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Abstract 

The rapid growth of technology uses all over the world, our daily lives and 
· activities for the better in many ways. However, this exponential growth of 

interconnections has led to also concern network security issues. A vulnera­
bility and potential malicious threat might be due to a bug in applications 
and ill-managed networks. Therefore, we must address these critical issues of 
network security such as detect suspicious activities; a countermeasure against 
intruders and unauthorized access to the existing data. In the last decades, 
the Intrusion Detection System (IDS) plays a vital role in detecting network 
attacks. The IDS is a process of monitoring and analyzing the events occurring 
in a computer system and network to detect signs of security problems. 

In general, IDS categorized into misuse-based detection and anomaly­
based detection. A misuse-based IDS also known as a signature-based IDS 
that measures its similarity between input and signatures of known attacks. 
Therefore, the known attacks can be detected immediately and reliably with 
a lower false-positive rate. While the misuse-based detection method has dis­
advantages that it cannot detect unknown attacks and novel attacks. The 
anomaly-based detection technique is the process of comparing activity the 
enterprise considers normal against observed activity to identify significant 
deviations. The advantage of anomaly-based detection techniques is suitable 
to predict and adapt to unknown attacks. This kind of detection method uses 
a machine learning approach to create a predictive model by simulating regu­
lar activity and known activity, then compare new behaviors with the existing 
model. However, an anomaly-based IDS usually produces a high percentage 
of false alarms rate and a low rate of detection rate, it might be effect the 
efficiency of real-world applications. In an anomaly-based IDS, there are dif­
ferent levels at which an IDS can monitor activities in a network. It faces 
a large number of features representation of monitored network traffic. The 
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high dimensionalities of the network traffic give to raise the hypothesis search 
space and also lead to large classification errors. Therefore, to address those 
problems, this study. focused to improve the accuracy of detecting unknown 
attacks through the developing an effective framework. 

In this study, we propose a network IDS framework for intrusion detec­
tion. The proposed framework consists of two stages. The first stage is a 
feature extraction stage which has two steps: unsupervised pre-training and 
supervised fine-tuning. The first step is an unsupervised pre-training step that 
learns the typical patterns of the network traffic using a single-layer Sparse 
Autoencoder (SAE) which is an effective learning algorithm for reconstruct­
ing a new feature presentation of the data through the nonlinear mapping. 
Consequently, the second step is a supervised fine-tuning step that can ex­
tracts the primary features of the network traffic using the preceding optimal 
parameters in supervised manner while gradually reduce the data dimension. 
The SAE model determines an approximation to the identity function, so as 
to output data that is similar to their input data. In other words, the function 
involves finding the optimal network parameters weight, biases by minimiz­
ing the discrepancy between input and its reconstruction data. However, the 
degree of input features increases the model becomes more complex and has 
to fit all data. Therefore, to prevent the problem of overfitting, we use the 12 
regularization method by augmenting the cost function with the sum of the 
squared magnitude of all weights in the network. As well as, we regularize 
the feature extractor model by using a Kullback-Leibler (KL) divergence as a 
sparsity penalty term which constrains the neurons to be inactive most of the 
time. 

Accordingly, we train a single-layer feature learning SAE model on training 
set only in unsupervised manner using 5 -fold cross-validation, while optimize 
hyperparameter values of the network. It involves finding the optimal net­
work parameters weight, biases and hyperparameters of cost function. After 
the network learned optimal values for weights and biases, save the network 
parameters. Once selecting proper hyperparameter, re-train ·the feature ex­
tractor SAE model using these optimal hyperparameter on the training set 
with a label. Finally, the feature extractor SAE model can extract the new fea­
ture representations which represent the source data. In the next stage, train a 
Long Short-Term Memory model to identify the network traffic as being either 
normal or attack using the extracted new feature representations dataset. We 
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apply the 10-fold cross-validation method to validate the results o:r the LSTM 
model to prevent overfitting issue. In final, we evaluate the effectiveness of 
the proposed IDS framework on the benchmark NSL-KDD dataset. The ex­
perimental result shows that the proposed framework performs better than 
previous studies which proves the effectiveness of ·our framework. Further­
more, the result confirmed ·that our feature extractor SAE model significantly 
effected to improve the performance of this work. 

This thesis was aimed to develop an effective framework combining a 
single-layer Sparse Autoencoder (SAE) based feature transfer learning and 
Long Short-Term Memory (LSTM). Initially, the feature extractor SAE model 
which proposed to extract the most relevant features for use in representing 
the data. In the following, the LSTM method proposed for classifying network 
traffic either a normal or an _attack. The result of the proposed framework 
detected network attack with high accuracy and it outperformed other similar 
studies. 
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Chapter 1 

Introduction 

1.1 Overview 

The vast majority of our daily lives and activities are availability for the use 
of the Internet. In recent years, the growth in network traffic is being driven 
by increased mobile devices, Internet of Things (IoT) devices and a continued 
increase in average data volume per device. According to the recent report 
of Cisco_ Visual Networking Index (VNI) forecast [3] , the number of global IP 
traffic will grow by 396 exabytes (EB) per month IP traffic, it will be reached 
threefold to 2022. However, this exponential growth of the Internet intercon­
nections has lead to significant growth of cyber-threat incidents. In particular, 
network vulnerability is a weak spot in the network that might be exploited 
by a security threat. According to the Symantec Information Security Threat 
report published in February 2019 [4], 4800 websites per month compromised 
with formjacking code which uses of malicious code to steal credit card details 
and other information from payment forms. Therefore, many researchers to 
address these critical issues of network security, such as detecting suspicious 
activities and need countermeasures against a diverse range of threats. As a 
shown in Figure 1.1, the Hackmageddon Information Security Timelines and 
Statistics Website has reported the top 10 attack distribution of the last year. 

In terms of the attacker's purpose, cybersecurity risks can be broadly di­
vided into two types: active and passive attacks. An active attack attempts to 
alter system resources or effect their operations. Active attack involve some 
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CHAPTER 1. INTRODUCTION 
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Figure 1.1: Top 10 distribution of attacks (2018) [1] 
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modification of the data stream or creation of false statement. So it com­
promises integrity or availability. In contrast, a passive attack attempts to 
learn or make use of information from the system but does not affect system 
resources. Passive attacks are in the nature of eavesdropping on or monitor­
ing of transmission. So it compromises confidentiality. In order to protect 
network infrastructure against potential malicious threats, the growing effort 
collaboration between research communities and cybersecurity professionals 
from industry, academia, government a�encies. 

There are numerous conventional techniques to cyber defense, for example 
firewalls, access control, antivirus software and intrusion detection system. 
However, these type of defense system have few limitations, particularly it 
depends on their design and implementation of software and network infras­
tructure. Because patches have been developed to protect the systems, but 
attackers continuously exploit another vulnerability. 

The goal of the opponent is to obtain information is being transmitted. 
Therefore, cybersecurity concerns with the understanding of surrounding is­
sues of diverse cyber attacks that preserve confidentiality, integrity, and avail­
ability of any digital and information technologies. Because, a poorly im-
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CHAPTER 1. INTRODUCTION 

plemented information security system can in itself become a source of risk, 
however, so organizations must ensure that their information security systems 
address the CIA triad: 

• Confidentiality (C) is the term used to protect the information from 
access by unauthorized individuals or parties. 

• Integrity (I) is the term used to prevent any alter or modify in an 
unauthorized manner. 

• Availability (A) is the term used to assure that the systems responsible 
for delivering, storing and processing information are accessible when 
needed and by those who need them. 

The CIA triad is the basis of information security. In order to provide the 
CIA triad, diverse coriventional defense strategies are building for information 
security. Over the last decades, Intrusion Detection System (IDS) has been 
playing a vital role in detecting network attacks. The IDS is a hardware ap­
pliance or software application that an intelligently monitors activities that 
occur in a computing resource, network traffic, computer usage, and to an­
alyze the events, to generate the reactions. Typically, IDSs categorize into 
misuse-based detection and anomaly-based detection. A misuse-based IDS 
also known as a signature-based IDS that measures its similarity between the 
input and signatures or pattern of known attacks. Thus the known attacks 
can be detected immediately and reliably with a lower false-positive rate. 
While the misuse-based detection method has disadvantages that it cannot 
detect unknown attacks and novel attacks. Snort [5 ] is a popular signature­
based IDS and network specialist needs to update attack signature database 
into IDS. An anomaly-based detection technique is designed to detect pat­
terns that �eviate from established normal usage patterns that can be flagged 
as an attack. The advantage of anomaly-based detection techniques is suit­
able to predict and adopt to unknown attacks. This detection method uses 
machine learning approach to create a predictive model simulating regular ac­
tivity, and then compares new behavior with the existing model. Thus, most 
researchers emphasize the anomaly-based detection method which can give 
better performance in credit card fraud detection, medical diagnosis, fault 
detection [ 6] . However, anomaly-based IDSs usually produce a high percent­
age of false alarms, it might reduce the efficiency of real-world applications. 
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Figure 1.2: Conventional cybersecurity system [2] 

As show1;1 in Figure 1.2, conventional cybersecurity systems address various 

cybersecurity threats, including viruses, trojans, worms, spam, and botnets. 

These cybersecurity systems run against malicious threats at two classes: a 

host-based intrusion detection system (HIDS) and network-based intrusion 

detection system (NIDS). HIDS is installed on each client of the network and 

can monitor particular clients only. In contrast to BIDS, a NIDS is placed in 

a network to detect attack on the hosts of that network. 

1. 2 Problem Statement 

Cybersecurity defense strategy is a collection of policies, techniques, software, 

and hardware, that can protect an application, network, host, information 

from attacks. There are various conventional techniques to cyber defense. 

These type of techniques has few limitations, particularly it depends on their 

design and implementation of software and network infrastructure. 

Due to the availability of large amounts of data, machine learning algo-

rithms is successfully exploited in network security problems, for instance the 

literature [7] review to focusing on attacks related to spam detection, malware 

analysis, and intrusion detection. In existing studies, a variety of machine 

learning algorithms were used to develop a NIDS. 
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CHAPTER 1. INTRODUCTION 

In anomaly detection, there are different levels at IDS that monitors ac­
tivities in a network. It faces a large number of features representing the 
monitored network traffics. The high dimensionality of the network traffic 
data gives a large hypothesis search space, and also can lead to large classi­
fication errors. Therefore, in order to build an effective IDS framework, this 
study pay attention to select the most relevant features for use in representing 
the data using nonlinear mapping. 

1 . 3  Contributions 

Considerable researches have been done to avoid cyber security attacks. Over 
, the years, a study of single-layer [8] [9] neural network for unsupervised fea­
ture learning gained increasing attention. In this thesis, we demonstrate the 
development of a novel effective framework for network intrusion detection 
system. The proposed framework consists of two stages. In the first stage , 
a single-layer Sparse Autoencoder (SAE) is utilized to discover the effective 
features of the input data, and gradually reduce the data dimension. In the 
second stage, train a Long Short-Term Memory (LSTM) model using a pre­
ceding parameters to identify type of network traffic. The main contributions 
of this thesis are summarized as follows: 

• We aim to present an effective framework combining a single-layer Sparse 
Autoencoder and Long Short-Term Memory for network intrusion de­
tection system. By taking an unsupervised learning method to learn 
useful features from raw data for improving accuracy of the predictive 
model while reducing the data dimension. 

• The result proved that our SAE feature extractor model significantly 
effected to improve the performance of this work. 

• Our experiment demonstrates that the SAE-LSTM has a greater perfor­
mance than other state-of-the-art and anomaly-based detection methods 
on the benchmark NSL-KbD dataset. 
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CHAPTER 1. INTRODUCTION 

1 .4 Thesis outline 

The overall organization of the thesis is presented in this section. 

Chapter 2 discusses the most illustrative works of intrusion detection sys­

tem applied to the benchmark NSL-KDD dataset, along with a general dis­

cussion about works on machine learning and deep learning approaches in 

cybersecurity issues. 

Chapter 3 provides· a fundamental issue of understanding the detection 

aspect that was discussed in the Introduction. Then provides a comprehensive 

discussion on deep learning approaches . 

Chapter 4 introduces the first attempt to design a deep learning approach 

that combined sparse autoencoder with recurrent neural networks for the 

intrusion detection system. We evaluate the performance of the proposed 

method on the NSL-KDD dataset. 

Chapter 5 presents an effective framework combining the SAE based fea­

ture transfer learning and LSTM for NIDS. We evaluated the performance of 

the framework on testing dataset. And then, the results of proposed frame­

work compared with similar previous studies. 

Chapter 6 concludes the development of the proposed framework and their 

results; as well as insights to overcome the limitations of our work along with 

the enhancements. 

6 



Chapter 2 

Literature review 

This section presents the most illustrative works of intrusion detection system 
applied to the benchmark NSL-KDD dataset, along with a general discussion 
about works on machine learning and deep learning approaches in cybersecu­
rity issues. 

2 . 1  Challenges 

Most commercial products contain signature-based detection techniques [2] .  
Although many methods and systems have been developed by the research 
community, there are still a number of open research issues and challenges: 

• Network based IDS monitor the whole network, therefore vulnerable to 
the same attacks the network's hosts are. 

• An anomaly-based NIDSs usually produce a high percentage of false 
alarm. But, totally mitigating the false alarm is not possible. 

• Developing a suitable method for extracting the features for each cate­
gory of attack is another important task. 

• Identifying a best classifier that is non-associated and unbiased to build 
an effective approach for anomaly detection is another challenge. 
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CHAPTER 2. LITERATURE REVIEW 

2 .2  Related Works 

There are a large number of related studies using either the KDD-Cup 99 or 
DARPA 1999 dataset to validate the development of IDSs. In this section, we 
review the literature that used to apply machine learning and deep learning 
techniques for intrusion detection. 

In existing studies , a variety of machine learning algorithms were used to 
develop a network-based IDS, for instance, Artificial Neural Network (ANN) 
[10] , k-Nearest Neighbor (k-NN) [11] [12] , Support Vector Machines (SVM) [9] 
[13]. Furthermore, researcher community have been attracting their attention 
to a deep learning approaches including Deep Neural Network [14 ] ,  Self-Taught 
Learning [15 ] ,  Stacked Autoencoder [16] [17] , R&current Neur_al Network [18] ­
[19] , Convolutional Neural Network [20] [21] for intrusion detection. The 
literature [22] has demonstrated a simple feature learning framework that 
incorporates an unsupervised learning algorithm. 

Most of these studies suggested extracting · a relevant pattern from net­
work traffic, to attain further improvement in an overall accuracy of the sys­
tem. As well as, we emphasize on the researches which used to evaluate 
their performance on the NSL-KDD dataset. A work proposed by Tang et 

al. [14] , deep neural network (DNN) model for flow-based anomaly detection 
in the Software-Defined Network (SDN) environment. The proposed model is 
compared with a state-of-the-art algorithms through the use of accuracy at 
75 . 75 % ,  which is utilizing basic 6 features from the NSL-KDD dataset. 

Ingre et al. [10] has proposed IDS using Artificial Neural Network (ANN) 
on the NSL-KDD dataset. The work utilized Levenberg-Marquardt (LM) 
and BFGS quasi-Newton Backpropagation algorithm for training in binary 
and 5 -class classification. They reduced feature set of 29 by removing least 
usable features from the training and testing set, and then obtained 81.2% of 
accuracy for binary classification. 

Within a development of deep learning, the representation learning ap­
proach [23] allows a system can automatically extract features from raw data. 
For instance, J avaid et al. [15 ] further introduced a Self-Taught Learning 
(STL) based on autoencoder with softmax regression to implement a NIDS. 
The proposed method developed two different models in binary and multiclass 
classification and evaluated on the NSL-KDD dataset. STL achieved 88.39% 
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CHAPTER 2. LITERATURE REVIEW 

accuracy rate for binary classification and outperformed the previous studies 
results. 

In the paper [24] , we demonstrated a NIDS based on sparse autoencoder 
(SAE) technique to reduce the dimensionality of network traffic, followed by 
the RNN as a classifier. The performance of the proposed model was evaluated 
on the NSL-KDD dataset, and then the result compared with prior studies at 
80.0% of accuracy rate. 

Yousefi-Azar et al. [25 ]  proposed an unsupervised feature learning ap­
proach for malware classification and network-based anomaly detection using 
deep autoencoder (DAEs). The authors provided 10-dimensions conceptual 
space for a latent layer of DAEs in both malware and intrusion detection tasks. 
The output of latent layer was fed into various classification methods such as 
SVM, k-NN and Gaussian Naive Bayes. The experimental results proven that 
the proposed DAEs is a more efficient in dimension reduction that compared 
with result of the original features of the NSL-KDD dataset. 

Similarly, Li et al. [26] built an autoencoder to reduce the dimensionality 
of the KDDCUP'99 dataset, followed by deep belief network (DNB) classifier 
that achieved an accuracy of 92.1 % with a F PR of 1.5 8%. 

As well as, a few researchers have been proposed a potential IDSs based on 
individual deep learning approaches including recurrent neural network (RNN) 
and convolutional neural network (CNN). The paper introduced by Yin et al. 

[27] , a deep learning approach for intrusion, detection using recurrent neural 
network (RNN-IDS) .  This work was obtained good result, especially under 
the task of multiclass classification with 81.29% of accuracy on the NSL-KDD 
dataset. Kim et al. [18] implemented a similar test of IDS classifier using 
LSTM-RNN. The authors considered a problem of imbalance on the KD­
DCup'99 dataset, and then generated a new training set by extracting 300 
instances from each attack types and 1000 normal instances. The proposed 
IDS was gained 98.88% of detection rate and 10.04% of false alarm rate. More­
over, Li et al. [20] proposed an intrusion detection system using convolutional 
neural networks ( CNN) that adopts novel representation learning methods of 
graphic conversion. The method of transforming standard NSL-KDD dataset 
data form into 8*8 gray-scale images is introduced. They used the ReSNet5 0 
and GoogLeNet network as CNN models. 

9 



CHAPTER 2. LITERATURE REVIEW 

2.3 Conclusion 

A number ·of surveys and review articles have focused on intrusion detection 
technologies. To address the issue, we design to create an effective novel frame­
work for intrusion detection using sparse autoencoder and LSTM algorithms. 
Then, we try to build an effective framework to evaluate on the benchmark 
NSL-KDD dataset and compare it to the recent studies results. 
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Chapter 3 

Background 

This chapter starts with a fundamental issue of understanding the detection 

aspect that was discussed in the Introduction. Then provides a comprehensive 

discussion on deep learning approaches. 

3.1 Intrusion detection system 

An intrusion detection system (IDS) analyze and monitor network traffic for 

signs that indicate attackers are using a known cyber threat to infiltrate or 

steal data from the network. An intruder to a system is very likely to exhibit 

a pattern of behavior different from the normal behavior of a legitimate user. 

The IDS types range in scope from single computers to large networks [28]. 

Firewall 

Network­

based IDS 

Figure 3.1: Type of IDS architecture 
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CHAPTER 3. BACKGROUND 

Intrusion detection systems are usually passive devices that are not con­
figured to automatically take any punitive action against network traffic that 
appears to be malicious. Intrusion detection identifies that an intrusion is 
taking place and informs an administrator who must take appropriate action. 
It is categorized based on their data source into two main categories: network 
based intrusion detection system (NIDS) and host-based intrusion detection 
system (RIDS). Figure 3.1 shows that type of IDS architecture. 

The NIDSs are strategically placed on system to monitor all the network 
· traffic. It is widely deployed in modern enterprise network. A NIDS reads all 
inbound network traffic and matches the traffic that is passed on the network 
to the library of known attacks. Once an attack is identified, or abnormal 
behavior is sensed, the alert can be sent to the administrator. NIDS can be 
also combined with other technologies to increase detection and prediction 
rates. Artificial Neural Network (ANN) based IDS are capable of analyzing 
huge volumes of data, in a smart way, due to the self-o_rganizing structure 
that allows IDS to more efficiently recognize intrusion patterns [29]. Neural 
networks assist IDS in predicting attacks by learning from mistakes. IDS 
help develop an early warning system, based on two layers. The first layer 
accepts single values, while the second layer takes the first's layers output as 
input. The cycle repeats and allows the system to automatically recognize 
new unforeseen patterns in the network [30]. 

A host based IDSs are installed on specific host, analyzing traffic and 
logging intrusion behavior, then it will log the activity. A RIDS monitors 
the inbound and outbound network traffic from the device only and will alert 
the user or administrator if suspicious activity is detected. It takes a capture 
of existing system call files [31] and matches it to the previous capture. If 
the critical system call files were modified or deleted, an alert is sent to the 
administrator to investigate that suspicious activities. 

Traditionally, the researchers study intrusion detection approaches from 
two major perspectives: anomaly and misuse detection that was discussed in 
the Chapter 1. There are many studies mentioned that an anomaly-based 
network intrusion detection plays a vital role in protecting networks against 
malicious activities. Based on these observations, we advocate that to de­
velop NIDS can be also combined with deep learning technologies to increase 
detection and prediction rates. 
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CHAPTER 3. BACKGROUND 

3.2 Methodology 

Deep learning is a sub-field of machine learning that uses artificial neural 
networks (ANNs) containing two or more hidden layers to approximate some 
function f ( ·), where f ( ·) can be used to map input data to new representations 
or make predictions. The ANNs inspired by the biological neural network is 
a set of interconnected neurons or nodes, where connections are weighted and 
each neuron_transforms its input into a single output by applying a non-linear 
activation function to the sum of its weighted inputs. 

3.2.1 Autoencoder 

An autoencoder is an unsupervised learning algorithm that mainly used as 
feature extraction or a dimensionality reduction. Hinton [32] et al. demon­
strated the potential of autoencoders for trying to learn an approximation to 
the identity function, so as to output vector X that is similar to the input 
vector X. Basically, an autoencoder is simply a multilayer feedforward neural 
network trained to represent the input with backpropagation. 

The autoencoder is a symmetric neural network structurally defined by 
three layers: an input layer, hidden layers, and an output layer. The in­
put and output layer has a same number of N units and the hidden layer 
contains K units. Figure 3.2 shows the schematically layout of an autoen­
coder (AE) comprises encoder and decoder. The aims of encoder compress 
the input vector X = (x1 , x2 , x3 ..... , Xn) into a low dimension representation 
H = (h1 , h2 , h3 ..... , hk)- It can be represented by an encoding function as 
illustrated in Eq. 3.1. This compressed representation is decompressed by 
the decoder to reconstruct the output vector X = (i1 , i2, i3 ..... , :in)- The 
decoding function as expressed in Eq. 3.2. This way, the latent space forms a 
bottleneck, which forces the autoencoder to learn an effective compression of 
the data. 

n 

h = f ( L w Xi + b) (3.1) 
i=l 

k 

i = f ( L W' hi + b') (3.2) 
i=l 
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where weight matrices W E Rkxn and W' E Rnx k of the encoder and decoder 
network, respectively. b E Rk and b' E Rn are bias vectors. The activation 
function f( •) takes the input of a neuron z and outputs signal y. J ( z) de­
notes a sigmoid activation function. As seen in Eq 3.3, the sigmoid activation 
function is one of the most frequently used non-linear activation functions for 
feedforward neural networks [33] that normalize the output of each neuron to 
output values bound between O and 1 nonlinearly, which is fully differentiable: 

1 
f(z)=---1 + exp-z 

(3.3)  

where ·z = b + I:�1 xiwi Parameters W, b are optimized using back propaga­
tion, by minimizing the cost function lerror (W, b) for training set n is described 
in Eq. 3.4. The first term is an average of sum-of-square errors between Xi 
input vector and ii reconstructed vector. 

lerror(W, b) = 2
� t llii - Xill

2 
+ �(L W2 

+ LW'2) (3.4) 

Input layer 

i=l k ,n n,k 

Encoder Decoder 

Hidden layer Output layer 

Figure 3.2: Structure of pre-training sparse autoencoder 
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Figure 3.3: Structure of fine-tuning sparse autoencoder 

The second term indicates an 12 regularization (a weight decay term) pe­
nalizing term by augmenting the cost function with the sum of the squared 
magnitude of all weights in the neural network and it prevents problem of 
overfitting. The A (lambda) is called as a regularization parameter which 
determines hqw much to penalizes the weights. 

3.2.2 Sparse Autoencoder 

There are numerous ways of defining a simpler representation. The mcist com­
mon include lower is a sparse representations [32] [34]. Sparse presentations 
embed the dataset into a representation whose entries are mostly zeroes for 
most inputs. The use of sparse representations typically requires increasing 
the dimensionality of the representation, so that the representation becoming 
mostly zeroes does not discard too much information. In order for the sparse­
ness of hidden units, regularize autoencoder by using a sparsity penalty term 
which constrains the neurons to be inactive most of the time [35] . Sparsity 
is a useful constraint when the number of hidden units is large. Therefore, a 
sparsity penalty term is added to the Eq. 3.4, and the new objective functions 
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are given as follows: 

lspa;se (W, b) = lerror (W, b) + /3 L K L(p 11 (Jj) (3.5) 
j=l 

The sparsity penalty term is regularized by Kullback-Leibler (KL) divergence 
[36] which is a measure of the difference between two probability distributions. 
The KL divergence between two probability distributions p and p1 is defined 
as: 

p 1 - p  
KL (p II p1 ) = plog-;:- + (1 - p) log --A 

P1 1 - P1 
(3.6) 

where p1 (rho) is an average activation of hidden uriit j over the training set 
n, which can be formulated 

(3.7) 

pis predefined mean activation target p E {O, 1}, and the most values of hid­
den units are much smaller than given a small p. This addition of sparsity 
constraints can lead the learned hidden representation to be a sparse represen­
tation. Therefore, the variant of autoencoder is named sparse autoencoder. 
In here, the f3 (beta) controls the weights of the sparsity 'penalty term. 

The optimizing function defines how we are going to update our param­
eters (weights and biases) in order to reduce the reconstruction error. The 
single-layer SAE model is trained using stochastic gradient descent optimiza­
tion algorithm and the network parameters W, b are updated through the back­
propagation algorithm based on the minimizing the cost function lsparse (W, b). 
The model can extract meaningful features from the input data, instead of 
simply converting the input vector. 

3.2.3 Recurrent Neural Network 

The recurrent neural network (RNN) was first developed in the 1980s [37]. It 
is a most powerful neural network with cyclic connections which are widely 
used in machine translation, speech synthesis, speech recognition as well as 
for processing a sequence of values x1, ... , xn [38] [39]. The structure consists 
of an input layer, one or more hidden layers and output layer. 

Unlike feedforward neural networks, RNNs add a neural node based on 
the architecture of common neural networks, and they memorize the previous 
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Figure 3.4: Recurrent neural network 

state of the neural networks as shown in Figure 3.4. The computational 
graph to compute the training loss of a recurrent network that maps an input 
sequence of x values to a corresponding sequence of output o values. The 
RNN has input to hidden connections parametrized by a weight matrix U 
hidden-to-hidden recurrent connections parametrized by a weight matrix W, 

and hidden-to-output connections parametrized by a weight matrix V. 
The most effective sequence models used in practical applications are called 

gated RNNs. These include the long short-term memory and networks based 
on the gated recurrent unit. Leaky units did this with connection weights 
that were either manually chosen constants or were parameters. Gated RNNs 
generalize this to connection weights that may change at each time step. The 
long short-term memory (LSTM) [40] have been introduced one of the special 
form of the RNN which precisely designed to escape the long term dependency 
issue of recurrent networks. LSTM network furth�r add a component called 
forget fate, and LSTMs can effectively learn temporal features from a long 
sequence. LSTM cell called repeating module has four neural network layers 
interacting with each others as illustrated in Figure 3.5. 

Ot = CJ (WoXt + W0ht-l + bo) 

ht = Ot * tanh( Ct) 
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Figure 3.5: Structure of the Long Short-Term Memory cell 

CJ is the logistic sigmoid function, and ft , it, Ct, Ot are denoted forget gate, 
input gate, cell state gate, and output gate, respectively. As seen in Eq. 
3.8, the forget gate ft that provides a forgetting coefficient by looking ·at the 
input layer Xt .and previous hidden layer ht-l for previous cell state Ct-l · The 
output comes out between O and 1, and controls the information to forget or 
pass through from previous cell state Ct-l to �urrerit cell state Ct . The input 
gate also considers input layer Xt and previous hidden layer ht-l· It decides 
which information should be updated in cell state Ct in referred . As described 
in Eq. 3.10, output of the cell gate Ct is element-wise summation to merge 
previous information and the current input. In finally, the output gate Ot 

controls which information should be going to the next hidden state ht , 
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Chapter 4 

Deep learning based NIDS 

In this chapter, we present the first attempt to design a deep learning ap­
proach that combined sparse autoencoder with recurrent neural networks for 
the intrusion detection system. 

4.1 Proposed method 

In this study, we have proposed the deep learning approach where Sparse 
Autoencoder (SAE) and Recurrent Neural Network (RNN) are combined for 
the network intrusion detection. We evaluate the proposed method based 
on different performance metrics by applying it to the NSL-KDD dataset. 
Figure 4.1 shows the flow diagram of the overall architecture of the proposed 
method. During the dimensionality reduction step, the pre-processed data file 
which has 122 features is loaded into DataFrame using pandas, Python pack­
age. The DataFrame is a 2-dimensional labeled data structure with columns 
of potentially different types. An input, hidden, and output .layer of the au­
toencoder feature extraction model contains 122, 60, 122 nodes, respectively. 
After building the autoencoder model, the data dimension is reduced into 60 
features. Then these features are written into csv file. In the RNN classifier, 
the low dimensional representation data file with 60 features is loaded into 
the dataframe as the input layer, and finally, we attached Softmax function 
as a classifier, to classify the data is normal or abnormal. 

19 



CHAPTER 4. DEEP LEARNING BASED NIDS 

Pre-processing 
NSL-KDD dataset 

�-------------j--------------Dimension reduction : 
(Sparse Autoencoder) , 

I 

Input I O O O ... 0 

; ���d_e�J _?_?_�_-:� � J ____ 
Output! 0 0 0 ... 0 

Latent 
representation 

(a) Train a sparse autoencoder 
using labeled data 

r------------------------ , 

RNN classifier 

!� 
: -----�------

1 Normal or Attack I 

(b) Train a RNN using 
labeled new training data 

Figure 4.1: Overall architecture of the proposed IDS framework 

4.2 The NSL-KDD Dataset 

The public benchmark datasets enable researchers to develop the models and 

compare the performances of the models with the previous research to process 

the data which are similar to the benchmark dataset. In this study, we use 

Knowledge Discovery and Dissemination (KDD) 1999 dataset, which is the 

most widely used dataset for intrusion detection [41]. The dataset was built 

based on the data captured in DARPA-98, which was developed specifically 

for Network Intrusion Detection System (NIDS) research is preferred by most 

researchers. However, there were a large number of redundant records that 

biased the dataset. Therefore, a work [42] proposed a new dataset named NSL­

KDD, which is commonly used in recent studies [43]. The dataset includes the 

KDDTrain+ as a training set, KDDTest+ as a testing set. As illustrated in 

Table 4.1, the training set has 125973 network records which contain normal 

data and 22 types of attack data. The testing set has 22544 network records 

which contain normal data and 37 types of attack data. 

Each record has 41 features categorized into four groups [44] as presented 

in Table 4.2: 

• Basic features: Basic features can be derived directly from packet head­

ers without inspecting the payload. This category contains features 1-9. 
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Table 4.1: Overview on NSL-KDD 

I Total I Normal I DoS I Probe I U2R I R2L 

125973 67343 45927 11656 52 995 

22544 9711 7458 2421 67 2887 

• Content-based features: Domain knowledge is used to access the payload 
of the original TCP packets. For instance, the R2L and U2R attacks are 
embedded in the payloads and normally involve only a single connection. 
To detect these kinds of attacks, one needs some features to be able 
to look for suspicious behavior in the payloads. This includes features 
such as number of failed login attempts. This category contains features 
10-22. 

• Time-based features: These features hold the analysis of the traffic input 
over a two-second window and contains information like how many con­
nections it attempted to make to the same host. This category contains 
features 23-31. 

• Host-based features: These features are similar with previous .group, 
in�tead of analyzing over a two seconds window, how many requests 
made to the same host over x-number of connections. This category 
contains features 32-41. 

For instance, Fi§ure 4.2 shows a distribution of the features in randomly se­
lected 26th line of traffic records of the training set. 

Basic features Content-based features 

507, tcp, telnet, SF, 437, 14421, 0, 0, 0, : 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

1, 1, 0, 0, 0, 0, 1, 0, O,: 255, 25, 0.1, 0.05, 0, 0, 0.53, 0, 0.02, 0.16, normal 

Time-based features Host-based features ' Label 

Figure 4.2: The distribution of the features of traffic records in NSL-KDD 
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Table 4.2: List of features of NSL-KDD dataset 

Feature Description Type 

duration 
Length of the connection 

continuous 
in seconds 

protocol type 
Type of protocol: 

symbolic 
tcp, udp, icmp 

Network service on the 
service symbolic 

destination, http, telnet, etc. 

Normal or error status of 
flag symbolic 

the connection: SF, SO, SJ, etc. 

src_bytes 
Numb.er of data bytes from 

continuous 
source to destination 

•dst_bytes 
Number of data bytes·from 

continuous 
destination to source 

land 
1 if connection is from/to 

symbolic 
the same host/port; 0 otherwise 

Number of bad checksum 
wrong_fragment continuous 

packets in a connection 

urgent Number of urgent packets continuous 

Number of "hot" indicators: 
hot continuous 

entering a system directory, etc. 

num_failed_logins 
Number of failed login 

continuous 
attempts 

logged_in 
1 if successfully logged in; 

symbolic 
0 otherwise 

num_compromised 
Number of compromised 

continuous 
conditions 
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Table 4.2 - continued from previous page 

Feature Description Type 

rooLshell 
1 if root shell is obtained; 

continuous 
0 otherwise 

1 if "su root" command 
su_attempted continuous 

attempted; 0 otherwise 

num_root Number of "root" accesses continuous 

Number of file creation 
num_file_creation continuous 

operations 

num_shells Number of shell prompts continuous 

num_access_file 
Number of operations on access 

continuous 
control files 

Number of outbound 
num_outbound_cmds continuous 

commands in a ftp session 

is_hostJogin 
1 if login is the "root/admin 

symbolic 
group" ; 0 otherwise 

is_gilestJ.ogin 
1 if _login is the "guest" login; 

continuous 
0 otherwise 

Number of connections to the 

same host as the current 
count continuous 

connection in the past 

2 seconds 

Number of connections to the 

srv_count same service as the current continuous 

connection in the past 2 seconds 

% of connections that have 
serror_rate continuous 

"SYN" errors in the count feature 

% of connections that have 
rerror _rate continuous 

"REJ'' errors in the count feature 
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Table 4.2 - continued from previous page 

Feature Description Type 

% of connections that have 

srv _serror _rate "SYN" errors in the srv_count continuous 

feature 

% of connections that have 

srv _rerror _rate "REJ" errors in the srv_count continuous 

feature 

% of connections to the same 

same_srv _rate service among the connections continuous 

in the count feature 

% -of connections to different 

difLsrv _rate services among the connections continuous 

in the count feature 

% of connections to different 

srv _difLhost rate hosts among the connections continuous 

in the srv_count feature 

dsLhost_count 
Number of connections to the 

continuous 
same destination IP address 

Number of connections to the 
dst-1iost...srv _count symbolic 

same destination port number 

% of connections that same 

dst-1iost...same_srv _rate service among the connections continuous 

in the dsLhosLcount feature 

% of connections that different 

dst__host_difLsrv _rate service among the connections continuous 

in the dsLhosLcount feature 
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Table 4.2 - continued from previous page 

No. Feature Description Type 

% of connections that same 
' 

36 dst_host..same_src_port_rate 
source port among the: 

continuous 
connections in the 

dsLhosLsrv_count feature 

% of connections that different 

37 dst_hosLsrv _diff_host_rate 
destination hosts among the 

continuous 
connections in the 

dsLhosLsrv_count feature 

% of connections that have 

38 dst_host_serror_rate "SYN" errors in the continuous 

dsLhost_count feature 

% of connections that have 

39 dst_host_srv_serror_rate "SYN" errors in the continuous 

dsLhosLsrv_count feature 

% of connections that have 

40 dst_host_rerror _rate "REJ" errors in the continuous 

dsLhosLcount feature 

% of connections that have 

41 dst_host_srv_rerror_rate "REJ" errors in the continuous 

dst_host_srv_count feature 

42 label Network traffic type symbolic 

The NSL-KDD dataset is labeled either normal or an attack, with exactly 
one specific attack type. There are four major categories of attacks labeled 
in NSL-KDD: Denial of Service attack, Probing attack, Users-to-Root attack, 
and Remote-to-Local attack. 

• Denial of Service (DoS): Denial of service is an attack category, which 
exhausts the victim's assets, thereby making it unable to handle le-
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gitimate requests. For examples, "neptune", "smurf', "ping of death 
(pod)", etc. 

• Remote-to-Local (R2L): The attackers access the targeted system or 
network from the remote machine and try to gain the local access of the 
victim machine. For examples, "guess password", "spy", "ftp write", 
etc. 

• User-to-Root (U2R): The attacker enters into the local system by using 
the authorized credentials of the victim user and tries to exploit the vul­
nerabilities to gain the administrator privileges. For examples, "buffer 
overflow", "rootkit', "load module", etc. 

• Probe: Objective of surveillance and other probing attacks is to gain 
information about the remote victim. An example of probing attacks 
are "nmap" , "portsweep" , "sat an" , etc. 

The details of each category are described in Table 4.3. These 17 unseen 
network attacks are written in bold, it does not include in the training set. 
This makes the task more realistic. 
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Table 4.3: Attack types and categories 

Attacks in training set Attacks in testing set 

back, land, neptune, pod, 

back, land, neptune, smurf, teardrop, mailbomb, 

po.d, smurf, teardrop processtable, udpstorm, 

apache2, worm 

fpt-write, guess-passwd, imap, 

fpt-write, guess-passwd, multihop, phf, warezmaster, 

imap, multihop, phf, spy, xlock, xsnoop, snmpguess, 

warezclient, warezmaster snmpgetattack, httptunnel, 

sendmail, named 

buffer-overflow, loadmodule, 
buffer-overflow, perl, 

perl, rootkit, sqlattack, 
loadmodule, rootkit 

xterm, ps 

ipsweep, portsweep, ipsweep, portsweep, nmap, 

nmap, satan satan, mscan, saint 

4_.2.1 Data Preprocessing 

The 41 features of the NSL-KDD dataset, it consists of 38 numerical features 
and 3 symbolic features. To accelerate the training of neural network, input 
vector have to be a numerical value. Therefore, we first convert symbolic fea­
tures into a numerical value using the one-hot (1-to-n) encoding. There are 3 
features named "protocoLtype", "service", and "flag", where "protocoLtype" 
has 3 different symbolic values, "service" has 70 different symbolic values and 
"flag" has 11 different symbolic values as shown in Table 4.4. For example, 
"protocoLtype" has 3 symbolic values: tcp, udp, icmp and it presented as 
0,0,1, 0,1,0, and 1,0,0, respectively. In the same manner, we applied the one­
hot encoding to other 2 features, it totally produced 84 new feature values. 
A collapse of the possible values for the symbolic features can be seen in the 
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Table 4.4: List of features with symbolic values 

No. I Features I Values 

1 Protocol Type ( 2) tcp, udp, icmp 

other, iink, netbios_ssn, smtp, netstat; ctf, 

ntp_u, harvest, efs, klogin, systat, exec, nntp, 

pop_3, printer, vmnet, netbios_ns, urh_i, ssh, 

http_8001, iso_tsap, aol, sqLnet, shell, supdup, 

auth, whois, discard, sunrpc, urp_i, Rje, ftp, 

2 Service (3) 
daytime, domain_u, pm_dump, time, hostnames, 

name, ecr_i, bgp, telnet, domain, ftp_data, nnsp, 

courier, finger, uucp_path, Xll, imap4, mtp, 

login, tftp_u, kshell, private, http_2784, echo., 

http, ldap, tim_i, netbios_dgm, uucp, eco_i, 

Remote_job, IRC; http-443, red_i, Z39_50, 

Pop_2, gopher, Csnet_ns 

3 Flag (4) 
0TH, Sl, S2, RSTO, RSTRs, RSTOS0, SF, 

SH, REF, SO, S3 

Afterwards, the rest of 38 features has numerical value with a large dif­
ference between maximum and minimum values. In particular, the feature 
"duration" where the maximum value is 42908 and the minimum is 0 in 
training set. Therefore, we performed a min-max normalization for mapping, 
these features are normalized to restrict the range of the values between 0 and 
1 using Eq. 4 .1: 

xi - min(x) 
Xnorm = - ------

max(x) - min(x) 
( 4.1) 

where x = (x1 , . . .  , Xn) is a number of input values and Xi is the respective value 
of the original feature. Besides, max(x) and min(x) represent the maximum 
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and the minimum values in x given its range. Consequently, the 41 features 
from the original dataset are transformed into 122-dimensional features. 
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4.3 Performance metrics 

All the classifiers used in this research were evaluated using well-known meth­
ods to evaluate the classifiers performance. They are based on the confusion 
matrix of binary problems having positive and negative class values, which 
in this case normal and attack classes. The Table 4.5 shows the two class 
confusion matrix. 

Table 4.5: Confusion matrix for binary classification problems 

Attack 

Predicted 

Attaok Normal . 

TP FN 
Actual -----+-----+----

Normal FP TN 

Accuracy is used as a main evaluation indicator to measure the perfor­
mance of the proposed IDS framework. As well as, we estimate se_veral other 
performance metrics which is widely used to assess a models significance. 

• Accuracy: the proportion of correct classification records to the total 
number of network records: 

TP+TN 
Accuracy = 

TP +TN+ FP 
(4.2) 

• Precision: the proportion of correct classified records to the total 
number of records classified as an attack: 

TP 
Precision = 

T p 
+ (4.3) 

• Recall: the proportion of correct classified records to the total number 
of actual attack records: 

(4.4) 

• Fl-Score: the harmonic mean of precision and recall, which express 
the performance of the proposed approach: 

F 
Precision * Recall 

1 = 2 * ___ . -----
Precision + Recall 
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where True Positives (TP) represent the actual attack records classified as a 
attack; True Negatives (TN) represent the actually normal records classified as 
an normal; False Positives (FP) are the actually normal records misclassified 
as a attack; False Negatives (FN) are the actually attack records misclassified 
as an normal. 

In addition, Area under ROC Curve (AUC) is a useful metric even for 
datasets with highly unbalanced classes and measure· of how well a binary 
classifier can perform predictions of labels. It represents the relationship be­
tween TPR and FPR. 

4.4 Results and Discussion 

During the sparse autoencoder feature extraction, we use the Gradient Descent 
Optimizer with a learning rate 10-3 to minimize error. Batch size of 128 
and number of epochs is 100. In order to increase the detection result, we 
take experiments with changing the hidden layer dimension from 40 to 90. 
When the hidden nodes of 60 gives us the best results among of all evaluation 
metrics. After dimensional reduction, step, our fe&ture dimension mapped into 
60 reduced features. Thus, the RNN classifier model has 60 input vectors and 
2 output vector with learning rate 0.01. The experiments show that the RNN 
model achieved the 80.0% of accuracy when the training epochs are 100. Table 
4.6 shows the confusion matrix of the RNN model on the testing set. 

Table 4.6: Confusion matrix of the RNN model on testing data 

Predicted 

Attack Normal 

"Attack 8818 4023 
Actual - - ----1 -- ---1--- --

Normal 474 I 9229 

We find that the proposed model has higher accur�cy on the testing set 
when the hidden nodes are 40 in RNN classifier model. In that case, we 
use learning rate with 0.01, and the epoch number is 100. We observe the 
classification accuracy on the NSL-KDD dataset as shown in Figure 4.3. The 
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Figure 4.3: The accuracy of the proposed model 

performance of our method is compared with the previous studies [15] [10] [27] 

[20] in classification accuracy on the NSL-KDD dataset as depicted in Table 

4.7. 

Table 4. 7: Accuracy comparison with previous research methods 

. Methods Feature extractor Classification Accuracy (%) 

STL[15] SAE Softmax 88.39 

DNN[lO] DNN DNN 75.75 

RNN[27] RNN RNN 83.29 

CNN[20] CNN CNN 79.1 

Our method SAE RNN 80.0 
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In this study, we have implemented IDS based on deep learning approach, 
which combines the sparse autoencoder and recurrent neural network. The 
first method to extract the low dimensional representation of the dataset while 
reducing a data dimension. In the following, we utilize the RNN algorithm to 
detect network attacks. In final, we assess the performance of the proposed 
method on the NSL-KDD dataset. The chapter results were published in [24]. 
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Chapter 5 

A two-stage NIDS framework 

5 .1 Overview 

This chapter detailed the implementation of the network IDS framework. The 
framework consists of two stages: The first stage is a feature extraction stage 
which has two steps: unsupervised pre-training and supervised fine-tuning. 

The first step is an unsupervised pre-training step that learns the typical 
patterns of the network traffic using a single-layer Sparse Autoencoder (SAE) 
algorithm without target label. Consequently, the•second step is a supervised 
fine-tuning step that extracts the primary features the using preceding optimal 
parameters. Because of network traffic with high dimensionality, the compu­
tation time and training time certainly highly probably. By using dimension 
reduction techniques, it can remove redundant and duplicated features of in­
put data. Then followed by extract appropriate features from the training 
and testing set using prior learned feature extractor. 

The second stage is a an intrusion detection stage based on Long Short­
Term Memory (LSTM) with softmax classifier to identify the traffic as normal 
or attack. 

5.2 Proposed framework 

In this section, we describe a details of our proposed framework. 
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First stage 

Pre-processing 
NSL-KDD dataset 

Pre-processing 
NSL-KDD dataset 

,-______ Trai.nu,1p�t_ _ ___________ , - - - - - - Ji:;,i])illg_Stt - - - - - - - - - - - - - - I 
1 

10-fold ' 
cross-validation 

5-fold 
cross-validation 

Feature learning 
(Single-layer SAE) 

ls cross-validation 
completed? 

Yes 
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Save model 

New training set 

Training and 
testing set 

New testing set 

(a) Train the sparse autoencoder 
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Figure 5.1: The proposed IDS framework based on SAE-LSTM for intrusion 

detection. (a) Unsupervised pre-training (b) Supervised fine-tuning (c) Clas­

sification 

35 



CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK 

As illustrated in Figure. 5.1, the process of the SAE-LSTM framework are 

following steps: 

Step 1. Unsupervised pre-training 

The unsupervised learning algorithms can learn the typical pattern of the 

network and can report anomalies without any labeled dataset. Therefore we 

train a single-layer feature learner SAE ,on training set only .in unsupervised 

manner using 5-fold cross-validation, it involves finding the optimal network 

parameters W, b by minimizing discrepancy between input data and its recon­

struction data. After the network learned optimal V?,lues for W and b, save 

the network parameters. 

Step 2. Supervised fine-tuning 

The unsupervised pre-training can extract informative features that support 

intrusion detection. However, these features have not been identified with 

specific classes. Then we need to do is to further identify these features with 

supervised fine-tuning using labeled dataset. Once we find these parameters 
in previous step, we removed the decoder network and the encoder network 

is retained to produce primary features. As shown in Figure 3.3, the encoder 

network helps to get new training and testing data with low dimension from 

the pre-processed dataset. In other words, training and testing set fed into the 

feature extractor model which has preceding optimal parameters. We trained 

a feature extractor neural network until the minimum error is obtained, save 

the model. Consequently, using this model we can be obtain new training and 

testing set with primary features h1 , h2 , h3 . . .  hk which can well represent the 
input data. 

Step' 3. Classification 

Train a LSTM model using the new training set to obtain ·a function that 

performs prediction of the intrusion detection. Then, apply new testing set 

into the prediction model, and the LSTM model can classifies the testing set 

as normal or attack. The details of each part are given below. 
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5.3 Experimental study 

In this study, all the experiments were implemented using Python on a Ten­
sorflow [45] 1 . 13. 1 toolkit and tested on an Intel Core

™ i7 machine with 
GeForce GTX 1080 GPU. 

5.3.1 Finding optimal hyperparameters in SAE 

Our first experiments are conducted to study development of the feature ex­
tractor model named SAE. As a result of Sect. 4.2.1, a feature dimension of 
the training and testing set has been transformed into 122 dimension. Thus, 
the feature extractor SAE model has 122 input units and 80 hidden units to 
extract the good representation of input data. 

Table 5.1: Hyperparameters for training SAE 

Hyperparameter Values · Selected value 

). [le-06, 2e-05, le-03, le-02] le-06 

p [0.02, 0.05, 0.1, 0.2, 0.3] 0.1 

/3 [3, 4, 5, 6] 3 

We present our experimental results on the impact of hyperparameters on 
performance. First, v.:e will evaluate the effects of hyperparameters (A, p, /3) 
in the 12 regularization and sparsity penalty term using cross-validation on 
the NSL-KDD training set. In this time, we utilized k-fold cross-validation 
(k = 5) to search the best value for these hyperparameters. As show in Table 
5. 1, our SAE model running 5-fold cross-validation method for combination 
of every value of hyperparameters. Figure 5.2 plots the cross validation error 
on different number of p, and the p in penalty term is set to be 0. 1. Because 
our feature extractor model is very sensitive to this hyperparameter in a small 
range (p<0.02). We assess the performance of the fitted model on the val­
idatlon set, the SAE model obtained the lowest cross validation error when 
). = le - 6, p = 0.1, f3 = 3 run over 50 epochs with learning rate equal to 
0.01. Figure 5.3 and Figure 5.4 shows the cross validation error result on small 
range of A and /3. Once selecting proper hyperparameter values, we re-train 
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the SAE model using optimal hyperparameter values on training set with a 
label. Thus, we can extract the appropriate features from. the input, and a 
data dimension is gradually reduced from 122 to 80. 
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cu 
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0.02 0.05 0.1 

Value of p 

0.2 0.3 

Figure 5.2: Validation loss on different value of hyperparameter p 
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Figure 5.3: Validation loss on different value of hyperparameter >. 
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Figure 5.4: Validation loss on different value of hyperparameter f3 
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Experiment on binary classification 

To illustrate the performance of the feature extractor model, T-Distribution 
Stochastic Neighbor Embedd�ng (t-SNE) [46] was used to visualize the feature 
vectors of SAE model. The visualization technique t-SNE can map high­
dimensional feature vectors into 2 dimensions and show distributions of the 
high-dimensional feature vectors. After unsupervised pre-training the SAE 
model with a large number of unlabeled data, we can feed it with labeled data 
to extract feature vectors from the hidden layer. Then we obtained feature 
vectors after using labeled data to do feed-forward inference, and we used 
to visualize these feature vectors using the t-SNE. In order to compare, we 
prepared visualization set which consists of 500 samples are randomly selected 
from each classes (normal, attack). Figure 5.5 is visualization result from the 
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Figure 5.5: Visualization result of raw features 122 for binary classification 
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Figure 5.6: Visualization result of reduced features 80 for binary classification 

raw features, while Figure 5.6 is visualization result from the feature vectors of 
the feature extractor model. For each class, we can observe clearly separated 
clusters, Figure 5.5 shows that two different classes of raw features mainly 
cluster into two parts. In Figure 5.6, the distributions of feature vectors of 
SAE model is similar to the distributions of raw features. For this, we can 
preliminary think that the SAE model under unsupervised pre-training and 
supervised fine-tuning can learns potential features from the network traffic. 

In the following, we evaluate the effectiveness of the LSTM model which 

has 80 input units and 2 output units. We used to apply the 10-fold cross­
validation methc!d to validate results in our LSTM model to prevent over­
fitting. To demonstrate the effectiveness of the SAE-LSTM framework, we 
attach the softmax classification to the output layer of the LSTM model. 

Figure 5.7 shows the effect on the performance of the LST� model taken a 
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- Accuracy 
- Fl-score 

84.8 
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Number of hidden units 

Figure 5.7: Effect of different hidden units for the SAE-LSTM on the testing 

dataset 

different number of hidden units on new testing data, including the mean ac­

curacy and standard deviation for each point estimated over 10 trials. From 

the result, the proposed framework achieves excellent performance on hidden 

units of 50, when running over 40 epochs with l�arning rate 0.01 As presented 

in Figure 5. 7, our classification accuracy is 84.8%±1.21 % on the testing set. 

As well as, our proposed framework achieved 84.5%±1.19% of fl-score. It 

give us the best classification results for intrusion detection. Moreover, the 

training error of the LSTM model as depicted in Figure 5.8, and it considered 

highly probable without overfitting. In the Figure 5.9, Receiver Operating 

Characteristic (ROC) curves are presented, with respect to true positive rate 

and false positive rate. The area under the ROC Curve (AUC) is computed_ 
at 86.2%. 
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Figure 5.8: Training error of the LSTM model on hidden units 50 
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Figure 5.9: ROC curve of the LSTM model on hidden units 50 
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5.3.3 Experiment on 5-class classification 

As well as, we also visualized the feature vectors learned by the SAE model 
in 5 classes as shown in Table 4.3. In the first, we sampled 200 samples are 
randomly selected from each attack class (DoS, Probe, R2L, and U2R) and 
normal data from the raw featured dataset. In totally, 1000 samples are visu­
alized in Figure 5.10. In the next, we built SAE model to extract appropriate 
features for 5-class classification. Same as above mentioned, unsupervised pre­
training the SAE model with a large number of unlabeled data, and transfer 
the learned parameters to the supervised fine-tuning SAE model. Then we 
retrain the model with labeled data to extract feature vectors from the feature 
layer. Finally we received the feature vectors for 5-class dataset, and we used 
to visualize these feature vectors using the t-SNE. In Figure 5.11 illustrates 
the visualization result of representation vectors of the feature extractor. 
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Figure 5.10: Visualization result of raw features 122 for 5-class ·classification 
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Figure 5.11: Visualization result of reduced features 80 for 5-class classification 

In general, the visualization results demonstrate that our feature extractor 
model are quite good to learn primary features from the network traffic. 

In the following, we evaluate our proposed IDS framework for 5-class clas­
sification which includes normal and four type of attacks named DoS, Prob�, 
R2L, and U2R. It outlined in previous section. According to the illustrated 
in Figure 5.1, our feature extractor SAE model extracts the potential fea­
ture vectors from the raw feature dimension, however output dimension of 
supervised fine-tuning model has 5-dimensional vectors. Afterward, train the 
LSTM model using new training set, and we estimated the confusion matrix 
and ROC curve with AUC for each 5 classes. 

The results obtained from the 5-class analysis of the intrusion dataset by 
our proposed IDS framework. We dra:¥ confusion matrix to further evaluate 
the intrusion detection of the proposed IDS framework, which are depicted in 

47 



CHAPTER 5. A TWO-STAGE NIDS FRAMEWORK 

Figure 5.12. From the resu}t, three classes of traffic (DoS, Probe and Normal 
) are classified well. However, the effects of the proposed IDS framework for 
the R2L and U2R classes are not as good as than other three classes. Table 
5.2 shows the detection rate of the different attack types. 
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Figure 5.12: Confusion matrix for the 5-class classification of SAE-LSTM 

Table 5.2: Result of the detection rate for the 5-class 

Traffic type 
DoS 

Probe 

R2L 

U2R 

Normal 

I Detection rate (%) 

48 

81 .6 

76.1 

29.5 

8.9 

97 
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We represented ROC curves with AUC values to evaluate the proposed 
IDS framework in 5-class. 
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Figure 5.13: ROC curve for the 5-class classification of SAE-LSTM 

5.4 Results and Discussion 

In this section, we compare the results of our proposed framework with the 
results of the literature used by different researchers. Table 5.3 reports the 
comparison average accuracy and fl-score of detecting attack between the 
proposed framework and in advance IDS models on the NSL-KDD dataset. 
In terms of accuracy, our model outperforms all listed methods and the pro­
posed framework consistently achieves comparable results with state-of-the­
art methods. 

Tavallaee et al. [42] claimed that their NSL-KDD dataset performed on 
several machine learning algorithms. The results shown in Table 5.3 are in­
ferior to those of our proposed method. Having irrelevant features in the 
dataset can decrease the performance of a model. Therefore, a couple of re­
search works introduce the feature selection by removing irrelevant features. 
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Table 5.3: Performance comparison with other published methods for NSL-

KDD dataset 

References Methods Accuracy Fl-score 

Tavallaee [42] J48 81.05% 

Naive Bayes 76.56% 

NB Tree 82.02% 

Random Forest 80.67% 

Multilayer Perceptron 77.41 % 

SVM 69.52% 

Ingre [10] Artificial Neural Network 81.2% 

Tang [14] Deep Neural Network 75.75% 75% 

Pajouh [11] LDA + Naive Bayes 82% 

Yin [27] Recurrent Neural Network 83.28% 

Li [20] Convolutional Neural Network 

ResNet50 79.14% 79.12% 

GoogLeNet 77.04% 76.50% 

Proposed frame- SAE-LSTM 84.8±1.21% 84.5±1.19% 

work 

Javaid 1 /15} Self-Taught Learning 88.39% 90.4% 

1 The method only evaluated on training data for both training and testing 

set 
2 The '-' indicates that there is no experiment on corresponding metrics. 

Ingre et al. [10] are proposed ANN model that reduced the feature set by 
removing almost all zero values from the dataset. The paper achieved an accu­
racy of 81.2% on the testing set. As a similar, a method described by Tang et 

al. [14] only attempts to use six features ( duration, protocol type, src bytes, dst 

bytes, count and crv count) from 41 features in the SDN environment. From 
their experiments, the result not good enough to detect from some attacks. 
For example, num.Jailed_logins feature stops password guessing attacks by 
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locking the account after a set number of failed login attempts. However, the 
paper by presented Pajouh et al. [11] proposed the two-tier network anomaly 
detection approach using Linear Discriminant Analysis (LDA) for dimension 
reduction. The paper was obtained 82% of detection rate. Therefore, we 
tried to discover the effective features of the dataset through the non-linear 
mapping while reducing the data dimension. 

Several deep learning methods are proposed for the intrusion detection 
without using feature extraction stage. Yin et al. [27] implemented RNN-IDS 
using recurrent neural network. The authors obtained the highest classifica­
tion accuracy at 83.28% on the testing data. A paper introduced by Li et al. 

[20] uses CNN that adopts novel representation learning methods of graphic 
conversion for intrusion detection. The method of transforming the standard 
NSL-KDD dataset data form into 8*8 gray-scale images is introduced. They 
used the ReSNet50 and GoogLeNet network as CNN models. The perfor­
mance of this study are obtained 79.14% of accuracy and 79.12% of fl-score 
on testing data. 

J avaid et al. [15] further introduced more advanced feature extraction 
method based on Self-Taught Learning (STL). The STL has proven that an 
effective feature extraction of intrusion data, and they achieved higher accu­
racy of 88.39%. However, they present the evaluation re�ults on the training 
data for both training and testing using 10-fold cross-validation. 

In summary, these comparisons show that our proposed framework per­
forms better than existing studies expected STL [15] in the classification ac­
curacy which proves the effectiveness of our framework. Furthermore, exper­
imental results validated that our feature extraction SAE model s1gnificantly 
effected to improve the performance of this work. 

5.5 Limitation 

For specific class classification, in particular, the detection rate of the 5-class 
classification represents as not good as in R2L and U2R classes. This outcome 
occurs because of there are too few training instances in the training set a.s 
can seen in Table 4.1. 
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Conclusion and Future Work 

In this chapter, we conclude our thesis with a summary of accomplishments 
and provide insights for the future extensions of some of these works. 

6.1 Conclusion 

This thesis was aimed to develop an effective framework combining single­
layer Sparse Autoencoder (SAE) and Long Short-Term Memory (LSTM) for 
network intrusion detection system. Initially, the feature extractor model 
proposed to extract the most relevant features for use in representing the data. 
The proposed model determines an approximation to the identity function, 
so as to output data that is similar to their input data. In other words, 
the function involves finding the optimal network parameters weight, biases 
by minimizing the discrepancy between input and its reconstruction data. 
Furthermore, we consider to optimize hyperparameter values of the feature 
extractor model using the 5-fold cross-validation method on training set, it 
can help to identify the good representations from the raw input data. In 
the following, the LSTM method proposed for classifying network traffic as 
normal or attack. Then finally, we evaluate the effectiveness of the proposed 
IDS framework on the benchmark NSL-KDD dataset. The experimental result 
shows that the two-stage IDS framework achieved a higher accuracy rate it 
outperformed other similar_ studies. As well as, our SAE model can extract 
effective features leads to obtain a good performance and improve the LSTM 
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model classification accuracy. In conclusion, our proposed IDS frameworks 
works well in binary classification, however 5-class classification was not good 
enough. 

6.2 Future Work 

In the future study, we will emphasize on to increase the model prediction 
performance of the current models and evaluate their performance on more 
attack types. Moreover, we need to more focused on the detection performance 
of the imbalanced dataset. 
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