detection (OD) has been studied for decades. 

In IR and OD, there exist various categories of queries. The illustrates of the 

query can be found in Sect. 1.2.2 and Sect. 1.3.2. The different queries must be 

tackled by different methods into many usages but have robust relationships with 

each other. Hence, exploring on queries is important and necessary. 

In this thesis, to systemize and research on the queries, three categories of 

queries for IR and OD are proposed, including two for IR and one for OD, as is 

stated in Sect. 1.4. 

1.2 Image Retrieval 

1.2.1 Objective 

Content-based IR (CBIR), also known as content-based visual information retrieval 

(CBVIR), has achieved noticeable successes in the last decades. The term "content" 

represents numerous visual information that can be possibly extracted from images, 

such as color, texture, shape, rather than semantic meta-data such as tags or descrip-
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Figure 1.1: Some examples of IR. The first and the third rows are CBIR, which 
are retrieved by the Google image. The second row is sketch-based image 
retrieval (SBIR). 

Figure 1.2: An example of OD. In this case, the products (cigarettes) are detected, 
illustrated by green, which are regarded as the queries in this thesis. 
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tions. The CBIR system requires a query and measures the similarity between the 

query and each database image, in order to rank the database images according to 

the similarities (see Fig. 1.1). The similarity measure can be based on various image 

features and descriptors, such as speeded up robust features (SURF) [l], histogram 

of oriented gradients (HOG) [2], and deep features [3]. 

1.2.2 Query 

The word "query" first appears in computing technology is for information re­

trievals, such as query language, query string, and web search query. The query 

for IR is an input image, representing visual information and treated as a precise 

request. A query for IR can be an RGB image, depth image, sketch image, contour 

image, etc., involving various categories of objects (see Fig. 1.1). 

1.2.3 Development 

In the last decades, digital images were commonly retrieved by manually annotated 

keyword tags. However, such method is cumbersome and can consume a lot of hu­

man resource. Also, some images are difficult to be described, but can be described 

by other images. For these reasons, CBIR becomes an important research field. 

Low-level Descriptor 

Early researchers capitalized on the color-based IR, such as [4] and [5]. Although 

applying color features has the advantages, e.g., the low computational cost and 

high accuracy for retrieving the completely same (or extremely similar) images, 

color-based retrieval is restricted when different things are in a very similar color 
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space, or when the same things are in absolutely different colors (e.g., the scenery 

in the summer and the winter of the same place). 

Global shape features, such as HOG [2], edge features [6], and texture features 

[7] are introduced to CBIR to deal with the disadvantage of color-based methods. 

The global features (including all the features mentioned above) cannot tackle 

the changes of rotation, scaling, and violent transformation, so local featrues are 

also exploited. e.g., the bag-of-features [8], which learns from bag-of-words in 

information retrieval. Two typical features of this kinds are SIFT [9] and SURF 

[I]. It worth pointing out that HOG can be also combined with the bag-of-features 

structure. 

The man-made features are named as low-level descriptors. However, there is 

still a huge semantic gap between the high-level human perceptions and low-level 

features. 

Similarity Measure 

Traditional CIBR applies rigid distance functions, such as Euclidean distance, to 

some low-level features for similarity measure. The semantic gap also makes influ­

ence on the rigid distance functions, resulting in the shortest distance may not be 

the optimization. 

Therefore, there are many attempts on similarity measure by machine learning 

( e.g. [ 10, 11, 12]). The features extracted from the images are treated as train­

ing data, the machine learning methods predict a probability, which replaces the 

distance. There are mainly two categories of works: 1) Learning to hashing or 

compact codes [131; 2) Distance metric learning [14]. 
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Deep Learning 

Deep features can also be utilized in CBIR [3]. On one hand, the deep learning 

framework can be applied to similarity measure, similar to the non-deep machine 

learning. On the other hand, it can learn a new representation (or descriptor) for an 

image, named deep feature. 

Application 

Many relevant interesting applications have been developed, including art collection [ 15], 

medical diagnosis [ 16, 17], and photograph archives [ 18], inspired by the capabil-

ity of CBIR. Furthermore, there exist several CBIR system run by companies on 

the internet: the earliest application-Query by image content (QBIC) 1, TinEye 2, 

Google Image 3, Yahoo Image Search 4 and so on. 

1.3 Object Detection 

1.3.1 Objective 

OD aims at locating known instances (objects) in images or image sequences (see 

Fig. 1.2). Common OD detects semantic objects of classes with the preknowledge. 

Specifically, people create and annotate a large-scale dataset, which is used to train 

the classifier. The classifier can classify the image patches, which are sampled from 

the target image by a certain approach, into the semantic objects of classes. By 

1 http://courses.cs.vt.edu/ cs4624/cache/qbic.htm 
2https://tineyc.com 
3https://www.google.eo.jp/ 
4https://images.search.yahoo.com 
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means of this framework, face detection [19] and pedestrian detection [20] has been 

well studied. 

One extreme situation of OD is when each semantic training class has only one 

image. Such a problem is defined as one-shot OD or template matching, where the 

image for training is also named as template. Instead of pre-training, in template 

matching, online similarity measurement is usually exploited [21]. 

Another more extreme situation is named zero-shot OD, meaning there exist 

not images for training but relevant classes as well as semantic relationships. People 

rely on the relevant known (seen) classes and the semantic relationships to recognize 

the unknown (unseen) classes [22, 23]. 

1.3.2 Query 

The semantic objects of classes are considered as queries of OD in this thesis (see 

Fig. 1.2). In some real applications, the query is specific and unique, such as product 

detection that detects products only, ignoring other objects. Such applications can 

have various categories of queries. 

An OD system can have generalized categories of queries, which can be the 

product, car, tree, cat, dog, and so on. The categories can also be specified, e.g., 

cats can be specified into Abyssinian cat, Burmese cat, Chausie cat, etc .. If specified 

objects are to be located in some images but there is no the corresponding objects 

for training, the related objects (belong to the same generalized object) can be used 

for training (or matching) because of their commonality. E.g., if people may intend 

to locate Abyssinian cats on an image but do not have the image of Abyssinian 

cats, they can summarize the commonality of Burmese cat and Chausie cat for the 
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locating. The problem is zero-shot OD. In zero-shot OD problem, the query can be 

recognized as the generalized object. 

1.3.3 Development 

Traditional OD 

Traditional OD is similar to traditional CBIR, which measures the similarity be­

tween image patches (analogized to the database images) and images belonging to 

the classes (analogized to many queries, which are also named as queries in this 

thesis). Therefore, there are three important parts of traditional OD, i.e., feature ex­

traction, similarity measure, and sampling, in which most of the feature extraction 

and similarity measure can be refered to Sect. 1.2.3. Especially, the best-buddies 

similarity (BBS) [21] and deformable diversity similarity (DDIS) [24] are proposed 

for the one-shot OD (template matching). 

Sampling is the process of displaying candidate image patches, which can be 

tackled simply by traveling all over the target image to create the heatmap [2, 21, 24] 

or by some stochastic algorithms, such as genetic algorithm (GA) [25], particle 

swarm optimization (PSO) [26], and deterministic crowding (DC) [27]. 

Deep OD 

As the development of convolutional neural networks (CNN), deep learning is also 

applied to OD and achieves huge improvements. Deep OD can be divided into 

two kinds, one-stage detector and two-stage detector. Two-stage detectors utilize 

CNN models as backbones only to conduct feature detection or classification, the 
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remained parts (sampling 5) are processed by other methods. One of the repre­

sentative two-stage detectors is Faster R-CNN [19]. One-stage detectors, such as 

you-look-only-once (YOLO) [28, 29] and single shot multibox detector (SSD) [30], 

attach the ROI pooling layers to the tail of the backbone framework, making them 

in one stage. 

1.4 Multiple Categories of Queries 

Owing to the various categories and usages of queries, their corresponding methods 

are also different. In order to systemize and find the commonalities of the queries, 

in this thesis, three categories of queries are discussed: 

1) The image that contains one whole-body human; 

2) The simplified drawing with only strokes, named sketch; 

3) Product images. 

1.4.1 Visual Human Pose Retrieval (VHPR) 

Instead of visual similarity defined by colors, shapes, or textures, this research aims 

to retrieve images with respect to the visual similarity defined by the human pose. 

In this framework, all the poses are derived from images, which is inspired by the 

recent development of 3D human pose reconstruction. Furthermore, to make the 

retrieval more robust against reconstruction error, a recurrent bidirectional similarity 

measure named recurrent best-buddies similarity (RBBS) is proposed. Specifically, 

the similarity measure between two visual poses is treated as a distance measure 

5Sampling is also called region or interest (ROI) pooling in deep learning 
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between two-point vectors, with each point representing one of the reconstructed 

• 3D human pose candidates. Then the similarity measure by the displacement of the 

query recurs. As a justification, the validity of RBBS is verified in a 1D Gaussian 

situation. In experiments, an original dataset for the retrieval task is built. Both 

of the qualitative and quantitative results show the usefulness _of this framework, 

especially the quantitative results evaluated by mean average precision (MAP or 

mAP) exhibit RBBS is improved by 14.13% compared to the most competitive 

alternative methods. 

The recurrent bidirectional VHPR and the corresponding experiments are intro­

duced specifically in Chapter 2. 

1.4.2 Sketch Compression for SBIR 

SBIR is a popular research field that is to rank database images by comparing 

the similarity between query sketch and database images. However, the so-called 

sketches by most SBIR researches turn out to be constructed by strokes, containing 

binary lines only. I propose to compress binary line drawing (sketch) by approx­

imation automatically, considering that it can be applied to SBIR. Specifically, a 

sketch contains several strokes, each of which can be segmented into several seg­

ments by extracting breakpoints according to the curvature. The approximation of 

the segments is recorded for the compression. The experiment reveals that the rela­

tionship between a certain pair of segments can be represented by some geometrical 

functions approximately in a rather low dimension. The proposed compressed rep­

resentation is not only invariant with respect to rotation, scaling and translation but 

can also filter out the noise of wobbly lines in some cases, if applying which to 
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SBIR. 

The approximate representation based sketch compression for SBIR and the 

corresponding experiments are introduced specifically in Chapter 3. 

1.4.3 TemplateFree: Product Detection 

Product recognition performs a significant role because of its benefits to the com­

pliant arrangements of stores, which further affects the commercial contracts, cus­

tomer satisfaction, and sale achievement. Automatic recognition systems have been 

proposed owing to the high cost of the manual inspection by clerks currently. Be­

cause of the difficult collection of product images, the systems are commonly in 

one-shot cases, in which the training data is template product images actually. How­

ever, despite the development of one-shot recognition, the systems rarely utilize 

special characteristics of products on retail store shelves, and the frequent updat­

ing of templates is still challenging. Furthermore, I consider the product detection 

can be the basis of product recognition. In this paper, instead of the present work­

flow, a novel product detection system, named TemplateFree is proposed, which 

combines product segmentation and zero-shot learning. It detects products on retail 

store shelves by single store shelf images, i.e., corresponding template product im­

ages are not necessary. TemplateFree concentrates on the characteristic that a store 

shelf can be segmented horizontally into layers then vertica11y into products so that 

each product can be detected according to the segmentation. Double zero-shot deep 

learning frameworks are employed to improve the segmentation. In experiments, 

TemplateFree achieves better results than the present method. 

TemplateFree and the corresponding experiments are introduced specifically in 
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Chapter 4. 
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Chapter 2 

Recurrent Bidirectional VHPR 

1 This chapter has been published in [31) 
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2.1 Problem Description & Contributions 

In spite of the fact that CBIR is independent with annotation quality and complete­

ness of meta-data, it is still a challenging task for traditional image retrieval meth­

ods to deal with geometric information (e.g., to retrieve images by similar human 

poses), due to the reason that traditional CBTR methods, such as SURF and bag of 

features (BoF) [32], prefer features to geometric information. 

In this chapter, I concentrate on a challenging retrieval task named visual hu­

man pose retrieval (VHPR), the goal of which is to retrieve dataset images that are 

similar in human pose to a query image. Each query and dataset image contains a 

human. The difference between VHPR and CBIR is shown in Fig. 2.1, in which 

the goals are compared. With this technique realized, many potential applications 

in art or sports fields can be involved, in which high-cost depth devices [33] are 

utilized as the main solution. Such devices are usually limited by measurement en­

vironments, cost, and mobile inconvenience [34]. Comparing to the depth devices, 

VHPR requires only monocular images, which can be easily collected by cameras 

or search engines. One issue of the problem setting of VHPR is the definition of 

"similar pose". Actually, there exist high-quality human pose datasets, such as LBP 

[35] and Human3.6m [36], but none of them define and cluster the "similar pose" 

geometrically instead of semantic action category. Especially for the evaluation, 

determining the ground truth can be ambiguous. Certainly, people can manually 

configure a distance threshold to define "similar", but it will inevitably turn out to 

be a problem of threshold determination. 

Existing works attempt to retrieve images with similar human poses by utiliza-
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Figure 2.1: Different goals between common CIBR and visual human pose retrieval 
(VHPR). Common CBIR aims to retrieve images by involving various categories of 
information, such as the color and texture of dresses and background, while VHPR 
retrieves images only with the cue of human pose. 
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tion of 2D human poses [37, 38]. In 2D human pose retrieval, the normalization of 

scale and angle is difficult, because there exists not camera angle and depth infor­

mation in 2D cases. Therefore, it works just in case that not only a pair of human 

poses are similar, but also they are taken at a similar angle and scale. 

The reconstructed 3D skeletons is exploited to tackle with the above task. As 

3D human poses can be easily normalized to the same direction and scale by rota­

tion and spherical coordinate expression, the limitation of using 2D poses can be 

overcome. However, human pose reconstruction is an ill-posed problem, which is a 

problem that has more than one solutions. Despite the existence of ground truth by 

motion devices, 3D pose reconstruction can have several solutions even marked by 

human beings owing to the lack of conditions. So far even the recent state-of-the-art 

research [39] remains a high reconstruction error comparing to ground truth. 

In conclusion, issues that need to be settled in VHPR are 1) Ambiguous def­

inition of similar poses; 2) Normalization problem in 2D human pose retrieval; 

3) Insufficient accuracy of recovered 3D human poses. Thereby, the main contribu­

tions in this section can be concluded as follows: 

• A novel dataset composed by 32 classes of distinct poses for evaluation is 

created. 

• This research first proposes VHPR by 3D human pose recovery. 

• Instead of the situation that one image can recover one 3D human pose, this 

research proposes to recover multiple 3D human pose candidates for VHPR. 

• RBBS, improved from best-buddies similarity (BBS) [21], for the similarity 

measure of VHPR is proposed. 
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• RBBS in this research is validated by synthetic experiments. 

2.2 Related Work 

Performance of VHPR by utilizing 3D human pose as retrieval clue has a close 

relationship with the confidence of pose extraction. Recovering an articulated 3D 

human pose from a single image involves two related fields, human pose estimation, 

and reconstruction, which are two essential cues for solving the VHPR problems in 

this chapter. 

2.2.1 2D Human Pose Estimation 

Human pose estimation requires to detect a 2D articulated human pose from a 

given image. Pedro et al. [ 40] introduce pictorial structures [ 41] into 2D human 

pose retrieval task, which integrates a human body, rather than independent human 

body parts detection. Although classical hand-crafted image features can be uti­

lized to estimate human pose ( e.g. [ 42]), the recent development of deep learning 

based frameworks provides more promising solutions. Deep human pose estimation 

involves developments in framework [43, 44], architecturally refinement [45], and 

resolution of deformable mixture joints [46]. Such algorithms provide intermediate 

results from images to 3D human poses. 

2.2.2 3D Human Pose Reconstruction 

3D human pose reconstruction, also known as 3D human pose estimation or recov­

ery, is to reconstruct a 3D human pose skeleton from a 2D human pose. I only 
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survey works having a single 2D pose as input rather than multi-view poses. Meth­

ods of 3D human pose reconstruction have gone through for periods of assuming 

the limb length [47], additional input [48, 49, 50, 51, 52], and sparse representa­

tion [53, 54, 55]. One recent state-of-the-art method proposed by Chen et al. [56] 

suggests to predict 3D human poses by a simple matching scheme. However, al­

though the reconstruction error decreases, results of [56] are still severe to be ap­

plicable in the case of VHPR that requires to measure the similarity between 3D 

human poses. 

2.2.3 VHPR 

The earliest research related with VHPR is [37], in which the authors develop a sys­

tem for retrieving human upper-body poses by descriptors including both locations 

and orientations of limbs, and compare with a baseline method that retrieves poses 

by HOG. The limbs are detected by [57], where the authors propose to reduce search 

space progressively for body parts estimation. Eichner et al. [38] propose a capable 

method in highly challenging uncontrolled images, which can estimate upper-body 

poses in a different scale, to improve the human pose estimation, and thereby yield 

in the improvement of upper-body pose retrieval. These works can only retrieve 

upper-body poses, while this research attempts to build a retrieval framework with 

the whole skeleton, which enlarges the degree of freedom and makes the task more 

challenging. Ren et al. [58] first introduce a retrieval solution with the whole 2D 

skeleton, while they do not handle with the problem of normalization well and thus 

their method works only in the case that images are shot at a similar angle and scale. 

To the best of my knowledge, there exists no similar research on VHPR that 
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(a) (b) 

Figure 2.2: Skeleton model of N-joint human pose. (a) 2D human pose example. 
(b) 3D human pose example. The pose in (b) is reconstructed from (a). The struc­
ture of 2D and 3D poses are the same. The joint between hips in (b), illustrated 
by green, is an assistant joint which does not exist in real for convenience, named 
"center". 
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measures similarity by entire 3D human poses so far. In this chapter, I first exploit 

3D human poses for VHPR, under the assumption that the results of pose recon-

struction with estimation errors. 

2.3 From Image to 3D Human Pose Candidates 

Final result of the 3D human pose reconstruction algorithm [56] is the first ranked 

vector of combined 3D points (i.e., each point representing the according position 

of a joint), denoted by X 1 E RNx3 , where N is the number of articulated joints. 

In addition to X 1, we keep the lower-ranked matchings as potential candidates to 

form a set of poses C = {X 1 , X2, ... ,Xi, ... , Xm lXi E RNx3 }. In another word, in 

the retrieval framework, top-m ranked candidates of the 3D poses are utilized as 

"features" to represent a certain 2D pose. I claim that as 3D reconstruction problem 

is highly ill-posed, the first ranked output can possibly be a less satisfactory result, 

due to difficulties such as depth ambiguity [55]. 

For an input image I, its predicted 2D pose by [44] is denoted in x(x E RNx2 ). 

Under the assumption given by [56] that the 2D pose estimation is independent with 

the prediction of Xi from x, the joint probability wi can be written as, 

wi = p(Xdx) · p(xll) ·p(I). 
'---v-"' � 

L56J L44J 

(2.1) 

By sorting with respect to normalized Wi E [O, 1], C can then be determined. I unify 

the skeleton models of both Xi and x (N = 14), which means that corresponding 

joints from Xi and x refer to the same joint (i.e. , with the same semantic defini-
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Figure 2.3: The overview of the retrieval framework. 2D poses are directly esti­
mated from the images, with each joint illustrated by a white circle. The 2D poses 
are reconstructed to m top-ranked candidates for similarity measure. The result 
images are ranked according to the similarity defined by RBBS. 

21 



tion). The skeleton model is shown in Fig. 2.2, including head, neck, and a pair of 

shoulders, elbows, wrists, hips, knees and ankles. Each wi is used for calculating 

weighted BBS in Eq. 2.7, which measures bidirectional similarity and is introduced 

in Sect. 2.4.2, for it indicates the reconstruction confidence of Xi . 

To eliminate the influence brought by the scaling, rotation, and translation dur­

ing retrieval, we first normalize each Xi into the same scale according to [54]. 

Specifically, a mean pose X from CMU motion data [53] is learned first. After then, 

vectors between each connected two joints la and lb can be denoted by spherical 

coordinates, written as 

(2.2) 

where ¢ab is the zenith angle, cpab is the azimuth angle, and lab is the vector length. 

Keeping c/Jab and <pab invariant, I adjust lab to the same length of the corresponding 

connection in X. Furthermore, in order to conduct pose normalization (considering 

rotation & translation), the skeletons are rotated to the same direction. The forward 

direction d of a skeleton is computed by 

d = Ven X Vs , (2.3) 

where v en is the vector from "center" to the neck, vs is the vector from the right 

shoulder to the left shoulder. The "center" is the assistant joint shown in Fig. 2.2. 

The "center" also bolster the normalization of translation, where the whole body is 

moved by the vector from "center" to the origin. 
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2.4 Approach of Retrieval 

2.4.1 Retrieval Framework and Problem Setting 

An image retrieval framework includes feature extraction of query and dataset im­

ages and similarity measure commonly. In this method, the "feature" can be de­

scribed as C, as well as the similarity measure algorithm is RBBS, introduced in 

Sect. 2.4.2. The retrieval framework is shown in Fig. 2.3. 

In such a retrieval framework, 3D human pose recovery and the calculation of 

RBBS are key steps. I consider each Xi E C as a dimension, which is usually a 

number of feature vectors. Therefore, to measure the similarity between two visual 

poses can be converted to matching two point vectors, the dimension of which is 

m, and the dimension of each high-dimensional point Xi is N x 3. I denote a series 

of similarities measured by RBBS between candidates of query Cq and candidates 

of dataset images D = {Cf, Cf, ... , C�} by RBBS(Cq,D), where n is the size of 

dataset, q and d represent query and dataset image respectively.. Analogously, I 

denote a series of similarities measured by BBS as BBS(Cq, D). For the similarity 

between a pair of candidates X and Y, I denote it by s(X, Y). 

2.4.2 RBBS 

The original BBS is proposed for template matching [21], which can match a pair 

of point vectors, and thus BBS can be employed in this research. BBS is defined as 

the fraction of Best-Buddies Pairs (BBPs). The BBP between two vectors {Pi E P} 
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and {qi E Q} can be defined as 

-{ 
1, nn(pi, Q) = qj I\ nn(qj, P) = Pi 

bb(pi, qj ) -
0, otherwise 

(2.4) 

where nn(pi, Q) = argmin{distance(Pi, q) }. In this research, as Xi represents a high-

dimensional point, for Xi E Cx and Yj E Cy (i, j E [l, m], i, j E Z), Eq. 2.4 can be 

written as 

-{ 
1, S(Xi, Cy) =  Yj I\ S(Yj, Cx) = Xi 

bb(Xi, Yj ) -
0, otherwise 

(2.5) 

where S(Xi, Cy) = argmin{s(Xi, Y)IY E Cy} . In other words, BBP is two elements 

in different vectors, where the nearest neighbor of one element in the opposite vector 

is another element, and vice versa. BBS between two point sets P and Q is defined 

in [21] as 

I M1 M2 
bbs(P, Q) = 

min{M M } 
. I I bb(Pi, q;), 

I, 2 i=l j=l 
(2.6) 

where M1 and M2 are the length of the two vectors. Since I reconstruct m Xi for 

each image, Eq. 2.6 can be written as 

I m 111 

bbs(Cx, Cy) = 
m ·II Cx. wi · Cy.Wj · bb(Xi, Yj )- (2.7) 

i=l j=I 

The expression A1 .g denotes g belongs to A1. 

BBS remains a problem that some of the similarities can be equal, which cannot 

be ranked. I calculate s(X(, Xf) for the solution of this problem. In detail, in order 
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to avoid repetitive computation, in computing bbs(C9, C1), I record s(X(, Xf) (Xf I E 

C1 ). Thus the similarity is given by 

ebbs(C9, C1) = bbs(C9, C1) · 1 oom(MSJ+I + s(X(, X1.i), (2.8) 

where om(-) denote the order of magnitude and 

MS = max s(X(,X1_i),t E [l, n], t  E Z. (2.9) 

The Eq. 2. 8 guarantees BBS is the main similarity, meanwhile, the EBBS can 

be affected by s(X(, Xf)- I denote a series of the Euclidean-BBS (EBBS) as 

EBBS(C9, D). 

I further refine the retrieval by recurrence. I deem the second half of C9 may not 

similar to the ground truth, especially comparing to the first half of the first rank by 

EBBS, represented by ctr . I evaluate the fraction of BBP, denoted by f, which is 

compared with a manually decided floating number y E [O, l]. If y � f, 1 displace 

C9 by cct9 = dp(C9, ctr ), where 

dp(C9, ctr ) = {X(, . . . , X�
1i1

l' xr¥l+l' ... , x�n. (2. 10) 

X;ECq,Xfr ectr,iE[ l,m],iEZ 

is to displace the second half of C9 by the first half of ctr. As time complexity of 

BBS is m2 times than normal matching (e.g. , Euclidean distance), the recurrence is 

operated by one time. 

The algorithm of RBBS is clarified in Algorithm 1 in summary. The retrieval 
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Algorithm 1 RBBS 
Input: Cq, D 
. Compute EBBS(Cq, D) 
Sort EBBS(Cq, D) ⇒ Acquire top ranking ctr 

Compute l = bbs(Cq,ctc ) 
• 111 

if f :2: y then 
Compute cctq = dp(Cq, ctr) 
Compute RBBS(Cq, D) = EBBS(Cctq, D) 

else 
RBBS(Cq, D) = EBBS(Cq, D) 

end if 
Output: RBBS(Cq, D) 

result is acquired by the sort of RBBS(Cq, D). 

2.4.3 Similarity Between a Pair of Single 3D Poses 

Simply, I compute Euclidean distance between a pair of 3D human poses to measure 

their similarity. A 3D human pose X E RNx3 can be expressed concretely as X = 

{J1,J2, ... ,JNIJk E R3, k E [l, N]}. The similarity between two 3D human poses X 

and Y is measured by 

s(X, Y) = I IIX.Jk - Y.Jkli2-
k=I 

2.5 Validity of RBBS in VHPR 

(2.11) 

The main effect on the precision of VHPR originates from the insufficient accuracy 

of pose recovery. Focusing on such a characteristic, I analogize poses to gener-

ate synthetic data in a low dimension and conduct synthetic experiments, so as to 

confirm the validity of RBBS in VHPR via more comprehensive experiments. 
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2.5.1 Low-dimensional Synthetic Data 

I build synthetic data in a low dimension because the dimension of the original hu­

man pose data (3D) is high. The higher dimension results in the more computation 

time, so it is severe to conduct experiments in a large dataset. The synthetic data 

is generated based on Gaussian distribution, rather than random generation. Ran­

domly generated data cannot ensure the data is in similar categories to each other, 

which can raise the precision of matching by geometry distance owing to the prob­

able obvious distinction. 

I summarize VHPR as a problem to match vectors of points in Sect. 2.4.1. A 

human pose image has its corresponding accurate 3D ground truth, but Xi from 

images, employed in VHPR, exist reconstruction error. Such reconstruction error 

makes the candidates approximated to the ground truth. Accordingly, I present to 

analogize the original data by approximate and I D  discrete Gaussian distribution. 

A 1D Gaussian form can be written as N 1 (µ, a-), where µ is the expectation 

and a- is the Gaussian radius. The analogy of poses and synthetic data is exampled 

in Fig. 2.4. Synthetic ground truths are generated via altering a- and keeping µ 

invariant. I analogize the reconstruction error by randomly adjusting values of the 

ground truth in a range [gi - r, 9i + r], where 9i is the value of i th dimension. For 

the quantity of synthetic data, I generate 100 synthetic ground truths, each of which 

corresponds to a query and 100 vectors of candidates to be retrieved. 
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Figure 2.4: Synthetic data generation. In order to gain more insight into the validity 
of RBBS, I represent the task in ID Gaussian form to conduct more comprehensive 
experiments. Synthetic data of ground truth, reconstructed candidates, and original 
data of reconstructed candidates in the experiments are exampled. The ground truth 
of the original data is one of the human pose templates in the experiments. 
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2.5.2 Synthetic Experiments 

Evaluation Method 

I evaluate the performance by mean average precision (MAP or mAP), following 

[38] and the precision curve. The precision is the fraction of the retrieved relevant 

images in retrieved images. The precision curve shows the change of mean preci­

sion with the number of retrieved image increasing. The precision curve represents 

a better result if the curve is higher. The MAP for a set of queries is the mean of 

the average precision scores for each query. Hence precision and MAP are floating 

numbers within [0, I], and they indicate better results when they are more closed 

to I. 

Comparison against Euclidean Distance 

I compare RBBS with Euclidean distance. The 1D Euclidean distance here is de-

termined as the sum of absolute value of the distance between a pair of points. 

Specifically, for a pair of candidates U and Z, the Euclidean distance is 

ED(U, Z) = I lui - zd, ui E U, Zi E Z. (2.12) 
i=I 

The Euclidean distance of a pair of candidate vectors is calculated by ED(U s, zs), 

where us and zs are most similar to their corresponding ground truth, imitating the 

optimal results. 

In Fig. 2.5 and Tab. 2.1, I set r = 0.3. The results indicate the following con­

clusions: 1) The performance of RBBS raises with the increase of m; 2) When m 

is less than a threshold within ( I 0, 30), RBBS performs worse than Euclidean dis-
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tance; 3) Overall, RBBS improves the performance in retrieving approximate point 

sets than Euclidean distance. 

2.6 Experiment 

2.6.1 Dataset 

I create a dataset for both qualitative and quantitative evaluation. In order to involve 

less ambiguity in the definition of "similar pose", lO volunteers are asked to imitate 

32 predetermined types of poses. Each type of pose is designed to be distinct from 

the others. As illustrated in Fig. 2.6, dataset images are taken by three evenly placed 

web cameras on a circle with the volunteer as the center point and 2 m as the radius. 

The cameras are I m from the ground. Diversity in physique and gender of the 

volunteers is considered. 

I design the poses to form the dataset following two rules: I )  distinct from each 

other; 2) easy to be imitated by the volunteers. First, I verify the poses by either 

stretching arms forwards, sidewards, upwards, or downwards as stretching limbs 

in orthogonal directions, which meets both above rules. Further, I add poses of 

standing and sitting straight up with legs naturally bending. The typical examples 

of designed poses are shown in Fig. 2.7. The number of designed poses is 32. The 

dataset totally contains 960 images (32 pose classes x 10 volunteers x 3 camera 

angles). I randomly select 32 queries one by one from each pose class. 
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Table 2. 1: Comparison between RBBS and Euclidean distance by synthetic data. 
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Figure 2.5: Comparison between RBBS and geometry distance by synthetic data 
(r = 0.3). In synthetic experiments, the performance of RBBS is affected by m and 
is better than that of Euclidean distance. RBBS performs better with the increase of 
m. 
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2.6.2 Effect of the Parameter m 

Parameter m appears in the calculation of RBBS, which means the number of candi­

dates recovered from an image. The synthetic experiments suggest that the increase 

of m can improve the performance of RBBS, while in this section, I explore how 

them affects the whole performance in real retrieval task quantitatively. I increase 

m from 10 to 500 and at the same time evaluate the change of MAP. The result 

is shown in Fig. 2.8(a), which indicates that l)  The same to Fig. 2.5, the MAP in­

creases overall by the increase of m; 2) Choices around m = 200 are suggested as 

the increase of MAP starts to slow down with respect to the increase of m; 3) RBBS 

can perform worse than only applying Eq. 2.11 for similarity calculation when m 

is small, which can similarly be observed in Fig. 2.5. It worth mentioning that in­

volving less confident candidates (e.g., m > 300) can involve outliers in similarity 

measurement, which will reasonably not improve the performance. 

Although the increase of m leads to a higher computational cost, I do not con­

duct the experiments on computational costs, because the computational complex­

ity is computable mathematically. The computational complexity of computing a 

Euclidean distance between a pair of skeletons is O ( 1), while the computational 

complexity of RBBS is O(m2). 

2.6.3 Comparative results 

In this section, I compare the proposed method against other alternatives. As the 

increase of m leads to more computational cost, to make RBBS efficient, I fix 

m = 200 in the following experiments. Specifically, I compare 3D pose+RBBS with 
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web cameras 

Figure 2.6: Dataset creation system. I represent web cameras by the graphic assem­
bled with a triangle and a rectangle. The web cameras are fixed on the tripods that 
are uniformly (with an interval of 2;) located at a circle with a radius of 2 m. The 
circle centers at the person who makes poses. 

Table 2.2: Comparison against existing methods by MAP. 

Method 

Euclidean Distance 

RBBS 

BoF I SURF 

I HOG 

HOG 

2D Pose 
3D Pose 

· 
lm=200 3D Pose I m = 500 

33 

Mean average precision (MAP) 
0.037 
0.037 
0.054 
0.202 
0.269 
0.269 
0.307 



(a) (b) (c) 

(d) (e) (f) 

Figure 2.7: Typical examples of dataset images. (a)~(d) Poses of stretching arms 

downwards, sidewards, upwards and forwards respectively. (e) The pose that com­

bines left arm pose and right arm pose. (f) Pose of sitting straight up with legs 

naturally bending. 
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Figure 2.8: (a) Changes of the MAP with the increase of m. The dotted assistant 
line shows the MAP of 3D pose+Euclidean distance. The MAP increases with the 
increase of m on the whole. As the increase of m, the MAP is getting smooth­
ing gradually. The conclusion satisfies the synthetic experiments. (b) Comparison 
against existing methods by the precision curve. It indicates that 3D pose+RBBS 
(proposed method) performs better than other comparative methods. Retrieval by 
articulated human poses performs much better than traditional image features in 
VHPR. 
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Figure 2.9: Comparison against existing methods. Retrieved images are arranged 
from left to right in descending order according to the confidence with respect to 
different comparative methods. The green ticks below images represent correct 
matches, while the red crosses represent false matches. The blue dotted boxes high­
light the first correct match with the different individual from the query. The orange 
rectangles highlight the first correct match with different shooting angle from the 
query. 
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HOG+ Euclidean (Eq. 2.11), BoF+Euclidean, articulated 2D pose+Euclidean, and 

articulated 3D pose+Euclidean. Referring to the extraction of BoF, I exploit HOG 

and SURF to extract the feature at key points, denoted as BoF-HOG and BoF-SURF 

for convenience. 2D and 3D poses are estimated by[?] and [56] respectively. The 

comparison against image feature-based methods is for revealing their adaptiveness 

in VHPR. 

The quantitative result is plotted in Fig. 2.8(b) by mean precision curve, as well 

as tabulated in Tab. 2.2 by MAP. Both of the results suggest that methods on the ba­

sis of reconstructed 3D poses perform better than traditional image features which 

are widely used in CBIR. Among the methods with reconstructed poses, the RBBS 

outperforms Euclidean distance, especially improves the MAP by 14.13% compar­

ing to Euclidean when m = 500, and the 3D pose gains higher mean precision than 

2D pose. I conclude the discussion according to the observations as 1) As one of 

the issues, normalization of 2D poses can possibly limit the retrieval performance, 

causing the lower precision than 3D poses; 2) Although the normalized 3D poses 

have higher precisions than 2D poses, it remains high reconstruction error and hence 

the precision of the retrieval with similarities by Euclidean distance is lower than 

RBBS. conventional feature-based methods are proved to be invalid as all the im­

ages are visually similar without considering the pose. 

Qualitatively, I show one of the queries and its top-8 retrieve results in Fig. 2.9(a). 

The first false match of 3D pose+Euclidean distance (ranked 7, row 2) appears ante­

riorly than that of 3D pose+RBBS (ranked 8, row 1). The correct matches with the 

different shooting angle from the query of RBBS appear two times, the first of which 

is two rankings ahead of Euclidean distance (illustrated by orange in Fig. 2.9(a)). 
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It indicates that the ability to search poses in different shooting angles with respect 

to the query is weaker than RBBS. On the other hand, the results of 2D poses in­

clude more false matches in retrieved images, and all the results are from the same 

shooting angle. It is worth pointing out that the results of HOG are with the same 

volunteer in a same shooting angle and appearance, as it is difficult to distinguish 

poses from visual information by the gradient histogram based feature. 

2. 7 Conclusion 

A challenging retrieval task to retrieve images, which are similar in human pose to 

the query, is proposed. In order to settle the issues of VHPR, including the definition 

of "similar poses", normalization, and 3D pose reconstruction error, I propose 3D 

human pose+RBBS and create an original dataset for evaluation. I reconstruct mul� 

tiple 3D pose candidates for each image, which are utilized in calculating RBBS. 

In the experiment, the results indicate that 3D human pose+RBBS performs better 

than other alternatives. However, one limitation of RBBS is its computation time, 

because it requires m2 times computational cost than Euclidean distance. 

As future work, accelerating the algorithm by parallelizing the computation of 

RBBS is considered. Also, as the retrieval is on the basis of the postures, the query 

in VHPR (human image) can be replaced by a simple drawing. The drawing is often 

called a sketch, which is discussed in the next chapter in detail. 
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Chapter 3 

Sketch Compression for SBIR by 

Approximate Representation 

1 This chapter is based on [59] 
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3.1 Problem Description & Contribution 

Conventionally, a sketch is a rapidly freehand drawing that is uncompleted, whereas 

sketches in SBIR are in a simplified version, which contains only simple strokes 

and can be described as a binary line drawing. Usually, the application of this 

kind of sketch is to search relevant images, the objective of SBIR, or 3D models, 

rather than a constitution of the arts. Although such sketches have been attached by 

grayscale [60], color [61], psychology (e.g. drawing order) [62], or detailed (e.g. 

fine-grained) [63] information, the original binary line drawings are most conve­

nient. A binary line drawing is often drawn by the sensor of the drawing board, or 

touch screen, for it is difficult to be input into the computer from (even scanner can­

not input a paper-drawing in binary line drawing), leading to that a general problem 

of SBIR is that lines are wobbly. To solve the noise of wobbly lines, scholars focus 

on methods of patch gradient [64] or the main patch gradient [65]. However, de­

spite the uncertain accuracy and long time when compared with complex and large 

numbers of images, these methods cannot deal with rotation, scaling and transla­

tion. The first research that overcomes such hard nuts is by S. Parui et al. [66], who 

propose to process both sketches and images to segments that include only straight 

lines. This research achieves not only the improvement of SBIR performance but 

also the compression of the sketch for SBIR. Nevertheless, only using a straight 

line to approximately represent a sketch results in some problems, such as a bend­

ing curve could be divided into lots of short lines, or it could be far different from 

the origin. 

A sketch is an image apparently. Image compression has been well studied [67, 
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68], but sketches of SBIR have their specificity, such as binary. If applying normal 

image compression algorithms to a sketch, not only cannot I apply the compressed 

sketch to sketch-to-image matching system directly, but they are also slow. 

In this chapter, I propose to compress sketch for SBIR by a approximate repre­

sentation. I extract curves of a sketch, which are segmented. All of the segments 

are classified into two types, straight lines and arc of circles, with approximately 

represented. The segment type is more than [66], the segmentation and represen­

tation of the proposed method are also different from which. Such representation, 

which can compress and repaint a sketch approximately, has many applications and 

advantages. It can be utilized in SBIR and sketch-to-sketch matching, can save 

much memory of computer. Besides, because the repainting has its own style, this 

technology can be even associated with the arts. In experiment, I compress sketches 

in a famous database, named Flickr15k [69] to indicate that the proposed method is 

fast and can compress sketches by a rather low compression ratio. 

3.2 Compression 

3.2.1 Preliminaries 

A sketch, denoted by S(x, y), where x and y are coordinates, can be divided into 

several curves. The curves constituted by points are denoted by Cr= {P1 , P2, ... , P11 }. 

Each curve can be complex, thus can be further segmented into numbers of seg­

ments Seg = {P1, P2, ... , Pm )(m � n), which include different types. The types in 

this chapter contain straight line and arc. Finally each segment is represented 

sparsely as Rep= {R 1 , R2, ... , Rk}, where R is the representation of one segment. 
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Figure 3.1: Overview of compression. In "Chains", gray points circled by red are 
bending points for the segment, while the dotted arrows point to the correspond­
ing segments. In "Segments", for straight line, the gray curves are the end-to-end 
straight line; for arc, the blue curve is constituted by original points and the red 
curve is regressed based on the blue. 
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The overview of compression is shown in Fig. 3.1. 

3.2.2 Extraction of Chains 

The curves that consist of a sketch can be called a chain because it is segmented into 

multiple segments. Hence multiple chains consist of a sketch. In order to extract 

each chain of a sketch, an 8-nearest neighbor search (8-NNS) is applied to chain 

extraction. I visit from the most upper-left black point S(xu l, Yul), in the 3x3 patch 

center at the location of which, the neighbor black pixel that has not been visited is 

selected as the next pixel, denoted by S(xnb, Ynh) of the chain. Then the next center 

of the 3x3 patches is located in S(xnb, Ynh), which is repeated until there exists not 

a black neighbor. One of the chains represented by points is extracted finally. The 

approach to extract Cr of a sketch is shown in Algorithm 2, where the center of the 

being visited patch is denoted by Pcencer, i is the counter of chains and j is a counter 

of points in a chain. 

3.2.3 Segmentation 

With obtaining chains of a sketch, each of them is segmented into some segments 

based on curvature. Curvature is usually utilized to evaluate loosely related concepts 

in geometry. In this case, especially, the curvature is utilized to evaluate bending of 

black points in a curve. The curvature is computed by 

Kc = I Wi · LPc-iPcPc+i, 
i=l 
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Algorithm 2 Extraction of Chains 

Input: S(x, y) 

i = 1 

repeat 

Peenter = S(xul, Yul) 

j = 1 

repeat 

Add Pcenter to Cr; 

Peen/er = S(Xnb, Ynb) 

.i=}+l 
until S(xnh, Ynb) does not exist 
i = i + 1 

until S(xu l, Yu l) does not exist 
Output: Cr 

' 
' 
' 
' 
' 
. 
' 

L: ' 
' 
' 
' 
' 
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< 1, L/Lo, 0::. O> 

< 1, L2/Lo, 01, O> 

(2, r/Lo, 0-1, rp > 

< 1, L4/Lo, 0s, O> 

Figure 3.2: Example of representation. Active lines are strokes, while dotted lines 
are auxiliary lines. The color of strokes corresponds to the representations. 
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where d is a parameter that denotes the searching degree, c denotes the c th point 

of the chain, and wi is a Gaussian function centered at Pc. 

For each chain, c is from i + 1 to lcr - i, where lcr is the number of points in 

the chain (length of the chain). After applying Eq. 3.1 to each point, I select bend­

ing points by Kc < 1:1 (= 2.075). Chains are segmented by such selected bending 

points, while the segments are represented by sets of points. 

3.2.4 Segment Classification 

I classify the segments into straight lines and arcs. Because in this research there 

are only two kinds of curves, I only measure the similarities between original points 

and end-to-end straight lines. Explicitly, I calculate the mathematical expression of 

the straight line, Ax + By+ C = 0, which connects first and last points of a segment, 

other points on which are utilized to measure similarities with the original points in 

the curve. The similarity, expressed by distance D, is computed by 

D= IIPOi-PM;I, (3.2) 
i=l 

where PO denotes original points and PM is the points given by the mathematical 

expression. 

If D > 1:2 (= I .40), a threshold, the curve is to be regarded as an arc. 

3.2.5 Representation 

I concentrate on the relationship between a pair of consecutive segments due to the 

aim that is to cope with rotation, scaling and translation. Further, the first segment 
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of a sketch is the basic segment, only which can locate the position of every first 

segment of chains. That is to say, each first segment of chains is paired with the 

basic segment. 

The representation of a segment, paired with the previous segment, can be com-

monly defined as R = (type, Zr, 0, ¢), as is exampled in Fig. 3.2. In the representa­

tion, Zr is length ratio computed by 

j 
!..5.._, basic segment is a straight line 

Zr= 
Lo 

le b . . 
-, as1c segment 1s an arc 
ro 

(3.3) 

In Eq. 3.3, basic segment is the first segment of the first extracted chain, if the first 

segment is a straight line. Let Lo be the length of the basic segment, or ro be the 

radius of the basic segment, and le be the length of current line or radius of current 

arc. 

Actually the representations of straight lines and arcs are different, such as the 

definition of 0 and </J, respectively stated in Section 3.2.5 and 3.2.5. The 0 of basic 

segment is 0. 

Straight Line 

Representation of a straight line can be especially defined as Rs1 = (1, lr, 0, 0). In 

case that D <= c2, I consider the segment can be regarded as a straight line that 

is connected end-to-end from the first points of the segment to the last. In order to 

represent the segment compared with the paired segment, if the paired segment is 

a straight line, 0 is set as the minor angle from the previous to itself, while if the 
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paired segment is a sector, 0 is set as the minor angle from an auxiliary line, which 

connects the first and last points on the arc, to itself. The </J of a straight line is 

always 0. 

Arc 

Representation of an arc can be especially defined as Rs, = (2, lr, 0, </J). In case that 

D > E2, we recognize the segment as an arc. By the function 

{ 0, r, </J} = Regression(Seg), (3.4) 

I can obtain the information of the regressed arc, including center (0), radius (r) 

and center angle ( </J ), which is the same to the </J in the representation of an arc. 

To compute the </J of an arc, it is necessary to draw the auxiliary line, too, which 

is from the first point of the sector to the center. This auxiliary line replaces the 

position of the end-to-end straight line in Section 3.2.5 to compare with the paired 

segment. 

3.3 Decompression 

Decompression is to repaint the sketch in fact, the algorithm of which is shown in 

Algorithm 3. After setting the start angle </Jstart and start point Pstart for the rep­

resentation of the basic segment, each segment is visit for repainting. The func­

tion P =Next(·) denotes computing the ending of the segment, while the function 

Paint(·) denotes painting the segment being visited. 
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Algorithm 3 Decompression 
Input: Rep, ¢start, Pstart 

Set ¢start and Pstart for R1,1 
P next = N ext(Ri,j, Pstarr) 
Paint(R1 I, Pstart, Pncx1) 
i = 1 
repeat 

j = 1 
repeat 

Pnext = Next(Ri,j, Pcurrem) 
Paint(Ri,j, Pcurrent, Pnext) 
j=j+l 

until Each segment of the chain has been visited 
i = i + 1 

until All the chains have been visited 
Output: S(x, y) 

3.4 Experiment 

3.4.1 Numerical Evaluation 

I compress query sketches in Flickrl 5k [69] for numerical evaluation, which is 

shown in Tab. 3.1. The first column represents the average compression ratio of 

the 330 sketches in Flickr l 5k, which is computed by 

Compressed Size 
Compression Ratio = -------­

Uncompressed Size (3.5) 

For evaluation, a lower compression ratio means a more strong compression. The 

compression ratio of the proposed method is rather low, indicating that the com-

press ion of the proposed method is strongly effective. 

The second and third column represents the compression and decompression 

speed per sketch. They indicate the speed is acceptable but far from real-time. 

Moreover, the speed of decompression is much lower than compression by reason 
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that decompression includes a procedure to generate a normal sketch. · 

3.4.2 Visual Experiment 

Some of the visual results are shown, which are the liner approximately represented 

sketches and contour image, as is shown in Fig. 3.3. The original sketches are some 

of the sketches in Flickr15k, I compress and decompress them to repaint them. And 

contour of the image is extracted for compression and decompression. Such visual 

results indicate the compression can preserve the character of the original sketches. 

3.5 Conclusion 

A sketch compression by approximate representation is proposed in this chapter, 

which is designed for SBIR but not only limited to SBIR. The character of sketches 

to divide sketches into chains and further into segments is exploited, which can 

finally be represented in a low dimension. In the experiment, 330 sketches from 

Flickr 15k and some contour images converted from natural images are compressed. 

Both the qualitative and quantitative results indicate that the proposed compression 

method has a striking effect. On the other hand, the method can not realize real-time 

processing at the current time, which is a work I plan to focus on in the future. 

VHPR and SBIR are two IR research fields with various queries. In order to fur-

ther systemize the queries and find the commonalities of different queries between 

IR and OD, the next chapter discusses a category of queries (the product image) for 

OD. 

49 



Compression Ratio 
0.023% 

' :) i 

7"- - -;-: 

' C i 

,.: __ •. ___ !_, 

-

-

Table 3.1: Numerical Evaluation 

Compression Speed (s) Decompression Speed (s) 
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(a) Compression from sketches 
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(b) Compression from contour image 

Figure 3.3: Visual results. (a) Sketch on the left of arrows are uncompressed (origi­
nal) sketches, sketches on the right of arrows are repainted according to compressed 
data. (b) From left to right, color image, contour image, compressed sketch repre­
sentation of the proposed method. 
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Chapter 4 

TemplateFree: Product Detection on 

Retail Store Shelves 

1 This chapter has been published in [70] 
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4.1 Problem Description & Contributions 

Product arrangement for retail store shelves is important and currently inspected by 

clerks manually thus costly. On one hand, products under contracts should follow 

the compliant arrangement according to the contracts. They often appoint the num­

ber and position of product sets on a store shelf, which can further affect customer 

satisfaction [71] and sales performance [72]. On the other hand, manual inspec­

tion and management not only spend human resource but can also disturb shopping 

customers. Clerks must inspect and manage all of the shelves several times every 

day, but shelves can be disarranged within a short time after the management. Such 

issues push the appearance of automatic product recognition systems. Among the 

alternative data categories, such as depth images and multi-view images, the single 

shelf RGB images require the most convenient device (monocular camera). 

However, the single RGB images based product recognition faces many chal­

lenges. Firstly, the recognition usually turns out to be a one-shot issue, for it costs a 

lot to collect the product images for machine learning in multifarious environments. 

Hence the training data is template product images actually. Secondly, the illumina­

tion of each shelf is diverse. Thirdly, some packaged products (e.g. bagged potato 

chips and laundry detergent refills) can be distorted. Fourthly, the background in­

volves varied noise. The noise can include the advertisement of a product, which 

is visually more similar to the template product image than the corresponding real 

product on shelves. The above challenges make it difficult to compare a template 

product image with the real product images. Lastly, the difference between products 

in the same brand can be rather small. 
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(a) 

(b) 

Figure 4.1: The defects of product recognition with templates. (a) Examples of 
the retail store shelf and detected products illustrated by green by the proposed 
method. (b) The corresponding postured product image of products in (a). The 
corresponding products in (a) are visually different from (b) caused by illumination, 
noise, and distortion. 
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Further, the research field on product recognition is still in its infancy. · Re­

lated works apply the workflow of multi-objects detection and recognition to prod­

uct recognition for the solution of the above challenges. The workflow requires 

the templates to satisfy the multi-objects detection algorithms, which are used to 

find similar regions in the store shelf images (target images). The most simple 

ideas (e.g. [73, 74]) treat the templates as the training data for the classifier of prod­

uct recognition. The performances of these methods rely on the performance of the 

corresponding object detection algorithm very much. Although video data [75, 76] 

and additional information (e.g. words on products [77] and planogram [78]) is then 

leveraged to product recognition, the scarcity of related journal articles and patents, 

as well as the inadequacy of product species in experiments, reveal that product 

recognition is at a prototype stage. 

The application of template product images to locating products has numerous 

defects. There exist two choices for the templates, i.e., master images and postured 

product images. The master image is the blueprint of the product appearance, while 

to obtain the postured product image that is exampled in Fig. 4. l (b), it is necessary 

to place the product in a simple background and take the photo. Postured product 

images are extraordinarily difficult to be collected and updated. By comparison, 

master images are easier to be collected and updated, but implicate copyright issues 

and are more difficult for recognition owing to the more visual difference caused 

in production. Moreover, unless gathering all categories of the template product 

images, both choices probably involve miss-detection. 

In order to minimize the defects of using templates, the best approach is to detect 

products without templates by the zero-shot learning method [79], then recognize 
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each detected product. Zero-shot learning can recognize an unseen class that is 

not labeled and trained directly but can be inferred from the seen classes (labeled 

in the training data). Zero-shot learning is an extreme form of transfer learning 

[80]. Especially, the zero-shot object detection (ZSD) methods require semantic 

label space and build the bridge between seen and unseen classes by introducing 

semantic similarity embedding [22, 23]. 

For the solution of all the above issues, in this chapter, TemplateFree, a zero­

shot deep learning based product detection method by single retail store shelf im­

ages, is proposed. Instead of the common idea that detecting and recognizing prod­

ucts according to the templates, TemplateFree avoids templates and concentrates on 

the characteristic of retail store shelves that each shelf can be segmented horizon­

tally into several layers and vertically into products. Both horizontal and vertical 

separatrix candidates are sampled and optimized, then the vertical separatrices are 

refined. The optimization and refinement of vertical separatrices are assisted by 

the trained GoogLeNet (81]. The GoogLeNet learns whether a region is a single 

product through zero-shot learning. In addition, I consider the recognition can be 

on the basis of the detection, regarding the detection as the first step and prelim­

inary means. To the contrary, shrinking the region of interest (ROI) by detection 

improves the performance of recognition. TemplateFree works well even via zero­

shot learning (i.e., the classifiers are learned by completely irrelevant training data). 
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4.2 Related Work 

The attempt of convenience for the management of product arrangement starts with 

semi-automatic product recognition. Nowadays, the manual management relies on 

not only the visual inspection but also the recognition by bar code scanner [82]. 

Tsai et al. [73] propose a remote visual mobile product recognition method, which 

requests users take the photo of each product by their mobiles and recognizes prod­

ucts by the remote server. The operation of the method for clerks is only a little more 

convenient than the bar code recognition but sacrifices the promising precision of 

bar code. Winlock et al. [75] propose a video-based real-time product recognition 

system, named ShelfScanner. ShelfScanner recommends users to scan products in 

the store shelf one by one, with building the structure of the shelf. ShelfScanner is 

the first system that can recover whole shelves. Lopez et al. [83] propose another 

novel assisted shopping system for blind people by radio frequency identification 

devices (RFID) and QR-code, whereas the method works through additional de­

vices. Kassim et al. [84] propose MyHalal, a system for recognizing whether a 

product is a Halal product or not, realized by the smartphone camera and bar code 

reader, but with limited scope. All in a11, in spite of the more or less improvements 

comparing to the bar code scanner, the above researches still need the manual oper­

ation. 

As is difficult to collect the training data, fully automatic product recognition 

is usually a few-shot or even one-shot matching problem. Although non-learning 

matching by manual features methods, e.g. histogram of oriented gradients (HOG) [2] 

and speeded up robust features (SURF) [ 1], have a great performance once, they are 
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outperformed by deep learning methods gradually with the improvement of image 

recognition and object detection. The methods for object detection, such as YOLO 

[85, 28, 29] and R-CNN [86, 87, 88], provide the basis for fully automatic product 

recognition. 

The fully automatic product recognition system analyses the whole shelf im­

ages, which requires only a fixed monocular camera for a shelf. George et al. [89] 

present a per-exemplar multi-label image classification method and create a large 

product dataset, named Grocery Products dataset. Marder et al. [76] propose to 

monitor retail store shelves by image analysis, which apply the state-of-the-art 

object detection method at that time. Varol et al.[90] decompose the problem of 

product recognition into detection and recognition clearly, which are solved by a 

generic product detection module [91] and support vector machines (SVM) [92] 

respectively. George et al. [77] first introduce the characteristic of products that 

brands printed on the products often contain texts. They classify the products 

into brand-level classes by text recognition and active learning based classifica­

tion. Their method cannot classify the products into specific product-level classes 

and the text recognition can be useless once the brand contains no text. Tonini et 

al. [78] add the planogram as an additional condition and propose to recognize prod­

ucts as a sub-graph isomorphism problem. Notwithstanding their method achieves 

a rather excellent result, as the planogram changes constantly, it is difficult to apply. 

Geng et al. [74] use feature-based matching and one-shot deep learning to conduct 

a coarse-to-fine product detection and recognition. With the robust ability of deep 

learning to understand details, their method can distinguish different products that 

have small differences. However, the above typical present fully automatic methods 
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treat product recognition as one-stage research of multi-objects detection problem, 

which requires templates. 

In order to abandon the templates, a zero-shot method is necessary. Zero-shot 

learning is first proposed by Palatucci et al. [79] for image clustering, aiming to 

predict unseen classes that are not labeled in training data for clustering. Gavves et 

al. [93] propose a zero-shot active learning that reuses and revisits the old datasets, 

whereas their method needs a human to teach and annotate the names of the new 

classes. Kodirov et al. [94] propose to add the constraint that the coded data must 

be able to reconstruct the original visual feature. One common point of the above 

zero-shot learning can be concluded as they learn a projection from the training 

data (seen classes) to the semantic embedding space. Inspired by this, zero-shot 

learning is applied to object recognition [95] and detection [23, 22]. Demirel et 

al. [23] propose a hybrid region embedding for ZSD that combine two mainstream 

embedding approaches in zero-shot learning. Bansal et al. [22] propose the first 

visual-semantic embedding for ZSD. Nevertheless, indiscriminately imitated ZSD 

methods to product detection is difficult because it can omit many of the neatly 

arranged products in shelves by the present sampling methods. 

In this chapter, a zero-shot deep learning based product detection method, Tem­

plateFree is proposed, which abandons the templates and locate the products by 

segmenting shelves horizontally and vertically. In TemplateFree, the sampling de­

pends on the segmentation, reducing the omission of products. 
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4.3 TemplateFree 

4.3.1 Overview 

TemplateFree can be decomposed into four parts, as shown in Fig. 4.2, horizontal 

segmentation, layer classification, vertical segmentation, and refinement. Horizon­

tal segmentation can segment a whole store shelf into several layers (see Fig. 4.2(b )). 

Each layer exhibits a row of products (product layer) or a non-product layer, clas­

sified by a trained GoogLeNet. Within every product layer, the vertical separatrix 

candidates are detected (see Fig. 4.2(d)), which are the foundation for segmenting 

the product layer vertically into products. The vertical segmentation is assisted by 

another trained GoogLeNet. Last, the border of products and the worst separatrices 

are refined, the effect of which is exampled by the comparison between Fig. 4.2(e) 

and (f). The four parts are introduced in Sect. 4.3.2~4.3.5 specifically and respec­

tively. 

4.3.2 Horizontal Segmentation 

The horizontal segmentation consists of horizontal separatrix candidates detection 

and the optimization of candidate combinations, displayed in Fig. 4.3. 

Horizontal Separatrix Candidate Detection 

In retail store shelf images, there exist several kinds of horizontal bar-like objects 

that can segment the shelf into several (product or non-product) layers, such as 

clapboards and the top of some categories of products. Therefore, the horizontal 

separatrix candidates detection is to locate the horizontal bar-like objects. I con-
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sider the bar-like objects locating is analogous to various problems such as seat-belt 

detection. Referring to the non-learning method for seat-belt detection proposed 

by Guo et al. [96], I detect the horizontal separatrix candidates by preprocessing 

and Hough transform. The shelf images are preprocessed via grayscale converting, 

Gaussian blur, horizontal Sobel edge detection, and dilation. The grayscale con­

verting and Gaussian blur can filter much clutter, horizontal Sobel edge detection 

minimum the vertical noise, and the dilation makes the remained domjnant pixels 

(non-black pixels) more robust, which is advantageous to Hough transform based 

straight line detection. The detected straight lines stretch to many orientations. They 

are filtered according to the distance in height between the endpoints. Although the 

filtering guarantees the remained straight lines are regular in orientation, it is dif­

ficult to guarantee an adaptive number of the straight lines because of the diverse 

and complex illumination and saturation. Thus I recur the Hough transform with 

increasing the parameter of Hough transform that restricts the minimum length of 

the detected lines (horizontal separatrix candidates) until the number of detected 

lines is within a predetermined range or exceeding a predetermined loop number. 

Horizontal Separatrix Candidate Optimization 

Despite the limited quantity and orientation, the candidates can be in an uneven dis­

tribution or contain too short instances. The problem can invoke the misdetection. 

I solve the problem by optimizing the combined candidates. The objective function 

of the optimization can be written as 

(4.1) 
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where Ez and E1z denote the evaluation of the candidate in lengths and candidate 

spacing heights respectively. The effect of E1 constraints the lengths so that too 

short candidates are identified as the inappropriate, while E1z helps to regularize the 

candidates. I calculate Ez by 

1 
E1=--­mean L' 

where L denotes the set of each candidate's lengths. The calculation of E1z is 

E1z = ln (e + -.-
1 

-) + min {D(H), D(H')} 
mm H 

(4.2) 

(4.3) 

where H denotes the set of candidate spacing heights, H' denotes the set of spac­

ing heights of candidates incorporating the top and bottom of the image, and D(·) 

denotes the variance. In Eq. 4.3, the first term prevents the case that all of the 

combined candidates appear within a concentrated region, while the second term 

constrains the combined candidates are in a uniform distribution by measuring the 

variance of the spacing heights. Because the computational cost of Eq. 4.1 is low, 

I optimize via sampling all the possibilities, i.e., I optimize I.t
3 

Ci categories of 

candidate combinations, where k E Z is the number of the straight lines. 

4.3.3 Layer Classification 

Some of the layers segmented from shelf images may contain no products, named 

non-product layers. Contrarily, the layers that contain products are named product 

layers. It is useless to detect products in non-product layers, hence the layers are 
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classified by a zero-shot learned GoogLeNet, named layer GoogLeNet (L-GoogLe). 

GoogLeNet 

GoogLeNet is a convolutional neural network for image recognition, which is ex­

panded to deeper than I 00 layers but maintains the computational budget constant. 

I select GoogLeNet because of its high precision and its utilization and applica­

tion as the backbone framework in many later pieces of research. More details of 

GoogLeNet can be found in [81]. 

Zero-shot L-GoogLe 

In this section, I intend to recognize unknown shelf layers (unseen class, Ti) accord­

ing to known shelf layer images (seen classes). The seen and unseen classes are 

defined to be completely visually different in the shelf category, product category, 

and background. They also can be different in illumination or slightly different in 

shooting angle. An shelf layer image can be divided into product layers (Ki), non­

product layers (Kn), and background (B). Common learning model can be con-

cluded as (Ki, K11 ) - K;, where K; is the target to be predicted in the same class 

to Ki. However, Ti is much visually different to Ki , being considered in different 

classes. I thus embed the simple semantics that 

• "the product layer is different from the background", 

in order to take the advantage of B, and conduct (Ki, Kn, B) - Ti, where K1 can 

be regarded as the positive training data, while K11 and B can be regarded as the 

negative training data. 
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It is necessary to prepare Ki, Kn , and B. The original training data is the store 

shelf image. I segment the images by the method in Sect. 4.3.2 and the annotated 

layer images compose K1 and Kn, Then I uniformly randomly sample background 

image patches in the images as B. All of K1, Kn, and B are resized to 224 x 224 

pixels before training. The positives and negatives are exampled in Fig. 4.4(c)~(d). 

It is worth pointing out that L-GoogLe can be regarded as the zero-shot learning 

framework if and only if it satisfies the assumption that T1 is much visually different 

from K1 (e.g. Fig. 4.4(a) and (c)). Otherwise, T1 can be predicted by (K1, K11 ) � Tz, 

4.3.4 Vertical Segmentation 

By means of the characteristic that the products in a layer can be segmented into 

single instances by the shadow between each pair of products, the problem can 

be converted to shadow detection. Products are in diverse categories, various in 

shape, illumination, and scale, resulting in the difficulty of direct detection. On the 

contrary, the shadow is often the comparatively dark area of the layer image and 

near to black, the detection of which can be much easier and more precision. I thus 

detect the vertical dark areas in the layer image as the vertical separatrix candidates. 

However, some of the dark areas are not the shadow between adjacent products, I 

group the detected candidates and optimize the grouping. 

The workflow of vertical segmentation is shown in Fig. 4.5, including vertical 

separatrix candidates detection and grouping. 
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Vertical Separatrix Candidate Detection 

The candidates are detected on the basis of preprocessing. A layer image is pre­

processed by grayscale converting, Gaussian blur, vertical Sobel edge detection, 

binary Otsu thresholding [97], and horizontal erosion. Different from the prepro-

cessing in Sect. 4.3.2, which utilizes dilation to enhance the straight line detection, 

the horizontal erosion replaces the dilation to further reduce the noise. W.r.t. Otsu 

thresholding, I apply it for decreasing the sporadic noise and weak gradients due to 

its low computational cost. 

The pixels of preprocessed layer images are binary, including dominant pixels 

and featureless pixels, as the respective white and black pixels of the preprocessed 

images in Fig. 4.5(b)~(d). Since the layer images can include noise in the top and 

the bottom, the dark areas are more precision to be detected by shrinking the ROI 

of layer images lengthwise. Hence, I measure and linearly minimize the density of 

dominant pixels to shrink the ROI lengthwise. The density p is calculated by 

(4.4) 

where n denotes the number of dominant pixels and A is the area. 

I search the ROI of preprocessed layer images from left to right by a predeter-

mined stride and window width, with counting the number of dominant pixels in 

each window. The numbers of dominant pixels are utilized to create the histogram, 

in which the local maxima are treated as the separatrix candidates, as is illustrated 

by the yellow dotted lines in Fig. 4.5(b )~( d). 
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Algorithm 4 Vertical Separatrix Candidates Grouping 

Input: X, V, Wmax 

0 = Wmax X 0.6, j = 1 
repeat 

b = 1, t = 2 
S.append(b) 
repeat 

if X 1 - Xb 2: o then 

a = select(V, b, t) 
S.append(a) 
repeat 

b=b+l 

until Xb - Xa 2: o X 0.7 
t=b+I 

end if 

until .., exist(Xb) 
0 = 0 + W 111ax X 0.2 

until O > Wmax 

Sapt = min Vf(S) 
Output: Sap! 

Vertical Separatrix Candidate Grouping 

Because the candidates suffer error detection, probably caused by the residual noise. 

The issue is solved by grouping. Instead of the common grouping that groups the 

candidates by an experienced width o, I handle o as a variable, in order to optimize 

the combination of the candidates. The algorithm for grouping in the shrunken ROI 

is described in Algorithm 4, where X denotes the set of candidates, V denotes the set 

of dominant pixel quantities corresponding to each candidate, Wmax is the maximal 

distance between each pair of candidates, S denotes the set of grouped candidates, 

and Sapi denotes the optimization of S. The function select(V, b, t) is to select the 

maximum Va between Vb and V 1 , where a is the index of the maximum and used 

as the return. The reason that I select the region that contains the largest number 

of dominant pixels is that more dominant pixels represent a candidate that more 
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probably turns out to be a separatrix, whereas false candidates usually contain the 

low quantity of dominant pixels. The function f is calculated by 

. mean S-GoogLe(P) 
f =mm-------, 

mean S-GoogLe(N) 
(4.5) 

where P and N are the potential positive and negative regions, corresponding to the 

N 1-2 (illustrated by red) and P 1 _5 (illustrated by green) in Fig. 4.S(e). Specifically, 

a layer image can be segmented by S into several regions, of which the leftmost 

and rightmost regions are potential negative regions N, while the other regions are 

potential positive regions P. Each potential positive region is optimized to be rec­

ognized as the region that contains a single product, while the potential negative 

regions are optimized to be recognized as non-product regions, partial product re-

gions, or multi-products regions. Furthermore, the potential negative regions are 

selected according to the widths of the adjacent end positive regions (e.g. N I is 

selected according to P 1 in Fig. 4.S(e)). The widths of the potential negative re-

gion and the end region of potential positive regions are aequilate, if the width is 

less than the width between the corresponding end separatrix and the border of the 

layer image. Otherwise, the potential negative regions are selected between the end 

separatrix and the border of the layer image. 

The function S-GoogLe(·) is based on another zero-shot trained GoogLeNet, 

named single-product GoogLeNet (S-GoogLe) specifically described in Sect. 4.3.4. 

Besides, I repeat the vertical separatrix candidate detection from the Gaussian blur 

in preprocessing and update the candidates, in order to adapt the range of the group­

ing stride. 
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Zero-shot S-GoogLe 

I denote the p classes of training product data by Ks = { C1, ... , C
p 

), then (Ks, B) -

(C;, ... , c;), where (c;, ... , c;) are the products in the same classes to Ks respec­

tively. The purpose of S-GoogLe is to predict a new class of product, C
q
, which is 

not a part of Ks , I embed the simple semantics that 

• "a single product is different from a partial product", 

• "a single product is different from a multi-products". 

Hence I conduct (Ks, Kh, Km, B) - C
q 

as a zero-shot learning model, where K1z 

denotes partial images extracted from Ks and Km denotes multi-products images 

from the original training data. In this model, Ks is regarded as the positive data, 

while Kh , Km , and B are regarded as the negative data, as is shown in Fig. 4.5(g)(h). 

4.3.5 Refinement 

The proposed grouping searches from left to right, possibly leading to the case that 

the leftmost positive region is not a product region, as wen as the case that ground­

truth borders are possibly not detected as the candidates owing to its visual differ­

ence from the shadow between adjacent products. Also, the grouping limits each 

distance between continuous vertical separatrices within o, though o is adjustable. 

Consequently, I propose to refine the detected vertical separatrices. 

The refinement is decomposed into two steps, border refinement, and worst in­

teriors refinement. I attempt to insert or delete vertical separatrix candidates that 

are not treated as the detected separatrix around both borders. All the combinations 

of the candidates between the border of the layer image and the second nearest 
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separatrix to the border are evaluated by means of Eq. 4.5, the optimal combina­

tion persists. For the worst interiors refinement, which is evaluated as the worst by 

max S - GoogLe(P), I refine within the worst region and its neighbor regions. The 

region is denoted by R1 . Instead of using global Eq. 4.5, i.e., optimizing the whole 

layer image, I optimize only the local region R1 to decrease the computational cost. 

Similar to the border refinement, I evaluate all the possible combinations of unused 

local candidates, then the optimal combination is assembled with other separatrices. 

The assembled combination is evaluated globally. If the global evaluation is better 

than the former combination, it replaces the former one. 

4.4 Experiment 

The dataset I utilize is introduced in Sect. 4.4.1. The protocol for evaluating the 

proposed method is introduced in Sect. 4.4.2. I evaluate the effect of relevant train­

ing data quantity in Sect. 4.4.3, and evaluate the refinement in Sect. 4.4.4. J also 

conduct the comparative experiment to the robust method, faster R-CNN [88], in 

Sect. 4.4.5. 

4.4.1 Dataset 

I use Grocery Dataset [90] and Grocery Products dataset [89]. Grocery Dataset con­

tains 354 grocery store shelf images, involving 10 brands, which are collected from 

40 groceries with 4 cameras. Grocery Products dataset contains 680 test images 

and 8350 training images including 80 categories of products. However, the images 

in Grocery Products dataset are not the whole shelf images, instead, they are the 
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partial shelf images. Such dataset cannot be used to evaluate the proposed method. 

Therefore, Grocery Products dataset is used to train the GoogLeNets only. That 

the categories of the two datasets are independent of each other, as is exampled in 

Fig. 4.6, guarantees the experiments are zero-shot learning. 

4.4.2 Evaluation Protocol 

I evaluate L-GoogLe by success rate, as well as evaluate the performance of Tem­

plateFree and the comparable method by the recall, precision, and f-measure. I 

determine a detected instance (instances in this research are the products) is correct 

if the overlap coefficient is more than 0.5. The recall is the fraction of the num­

ber of correctly detected instances over the number of ground truth. Precision is 

the fraction of the number of correctly detected instances among the number of to-

tally detected instances. Recall and precision are unilateral. E.g. , extreme precision 

can be 1 and unreasonable when a method detects only one correct product but the 

image contains many products that should be detected, recall can also be 1 in the 

situation that a method detects all the products but meanwhile detects large numbers 

of false instances. Accordingly, F-measure is utilized. F-measure is the harmonic 

mean of recall and precision, calculated by 

Precision x Recall 
F = 2 · ------­

Precision + Recall 
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4.4.3 Effect of the Training Data 

In order to evaluate the effect of the training data, 70% of Grocery Dataset is utilized 

for test, while O ~ 30% of Grocery Dataset along with Grocery Products dataset are 

utilized for training. When the training data contains 0% of Grocery Dataset, the 

learning is pure zero-shot learning. 

The change of L-GoogLe is displayed in Fig. 4.7(a). As the quantity of Grocery 

Dataset in training data increases, the success rate is approximate to I continu­

ously and changes little. The lowest success rate is 97.85% given by pure zero-shot 

learning. It indicates the correlation between training data and test data affects the 

performance of L-GoogLe little. The zero-shot trained L-GoogLe achieves a rather 

high success rate to promise the performance of layer classification. Further, it is 

barely necessary to update the training data and retrain, which reduces lots of costs 

in the real application. 

The change of S-GoogLe is displayed in Fig. 4.7(b). With the increasing quan­

tity of the relevant data for training, the precision changes little, while the recall and 

the F-measure increase overall. The little change and high value of the precision 

separately reveal the increment of relevant data affects the precision little, and once 

a region is detected by the proposed method, it has a high possibility to be a product 

region. The recall is not as high as the precision, which indicates some products are 

not detected. Aside from the failed grouping (described in Sect. 4.3.4) and refine­

ment (described in Sect. 4.3.5), it can also be mattered by the undetected or falsely 

detected horizontal separatrices, false classification of layers, and undetected or 

falsely detected vertical separatrices. Although the fail of each step decreases the 
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performance, it still achieves a feasible recall even with the pure zero-shot learning. 

Referring to the effect of the training data, the recall is affected slightly. The re­

call increases slowly with the increasing quantity of the relevant training data. The 

F-measure also increases with the quantity of the relevant training data ascribed 

to the increase of the recall. As a conclusion, the proposed method performs well 

even with pure zero-shot learning but can perform better via increasing the relevant 

training data. 

4.4.4 Effect of Refinement 

I compare the refined results to the unrefined results numerically in Fig. 4.7(c). 

Comparing to the unrefined results, all of the precision, recall, and F-measure is 

improved by the refinement. The recall has been improved most. The worst regions 

refinement improves each region more probable to a single product. The border can 

be extended so that the product region that is close to but excluded by the vertical 

segmentation can be detected. The precision has been improved as well. The left­

most border can be false detection because the leftmost vertical separatrix candidate 

is always used, so the border refinement effectively reduces the appearance of such 

false detection. The F-measure has also been improved along with the improvement 

of the precision and recall. The results indicate the refinement is effective. 

4.4.5 Comparative Experiment 

I compare the proposed method with faster R-CNN [88]. Both of the training of the 

proposed method (including training L-GoogLe and S-GoogLe) and faster R-CNN 
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are trained by the pure zero-shot dataset. The comparison results are demonstrated 

in Fig. 4.7(d), where TemplateFree leads in the comparison of recall, while the 

precision of faster R-CNN is a bit higher. The higher precision of faster R-CNN 

indicates false detection by faster R-CNN is less than TemplateFree. However, the 

comparison by the recall indicates that faster R-CNN detects only 11.95% of the 

ground truth, much less than the 67.79% by TemplateFree. The F-measure of faster 

R-CNN is far less than TemplateFree, meaning comprehensively TemplateFree per­

forms better than faster R-CNN. 

I example in Fig. 4.8 the visual comparison between TemplateFree and faster 

R-CNN. Faster R-CNN can detect only a few products, which can be effected 

by the different classification and resolution from the training data. On the other 

hand, TemplateFree reduces such influences and performs much better. However, 

in Fig. 4.8(b), there still exist false detections and miss detection, which are typical 

for TemplateFree. TemplateFree cannot filter the non-product regions that are be­

tween products, such as the false detection in the first layer and the left four false 

detections in the second layer. The second false detection from right in the second 

layer is caused by the vertical separatrix candidate detection, which fails to detect 

the separatrix candidate between the pair of products. The right-most false detec­

tion in the second layer and the miss detection in the third layer are also caused by 

the miss and false separatrix candidate detection. Although they may be revised by 

iterative refinement, whereas the operation is not conducted because the iterative 

refinement leads to the expensive computational cost. 
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4.5 Conclusion 

A method of zero-shot deep learning based product detection on retail store shelves, 

named TemplateFree is proposed. TemplateFree works without template images 

and has four steps, including horizontal segmentation, layer classification, vertical 

segmentation, and refinement. The layer classification is on the basis of L-GoogLe, 

as well as the vertical segmentation and the refinement depends on the S-GoogLe. In 

experiments, I evaluate TemplateFree quantitatively, which indicates the proposed 

method performs better than the existing alternative method. For future work, as 

TemplateFree is not robust in the situation that a region between products is empty, 

I deem the feedback from product recognition can improve the performance. Also, 

instead of learning, the separatrix candidate detection is experienced, causing many 

false and miss detection. So I intend to improve the performance of separatrix 

candidate detection. 
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(a) 
Layer Classification 

(b) 

(c) (d) 

(e) (f) 

Figure 4.2: The overview of TemplateFree. (a) The retail store shelf image. (b) The 
detected horizontal separatrices, illustrated by red. (c) The classified layers. The 
product layers are marked by green circles and the non-product layers are marked 
by red crosses. (d) The detected vertical separatrix candidates, illustrated by yellow 
dotted lines. (e) The detected vertical separatrices, with the misdetection and miss­
detection illustrated by dotted red bounding boxes. (f) The refined result, where the 
misdetection and miss-detection in (e) disappear. 
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(b) 

(d) 

Figure 4.3: The flowchart of horizontal segmentation. (a) An example of retail store 
shelf images. (b) The preprocessed image. (c) The detected horizontal separatrix 
candidates, illustrated by green on the preprocessed image. (d) The detected hori­
zontal separatrices, illustrated by red. All combinations of the straight lines in (c) 
are optimized. The best solution to the combinations is treated as the separatrices 
shown in (d). 
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(a) (b) 

L-GoogLe 

(c) (d) 

Figure 4.4: The workflow of product region classification. (a) An example of the 
product layer. (b) An example of the non-product layer. ( c) Examples of the positive 
training data. (d) Examples of the negative training data. The L-GoogLe learns 
positive and negative data exampled in (c) and (d), then classifies layer images such 
as (a) and (b). The green circle and red cross show the classification results of (a) 
and (b) respectively. 
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(t) 

(g) 

(h) 

Figure 4.5: The workflow of vertical segmentation. (a) An exampled product layer. 

(b)~(d) Preprocessed product layer image with different parameters. The candi­

dates are illustrated by dotted yellow lines. (e) An example of the evaluation of 

grouping. The potential positive regions are within green bounding boxes, de­

noted by P 1 _5, while the potential negative regions are within red bounding boxes, 

marked by N 1 and N2 . (f) The detected vertical separatrices, illustrated by green. 

(g) Examples of the positive training data. (h) Examples of the negative training 

data. 
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(a) (b) 

Figure 4.6: The comparison between training data and test data. (a) The example 

of training data. (b) The example of test data. They are completely different in the 

categories of shelves and products visually. 
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Figure 4.7: The quantitative evaluation. (a) The success rate of L-GoogLe with the 
quantity of the relevant data increasing. (b) The performance of S-GoogLe with the 
quantity of relevant training data increases. (c) The evaluation of the refinement. 
(d) The comparison between TemplateFree and faster R-CNN. 
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(e) 

TemplateFree 

(b) 

(f) 

Figure 4.8: Visual comparison between faster R-CNN and TemplateFree. The re­

sults of Faster R-CNN are exampled in (a) and (c), and the results of TemplateFree 

are exampled in (b) and (d). The original images of (a) and (b) are the same, so do 

(c) and (d). Faster R-CNN performs bad with the training data in different classes, 

while TemplateFree can detect almost all of the products. In (b), the red crosses 

mark the false detection and miss detection of TemplateFree. 
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Chapter 5 

Conclusion & Future Work 
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In this thesis, multiple categories of queries based approaches are proposed, 

including a recurrent bidirectional VHRP, a novel sketch compression for SBIR, and 

TemplateFree for product detection. Experiments reveal that the three approaches 

performs better than the existing methods, improving image retrieval and object 

detection. 

For the commonalities of the queries, on one hand, so far, the three approaches 

are not applied to one project. Hence, the commonalities of the three categories of 

queries are simply discussed here. The three approaches can play one role together, 

shown in Fig. 5.1. E.g., SBIR can be used in "paint to search", becoming the basic 

of VHPR and TemplateFree. VHPR and TemplateFree can appear together in a 

com!"°ercial analysis system. On the other hand, 

------- TemplateFree 

Sketch-based Image Retrieval 

Figure 5.1: Examples of future works. 
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