
A Thesis

entitled

A Study of Effective Framework Combining

Sparse Autoencoder Based Feature Transfer

Learning and Long Short-Term Memory for

Network Intrusion Detection System

by

Zolzaya Kherlenchimeg

Department of Design and Media Technology

Graduate School of Engineering

Iwate University

March 2020

Dedication

To my grandparents, who taught me the most important values of life.

Abstract

The rapid growth of technology uses all over the world, our daily lives and
· activities for the better in many ways. However, this exponential growth of

interconnections has led to also concern network security issues. A vulnera
bility and potential malicious threat might be due to a bug in applications
and ill-managed networks. Therefore, we must address these critical issues of
network security such as detect suspicious activities; a countermeasure against
intruders and unauthorized access to the existing data. In the last decades,
the Intrusion Detection System (IDS) plays a vital role in detecting network
attacks. The IDS is a process of monitoring and analyzing the events occurring
in a computer system and network to detect signs of security problems.

In general, IDS categorized into misuse-based detection and anomaly
based detection. A misuse-based IDS also known as a signature-based IDS
that measures its similarity between input and signatures of known attacks.
Therefore, the known attacks can be detected immediately and reliably with
a lower false-positive rate. While the misuse-based detection method has dis
advantages that it cannot detect unknown attacks and novel attacks. The
anomaly-based detection technique is the process of comparing activity the
enterprise considers normal against observed activity to identify significant
deviations. The advantage of anomaly-based detection techniques is suitable
to predict and adapt to unknown attacks. This kind of detection method uses
a machine learning approach to create a predictive model by simulating regu
lar activity and known activity, then compare new behaviors with the existing
model. However, an anomaly-based IDS usually produces a high percentage
of false alarms rate and a low rate of detection rate, it might be effect the
efficiency of real-world applications. In an anomaly-based IDS, there are dif
ferent levels at which an IDS can monitor activities in a network. It faces
a large number of features representation of monitored network traffic. The

11

high dimensionalities of the network traffic give to raise the hypothesis search
space and also lead to large classification errors. Therefore, to address those
problems, this study. focused to improve the accuracy of detecting unknown
attacks through the developing an effective framework.

In this study, we propose a network IDS framework for intrusion detec
tion. The proposed framework consists of two stages. The first stage is a
feature extraction stage which has two steps: unsupervised pre-training and
supervised fine-tuning. The first step is an unsupervised pre-training step that
learns the typical patterns of the network traffic using a single-layer Sparse
Autoencoder (SAE) which is an effective learning algorithm for reconstruct
ing a new feature presentation of the data through the nonlinear mapping.
Consequently, the second step is a supervised fine-tuning step that can ex
tracts the primary features of the network traffic using the preceding optimal
parameters in supervised manner while gradually reduce the data dimension.
The SAE model determines an approximation to the identity function, so as
to output data that is similar to their input data. In other words, the function
involves finding the optimal network parameters weight, biases by minimiz
ing the discrepancy between input and its reconstruction data. However, the
degree of input features increases the model becomes more complex and has
to fit all data. Therefore, to prevent the problem of overfitting, we use the 12
regularization method by augmenting the cost function with the sum of the
squared magnitude of all weights in the network. As well as, we regularize
the feature extractor model by using a Kullback-Leibler (KL) divergence as a
sparsity penalty term which constrains the neurons to be inactive most of the
time.

Accordingly, we train a single-layer feature learning SAE model on training
set only in unsupervised manner using 5 -fold cross-validation, while optimize
hyperparameter values of the network. It involves finding the optimal net
work parameters weight, biases and hyperparameters of cost function. After
the network learned optimal values for weights and biases, save the network
parameters. Once selecting proper hyperparameter, re-train ·the feature ex
tractor SAE model using these optimal hyperparameter on the training set
with a label. Finally, the feature extractor SAE model can extract the new fea
ture representations which represent the source data. In the next stage, train a
Long Short-Term Memory model to identify the network traffic as being either
normal or attack using the extracted new feature representations dataset. We

lll

apply the 10-fold cross-validation method to validate the results o:r the LSTM
model to prevent overfitting issue. In final, we evaluate the effectiveness of
the proposed IDS framework on the benchmark NSL-KDD dataset. The ex
perimental result shows that the proposed framework performs better than
previous studies which proves the effectiveness of ·our framework. Further
more, the result confirmed ·that our feature extractor SAE model significantly
effected to improve the performance of this work.

This thesis was aimed to develop an effective framework combining a
single-layer Sparse Autoencoder (SAE) based feature transfer learning and
Long Short-Term Memory (LSTM). Initially, the feature extractor SAE model
which proposed to extract the most relevant features for use in representing
the data. In the following, the LSTM method proposed for classifying network
traffic either a normal or an _attack. The result of the proposed framework
detected network attack with high accuracy and it outperformed other similar
studies.

lV

Acknowledgements

I would like to take this opportunity to acknowledge the people who made
this thesis possible.

First and foremost, I want to express my special gratitude to my super
visor, Associate Professor Naoshi Nakaya for his support, patient guidance,
encouragement, and kind advice during the long process of this thesis.

Besides, I would like to extend my special thanks to the thesis committee
members, Professor Kouichi Konno, Professor Tadahiro Fujimoto and Asso
ciate Professor Takuya Akashi for your insightful questions and suggestions to
make my work stimulating. I am particularly grateful for the assistance given
by Ms. Hikaru Kaketa, since my first day of a doctoral student.

I gratefully acknowledge the funding received towirds my Ph.D from the
Higher Engineering Education Development (M-JEED) project, especially my
gratitude to Professor Enkhbayar Altantsetseg for his encouragement. I am
also sincerely thankful to Dr. Batjargal Sosorbaram who has been supporting
us while living and studying in Japan.

Last but not least, I would like to thank my family, especially my lovely
son, Bayasgalan and my friends. Without their support and encouragement,
I would not have been able to complete this research.

V

Contents

List of Figures

List of Tables

1 Introduction

1.1 - Overview .
1.2 Problem Statement
1.3 Contributions
1.4 Thesis outline

2 · Literature review

2.1 Challenges . . .
2.2 Related Works .
2.3 Conclusion .

3 Background

3.1 Intrusion detection system
3.2 Methodology

3.2.1 Autoencoder
3.2.2 Sparse Autoencoder .
3.2.3 Recurrent Neural Network

4 Deep learning based NIDS

4.1 Proposed method
4 .2 The NSL-KDD Dataset . .

4.2.1 Data Preprocessing

Vl

Vlll

X

1

1

4
5

6

7
7
8

10

11

11
13
13
15
16

19

19

20

27

4.3 Performance metrics .

4.4 Results and Discussion

4.5 Conclusion

5 A two-stage NIDS framework

5.1 Overview

5.2 Proposed framework

5.3 Experimental study .

5.3.1 Finding optimal hyperparameters in SAE .

5.3.2 Experiment on binary classification

5.3.3 Experiment on 5-class classification

5.4 Results and Discussion

5.5 Limitation

6 Conclusion and Future Work

6.1 Conclusion . .

6.2 Future Work .

Bibliography

List of Publications

Vll

30

31

33

34

34

34

37

37

41

46

49

51

52

52

53

58

i

List of Figures

1. 1 Top 10 distribution of attacks (2018) [1]
1.2 Conventional cybersecurity system [2]

3 . 1 Type of IDS architecture
3.2
3.3
3.4
3.5

4 . 1

Structure of pre-training sparse autoencoder
Structure of fine-tuning sparse autoencoder .
Recurrent neural network
Structure of the Long Short-Term Memory cell

Overall architecture of the proposed IDS framework· .
4 .2 The distribution of the features of traffic records in NSL-KDD
4.3 The accuracy of the proposed model

5. 1 The proposed IDS framework based on SAE-LSTM for intru
sion detection.· (a) Unsupervised pre-training (b) Supervised
fine-tuning (c) Classification

5.2 Validation loss on different value of hyperparameter p

5.3 Validation loss on different value of hyperparameter ,\

2

4

11
14
15
17
18

20
21
32

35
38
39

5.4 Validation loss on different value of hyperparameter /3 40
5.5 Visualization result of raw features 122 for binary classification 4 1
5.6 Visualization result of reduced features 80 for binary classification 42

. 5.7 Effect of different hidden units for the SAE-LSTM on the test-
ing dataset . 43

5.8 Training error of the LSTM model on hidden units 50 44
5.9 ROC curve of the LSTM model on hidden units 50 45
5. 10 Visualization result of raw features 122 for 5-class classification 46
5. 11 Visualization result of reduced features 80 for 5-class classification 4 7
5. 12 Confusion matrix for the 5-class classification of SAE-LSTM 48

Vlll

5.13 ROC curve for the 5-class classification of SAE-LSTM. 49

IX

List of Tables

4 .1 Overview on NSL-KDD .
4. 2 List of features of NSL-KDD dataset

2 1
22

4.3 Attack types and categories . . 27
4.4 List of features with symbolic values 28
4.5 Confusion matrix for binary clas:;;ification problems 30
4.6 Confusion matrix of the RNN model on testing data . 3 1
4. 7 Accuracy comparison with previous research methods 32

5 .1 Hyperparameters for training SAE 3 7
5 .2 Result of the detection rate for the 5-class 4 8
5 .3 Performance comparison with other published methods for NSL-

KDD dataset . 50

X

Chapter 1

Introduction

1.1 Overview

The vast majority of our daily lives and activities are availability for the use
of the Internet. In recent years, the growth in network traffic is being driven
by increased mobile devices, Internet of Things (IoT) devices and a continued
increase in average data volume per device. According to the recent report
of Cisco_ Visual Networking Index (VNI) forecast [3] , the number of global IP
traffic will grow by 396 exabytes (EB) per month IP traffic, it will be reached
threefold to 2022. However, this exponential growth of the Internet intercon
nections has lead to significant growth of cyber-threat incidents. In particular,
network vulnerability is a weak spot in the network that might be exploited
by a security threat. According to the Symantec Information Security Threat
report published in February 2019 [4], 4800 websites per month compromised
with formjacking code which uses of malicious code to steal credit card details
and other information from payment forms. Therefore, many researchers to
address these critical issues of network security, such as detecting suspicious
activities and need countermeasures against a diverse range of threats. As a
shown in Figure 1.1, the Hackmageddon Information Security Timelines and
Statistics Website has reported the top 10 attack distribution of the last year.

In terms of the attacker's purpose, cybersecurity risks can be broadly di
vided into two types: active and passive attacks. An active attack attempts to
alter system resources or effect their operations. Active attack involve some

1

CHAPTER 1. INTRODUCTION

Account Hijacking: 18.2%

Malware/PoS Malware: 34.4%

• Malware/PoS Malware 441 • Account Hijacking

Targeted Attack 167 Vulnerability

• DDoS 41 • Defacement

Unknown: 16.0%

Targeted Attack: 13.0%

Vulnerability: 6.4%

Malicious Script Injection: 3.2%

Defacement: 2.3%
Brute-Force/Credential Stuffing: 1.3%

SQLi: 0.8%
Social Network Bots: 0.8%

51 % attack: 0.4%

233 • Unknown

82 • Malicious Script Injection

29 • Brute-Force/Credential Stuffing

• SQLi 10 • Social Network Bots 10 • 51% attack

Figure 1.1: Top 10 distribution of attacks (2018) [1]

205

41

17

5

modification of the data stream or creation of false statement. So it com
promises integrity or availability. In contrast, a passive attack attempts to
learn or make use of information from the system but does not affect system
resources. Passive attacks are in the nature of eavesdropping on or monitor
ing of transmission. So it compromises confidentiality. In order to protect
network infrastructure against potential malicious threats, the growing effort
collaboration between research communities and cybersecurity professionals
from industry, academia, government a�encies.

There are numerous conventional techniques to cyber defense, for example
firewalls, access control, antivirus software and intrusion detection system.
However, these type of defense system have few limitations, particularly it
depends on their design and implementation of software and network infras
tructure. Because patches have been developed to protect the systems, but
attackers continuously exploit another vulnerability.

The goal of the opponent is to obtain information is being transmitted.
Therefore, cybersecurity concerns with the understanding of surrounding is
sues of diverse cyber attacks that preserve confidentiality, integrity, and avail
ability of any digital and information technologies. Because, a poorly im-

2

CHAPTER 1. INTRODUCTION

plemented information security system can in itself become a source of risk,
however, so organizations must ensure that their information security systems
address the CIA triad:

• Confidentiality (C) is the term used to protect the information from
access by unauthorized individuals or parties.

• Integrity (I) is the term used to prevent any alter or modify in an
unauthorized manner.

• Availability (A) is the term used to assure that the systems responsible
for delivering, storing and processing information are accessible when
needed and by those who need them.

The CIA triad is the basis of information security. In order to provide the
CIA triad, diverse coriventional defense strategies are building for information
security. Over the last decades, Intrusion Detection System (IDS) has been
playing a vital role in detecting network attacks. The IDS is a hardware ap
pliance or software application that an intelligently monitors activities that
occur in a computing resource, network traffic, computer usage, and to an
alyze the events, to generate the reactions. Typically, IDSs categorize into
misuse-based detection and anomaly-based detection. A misuse-based IDS
also known as a signature-based IDS that measures its similarity between the
input and signatures or pattern of known attacks. Thus the known attacks
can be detected immediately and reliably with a lower false-positive rate.
While the misuse-based detection method has disadvantages that it cannot
detect unknown attacks and novel attacks. Snort [5] is a popular signature
based IDS and network specialist needs to update attack signature database
into IDS. An anomaly-based detection technique is designed to detect pat
terns that �eviate from established normal usage patterns that can be flagged
as an attack. The advantage of anomaly-based detection techniques is suit
able to predict and adopt to unknown attacks. This detection method uses
machine learning approach to create a predictive model simulating regular ac
tivity, and then compares new behavior with the existing model. Thus, most
researchers emphasize the anomaly-based detection method which can give
better performance in credit card fraud detection, medical diagnosis, fault
detection [6] . However, anomaly-based IDSs usually produce a high percent
age of false alarms, it might reduce the efficiency of real-world applications.

3

CHAPTER 1. INTRODUCTION

『―-------... Network I

defense system I
I
I
I
I
I
I

一

,--------
I

------- I
I
I ＇ I

I
I

Cybersecurity
threats:

virus, trojan,
worm, botnet,

＇ I spam, etc. I

＇
I

I
I

I

t
I

I I
t

l -------_. : I detection I I

,_ --------I

□ Spam
filter

Antivirus

Network
intrusion

Host defense
system

口
Antivirus

Host
intrusion
detection

L _______ _,

Figure 1.2: Conventional cybersecurity system [2]

As show1;1 in Figure 1.2, conventional cybersecurity systems address various

cybersecurity threats, including viruses, trojans, worms, spam, and botnets.

These cybersecurity systems run against malicious threats at two classes: a

host-based intrusion detection system (HIDS) and network-based intrusion

detection system (NIDS). HIDS is installed on each client of the network and

can monitor particular clients only. In contrast to BIDS, a NIDS is placed in

a network to detect attack on the hosts of that network.

1. 2 Problem Statement

Cybersecurity defense strategy is a collection of policies, techniques, software,

and hardware, that can protect an application, network, host, information

from attacks. There are various conventional techniques to cyber defense.

These type of techniques has few limitations, particularly it depends on their

design and implementation of software and network infrastructure.

Due to the availability of large amounts of data, machine learning algo-

rithms is successfully exploited in network security problems, for instance the

literature [7] review to focusing on attacks related to spam detection, malware

analysis, and intrusion detection. In existing studies, a variety of machine

learning algorithms were used to develop a NIDS.

4

CHAPTER 1. INTRODUCTION

In anomaly detection, there are different levels at IDS that monitors ac
tivities in a network. It faces a large number of features representing the
monitored network traffics. The high dimensionality of the network traffic
data gives a large hypothesis search space, and also can lead to large classi
fication errors. Therefore, in order to build an effective IDS framework, this
study pay attention to select the most relevant features for use in representing
the data using nonlinear mapping.

1 . 3 Contributions

Considerable researches have been done to avoid cyber security attacks. Over
, the years, a study of single-layer [8] [9] neural network for unsupervised fea
ture learning gained increasing attention. In this thesis, we demonstrate the
development of a novel effective framework for network intrusion detection
system. The proposed framework consists of two stages. In the first stage ,
a single-layer Sparse Autoencoder (SAE) is utilized to discover the effective
features of the input data, and gradually reduce the data dimension. In the
second stage, train a Long Short-Term Memory (LSTM) model using a pre
ceding parameters to identify type of network traffic. The main contributions
of this thesis are summarized as follows:

• We aim to present an effective framework combining a single-layer Sparse
Autoencoder and Long Short-Term Memory for network intrusion de
tection system. By taking an unsupervised learning method to learn
useful features from raw data for improving accuracy of the predictive
model while reducing the data dimension.

• The result proved that our SAE feature extractor model significantly
effected to improve the performance of this work.

• Our experiment demonstrates that the SAE-LSTM has a greater perfor
mance than other state-of-the-art and anomaly-based detection methods
on the benchmark NSL-KbD dataset.

5

CHAPTER 1. INTRODUCTION

1 .4 Thesis outline

The overall organization of the thesis is presented in this section.

Chapter 2 discusses the most illustrative works of intrusion detection sys

tem applied to the benchmark NSL-KDD dataset, along with a general dis

cussion about works on machine learning and deep learning approaches in

cybersecurity issues.

Chapter 3 provides· a fundamental issue of understanding the detection

aspect that was discussed in the Introduction. Then provides a comprehensive

discussion on deep learning approaches .

Chapter 4 introduces the first attempt to design a deep learning approach

that combined sparse autoencoder with recurrent neural networks for the

intrusion detection system. We evaluate the performance of the proposed

method on the NSL-KDD dataset.

Chapter 5 presents an effective framework combining the SAE based fea

ture transfer learning and LSTM for NIDS. We evaluated the performance of

the framework on testing dataset. And then, the results of proposed frame

work compared with similar previous studies.

Chapter 6 concludes the development of the proposed framework and their

results; as well as insights to overcome the limitations of our work along with

the enhancements.

6

Chapter 2

Literature review

This section presents the most illustrative works of intrusion detection system
applied to the benchmark NSL-KDD dataset, along with a general discussion
about works on machine learning and deep learning approaches in cybersecu
rity issues.

2 . 1 Challenges

Most commercial products contain signature-based detection techniques [2] .
Although many methods and systems have been developed by the research
community, there are still a number of open research issues and challenges:

• Network based IDS monitor the whole network, therefore vulnerable to
the same attacks the network's hosts are.

• An anomaly-based NIDSs usually produce a high percentage of false
alarm. But, totally mitigating the false alarm is not possible.

• Developing a suitable method for extracting the features for each cate
gory of attack is another important task.

• Identifying a best classifier that is non-associated and unbiased to build
an effective approach for anomaly detection is another challenge.

7

CHAPTER 2. LITERATURE REVIEW

2 .2 Related Works

There are a large number of related studies using either the KDD-Cup 99 or
DARPA 1999 dataset to validate the development of IDSs. In this section, we
review the literature that used to apply machine learning and deep learning
techniques for intrusion detection.

In existing studies , a variety of machine learning algorithms were used to
develop a network-based IDS, for instance, Artificial Neural Network (ANN)
[10] , k-Nearest Neighbor (k-NN) [11] [12] , Support Vector Machines (SVM) [9]
[13]. Furthermore, researcher community have been attracting their attention
to a deep learning approaches including Deep Neural Network [14] , Self-Taught
Learning [15] , Stacked Autoencoder [16] [17] , R¤t Neur_al Network [18]
[19] , Convolutional Neural Network [20] [21] for intrusion detection. The
literature [22] has demonstrated a simple feature learning framework that
incorporates an unsupervised learning algorithm.

Most of these studies suggested extracting · a relevant pattern from net
work traffic, to attain further improvement in an overall accuracy of the sys
tem. As well as, we emphasize on the researches which used to evaluate
their performance on the NSL-KDD dataset. A work proposed by Tang et

al. [14] , deep neural network (DNN) model for flow-based anomaly detection
in the Software-Defined Network (SDN) environment. The proposed model is
compared with a state-of-the-art algorithms through the use of accuracy at
75 . 75 % , which is utilizing basic 6 features from the NSL-KDD dataset.

Ingre et al. [10] has proposed IDS using Artificial Neural Network (ANN)
on the NSL-KDD dataset. The work utilized Levenberg-Marquardt (LM)
and BFGS quasi-Newton Backpropagation algorithm for training in binary
and 5 -class classification. They reduced feature set of 29 by removing least
usable features from the training and testing set, and then obtained 81.2% of
accuracy for binary classification.

Within a development of deep learning, the representation learning ap
proach [23] allows a system can automatically extract features from raw data.
For instance, J avaid et al. [15] further introduced a Self-Taught Learning
(STL) based on autoencoder with softmax regression to implement a NIDS.
The proposed method developed two different models in binary and multiclass
classification and evaluated on the NSL-KDD dataset. STL achieved 88.39%

8

CHAPTER 2. LITERATURE REVIEW

accuracy rate for binary classification and outperformed the previous studies
results.

In the paper [24] , we demonstrated a NIDS based on sparse autoencoder
(SAE) technique to reduce the dimensionality of network traffic, followed by
the RNN as a classifier. The performance of the proposed model was evaluated
on the NSL-KDD dataset, and then the result compared with prior studies at
80.0% of accuracy rate.

Yousefi-Azar et al. [25] proposed an unsupervised feature learning ap
proach for malware classification and network-based anomaly detection using
deep autoencoder (DAEs). The authors provided 10-dimensions conceptual
space for a latent layer of DAEs in both malware and intrusion detection tasks.
The output of latent layer was fed into various classification methods such as
SVM, k-NN and Gaussian Naive Bayes. The experimental results proven that
the proposed DAEs is a more efficient in dimension reduction that compared
with result of the original features of the NSL-KDD dataset.

Similarly, Li et al. [26] built an autoencoder to reduce the dimensionality
of the KDDCUP'99 dataset, followed by deep belief network (DNB) classifier
that achieved an accuracy of 92.1 % with a F PR of 1.5 8%.

As well as, a few researchers have been proposed a potential IDSs based on
individual deep learning approaches including recurrent neural network (RNN)
and convolutional neural network (CNN). The paper introduced by Yin et al.

[27] , a deep learning approach for intrusion, detection using recurrent neural
network (RNN-IDS) . This work was obtained good result, especially under
the task of multiclass classification with 81.29% of accuracy on the NSL-KDD
dataset. Kim et al. [18] implemented a similar test of IDS classifier using
LSTM-RNN. The authors considered a problem of imbalance on the KD
DCup'99 dataset, and then generated a new training set by extracting 300
instances from each attack types and 1000 normal instances. The proposed
IDS was gained 98.88% of detection rate and 10.04% of false alarm rate. More
over, Li et al. [20] proposed an intrusion detection system using convolutional
neural networks (CNN) that adopts novel representation learning methods of
graphic conversion. The method of transforming standard NSL-KDD dataset
data form into 8*8 gray-scale images is introduced. They used the ReSNet5 0
and GoogLeNet network as CNN models.

9

CHAPTER 2. LITERATURE REVIEW

2.3 Conclusion

A number ·of surveys and review articles have focused on intrusion detection
technologies. To address the issue, we design to create an effective novel frame
work for intrusion detection using sparse autoencoder and LSTM algorithms.
Then, we try to build an effective framework to evaluate on the benchmark
NSL-KDD dataset and compare it to the recent studies results.

10

Chapter 3

Background

This chapter starts with a fundamental issue of understanding the detection

aspect that was discussed in the Introduction. Then provides a comprehensive

discussion on deep learning approaches.

3.1 Intrusion detection system

An intrusion detection system (IDS) analyze and monitor network traffic for

signs that indicate attackers are using a known cyber threat to infiltrate or

steal data from the network. An intruder to a system is very likely to exhibit

a pattern of behavior different from the normal behavior of a legitimate user.

The IDS types range in scope from single computers to large networks [28].

Firewall

Network

based IDS

Figure 3.1: Type of IDS architecture

11

Host

based IDS

Host

based IDS

Host

based IDS

CHAPTER 3. BACKGROUND

Intrusion detection systems are usually passive devices that are not con
figured to automatically take any punitive action against network traffic that
appears to be malicious. Intrusion detection identifies that an intrusion is
taking place and informs an administrator who must take appropriate action.
It is categorized based on their data source into two main categories: network
based intrusion detection system (NIDS) and host-based intrusion detection
system (RIDS). Figure 3.1 shows that type of IDS architecture.

The NIDSs are strategically placed on system to monitor all the network
· traffic. It is widely deployed in modern enterprise network. A NIDS reads all
inbound network traffic and matches the traffic that is passed on the network
to the library of known attacks. Once an attack is identified, or abnormal
behavior is sensed, the alert can be sent to the administrator. NIDS can be
also combined with other technologies to increase detection and prediction
rates. Artificial Neural Network (ANN) based IDS are capable of analyzing
huge volumes of data, in a smart way, due to the self-o_rganizing structure
that allows IDS to more efficiently recognize intrusion patterns [29]. Neural
networks assist IDS in predicting attacks by learning from mistakes. IDS
help develop an early warning system, based on two layers. The first layer
accepts single values, while the second layer takes the first's layers output as
input. The cycle repeats and allows the system to automatically recognize
new unforeseen patterns in the network [30].

A host based IDSs are installed on specific host, analyzing traffic and
logging intrusion behavior, then it will log the activity. A RIDS monitors
the inbound and outbound network traffic from the device only and will alert
the user or administrator if suspicious activity is detected. It takes a capture
of existing system call files [31] and matches it to the previous capture. If
the critical system call files were modified or deleted, an alert is sent to the
administrator to investigate that suspicious activities.

Traditionally, the researchers study intrusion detection approaches from
two major perspectives: anomaly and misuse detection that was discussed in
the Chapter 1. There are many studies mentioned that an anomaly-based
network intrusion detection plays a vital role in protecting networks against
malicious activities. Based on these observations, we advocate that to de
velop NIDS can be also combined with deep learning technologies to increase
detection and prediction rates.

12

CHAPTER 3. BACKGROUND

3.2 Methodology

Deep learning is a sub-field of machine learning that uses artificial neural
networks (ANNs) containing two or more hidden layers to approximate some
function f (·), where f (·) can be used to map input data to new representations
or make predictions. The ANNs inspired by the biological neural network is
a set of interconnected neurons or nodes, where connections are weighted and
each neuron_transforms its input into a single output by applying a non-linear
activation function to the sum of its weighted inputs.

3.2.1 Autoencoder

An autoencoder is an unsupervised learning algorithm that mainly used as
feature extraction or a dimensionality reduction. Hinton [32] et al. demon
strated the potential of autoencoders for trying to learn an approximation to
the identity function, so as to output vector X that is similar to the input
vector X. Basically, an autoencoder is simply a multilayer feedforward neural
network trained to represent the input with backpropagation.

The autoencoder is a symmetric neural network structurally defined by
three layers: an input layer, hidden layers, and an output layer. The in
put and output layer has a same number of N units and the hidden layer
contains K units. Figure 3.2 shows the schematically layout of an autoen
coder (AE) comprises encoder and decoder. The aims of encoder compress
the input vector X = (x1 , x2 , x3 , Xn) into a low dimension representation
H = (h1 , h2 , h3 , hk)- It can be represented by an encoding function as
illustrated in Eq. 3.1. This compressed representation is decompressed by
the decoder to reconstruct the output vector X = (i1 , i2, i3 , :in)- The
decoding function as expressed in Eq. 3.2. This way, the latent space forms a
bottleneck, which forces the autoencoder to learn an effective compression of
the data.

n

h = f (L w Xi + b) (3.1)
i=l

k

i = f (L W' hi + b') (3.2)
i=l

13

CHAPTER 3. BACKGROUND

where weight matrices W E Rkxn and W' E Rnx k of the encoder and decoder
network, respectively. b E Rk and b' E Rn are bias vectors. The activation
function f(•) takes the input of a neuron z and outputs signal y. J (z) de
notes a sigmoid activation function. As seen in Eq 3.3, the sigmoid activation
function is one of the most frequently used non-linear activation functions for
feedforward neural networks [33] that normalize the output of each neuron to
output values bound between O and 1 nonlinearly, which is fully differentiable:

1
f(z)=---1 + exp-z

(3.3)

where ·z = b + I:�1 xiwi Parameters W, b are optimized using back propaga
tion, by minimizing the cost function lerror (W, b) for training set n is described
in Eq. 3.4. The first term is an average of sum-of-square errors between Xi
input vector and ii reconstructed vector.

lerror(W, b) = 2
� t llii - Xill

2
+ �(L W2

+ LW'2) (3.4)

Input layer

i=l k ,n n,k

Encoder Decoder

Hidden layer Output layer

Figure 3.2: Structure of pre-training sparse autoencoder

14

Input
layer

Backpropagation algorithm

Features

error
Weight update

CHAPTER 3. BACKGROUND

j j
t l :0: j Yi !
: :

�--,--c.--;' :
I t

I 0!
] -••••-••-•••-••-: I••••• , -•••-••----- t

Softmax
outputs

Target
value

Normal

Attack

Figure 3.3: Structure of fine-tuning sparse autoencoder

The second term indicates an 12 regularization (a weight decay term) pe
nalizing term by augmenting the cost function with the sum of the squared
magnitude of all weights in the neural network and it prevents problem of
overfitting. The A (lambda) is called as a regularization parameter which
determines hqw much to penalizes the weights.

3.2.2 Sparse Autoencoder

There are numerous ways of defining a simpler representation. The mcist com
mon include lower is a sparse representations [32] [34]. Sparse presentations
embed the dataset into a representation whose entries are mostly zeroes for
most inputs. The use of sparse representations typically requires increasing
the dimensionality of the representation, so that the representation becoming
mostly zeroes does not discard too much information. In order for the sparse
ness of hidden units, regularize autoencoder by using a sparsity penalty term
which constrains the neurons to be inactive most of the time [35] . Sparsity
is a useful constraint when the number of hidden units is large. Therefore, a
sparsity penalty term is added to the Eq. 3.4, and the new objective functions

15

CHAPTER 3. BACKGROUND

are given as follows:

lspa;se (W, b) = lerror (W, b) + /3 L K L(p 11 (Jj) (3.5)
j=l

The sparsity penalty term is regularized by Kullback-Leibler (KL) divergence
[36] which is a measure of the difference between two probability distributions.
The KL divergence between two probability distributions p and p1 is defined
as:

p 1 - p
KL (p II p1) = plog-;:- + (1 - p) log --A

P1 1 - P1
(3.6)

where p1 (rho) is an average activation of hidden uriit j over the training set
n, which can be formulated

(3.7)

pis predefined mean activation target p E {O, 1}, and the most values of hid
den units are much smaller than given a small p. This addition of sparsity
constraints can lead the learned hidden representation to be a sparse represen
tation. Therefore, the variant of autoencoder is named sparse autoencoder.
In here, the f3 (beta) controls the weights of the sparsity 'penalty term.

The optimizing function defines how we are going to update our param
eters (weights and biases) in order to reduce the reconstruction error. The
single-layer SAE model is trained using stochastic gradient descent optimiza
tion algorithm and the network parameters W, b are updated through the back
propagation algorithm based on the minimizing the cost function lsparse (W, b).
The model can extract meaningful features from the input data, instead of
simply converting the input vector.

3.2.3 Recurrent Neural Network

The recurrent neural network (RNN) was first developed in the 1980s [37]. It
is a most powerful neural network with cyclic connections which are widely
used in machine translation, speech synthesis, speech recognition as well as
for processing a sequence of values x1, ... , xn [38] [39]. The structure consists
of an input layer, one or more hidden layers and output layer.

Unlike feedforward neural networks, RNNs add a neural node based on
the architecture of common neural networks, and they memorize the previous

16

0

Q
jw

V CQ
t u

Unfold

c==) ... vi

CHAPTER 3. BACKGROUND

8
tw

ht-1 l VI
t u

G

G
tw fw

ht lv�v
t u t u

G) 9

Figure 3.4: Recurrent neural network

state of the neural networks as shown in Figure 3.4. The computational
graph to compute the training loss of a recurrent network that maps an input
sequence of x values to a corresponding sequence of output o values. The
RNN has input to hidden connections parametrized by a weight matrix U
hidden-to-hidden recurrent connections parametrized by a weight matrix W,

and hidden-to-output connections parametrized by a weight matrix V.
The most effective sequence models used in practical applications are called

gated RNNs. These include the long short-term memory and networks based
on the gated recurrent unit. Leaky units did this with connection weights
that were either manually chosen constants or were parameters. Gated RNNs
generalize this to connection weights that may change at each time step. The
long short-term memory (LSTM) [40] have been introduced one of the special
form of the RNN which precisely designed to escape the long term dependency
issue of recurrent networks. LSTM network furth�r add a component called
forget fate, and LSTMs can effectively learn temporal features from a long
sequence. LSTM cell called repeating module has four neural network layers
interacting with each others as illustrated in Figure 3.5.

Ot = CJ (WoXt + W0ht-l + bo)

ht = Ot * tanh(Ct)

17

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

CHAPTER 3. BACKGROUND

Figure 3.5: Structure of the Long Short-Term Memory cell

CJ is the logistic sigmoid function, and ft , it, Ct, Ot are denoted forget gate,
input gate, cell state gate, and output gate, respectively. As seen in Eq.
3.8, the forget gate ft that provides a forgetting coefficient by looking ·at the
input layer Xt .and previous hidden layer ht-l for previous cell state Ct-l · The
output comes out between O and 1, and controls the information to forget or
pass through from previous cell state Ct-l to �urrerit cell state Ct . The input
gate also considers input layer Xt and previous hidden layer ht-l· It decides
which information should be updated in cell state Ct in referred . As described
in Eq. 3.10, output of the cell gate Ct is element-wise summation to merge
previous information and the current input. In finally, the output gate Ot

controls which information should be going to the next hidden state ht ,

18

Chapter 4

Deep learning based NIDS

In this chapter, we present the first attempt to design a deep learning ap
proach that combined sparse autoencoder with recurrent neural networks for
the intrusion detection system.

4.1 Proposed method

In this study, we have proposed the deep learning approach where Sparse
Autoencoder (SAE) and Recurrent Neural Network (RNN) are combined for
the network intrusion detection. We evaluate the proposed method based
on different performance metrics by applying it to the NSL-KDD dataset.
Figure 4.1 shows the flow diagram of the overall architecture of the proposed
method. During the dimensionality reduction step, the pre-processed data file
which has 122 features is loaded into DataFrame using pandas, Python pack
age. The DataFrame is a 2-dimensional labeled data structure with columns
of potentially different types. An input, hidden, and output .layer of the au
toencoder feature extraction model contains 122, 60, 122 nodes, respectively.
After building the autoencoder model, the data dimension is reduced into 60
features. Then these features are written into csv file. In the RNN classifier,
the low dimensional representation data file with 60 features is loaded into
the dataframe as the input layer, and finally, we attached Softmax function
as a classifier, to classify the data is normal or abnormal.

19

CHAPTER 4. DEEP LEARNING BASED NIDS

Pre-processing
NSL-KDD dataset

�-------------j--------------Dimension reduction :
(Sparse Autoencoder) ,

I

Input I O O O ... 0

; ���d_e�J _?_?_�_-:� � J ____
Output! 0 0 0 ... 0

Latent
representation

(a) Train a sparse autoencoder
using labeled data

r------------------------ ,

RNN classifier

!�
: -----�------

1 Normal or Attack I

(b) Train a RNN using
labeled new training data

Figure 4.1: Overall architecture of the proposed IDS framework

4.2 The NSL-KDD Dataset

The public benchmark datasets enable researchers to develop the models and

compare the performances of the models with the previous research to process

the data which are similar to the benchmark dataset. In this study, we use

Knowledge Discovery and Dissemination (KDD) 1999 dataset, which is the

most widely used dataset for intrusion detection [41]. The dataset was built

based on the data captured in DARPA-98, which was developed specifically

for Network Intrusion Detection System (NIDS) research is preferred by most

researchers. However, there were a large number of redundant records that

biased the dataset. Therefore, a work [42] proposed a new dataset named NSL

KDD, which is commonly used in recent studies [43]. The dataset includes the

KDDTrain+ as a training set, KDDTest+ as a testing set. As illustrated in

Table 4.1, the training set has 125973 network records which contain normal

data and 22 types of attack data. The testing set has 22544 network records

which contain normal data and 37 types of attack data.

Each record has 41 features categorized into four groups [44] as presented

in Table 4.2:

• Basic features: Basic features can be derived directly from packet head

ers without inspecting the payload. This category contains features 1-9.

20

KDDTrain+

KDDTest+

CHAPTER 4. DEEP LEARNING BASED NIDS

Table 4.1: Overview on NSL-KDD

I Total I Normal I DoS I Probe I U2R I R2L

125973 67343 45927 11656 52 995

22544 9711 7458 2421 67 2887

• Content-based features: Domain knowledge is used to access the payload
of the original TCP packets. For instance, the R2L and U2R attacks are
embedded in the payloads and normally involve only a single connection.
To detect these kinds of attacks, one needs some features to be able
to look for suspicious behavior in the payloads. This includes features
such as number of failed login attempts. This category contains features
10-22.

• Time-based features: These features hold the analysis of the traffic input
over a two-second window and contains information like how many con
nections it attempted to make to the same host. This category contains
features 23-31.

• Host-based features: These features are similar with previous .group,
in�tead of analyzing over a two seconds window, how many requests
made to the same host over x-number of connections. This category
contains features 32-41.

For instance, Fi§ure 4.2 shows a distribution of the features in randomly se
lected 26th line of traffic records of the training set.

Basic features Content-based features

507, tcp, telnet, SF, 437, 14421, 0, 0, 0, : 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0,

1, 1, 0, 0, 0, 0, 1, 0, O,: 255, 25, 0.1, 0.05, 0, 0, 0.53, 0, 0.02, 0.16, normal

Time-based features Host-based features ' Label

Figure 4.2: The distribution of the features of traffic records in NSL-KDD

21

No.

1
I

2

3

5

6

7

g

10

11

12

13

CHAPTER 4. DEEP LEARNING BASED NIDS

Table 4.2: List of features of NSL-KDD dataset

Feature Description Type

duration
Length of the connection

continuous
in seconds

protocol type
Type of protocol:

symbolic
tcp, udp, icmp

Network service on the
service symbolic

destination, http, telnet, etc.

Normal or error status of
flag symbolic

the connection: SF, SO, SJ, etc.

src_bytes
Numb.er of data bytes from

continuous
source to destination

•dst_bytes
Number of data bytes·from

continuous
destination to source

land
1 if connection is from/to

symbolic
the same host/port; 0 otherwise

Number of bad checksum
wrong_fragment continuous

packets in a connection

urgent Number of urgent packets continuous

Number of "hot" indicators:
hot continuous

entering a system directory, etc.

num_failed_logins
Number of failed login

continuous
attempts

logged_in
1 if successfully logged in;

symbolic
0 otherwise

num_compromised
Number of compromised

continuous
conditions

22

-

No.

14

15

16

17

18

19

20

21

22

23

24

25

26

CHAPTER 4. DEEP LEARNING BASED NIDS

Table 4.2 - continued from previous page

Feature Description Type

rooLshell
1 if root shell is obtained;

continuous
0 otherwise

1 if "su root" command
su_attempted continuous

attempted; 0 otherwise

num_root Number of "root" accesses continuous

Number of file creation
num_file_creation continuous

operations

num_shells Number of shell prompts continuous

num_access_file
Number of operations on access

continuous
control files

Number of outbound
num_outbound_cmds continuous

commands in a ftp session

is_hostJogin
1 if login is the "root/admin

symbolic
group" ; 0 otherwise

is_gilestJ.ogin
1 if _login is the "guest" login;

continuous
0 otherwise

Number of connections to the

same host as the current
count continuous

connection in the past

2 seconds

Number of connections to the

srv_count same service as the current continuous

connection in the past 2 seconds

% of connections that have
serror_rate continuous

"SYN" errors in the count feature

% of connections that have
rerror _rate continuous

"REJ'' errors in the count feature

23

No.

27

28

29

30

31

32

33

34

35

CHAPTER 4. DEEP LEARNING BASED NIDS

Table 4.2 - continued from previous page

Feature Description Type

% of connections that have

srv _serror _rate "SYN" errors in the srv_count continuous

feature

% of connections that have

srv _rerror _rate "REJ" errors in the srv_count continuous

feature

% of connections to the same

same_srv _rate service among the connections continuous

in the count feature

% -of connections to different

difLsrv _rate services among the connections continuous

in the count feature

% of connections to different

srv _difLhost rate hosts among the connections continuous

in the srv_count feature

dsLhost_count
Number of connections to the

continuous
same destination IP address

Number of connections to the
dst-1iost...srv _count symbolic

same destination port number

% of connections that same

dst-1iost...same_srv _rate service among the connections continuous

in the dsLhosLcount feature

% of connections that different

dst__host_difLsrv _rate service among the connections continuous

in the dsLhosLcount feature

24

CHAPTER 4. DEEP LEARNING BASED NIDS .

Table 4.2 - continued from previous page

No. Feature Description Type

% of connections that same
'

36 dst_host..same_src_port_rate
source port among the:

continuous
connections in the

dsLhosLsrv_count feature

% of connections that different

37 dst_hosLsrv _diff_host_rate
destination hosts among the

continuous
connections in the

dsLhosLsrv_count feature

% of connections that have

38 dst_host_serror_rate "SYN" errors in the continuous

dsLhost_count feature

% of connections that have

39 dst_host_srv_serror_rate "SYN" errors in the continuous

dsLhosLsrv_count feature

% of connections that have

40 dst_host_rerror _rate "REJ" errors in the continuous

dsLhosLcount feature

% of connections that have

41 dst_host_srv_rerror_rate "REJ" errors in the continuous

dst_host_srv_count feature

42 label Network traffic type symbolic

The NSL-KDD dataset is labeled either normal or an attack, with exactly
one specific attack type. There are four major categories of attacks labeled
in NSL-KDD: Denial of Service attack, Probing attack, Users-to-Root attack,
and Remote-to-Local attack.

• Denial of Service (DoS): Denial of service is an attack category, which
exhausts the victim's assets, thereby making it unable to handle le-

25

CHAPTER 4. DEEP LEARNING BASED NIDS

gitimate requests. For examples, "neptune", "smurf', "ping of death
(pod)", etc.

• Remote-to-Local (R2L): The attackers access the targeted system or
network from the remote machine and try to gain the local access of the
victim machine. For examples, "guess password", "spy", "ftp write",
etc.

• User-to-Root (U2R): The attacker enters into the local system by using
the authorized credentials of the victim user and tries to exploit the vul
nerabilities to gain the administrator privileges. For examples, "buffer
overflow", "rootkit', "load module", etc.

• Probe: Objective of surveillance and other probing attacks is to gain
information about the remote victim. An example of probing attacks
are "nmap" , "portsweep" , "sat an" , etc.

The details of each category are described in Table 4.3. These 17 unseen
network attacks are written in bold, it does not include in the training set.
This makes the task more realistic.

26

Category

DoS

R2L

U2R

Probe

CHAPTER 4� DEEP LEARNING BASED NIDS

Table 4.3: Attack types and categories

Attacks in training set Attacks in testing set

back, land, neptune, pod,

back, land, neptune, smurf, teardrop, mailbomb,

po.d, smurf, teardrop processtable, udpstorm,

apache2, worm

fpt-write, guess-passwd, imap,

fpt-write, guess-passwd, multihop, phf, warezmaster,

imap, multihop, phf, spy, xlock, xsnoop, snmpguess,

warezclient, warezmaster snmpgetattack, httptunnel,

sendmail, named

buffer-overflow, loadmodule,
buffer-overflow, perl,

perl, rootkit, sqlattack,
loadmodule, rootkit

xterm, ps

ipsweep, portsweep, ipsweep, portsweep, nmap,

nmap, satan satan, mscan, saint

4_.2.1 Data Preprocessing

The 41 features of the NSL-KDD dataset, it consists of 38 numerical features
and 3 symbolic features. To accelerate the training of neural network, input
vector have to be a numerical value. Therefore, we first convert symbolic fea
tures into a numerical value using the one-hot (1-to-n) encoding. There are 3
features named "protocoLtype", "service", and "flag", where "protocoLtype"
has 3 different symbolic values, "service" has 70 different symbolic values and
"flag" has 11 different symbolic values as shown in Table 4.4. For example,
"protocoLtype" has 3 symbolic values: tcp, udp, icmp and it presented as
0,0,1, 0,1,0, and 1,0,0, respectively. In the same manner, we applied the one
hot encoding to other 2 features, it totally produced 84 new feature values.
A collapse of the possible values for the symbolic features can be seen in the

27

Table. 4.4.

CHAPTER 4. DEEP LEARNING BASED NIDS

Table 4.4: List of features with symbolic values

No. I Features I Values

1 Protocol Type (2) tcp, udp, icmp

other, iink, netbios_ssn, smtp, netstat; ctf,

ntp_u, harvest, efs, klogin, systat, exec, nntp,

pop_3, printer, vmnet, netbios_ns, urh_i, ssh,

http_8001, iso_tsap, aol, sqLnet, shell, supdup,

auth, whois, discard, sunrpc, urp_i, Rje, ftp,

2 Service (3)
daytime, domain_u, pm_dump, time, hostnames,

name, ecr_i, bgp, telnet, domain, ftp_data, nnsp,

courier, finger, uucp_path, Xll, imap4, mtp,

login, tftp_u, kshell, private, http_2784, echo.,

http, ldap, tim_i, netbios_dgm, uucp, eco_i,

Remote_job, IRC; http-443, red_i, Z39_50,

Pop_2, gopher, Csnet_ns

3 Flag (4)
0TH, Sl, S2, RSTO, RSTRs, RSTOS0, SF,

SH, REF, SO, S3

Afterwards, the rest of 38 features has numerical value with a large dif
ference between maximum and minimum values. In particular, the feature
"duration" where the maximum value is 42908 and the minimum is 0 in
training set. Therefore, we performed a min-max normalization for mapping,
these features are normalized to restrict the range of the values between 0 and
1 using Eq. 4 .1:

xi - min(x)
Xnorm = - ------

max(x) - min(x)
(4.1)

where x = (x1 , . . . , Xn) is a number of input values and Xi is the respective value
of the original feature. Besides, max(x) and min(x) represent the maximum

28

CHAPTER 4. DEEP LEARNING BASED NIDS

and the minimum values in x given its range. Consequently, the 41 features
from the original dataset are transformed into 122-dimensional features.

29

CHAPTER 4. DEEP LEARNING BASED NIDS

4.3 Performance metrics

All the classifiers used in this research were evaluated using well-known meth
ods to evaluate the classifiers performance. They are based on the confusion
matrix of binary problems having positive and negative class values, which
in this case normal and attack classes. The Table 4.5 shows the two class
confusion matrix.

Table 4.5: Confusion matrix for binary classification problems

Attack

Predicted

Attaok Normal .

TP FN
Actual -----+-----+----

Normal FP TN

Accuracy is used as a main evaluation indicator to measure the perfor
mance of the proposed IDS framework. As well as, we estimate se_veral other
performance metrics which is widely used to assess a models significance.

• Accuracy: the proportion of correct classification records to the total
number of network records:

TP+TN
Accuracy =

TP +TN+ FP
(4.2)

• Precision: the proportion of correct classified records to the total
number of records classified as an attack:

TP
Precision =

T p
+ (4.3)

• Recall: the proportion of correct classified records to the total number
of actual attack records:

(4.4)

• Fl-Score: the harmonic mean of precision and recall, which express
the performance of the proposed approach:

F
Precision * Recall

1 = 2 * ___ . -----
Precision + Recall

30

(4.5)

CHAPTER 4. DEEP LEARNING BASED NIDS

where True Positives (TP) represent the actual attack records classified as a
attack; True Negatives (TN) represent the actually normal records classified as
an normal; False Positives (FP) are the actually normal records misclassified
as a attack; False Negatives (FN) are the actually attack records misclassified
as an normal.

In addition, Area under ROC Curve (AUC) is a useful metric even for
datasets with highly unbalanced classes and measure· of how well a binary
classifier can perform predictions of labels. It represents the relationship be
tween TPR and FPR.

4.4 Results and Discussion

During the sparse autoencoder feature extraction, we use the Gradient Descent
Optimizer with a learning rate 10-3 to minimize error. Batch size of 128
and number of epochs is 100. In order to increase the detection result, we
take experiments with changing the hidden layer dimension from 40 to 90.
When the hidden nodes of 60 gives us the best results among of all evaluation
metrics. After dimensional reduction, step, our fe&ture dimension mapped into
60 reduced features. Thus, the RNN classifier model has 60 input vectors and
2 output vector with learning rate 0.01. The experiments show that the RNN
model achieved the 80.0% of accuracy when the training epochs are 100. Table
4.6 shows the confusion matrix of the RNN model on the testing set.

Table 4.6: Confusion matrix of the RNN model on testing data

Predicted

Attack Normal

"Attack 8818 4023
Actual - - ----1 -- ---1--- --

Normal 474 I 9229

We find that the proposed model has higher accur�cy on the testing set
when the hidden nodes are 40 in RNN classifier model. In that case, we
use learning rate with 0.01, and the epoch number is 100. We observe the
classification accuracy on the NSL-KDD dataset as shown in Figure 4.3. The

31

CHAPTER 4 .. DEEP LEARNING BASED NIDS

Model accuracy
1.00

- Train

0.97 - Test

0.94

0.91

0.88

u

:5 0.85
u

0.82

0.79

0.76

0.73

0.70
0 20 40 60 80 100

Epochs

Figure 4.3: The accuracy of the proposed model

performance of our method is compared with the previous studies [15] [10] [27]

[20] in classification accuracy on the NSL-KDD dataset as depicted in Table

4.7.

Table 4. 7: Accuracy comparison with previous research methods

. Methods Feature extractor Classification Accuracy (%)

STL[15] SAE Softmax 88.39

DNN[lO] DNN DNN 75.75

RNN[27] RNN RNN 83.29

CNN[20] CNN CNN 79.1

Our method SAE RNN 80.0

32

4.5 Conclusion

CHAPTER 4. DEEP LEARNING BASED NIDS

In this study, we have implemented IDS based on deep learning approach,
which combines the sparse autoencoder and recurrent neural network. The
first method to extract the low dimensional representation of the dataset while
reducing a data dimension. In the following, we utilize the RNN algorithm to
detect network attacks. In final, we assess the performance of the proposed
method on the NSL-KDD dataset. The chapter results were published in [24].

33

Chapter 5

A two-stage NIDS framework

5 .1 Overview

This chapter detailed the implementation of the network IDS framework. The
framework consists of two stages: The first stage is a feature extraction stage
which has two steps: unsupervised pre-training and supervised fine-tuning.

The first step is an unsupervised pre-training step that learns the typical
patterns of the network traffic using a single-layer Sparse Autoencoder (SAE)
algorithm without target label. Consequently, the•second step is a supervised
fine-tuning step that extracts the primary features the using preceding optimal
parameters. Because of network traffic with high dimensionality, the compu
tation time and training time certainly highly probably. By using dimension
reduction techniques, it can remove redundant and duplicated features of in
put data. Then followed by extract appropriate features from the training
and testing set using prior learned feature extractor.

The second stage is a an intrusion detection stage based on Long Short
Term Memory (LSTM) with softmax classifier to identify the traffic as normal
or attack.

5.2 Proposed framework

In this section, we describe a details of our proposed framework.

34

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

First stage

Pre-processing
NSL-KDD dataset

Pre-processing
NSL-KDD dataset

,-______ Trai.nu,1p�t_ _ ___________ , - - - - - - Ji:;,i])illg_Stt - - - - - - - - - - - - - - I
1

10-fold '
cross-validation

5-fold
cross-validation

Feature learning
(Single-layer SAE)

ls cross-validation
completed?

Yes
No

Feature extractor
(Single-layer SAE)

ls cross-validation
completed?

Yes
Save parameters 1--- ------'

W,b

------- -------'

Save model

New training set

Training and
testing set

New testing set

(a) Train the sparse autoencoder
using unlabeled data

(b) Train the sparse autoencoder
using labeled data

Second stage

New training set New testing set

i------

Classification
(LSTM model)

Softmax

- - I

------------ - -- - ---------�

Normal or Attack

(c) Train the LSTM using
labeled new training data

Figure 5.1: The proposed IDS framework based on SAE-LSTM for intrusion

detection. (a) Unsupervised pre-training (b) Supervised fine-tuning (c) Clas

sification

35

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

As illustrated in Figure. 5.1, the process of the SAE-LSTM framework are

following steps:

Step 1. Unsupervised pre-training

The unsupervised learning algorithms can learn the typical pattern of the

network and can report anomalies without any labeled dataset. Therefore we

train a single-layer feature learner SAE ,on training set only .in unsupervised

manner using 5-fold cross-validation, it involves finding the optimal network

parameters W, b by minimizing discrepancy between input data and its recon

struction data. After the network learned optimal V?,lues for W and b, save

the network parameters.

Step 2. Supervised fine-tuning

The unsupervised pre-training can extract informative features that support

intrusion detection. However, these features have not been identified with

specific classes. Then we need to do is to further identify these features with

supervised fine-tuning using labeled dataset. Once we find these parameters
in previous step, we removed the decoder network and the encoder network

is retained to produce primary features. As shown in Figure 3.3, the encoder

network helps to get new training and testing data with low dimension from

the pre-processed dataset. In other words, training and testing set fed into the

feature extractor model which has preceding optimal parameters. We trained

a feature extractor neural network until the minimum error is obtained, save

the model. Consequently, using this model we can be obtain new training and

testing set with primary features h1 , h2 , h3 . . . hk which can well represent the
input data.

Step' 3. Classification

Train a LSTM model using the new training set to obtain ·a function that

performs prediction of the intrusion detection. Then, apply new testing set

into the prediction model, and the LSTM model can classifies the testing set

as normal or attack. The details of each part are given below.

36

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

5.3 Experimental study

In this study, all the experiments were implemented using Python on a Ten
sorflow [45] 1 . 13. 1 toolkit and tested on an Intel Core

™ i7 machine with
GeForce GTX 1080 GPU.

5.3.1 Finding optimal hyperparameters in SAE

Our first experiments are conducted to study development of the feature ex
tractor model named SAE. As a result of Sect. 4.2.1, a feature dimension of
the training and testing set has been transformed into 122 dimension. Thus,
the feature extractor SAE model has 122 input units and 80 hidden units to
extract the good representation of input data.

Table 5.1: Hyperparameters for training SAE

Hyperparameter Values · Selected value

). [le-06, 2e-05, le-03, le-02] le-06

p [0.02, 0.05, 0.1, 0.2, 0.3] 0.1

/3 [3, 4, 5, 6] 3

We present our experimental results on the impact of hyperparameters on
performance. First, v.:e will evaluate the effects of hyperparameters (A, p, /3)
in the 12 regularization and sparsity penalty term using cross-validation on
the NSL-KDD training set. In this time, we utilized k-fold cross-validation
(k = 5) to search the best value for these hyperparameters. As show in Table
5. 1, our SAE model running 5-fold cross-validation method for combination
of every value of hyperparameters. Figure 5.2 plots the cross validation error
on different number of p, and the p in penalty term is set to be 0. 1. Because
our feature extractor model is very sensitive to this hyperparameter in a small
range (p<0.02). We assess the performance of the fitted model on the val
idatlon set, the SAE model obtained the lowest cross validation error when
). = le - 6, p = 0.1, f3 = 3 run over 50 epochs with learning rate equal to
0.01. Figure 5.3 and Figure 5.4 shows the cross validation error result on small
range of A and /3. Once selecting proper hyperparameter values, we re-train

37

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

the SAE model using optimal hyperparameter values on training set with a
label. Thus, we can extract the appropriate features from. the input, and a
data dimension is gradually reduced from 122 to 80.

Vl
Vl

0.12

0.10

i5 0.08
cu
"C

cu
>

0.06

0.04

0.02 0.05 0.1

Value of p

0.2 0.3

Figure 5.2: Validation loss on different value of hyperparameter p

38

If)
If)
0

0.035

0.034

0.033

§ 0.032 :.:;

,;; 0.031

0.030

0.029

le-06

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

2e-05 le-03 le-02
Value of A

Figure 5.3: Validation loss on different value of hyperparameter >.

39

l/l
l/l
0

0.038

0.036

:.§ 0.034
ro
"O
ro
>

0.032

0.030

3

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

4 5 6
Value of�

Figure 5.4: Validation loss on different value of hyperparameter f3

40

5.3.2

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

Experiment on binary classification

To illustrate the performance of the feature extractor model, T-Distribution
Stochastic Neighbor Embedd�ng (t-SNE) [46] was used to visualize the feature
vectors of SAE model. The visualization technique t-SNE can map high
dimensional feature vectors into 2 dimensions and show distributions of the
high-dimensional feature vectors. After unsupervised pre-training the SAE
model with a large number of unlabeled data, we can feed it with labeled data
to extract feature vectors from the hidden layer. Then we obtained feature
vectors after using labeled data to do feed-forward inference, and we used
to visualize these feature vectors using the t-SNE. In order to compare, we
prepared visualization set which consists of 500 samples are randomly selected
from each classes (normal, attack). Figure 5.5 is visualization result from the

100�---------------------�

75

50

25

-25

-50

-75

-80 -60 -40

•
...... ,

-20 0

X

label

• attack
• normal

�· .
<
'-••

20 40 60 80

Figure 5.5: Visualization result of raw features 122 for binary classification

41

80

60

40

20

>- 0

-20

-40

-60

-80

-75

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

-50 -25 0
X

25 50

label

• attack
• normal

75

Figure 5.6: Visualization result of reduced features 80 for binary classification

raw features, while Figure 5.6 is visualization result from the feature vectors of
the feature extractor model. For each class, we can observe clearly separated
clusters, Figure 5.5 shows that two different classes of raw features mainly
cluster into two parts. In Figure 5.6, the distributions of feature vectors of
SAE model is similar to the distributions of raw features. For this, we can
preliminary think that the SAE model under unsupervised pre-training and
supervised fine-tuning can learns potential features from the network traffic.

In the following, we evaluate the effectiveness of the LSTM model which

has 80 input units and 2 output units. We used to apply the 10-fold cross
validation methc!d to validate results in our LSTM model to prevent over
fitting. To demonstrate the effectiveness of the SAE-LSTM framework, we
attach the softmax classification to the output layer of the LSTM model.

Figure 5.7 shows the effect on the performance of the LST� model taken a

42

90

88

86

84

82

80

78

76

5

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

- Accuracy
- Fl-score

84.8

10 15 20 30 40 so 60 70 80
Number of hidden units

Figure 5.7: Effect of different hidden units for the SAE-LSTM on the testing

dataset

different number of hidden units on new testing data, including the mean ac

curacy and standard deviation for each point estimated over 10 trials. From

the result, the proposed framework achieves excellent performance on hidden

units of 50, when running over 40 epochs with l�arning rate 0.01 As presented

in Figure 5. 7, our classification accuracy is 84.8%±1.21 % on the testing set.

As well as, our proposed framework achieved 84.5%±1.19% of fl-score. It

give us the best classification results for intrusion detection. Moreover, the

training error of the LSTM model as depicted in Figure 5.8, and it considered

highly probable without overfitting. In the Figure 5.9, Receiver Operating

Characteristic (ROC) curves are presented, with respect to true positive rate

and false positive rate. The area under the ROC Curve (AUC) is computed_
at 86.2%.

43

0.10

0.08

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

- Train

- Validation

Ill
Ill
.3 0.06

0.04

0.02

0.00 _,___�--�-��-�--�--�--�--�-�
5 10 15 20

Epochs
25 30 35

Figure 5.8: Training error of the LSTM model on hidden units 50

44

40

Q)
rt)

1.0

0.8

� 0.6
>
:e
Vl
0
C.
Q) 0.4
::J

0.2

0.0

0.0

CHAPTER 5. A TWO�STAGE NIDS FRAMEWORK

Receiver Operating Characteristic

-- Our method (area = 0.862)

0.2 0.4 0.6 0.8 1.0
False positive rate

Figure 5.9: ROC curve of the LSTM model on hidden units 50
.

45

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

5.3.3 Experiment on 5-class classification

As well as, we also visualized the feature vectors learned by the SAE model
in 5 classes as shown in Table 4.3. In the first, we sampled 200 samples are
randomly selected from each attack class (DoS, Probe, R2L, and U2R) and
normal data from the raw featured dataset. In totally, 1000 samples are visu
alized in Figure 5.10. In the next, we built SAE model to extract appropriate
features for 5-class classification. Same as above mentioned, unsupervised pre
training the SAE model with a large number of unlabeled data, and transfer
the learned parameters to the supervised fine-tuning SAE model. Then we
retrain the model with labeled data to extract feature vectors from the feature
layer. Finally we received the feature vectors for 5-class dataset, and we used
to visualize these feature vectors using the t-SNE. In Figure 5.11 illustrates
the visualization result of representation vectors of the feature extractor.

label

· 40 • Dos

• Probe

• R2L

• U2R

20 • Normal

0 >- «•�'i \'e er.;• .,,_Iii. •
..,,. ,.,

•

-20

-40

�60 -40

• •
•• • •'• ..

•••1e'I• ••••• ·•-•.t•;i,� • • s ... -
•• 1,�j •1

.,

•
. . -• � .. , , ..

... � , .•.. •�" , • .jl
• •re>"

•l
.. , . .

---�)

-20 0
X

�
. ·- . r�

20

•

···=

40

Figure 5.10: Visualization result of raw features 122 for 5-class ·classification

46

40

20

>- 0

-20

-40

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

••
�"'

••
"' ,. ♦.le,,

�-;...�;,
(

'·�'.•�' ·
Ii:

•• �·I.! ...

-�.
-�•' � '-·"

)

,,:., •• t:!

•r�• ·14,,·�/

.,�};_ -, ..
--��

fi

. • ,·,,:.o'�«-•'-��
�,-�.,•.--; ,., . , . . tPJ

"'-,
�(·
••-�r.. •�-

,.\),, it�.,.
. .,,

-}

3 ... ,.1,e;<r.:• e,1;

-40 -20 0

X

label

• Dos

• Probe

• R2L

e)\'i• • U2R

• Normal

... �•>
(·�- .!, ,�

('!,

\ �-
••• . \-•ca

20 40

Figure 5.11: Visualization result of reduced features 80 for 5-class classification

In general, the visualization results demonstrate that our feature extractor
model are quite good to learn primary features from the network traffic.

In the following, we evaluate our proposed IDS framework for 5-class clas
sification which includes normal and four type of attacks named DoS, Prob�,
R2L, and U2R. It outlined in previous section. According to the illustrated
in Figure 5.1, our feature extractor SAE model extracts the potential fea
ture vectors from the raw feature dimension, however output dimension of
supervised fine-tuning model has 5-dimensional vectors. Afterward, train the
LSTM model using new training set, and we estimated the confusion matrix
and ROC curve with AUC for each 5 classes.

The results obtained from the 5-class analysis of the intrusion dataset by
our proposed IDS framework. We dra:¥ confusion matrix to further evaluate
the intrusion detection of the proposed IDS framework, which are depicted in

47

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

Figure 5.12. From the resu}t, three classes of traffic (DoS, Probe and Normal
) are classified well. However, the effects of the proposed IDS framework for
the R2L and U2R classes are not as good as than other three classes. Table
5.2 shows the detection rate of the different attack types.

Q) . ..0
.!!1
Q) ::J
I...

Dos

Probe

R2L

U2R

Normal

188

1

0

63

Confusion matrix

22 272 2 1071

8000

1844 37 0 352

6000

40 764 2 2080

4000

0 6 6 55

2000

211 7 3

0

Predicted label

Figure 5.12: Confusion matrix for the 5-class classification of SAE-LSTM

Table 5.2: Result of the detection rate for the 5-class

Traffic type
DoS

Probe

R2L

U2R

Normal

I Detection rate (%)

48

81 .6

76.1

29.5

8.9

97

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

We represented ROC curves with AUC values to evaluate the proposed
IDS framework in 5-class.

1.0

0.8

� 0.6
>
·.;:::;
"iii 0 c..

2 0.4
I-

0.2

Receiver Operating Characteristic for 5 class

• • macro-average ROC curve (area= 0.76)
- ROC curve of class O (area = 0.88)
- ROC curve of class 1 (area = 0.83)
- ROC curve of class 2 (area = 0.66)
- ROC curve of class 3 (area = 0.59)
- ROC curve of class 4 (area = 0.82)

0.0 -f"-------,-------.----------,---------,,-------t
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 5.13: ROC curve for the 5-class classification of SAE-LSTM

5.4 Results and Discussion

In this section, we compare the results of our proposed framework with the
results of the literature used by different researchers. Table 5.3 reports the
comparison average accuracy and fl-score of detecting attack between the
proposed framework and in advance IDS models on the NSL-KDD dataset.
In terms of accuracy, our model outperforms all listed methods and the pro
posed framework consistently achieves comparable results with state-of-the
art methods.

Tavallaee et al. [42] claimed that their NSL-KDD dataset performed on
several machine learning algorithms. The results shown in Table 5.3 are in
ferior to those of our proposed method. Having irrelevant features in the
dataset can decrease the performance of a model. Therefore, a couple of re
search works introduce the feature selection by removing irrelevant features.

49

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

Table 5.3: Performance comparison with other published methods for NSL-

KDD dataset

References Methods Accuracy Fl-score

Tavallaee [42] J48 81.05%

Naive Bayes 76.56%

NB Tree 82.02%

Random Forest 80.67%

Multilayer Perceptron 77.41 %

SVM 69.52%

Ingre [10] Artificial Neural Network 81.2%

Tang [14] Deep Neural Network 75.75% 75%

Pajouh [11] LDA + Naive Bayes 82%

Yin [27] Recurrent Neural Network 83.28%

Li [20] Convolutional Neural Network

ResNet50 79.14% 79.12%

GoogLeNet 77.04% 76.50%

Proposed frame- SAE-LSTM 84.8±1.21% 84.5±1.19%

work

Javaid 1 /15} Self-Taught Learning 88.39% 90.4%

1 The method only evaluated on training data for both training and testing

set
2 The '-' indicates that there is no experiment on corresponding metrics.

Ingre et al. [10] are proposed ANN model that reduced the feature set by
removing almost all zero values from the dataset. The paper achieved an accu
racy of 81.2% on the testing set. As a similar, a method described by Tang et

al. [14] only attempts to use six features (duration, protocol type, src bytes, dst

bytes, count and crv count) from 41 features in the SDN environment. From
their experiments, the result not good enough to detect from some attacks.
For example, num.Jailed_logins feature stops password guessing attacks by

50

CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK

locking the account after a set number of failed login attempts. However, the
paper by presented Pajouh et al. [11] proposed the two-tier network anomaly
detection approach using Linear Discriminant Analysis (LDA) for dimension
reduction. The paper was obtained 82% of detection rate. Therefore, we
tried to discover the effective features of the dataset through the non-linear
mapping while reducing the data dimension.

Several deep learning methods are proposed for the intrusion detection
without using feature extraction stage. Yin et al. [27] implemented RNN-IDS
using recurrent neural network. The authors obtained the highest classifica
tion accuracy at 83.28% on the testing data. A paper introduced by Li et al.

[20] uses CNN that adopts novel representation learning methods of graphic
conversion for intrusion detection. The method of transforming the standard
NSL-KDD dataset data form into 8*8 gray-scale images is introduced. They
used the ReSNet50 and GoogLeNet network as CNN models. The perfor
mance of this study are obtained 79.14% of accuracy and 79.12% of fl-score
on testing data.

J avaid et al. [15] further introduced more advanced feature extraction
method based on Self-Taught Learning (STL). The STL has proven that an
effective feature extraction of intrusion data, and they achieved higher accu
racy of 88.39%. However, they present the evaluation re�ults on the training
data for both training and testing using 10-fold cross-validation.

In summary, these comparisons show that our proposed framework per
forms better than existing studies expected STL [15] in the classification ac
curacy which proves the effectiveness of our framework. Furthermore, exper
imental results validated that our feature extraction SAE model s1gnificantly
effected to improve the performance of this work.

5.5 Limitation

For specific class classification, in particular, the detection rate of the 5-class
classification represents as not good as in R2L and U2R classes. This outcome
occurs because of there are too few training instances in the training set a.s
can seen in Table 4.1.

51

Chapter 6

Conclusion and Future Work

In this chapter, we conclude our thesis with a summary of accomplishments
and provide insights for the future extensions of some of these works.

6.1 Conclusion

This thesis was aimed to develop an effective framework combining single
layer Sparse Autoencoder (SAE) and Long Short-Term Memory (LSTM) for
network intrusion detection system. Initially, the feature extractor model
proposed to extract the most relevant features for use in representing the data.
The proposed model determines an approximation to the identity function,
so as to output data that is similar to their input data. In other words,
the function involves finding the optimal network parameters weight, biases
by minimizing the discrepancy between input and its reconstruction data.
Furthermore, we consider to optimize hyperparameter values of the feature
extractor model using the 5-fold cross-validation method on training set, it
can help to identify the good representations from the raw input data. In
the following, the LSTM method proposed for classifying network traffic as
normal or attack. Then finally, we evaluate the effectiveness of the proposed
IDS framework on the benchmark NSL-KDD dataset. The experimental result
shows that the two-stage IDS framework achieved a higher accuracy rate it
outperformed other similar_ studies. As well as, our SAE model can extract
effective features leads to obtain a good performance and improve the LSTM

52

CHAPTER 6. CONCLUSION AND FUTURE WORK

model classification accuracy. In conclusion, our proposed IDS frameworks
works well in binary classification, however 5-class classification was not good
enough.

6.2 Future Work

In the future study, we will emphasize on to increase the model prediction
performance of the current models and evaluate their performance on more
attack types. Moreover, we need to more focused on the detection performance
of the imbalanced dataset.

53

Bibliography

[1] C. A. Statistics,
http:j /hackmageddon.

2015.

"Hackmageddon," Avaialble online:

· com/ category/security/ cyberattacks-statistics,

[2] D. Sumeet and D. Xian:, "Data mining and machine learning in cyber-

security". Auerbach Publications, 2016.

[3] V. G. Fixed, "Mobile internet traffic forecasts. cisco," 2017.

[4] I. Symantec, "Internet security threat report appendices," 2019.

[5] M. Roesch et al., "Snort, network intrusion detection/prevention sys
tem," 2011.

[6] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A sur
vey," ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1-72, 2009.

[7] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and M. Marchetti,
"On the effectiveness of machine and deep learning for cyber security," in
2018 10th International Conference on Cyber Conflict (CyCon), pp. 371-

390, May 2018.

[8] W. Zong, Y.-W. Chow, and W. Susilo, "Dimensionality reduction and vi
sualization of network intrusion detection data," in Information Security

and Privacy (J. Jang-Jaccard and F. Guo, eds.), (Cham), pp. 441-455,

Springer International Publishing, 2019.

[9] Y. N. Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, and F. Jasmir,
"Automatic features extraction using autoencoder in intrusion detection
system," in 2018 International Conference on Electrical Engineering and

Computer Science (ICECOS), pp. 219-224, Oct 2018.

54

[10] B. Ingre and A. Yadav, "Performance analysis of nsl-kdd dataset us
ing ann," in Signal Processing And Communication Engineering Systems

(SPACES), pp. 92-96, IEEE, 2015.

[11] H. H. Pajouh, G. Dastghaibyfard, and S. Hashemi, "Two-tier network
anomaly detection model: a machine learning approach," Journal of In

telligent Information Systems, vol. 48, pp. 61-74, 2015.

[12] Y. Hamid, V. R. Balasaraswathi, L. Journaux, and M. Sugumaran,
"Benchmark datasets for network intrusion detection: A review," Inter

national Journal of Network Security, vol. 20, no. 4, pp. 645-654, 2018.

[13] N. R. Sabar, X. Yi, and A. Song, "A bi-objective hyper-heuristic support
vector machines for big data cyber-security," IEEE Access, vol. 6, 2018.

[14] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
"Deep learning approach for network intrusion detection in software de
fined networking," in Wireless Networks and Mobile Communications

(WINCOM), 2016 International Conference on, pp. 258-263, IEEE,
2016.

[15] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, "A deep learning approach
for network intrusion detection system," in Proceedings of the 9th EA!

International Conference on Bio-inspired Information and Communica

tions Technologies (formerly BIONETICS), pp. 21-26, 2016.

[16] Z. Wang, "The applications of deep learning on traffic identification,"
BlackHat USA, 2015.

[17] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, "A deep learning approach
to network intrusion detection," IEEE Transactions on Emerging Topics

in Computational Intelligence, vol. 2, no. 1, pp. 41-50, 2018.

[18] J. Kim, J. Kim, H. L. T. Thu, ·and H. Kim, "Long short-term memory
recurrent neural network classifier for intrusion detection," in Platform

Technology and Service (PlatCon), 2016 International Conference on,

pp. 191-195, IEEE, 2016.

55

[19] T.-T.-H. Le, Y. Kim, H. Kim, et al. , "Network intrusion detection based
on novel feature selection model and various recurrent neural networks,"
Applied Sciences, vol. 9, no. 7, p. 1392, 2019.

[20] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, "Intrusion detection us
ing convolutional neural networks for representation learning," in In

ternational Conference on Neural Information Processing, pp. 858-866,

Springer, 2017.

[21] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
"Hast-ids: Learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection," IEEE Access, vol. 6,

pp. 1792-1806, 2017.

[22] A. Coates, A. Ng, and H. Lee, "An analysis of single-layer networks in
unsupervised feature learning," in Proceedings of the fourteenth inter

national conference on artificial intelligence and statistics, pp. 215-223,

2011.

[23] Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A
review and new perspectives," IEEE transq,ctions on pattern analysis and

machine intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.

[24] Z. Kherlenchimeg and N. Nakaya, "Network Intrusion Classifier Using
Autoencoder with Recurrent Neural Network," in The Fourth Inter

national Conference on Electronics and Software Science (ICESS2018),

pp. 94-100, 2018.

[25] M. Yousefi-Azar, V. Varadharajan, · L. Hamey, and U. Tupakula,
"Autoencoder-based feature learning for cyber security applications,"
in 2017 International Joint Conference on Neural Networks (IJCNN),

pp. 3854-3861, May 2017.

[26] Y. Li, R. Ma, and R. Jiao, "A hybrid malicious code detection method
based on deep learning," International Journal of Security and Its Ap

plications, vol. 9, no. 5, 2015.

[27] C. Yin, Y. Zhu, J. Fei, and X. He, "A deep learning approach for in
trusion detection using recurrent neural networks," IEEE Access, vol. 5,

pp. 21954-21961, 2017.

56

[28] S. Axelsson, "Intrusion detection systems: A survey and taxonomy," tech.
rep., Technical report, 2000.

[29] F. Garzia, M. Lombardi, and S. Ramalingam, "An integrated internet
of everything-genetic algorithms controller-artificial neural networks
framework for security /safety systems management and support," in 2017

International Carnahan Conference on Security Technology (ICCST),

pp. 1-6, IEEE, 2017.

[30] D. W. Vilela, A. D. P. Lotufo, and C. R. Santos, "Fuzzy artmap neural
network ids t;valuation applied for real ieee 802.11 w data base," in 2018

International Joint Conference on Neural Networks (IJCNN), pp. 1-7,
IEEE, 2018.

[31] G. Creech and J. Hu, "A semantic approach to host-based intrusion de
tection systems using contiguousand discontiguous system call patterns,"
IEEE Transactions on Computers, vol. 63, no. 4, pp. 807-819, 2013.

[32] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality
of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507,
2006.

[33] J. Heaton, "Artificial intelligence for humans, volume 3: Deep learning
and neural networks; heaton research," Inc.: St. Louis, MO, USA, 2015.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[35] A. Ng, "Sparse autoencoder, vol. 72," CS294A Lecture Notes, 2011.

[36] S. Kullback and R. A. Leibler, "On information and sufficiency," The
(

annals of mathematical statistics, vol. 22, no. 1, pp. 79-86, 1951.

[37] P. J. Werbos, "Generalization of backpropagation with application to a
recurrent gas market model," Neural networks, vol. 1, no. 4, pp. 339-356,
1988.

[38] A. Graves, A. Mohamed, and G. Hinton, "Speech recognition with deep
recurrent neural networks," in 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 6645-6649, May 2013.

57

[39] I. Sutskever, 0. Vinyals, and Q. V. Le, "Sequence to sequence learn
ing with neural networks," in Advances in neural information processing

systems, pp. 3104-3112, 2014.

[40] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural

computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[41] I. N.-K. D. Set, "University of new brunswick est. 1785."

[42] M. Tavallaee, E. Bagheri, W. Lu', and A. A. Ghorbani, :'A detailed analy
sis of the kdd cup 99 data set," in Computational Intelligence for Security

and Defense Applications, pp. 1-6, IEEE, 2009.

[43] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson,
and X. Bellekens, "A taxonomy and survey of intrusion detection sys
tem design techniques, network threats and datasets," arXiv preprint

arXiv:1806.03517, 2018.

[44] S. Selvakumar and S. Bhattacharya, "Multi-Measure Multi-Weight Rank
ing Approach for the Identification of the Network Features for the De
tection of DoS and Probe Attacks," The Computer Journal, vol. 59, no. 6,

pp. 923-943, 2016.

[45] M. Abadi, A. Agarwal, et al. , "TensorFlow: Large-scale machine learning
on heterogeneous systems," 2015. Software available from tensorflow.org.

[46] L. v. d. Maaten and G. Hinton, "Visualizing data using t-sne," Journal

of machine learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.

58

List of Publications

• Zolzaya Kherlenchimeg and N aoshi N akaya, " A Deep Learning Ap
proach Based on Sparse Autoencoder with Long Short-Term Memory
for Network Intrusion Detection," IEEJ Transaction on Electronics, In
formation and System (C)" , vol. 140, no.6, 2020.

• Zolzaya Kherlenchimeg and N aoshi N akaya, " Network Intrusion Classi
fier Using Autoencoder with Recurrent Neural Network," In The Fourth

International Conference on Electronics and Software Science (ICESS2018},
pp. 94-100, 2018.

	20200406140222
	20200406140300

