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Abstract 

In recent decade, many state-of-the-art algorithms on object recognition as well as 

audio recognition have achieved noticeable successes with the development of deep 

convolutional neural network (CNN). However, most of the studies only exploit 

a single type of data. For that reason, the multimodal research field brings some 

unique challenges for researchers to make progress in understanding the things 

(i.e:, the world around us) by processing relate information from multiple modal­

ities. Learning from multimodal sources offers the possibility of capturing corre­

spondences between modalities and gaining an in-depth understanding of an object, 

event, or activity of interest. Furthermore, multimodal fusion is one of the origi­

nal topics in multimodal research with different fusion approaches: early, late, and 

hybrid approaches. Multimodal fusion has a very broad range of applications, in­

cluding image and sentence detection, multimodal emotion recognition, action de­

tection, and especially audio-visual speech recognition (AVSR). The results have 

shown that one modality can enhance the performance of the other by providing 

relevant information. However, extracting robust features from different modalities 

and fusing them in an effective way is crucial for attaining high recognition perfor­

mance. Moreover, it is practically challenging for a learning model to fuse different 



modalities while learning features or to learn joint features while fusing different 

modalities. 

On the other hand, fine-grained recognition (i.e., categorization, classification) 

is one of the latest and most challenging object recognition task which aims to dis­

tinguish similar object categories from another, e.g., species of birds, models of 

cars, breed of dogs, species of flowers, etc. Fine-grained recognition have been 

used for widespread applications such as analyzing biodiversity and scene under­

standing because it has the ability to describe the things in the world in more detail. 

However, compared to generic object recognition, fine-grained recognition is quite 

challenging due to the small difference among categories and can be easily over­

whelmed by other factors, such as pose, viewpoint, or location of the object in the 

image. Due to the recent advances in deep learning lead to remarkable progress on 

fine-grained recognition. Nevertheless, most of the current state-of-the-art methods 

employee part/pose detection approach, which is also a challenging task to achieve 

good performances. 

This dissertation presents a study on multimodal fusion strategies with deep 

neural network and audio-visual data for fine-grained recognition. Since sound also 

provides us important information about the world around us, the goal of this study 

is to enhance the performance of fine-grained recognition by exploiting the combi­

nation of both visual and audio data using CNN, which has been sparsely treated so 

far. For this purpose, this study aims to answer three research considerations: (1) 

what to fuse, i.e., what feature representations to use for audio and visual modality, 

(2) when to fuse, i.e., which fusion strategy performs best when fusing both modal­

ities, (3) how to fuse, i.e., propose or utilize practically efficient methods under 
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different fusion strategies while learning CNN features with both modalities. 

Specifically, the kernel-based fusion approach which fuses audio and visual fea­

tures at the kernel level is studied. First, audio and visual CNN are trained separately 

by adapting the weights of the pre-trained model. After the training, deep neural fea­

tures from both modalities are extracted based on the activation values of an inner 

layer of the trained CNN and combined by multiple kernel learning (MKL) to per­

form the final classification. Since generating deep neural features based on visual 

representations of audio recordings have proven to be very effective, spectrogram 

representation of audio data is used to extract CNN features. To train Audio and 

Visual CNN, the most suitable and large enough dataset is required. Such data were 

not available for audio modality, the audio dataset corresponding to the popular fine­

grained image dataset has been collected with proper matching. Unlike support vec­

tor machine (SVM) based on a single kernel, MKL uses multiple kernels and learns 

optimal composite kernels by combining those kernels constructed from different 

modalities. To automatically determine the kernel weights, an l
v
-norm MKL algo­

rithm that produces non-sparse kernel combinations is employed. The experimental 

results indicate that proposed CNN+MKL method which utilizes the combination of 

audio-visual data outperforms single-modality kernel methods, some simple kernel 

combination methods, and the conventional early fusion method. 

Furthermore, CNN-based multimodal learning models with three types of fu­

sion strategies (early, middle, late) are proposed to settle the issues of combining 

training data of both modalities. The advantage of the proposed method lies in the 

fact that CNN is utilized not only to extract features from visual and audio data 

but also to combine the features across modalities. Experiments are conducted to 
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evaluate the multimodal learning models as well as different fusion strategies with 

respect to the classification accuracy on the integrated dataset. In qualitative and 

quantitative results, a model that utilizes the combination of both data outperforms 

models trained with only either type of data, and fusing them at the late stage per­

forms better with a significant margin. It is also shown that transfer learning can 

significantly increase the classification performance. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Real-world situations involve multiple modalities and human are able to handle in­

formation consist of different information from multiple plural modalities, e.g., we 

see objects, hear sounds, feel the texture, smell odors, and taste flavors. Gener­

ally, modality refers to the way in which something happens or is experienced and 

a research problem is characterized as multimodal when it includes multiple such 

modalities [8]. 

Fueled by the recent advances in deep neural networks, dramatic progress made 

in multimodal research area. Most of the works in multimodal research involve 

a certain types of information as modality such as visual (images or videos), au­

dio(voice, sound and music), natural language (both spoken or written), haptics/touch, 

and other modalities (e.g., medical images such as MRI, EGG or depth images, 

etc.). Multimodal research needs to be able to interpret such multimodal signals 

together in order to make progress in understanding the things and events around 



us. Since signals from different modalities often carry complementary information 

about the same structures in the world, learning-based methods that combine in­

formation from multiple modalities can improve the recognition performance com­

pared with unimodal recognition by utilizing complementary sources of informa­

tion. As a consequence, such learning-based model known as multimodal learning 

(i.e., multimodal deep learning) have been used for tasks such as image and sen­

tence matching [9], RGB-D object recognition [6], action detection [7] and specially 

speech recognition [9, 10, 11, 12], fusing different modalities. The results have 

shown that one modality can enhance the performance of the other by providing 

relevant information. Furthermore, authors of [13, 14] proposed fusion schemes for 

multimodal learning with considering the architectures of neural networks. How­

ever, extracting robust, discriminative features from different modalities and fusing 

them in an effective and efficient way is critical to achieve high recognition perfor­

mance. In addition, it is practically challenging for learning-based methods to fuse 

different modalities while learning feature representations or to learn joint feature 

representations while fusing different modalities. 

Fine-grained recognition is the latest computer vision task that aims to distin­

guish subordinate categories within a basic-level category. In contrast to general 

object recognition, fine-grained recognition is quite challenging due to the subtle 

difference among categories or instances as shown in Fig. 1.1. For example, in fine­

grained bird recognition, we want to identify the species of a bird in an image, such 

as "the red winged blackbird", "the scissor tailed flycatcher", "the evening gros­

break", etc., shown in Fig. 1. 1.b. Other examples include distinguishing different 

species of flowers [15, 16], dogs [17], plants [15, 16], or models of certain products 
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Figure L l: General object classification v.s. fine-grained classification. a) The 

general object classification usually refers to distinguishing visually different object 

categories such as flowers, houses, birds, etc. b) Fine-grained classification, also 

known as subcategory classification, refers to distinguishing subordinate categories 

within a basic category such as distinguishing bird species. 

such as cars [18], aircraft [19], shoes [20]. In fine-grained scenarios, it is necessary 

to learn critical parts of the object in image that can help align objects of same class 

and discriminate between neighboring classes. Fortunately, fueled by the recent 

advances in convolutional neural networks (CNN) lead to remarkable progress on 

fine-grained recognition [5, I, 21]. However, most of the current state-of-the-art 

methods employee part/pose detection approach which is also a challenging task, 

to achieve good performances. For example, methods in [5, 1] heavily rely on the 

part annotations and train the CNN based on these parts, which is time-consuming 

and laborious. Despite the success of deep learning/ it is still very challenging to 

learn critical parts, which refer to highly localized features extracted from images 

are essential to solving fine-grained recognition. 

Within fine-grained recognition, bird species recognition is a widely-studied 

problem to ornithologists, and an important task in ecosystem monitoring and biodi-
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versity preservation. Despite of this, bird species recognition is well-suited topic for 

investigation of multimodal research by integrating audio and visual data. On the 

other hand, sound also provides us important information about the world around 

us, especially for birds. Many animals including birds make sounds either for com­

munication or their living activities such as moving, flying, mating etc. Although 

sound is in some case complementary to visual information, such as when we lis­

ten to something out of view, vision and hearing are often informative about the 

same structures in the world [22]. As a consequence, numerous efforts have been 

devoted to recognize bird species based on auditory data [23, 24] in recent years. 

Adapting CNN architectures for the purpose of audio event detection has become 

a common practice and generating deep features based on visual representations of 

audio recordings has proven to be very effective [25] such as in bird sounds [26, 24]. 

In the context of the background presented above, the main objective of this 

study is to apply multimodal fusion for fine-grained recognition using deep neural 

network and audio-visual data. To improve the affinity between images and sounds, 

we utilize the CNN to extract features from spectrogram of audio recordings. 

The following research considerations may appear in this study: 

• What to fuse? What feature representations to use for audio and visual modal­

ity. Since feature representations learned by CNN have shown significant 

improvement than handcrafted features on most learning task, we consider to 

extract CNN features from both modalities. This is also related to find the data 

( or dataset) of both modalities as well as matching categories or instances of 

those datasets. If the most suitable dataset is unavailable, it is related to ere-
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ating a dataset with less effort. 

• When to fuse? i.e., which fusion strategy performs best in our scenario? One 

of the main consideration is to know what strategy performs best when fusing 

both modalities. The most widely used strategy is to fuse modalities at the fea­

ture level, which is also known as early fusion. The other popular approach is 

decision level or late fusion strategy, which fuses decisions of scores obtained 

from each modality. Also, kernel fusion which also called the intermediate 

fusion by Noble [27], fuses multimodality at the kernel level. 

• How to fuse? This is related to find or propose practically suitable meth­

ods under different fusion strategies while learning CNN features with both 

modalities. 

1.2 Contributions 

Our main contributions are summarized as follows: 

• We propose that the combination of image and sound provide richer training 

signal for fine-grained bird classification under CNN framework, which is the 

first attempt to the best of our knowledge. 

• Different fusion strategies are investigated for fusing audio and image modal­

ities using CNN. 

• We collect at least 10 audio recordings for each bird over 178 species, corre­

sponding to the image dataset CUB-200-2011 [28]. 
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Specifically, we adopt CNN to process jointly the two modalities for fine-grained 

bird classification in an end-to-end manner. 

In Chapter 3, the kernel-based fusion strategy is studied for integrating deep 

neural features of both visual and audio data. In this study, we extract CNN-based 

deep features from both modalities and integrate these features by a more flexible, 

efficient kernel-based fusion method known as multiple kernel learning (MKL) [29, 

30]. Experimental results indicate that MKL is an effective approach to improve 

classification performance while fusing different modalities. 

In Chapter 4, three strategies are investigated for fusing audio and image modal­

ities using CNN: (1) an early fusion strategy in which the feature vectors related to 

each modality are concatenated together and input to the CNN. (2) A middle fusion 

strategy. Features learned by each single modality are combined at the mid-level 

of the CNN. (3) A late fusion strategy. Outputs of single modality are fused to de­

termine a final classification. Experimental results show that the architecture with 

late fusion strategy outperforms among the proposed architectures, which indicates 

that combining decisions of the classifiers from two modalities is superior. In addi­

tion, we apply a transfer learning procedure, which is a robust technique to enable 

leverage knowledge from learned deep learning model to new model, to improve 

classification accuracy. 

The overview of our study on multimodal fusion strategies for fine-grained bird 

classification is illustrated in Fig. 1.2. 

6 



Image Audio 

:� . I���!�' '.!j��l 
• ◊ 

Early fl!lsion 

Pooling 

Late fusion 

Image CNN Multimodal CNN Audio CNN 
----------------- I-----------------

a) Overview o Multimodal CNN architectures 
.············ .. ········································································································ 

■ I I I I I. I 

I I I e • I: I 

■ � �":: � _:-_ - �- _: ��":: 
· .................................................................................................................... . 

b) Feature fusion using Multiple Kernel Learning 

Figure 1.2: Overview of study on multimodal fusion strategies for fine-grained bird 
classification. a) presents the multimodal learning models with different fusion 
strategies which described details in Chapter 4. b) presents the kernel-based fusion 
method that combines deep features that are extracted from Image and Audio CNN 
in a) and combines them using multiple kernel learning. More details presented in 
Chapter 3. 
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1.3 Dissertation outline 

The remainder of this dissertation is organized as follows. 

Chapter 2 presents an overview of prior works in fine-grained recognition as 

well as bird species recognition with CNN, deep neural networks, multimodal fu­

sion, and kernel-based fusion methods. 

In Chapter 3, we present a study on kernel-based fusion for fine-grained bird 

classification by combining deep neural features of both modalities at kernel level. 

First, we introduce an integrated dataset with audio and video modality to conduct 

experiments for evaluating different fusion strategies on fine-grained bird recogni­

tion. Second, we train the audio and visual CNN individually applying the transfer 

learning, and extract deep neural features based on the activation values of an inner 

layer of the trained CNNs. Third, we combine these features by multiple kernel 

learning to perform the final classification. Finally, we discuss the experimental 

results comparing to single modality model and other kernel-based fusion methods. 

In chapter 4, multimodal learning models proposed to combine audio and visual 

modality using CNN by different fusion (early, middle, late) approaches. Precisely, 

we focus on the evaluation of feature fusion performance of deep neural networks 

with different levels (i.e., layers) and investigate how multimodal fusion learning 

contributes towards fine-grained recognition. To address the integration of the audio 

and visual modality, quantitative evaluation and analysis are conducted on the in­

tegrated dataset by comparing the performance between the single modality model 

and multimodality models. Furthermore, to analyze the effects of the multimodal 

learning models, the learned features from each model are qualitatively evaluated. 

8 



The experimental results verified that the multimodal learning model with the late 

fusion strategy outperformed the other models. Subsequently, to confirm that the 

effectiveness of our late fusion approach, a comparative experiment conducted with 

other late fusion methods. 

In Chapter 5, the accomplishments of our study on multimodal fusion strategies 

with CNN for fine-grained recognition using Audio-Visual modality are summa­

rized. 
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Chapter 2 

Literature Review 

Over two decades, considerable efforts have been devoted to studying the relation­

ships between different modalities. Notably, with the advent of deep neural net­

works in the last decade, a number of groundbreaking improvements have been 

observed in multimodal research [8, 31]. 

One of the important category of multimodal research comes from the field of 

multimedia content analysis, where the goal is to build systems that enable inter­

activity across various modalities such as text, image, video, audio, animation, etc. 

For example, in the cross-modal retrieval [32, 33], which aims to take one modality 

(e.g., text) as the query to retrieve relevant data of another modality (e.g., image). 

A second essential research area of multimodal research is multimodal fusion 

(combined problem-solving approaches), e.g., in audio-visual recognition [IO], ac­

tion [7] and emotion [34] recognition, where improving recognition (e.g., speech) 

performance compared with single modal (e.g., audio information) recognition by 

utilizing complementary sources of information (e.g., visual information). 

Our study is related to multimodal fusion with early, middle, late and kernel-
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based fusion as well as deep neural networks for fine-grained recognition. The 

chapter gives detailed descriptions of these researches and highlights the connec-

tions and differences between our study and existing works. 

2.1 Fine-grained recognition 

Recently, a variety of approaches have been proposed for fine-grained recognition 

problem in different domains such as bird species [5, 1, 35, 36], dog breeds [17], 

plant species [15, 16] and product models [18, 20]. 

In the case of bird species recognition, current state-of-the-art methods typi-

cally adopt CNN-based end-to-end schemes [5, 1, 37, 38, 39], to learns high-level 

discriminative features for recognition. Since the visual differences between cate-

gories are too small and can be easily overwhelmed by other factors such as pose, 

viewpoint, or location of the object in the image [21]. A common approach for 

'',
.
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Warped body 

Entire image 

Detection Alignment 
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Representation Classification 

Figure 2.1: Pose normalized part-based deep neural networks [ 1]. Given a test 
image, the head and body region is detected and aligned using the learning model 
that learned pose prototypes from training images with keypoint annotation. Each 
region (head, body and entire region) is fed through a deep convolutional network, 
and features are extracted from multiple layers. Finally, features are concatenated 
into a single feature vector and fed to a classifier. 
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overcome such factors is to localize key parts of the object and to develop model 

based on these parts. For example, in fine-grained bird recognition, authors of [5, 1] 

used head and body as a key parts which are defined manually and the part detectors 

are trained in a supervised manner as shown in Fig. 2.1. However, annotating parts 

is a time-consuming and laborious as well as significantly challenging than labeling 

the image. Therefore, capturing key parts from object in the image is important 

and challenging part in fine-grained recognition. To overcome this issue, weakly 

supervised or unsupervised parts detection methods proposed in [40, 21, 41]. Nev­

ertheless, subtle visual differences existed in local regions from similar fine-grained 

categories are still difficult to learn. 

2.2 Deep neural networks 

In classical computer vision, for example an image classification task, features are 

extracted from one class of objects (e.g., cars, birds) and treated these features as 

a sort of "definition" (known as a bag-of-words) of the object. For example, two 

simple features that can be extracted from images are edges and corners. Finally, 

the image is classified using these features. The difficulty with this classical (i.e. 

traditional) approach is that it is necessary to choose which features are important 

for that specific object. As the number or classes is increase, feature extraction 

and/or selection become more complicated. To decide which features are best to 

describe different classes of objects, a long trial and expert knowledge are necessary 

for the computer vision engineers. 

Consequently, deep learning introduced the concept of end-to-end learning 

12 



where machine is told to learn what to look for with respect to each specific class 

of object. Comparing to the traditional computer vision, the deep learning model 

is trained on a dataset of images which have been annotated with what classes of 

an object are present in each image, where neural networks discover the underlying 

patterns in classes of images. With all the state of the art approaches in computer 

vision employing this methodology, the works of the engineers has changed from 

extracting hand-crafted features to deep learning architectures. The comparison be-

tween two techniques is shown in Fig. 2.2. The detail analysis of two techniques 

described in [42]. 

Deep learning approaches which employ deep neural networks (DNN) have sue-

cessfully applied for single modality such as text [ 43, 44, 45], images [ 46, 4 7, 48] 

and audio [49, 50] showing their ability to learn representations directly from raw 

data and can be used to extract a set of discriminative features. Convolutonal neural 

network (CNN) is one powerful deep architecture of DNN commonly utilized for 

image classification [47, 48, 3, 51, 52]. 

One of the first CNN networks is LeNet-5 proposed by Le Cun et al. [53] 

Input 
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·lwtiH Features H 
Feature Engineering 

(Manual Extraction+Selection) 
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Feature Learning+ Classifier 
(End-to-End Learning) 

(b) 

" 

I 1 Output 

Classifier with 
shallow structure 

Output 

Figure 2.2: Traditional computer yision vs. Deep learning technique. The figure is 

taken from [2]. 
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Figure 2.3: Typical CNN architecture with convolution, pooling and fully connected 

layers. 

that recognizes hand written digits. It consists of a chain of convolutiona] layers, 

pooling (i.e. subsampling) layers and fu11y connected ]ayers as shown in Figure 

2.3. CNN is a type of feed-forward neural network architecture that uses learnable 

filters (weights) that slide or convolve across the input-space to analyze distance-

pixel relationships. The pooling layer is applied to decrease the input-space so that 

computing time can be reduced. The last layers of CNN are fully connected and the 

final layer applies a soft-max function to its input to obtain probabilities for each 

class (in the case of handwritten digits recognition, the number of classes is 10). 

The network parameters are trained using back-propagation [48] algorithm as in the 

case of the usual neural networks. 

In 2012, Krizhevsky et al. [3] achieved state-of-the-art performance in the Im­

ageNet Large Scale Recognition Challenge (ILSVRC) by using deep CNN named 

AlexNet. The architecture of AlexNet demonstrated in Figure 2.4. AlexNet shown 

that deep or layered compositional architectures can capture salient aspects of given 

images through the discovery of salient clusters, parts, and mid-level features. An 

example of different activation layers, feature maps in the CNN is shown in Fig-

ure 2.5. It has proven that CNN architectures that learn multiple levels of abstrac-

14 



128 Max 
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Figure 2.4: The architecture of AlexNet, which composed of 5 Convolution layers 

with 3 fully connected layers. The figure is taken from [3]. 

tion, can significantly improve the recognition accuracy in many object recognition 

tasks. The graph given in Figure 2.6 shows the success of CNN and its variants 

[3, 54, 51,52] overtime on ILSVRC challenge. 

The use of CNN for distinguishing between fine-grained recognition such as 

bird species categorization has been proposed in many studies [5, 1, 37, 38, 39], 

which employ part/pose based approaches to achieve good performance. Besides, 

CNNs have also been applied for speech processing [55, 56]. In [25, 57], authors 

utilized CNNs to extract features from spectral representations of audio recordings. 

As a consequence, numerous efforts have been studied to recognize bird species 

based on auditory data [23, 26] in recent years. It has become common practice 

adapting CNN models for the purpose of audio event detection and generating deep 

features based on the visual representations (such as spectrogram) of audio record­

ings has proven to be effective such as in bird sounds [23, 26]. 

In this study, instead of employing part/pose based approaches we will focus on 

integrating raw image an audio using conventional CNN, in order to know which 

fusion strategy performs best. On the other hand, since the visual representation 

from audio recordings proven to be effective when applying CNN, thus we use 
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Figure 2.5: Visualization of feature kernels. The results are produced by using deep 
visualization toolbox by Yasinski et al. [ 4] 
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Figure 2.6: Performance of winning entries in the ILSVRC competitions from 2011 

to 2017 in the image classification task. 

spectrogram representations for audio data. 

Transfer learning 

One of the key reasons for the success of DNN is a large amount of data, which is re-

quired to train DNN in order to converge the cost function at a global minimum and 

avoid overfitting. However, for some tasks such as fine-grained recognition where 

the size of the dataset is significantly smaller than a general large-scale dataset (such 

as ImageNet [58]), a process known as transfer learning (Figure 2.7) can be used 

as a powerful tool to enable leverage knowledge (e.g., features, weights) from pre-

viously trained models for training new models without overfitting. A typical way 

to perform transfer learning is to train a DNN from a large dataset (such as Ima­

geNet [58]) and fine-tune the network parameters (i.e., transfer the knowledge) on 

the target dataset. The reason why transfer learning works well on CNN is that 
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Network for Task 1 

Large dataset 

Knowledge (e.g., features, weights) 

Network for Task 2 

Small dataset 

Figure 2.7: Transfer learning is a learning process of a new task relies on the previ­
ous learned task. The advantage of the transfer learning process is that a new model 
can be trained faster, more accurate even there is a small training data. It is often 
still beneficial to initialize with weights from a pre-trained model. For example, 
in [5], authors trained their CNN model by fine-tuning the ImageNet model on the 
fine-grained bird dataset. 

CNN uses hierarchical features in its processing pipeline, which means the initial 

layers are likely learned a general features while late layers are high-level abstract 

features made from combinations of lower-level features and so these low-level and 

mid-level features can be used to initialize other CNNs. Recent studies [5, I] on 

fine-grained classification have taken advantage of this fact to obtain state-of-the­

art results. 

Since transfer learning from a general dataset has proven to be an effective and 

efficient method for fine-grained recognition, we explore different methods for fine-

tuning CNN on our multimodal fusion study. 
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Figure 2.8: McGurk effect. When human hears the syllable "ba-ba" while see the 
mouth form "ga-ga" and perceives the new sound "da-da". 

2.3 Multimodal fusion 

Multimodal fusion is one of the original topic of multimodal research area. Multi­

modal research has a long history from audio-visual speech recognition to a recently 

renewed interest in computer vision applications which applies deep learning ap­

proach. According to [8], there are four eras of multimodal research as follows. 

• The "Behavioral" era ( 1970-1980). One of the earliest works of multimodal 

research is audio-video speech recognition (AVSR), which is motivated by 

the McGurk effect [59] (Figure 2.8)-interaction between hearing and vision 

in speech perception. In the speech recognition community, most of the early 

studies [60] employed hidden Markov models (HMMs) at that time. Recently, 

AVSR receives the growth of an interest from the deep learning community 

[10]. 

• The "Computational" era (1980-2000). A second era of multimodal research 

includes the field of multimedia analysis and multimedia retrieval. In that 
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time, multimodal fusion [31] is a practical approach for improving the re­

trieval performance. 

• The "Interaction" era (2000-2010). In the early 2000s, multimodal interac­

tion with the goal of understanding human multimodal behaviors (such as 

emotion recognition [61]) during social interactions was an emerging field in 

multimodal research. 

• The "Deep learning" era (2010s-until). Recent advance in deep learning has 

emerged in multimedia research to make progress in understanding the things 

or events by processing relate information from multiple modalities. Learning 

from multimodal data offers the possibility of gaining the deep understanding 

of things or events. Multimodal learning algorithms [62, 7, 6, 13, 14] have 

been studied for various recognition tasks by offering how neural networks 

can be used to construct shared or joint representation, how to train them and 

what advantages can be gained. 

This dissertation relates to the deep learning era of multimodal research, which 

aims to study multimodal learning for fine-grained bird recognition by combining 

audio and visual data using DNN. 

Multimodal fusion strategies in neural networks 

Recently, multimodal learning algorithms performs state-of-the-art performance for 

tasks such as image sentence matching [62], action recognition [7], RGB-D object 

recognition [6], and speech recognition (audio-visual speech recognition [10] and 

visual-only speech recognition [9]). Among the many approaches for multimodal 
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learning, multimodal fusion is commonly realized by three different categories of 

approaches. 

First, in early fusion approach, feature vectors from multiple modalities are con-

catenated and transformed to acquire a multimodal feature vector. A typical early 

fusion scheme is presented in Fig.2.9. For example, Ngiam et al. [13] utilized DNN 

to extract fused representations directly from multimodal signal inputs. 

Likewise, in middle fusion approach, Huang et al. [14] employed deep belief 

network (DBN) to combine mid-level features learned by a single modality. General 

middle fusion scheme is present,ed in Fig.2.10. 

Lastly, in late fusion approach, outputs of unimodal classifiers are merged to 

determine a final classification. A typical late fusion scheme is shown in Fig.2. 1 1. 

Raw data or 

o Low-level feature 

Raw data or 

Low-level feature 

Combined 

Decision 

Figure 2.9: General early fusion scheme. Each modality concatenated to acquire a 
multimodal vector or each modality is learned individually as a first layer and joined 
into a shared representation as a second layer. 
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Figure 2.10: General middle fusion scheme. The fusion is performed in the middle 
of the model. 

For example, in RGB-D object recognition, Eitel et al. [6] proposed two separate 

CNN streams processing RGB and depth data independently are combined with late 

fusion approach. Therefore, Simonyan et al. [7] proposed two-stream (one stream 

processing spatial features from RGB image inputs, while the other stream pro-

cessing temporal features from optical flow inputs) network architecture designed 

to recognize an action for videos. They combined two streams by concatenating 

features and by averaging prediction scores from two CNNs, respectively. In con­

trast to these works, we propose simple yet effective concatenation, summation or 

multiplication based fusion methods with respect to different fusion strategies. 
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Figure 2.11: General late fusion scheme. The decisions of unimodal networks are 
joined to determine final decision. 

2.3.1 Kernel-based fusion 

Recently, kernel-based fusion methods provide a new approach for feature fusion. 

This subsection gives a brief introduction to a support vector machine (SVM), mul­

tiple kernel learning and the related works that employee kernel fusion. 

Support vector machine 

Kernel methods such as support vector machines (SVM) [63] have become a pop-

ular tool in data classification and many kinds of machine learning tasks since its 

introduction. Given a labeled training set { (xi, Yi)}{�,1, where xi is a d-dimensional 

input vector and label Yi <::; { + 1, -1}. SVM performs classification by finding the 

hyperplane that maximizes the margin between two classes. The use of kernel al-
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lows the SVM to find the optimal hyperplane in the feature space induced by the 

mapping function <I? : Rd t-+ 1-l. 

The resulting linear discriminant function in the feature space is defined as 

(2.1) 

The classifier can be trained by solving the following optimization problem: 

min 
w,b,t; 

llwll2 

+ CL (i 
i=l 

(2.2) 

where w is the normal vector to the hyperplane, (i is the slack variable which 

measures degree of misclassification of ;r;i, C is the cost parameter that controls the 

trade-off between the generalization of SVM and classification error, and b is the 

bias term. 

By use of a kernel function, k(xi, Xj) = (<I?(xi), <I?(xj )) , it is possible to compute 

the separating hyperplane without explicitly carrying out the mapping into feature 

space where ( •, •) presents inner product. To ensure that a kernel function actually 

corresponds to some feature space, it must be symmetric, continuous, and positive 

semi-definite. This kind of kernels called Mercer's kernel and typical choice for 

kernels are 

• Linear kernel: 

(2.3) 
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• Radial basis function (RBF) kernel: 

(2.4) 

• Sigmoid kernel: 

(2.5) 

• Polynomial kernel: 

(2.6) 

Each kernel corresponds to some feature space and because no explicit mapping 

to this feature space occurs, optimal linear separators can be found efficiently in 

feature spaces. 

Multiple kernel learning 

Since kernel functions can be seen as similarity measures between a pair of in­

stances, it is logical to assign different features xk with different kernel functions kk 

and combine them at the kernel level. Hence learning such a kernel combinations 

suitable to the problem has been an active area of research over the past few years. 

One way of learning kernels is via the Multiple kernel Learning (MKL) [29, 64, 65] 
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Figure 2.12: Single kernel SVM vs. Multiple kernel SVM. In multiple kernel, it is 
a weighted concatenation of feature maps induced by base kernels. 

framework, in which the kernel k is learnt as a conic combination of the given base 

kernels k1, k2, ... , kk : k = E7= 1 /3iki, /3i 2 0, \:h. Here {3 is a coefficient to be 

learnt in the optimization problem. The difference between single kernel SVM and 

multiple kernel SVM is shown in Fig. 2.12. Details will be discussed in section 

3.3.2. 

Related works with kernel fusion 

One practical kernel-based approach for feature fusion is to concatenate several 

features into one single vector and then train a single kernel classifier [66, 31 ]. For 

example, in [66], authors adopted SVM to detect semantic concepts in videos us-

ing visual, audio, and textual modalities. They used audio, video and text scores, 

and combined them in a high-dimensional vector before being classified by a single 

SVM. However, such concatenation requires proper normalization of features ex­

tracted from different sources; otherwise, the prediction would be easily dominated 

by predominant feature. Moreover, this method treats multiple features equally, be-
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ing incapable of effectively exploring the complementary information of different 

modalities. 

Another method of kernel-based fusion approach is multiple kernel learning 

(MKL) [29, 30], which learns optimal composite kernel through combining basis 

kernels constructed from different features of modalities. For example, Wu et al. 

[67] combined visual and textual features using l
p
-norm MKL for modality classi­

fication of medical images. Yeh et al. [68] proposed a slight modified MKL frame­

work that extracts heterogeneous features from data then construct multiple kernels 

for each feature by selecting different parameters for feature fusion. Since the mul­

tiple kernels can come from different sources of feature spaces offering improved 

classification performance, it has been successfully applied in object detection [69], 

multimodal affect recognition [70], emotion recognition [71, 72], and Alzheimer's 

disease classification [73]. Moreover, Poria et al. [70] used the combined feature 

vectors of textual, visual, audio modalities to train a classifier based on MKL (SPG­

GMKL). They used CNN to extract features from the textual data. 

· 2.4 Summary 

In this chapter, related works regarding fine-grained recognition, deep neural net­

works, and multimodal fusion has been reviewed. The reviews in Section 2.1 clearly 

show that fine-grained bird recognition from an image is the quite challenging task 

and state-of-the-art algorithms typically adopt part/pose-based CNN, where it in­

cludes the annotation process which takes time and effort. Therefore, •an inves­

tigation of multimodal fusion is crucial to improve the recognition performance. 
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Moreover, the reviews in Section 2.2 show that how deep neural networks have 

contributed towards achieving state-of-the-art performance in image recognition, 

speech recognition, as well as fine-grained recognition. Finally, the reviews in Sec­

tion 2.3 show that multimodal research has a long history and how recent advances 

of deep learning renewed the multimodal research areas in terms of popularity and 

performance. Furthermore, different fusion strategies including early fusion, late 

fusion, and kernel fusion are reviewed in detail. 

Based on these backgrounds, the research interest in this dissertation is to seek 

possibilities for multimodal fusion on fine-grained bird recognition using deep neu­

ral networks. This dissertation is composed of the following two parts. First, the 

study on the extraction of deep neural features from audio and visual modality and 

combine these features using multiple kernel learning for fine-grained bird clas­

sification is done in Chapter 3. Second, CNN-based multimodal learning models 

with three fusion strategies ( early, middle, late) is proposed to settle the issues of 

combining multimodality. 
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Chapter 3 

Audio and Visual Deep Feature 

Fusion using Multiple Kernel 

Learning 

3.1 Introduction 

In this chapter, we present a study on classifying bird species by combining deep 

neural features of both visual and audio data using kernel-based fusion method. 

Specifically, we extract deep neural features based on the activation values of an in­

ner layer of CNN. We combine these features by multiple kernel learning (MKL) to 

perform the final classification. In the experiment, we train and evaluate our method 

on a CUB-200-2011 standard data set combined with our originally collected audio 

data set with respect to 200 bird species (classes). The experimental results indicate 

that our CNN+MKL method which utilizes the combination of both categories of 

data outperforms single-modality methods, some simple kernel combination meth-
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Figure 3.1: Overview of our kernel-based fusion for fine-grained bird classification. 
After the dataset creation which is presented in Chapter 3.2, the deep neural features 
from both modalities are extracted using fine-tuned CNN and combined at kernel 
level using multiple kernel learning. 
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ods, and the conventional early fusion method. 

3.2 Dataset 

In this study, we use the popular fine-grained CUB-200-2011 [28] bird dataset 

and our originally collected sound dataset from sharing bird sound database Xeno­

Canto 1 . 

CUB-200-2011 [28] dataset contains 11788 images of 200 species of birds, 

with each image downscaled to 227 x 227 pixel. Spectra-temporal features (spec­

trogram) are extracted from audio recordings that we collected from the Xena­

Canto to be used as the audio representation. Based on the 200 species of the 

CUB-200-2011, we try to harvest at least 10 different audio recordings for each 

species. As a result, audio recordings over 178 species were collected completely 

(#recordings 2: 10), audio recordings from 19 species were collected deficiently 

(0 < #recordings < 10), and 3 species could not be collected. The spectrograms 

of the audio are obtained by using short-time fourier transform (STFT) over 10 sec­

onds audio frames, windowed with Hanning window (size 512, 50% overlap). The 

reason is, the sounds of birds are usually contained in a small portion of the fre­

quency range (mostly around 2-8 kHz) as stated in [24], so we only extract features 

from the range of (0, 10) kHz. In order to focus only sounds produced in the vocal 

organ of birds (i.e. calls and songs), first we obtained the maximum amplitude of 

the audio and removed a frame which contains only amplitude less than 1/ 4 of the 

maximum amplitude. Finally, the spectrograms are saved as 227x227 pixel color 

1 http://www.xeno-canto.org 
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Figure 3.2: (a) Radio (top) and spectrogram (bottom) of the black-footed albatross. 
(b) The spectrogram of 10 seconds duration, which will be fed into the bird classi­
fication model. 

images. The generation of the spectrogram is shown in Fig. 3.2. 

Since we could not harvest complete audio recordings for 200 species of CUB-

200-2011, we had an imbalanced dataset for audio data. There are a few ways to 
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address this problem such as under-sampling, over-sampling etc., The idea of under­

sampling or data reduction techniques that remove only a majority of class samples 

is not an ideal solution. Another approach is to apply over-sampling method [74], 

which have been proposed as a solution to imbalanced datasets. Consequently, 

simple random minority over-sampling has been performed to balance the dataset 

through duplicating some random samples of the deficiently collected classes that 

have #recordings > 5. As a result, the audio dataset contains 4807 spectrograms 

of 194 species of birds. Several examples including both images and spectrograms 

over different bird species are shown in Fig. 3.3. We follow the standard train­

ing/test split of CUB-200-2011 dataset suggested in [28]. The sound dataset is split 

into two halves for training and test set respectively. 

Both Audio and Visual CNNs are trained in a supervised manner, thus we create 

integrated dataset by matching two datasets and corresponding labels using HDF5 

2 file format. The most straightforward and common approach of matching two 

datasets is to generate all possible combinations of image and audio samples for 

each class, which creates N x M pairs of samples when there are N image and 

AI audio samples for a certain class. This approach can be good solution while en­

larging dataset, but large duplicate samples can lead to overfitting. Although it was 

reported in [75] that usually duplicating samples in a daraset has a detrimental effect 

on the model and accuracy rate. Therefore, random matching has been performed 

to match two datasets through randomly picking 5 audio samples for each image 

samples. 

2https://www.hdfgroup.org/HDF5/ 
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(a) (b) (c) (d) 

Figure 3.3: An example of CUB-200-2011 and audio dataset: (a) the yellow bellied 
flycatcher, (b) the seaside sparrow (c), the western grebe, and (d) the pacific loon. 

3.3 Methodology 

Extraction of deep neural features of audio and image modalities and combining 

them for classification using MKL are described in this section. 

3.3.1 Feature extraction 

We use a fine-tuned CNN as a trainable feature extractor to extract deep neural fea-

tures for both modalities. CaffeNet [76], a variation of the structure proposed by 
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Krizhevsky et al. [3] (Section. 2.2), which is conventional CNN for large-scale im­

age classification used to extract CNN-based features from both modality. The Caf­

feNet consists of 5 convolutional (conv) layers (with ReLU activation, max pooling 

layers follow the first, second and fifth convolution layer, and local normalization 

is applied in the first and second convolutional layer) followed by 3 fully connected 

(FC) layers with ReLU activation and a softmax classification layer as shown in 

Fig. 3.4. 

Softmax 

FC8, 194 

t 
FC7, 4096 

t 
FC6, 4096 

pool5, max 

conv5, 256 

t 
conv4, 384 

t 
conv3, 384 

pool2, max 

conv2, 256 

pooll, max 

convl, 96 

( Input 

Figure 3.4: The CNN architecture used to train the image and audio modality. The 
comma separated parameter after the convolutional layer indicates the number of 
channels. 

Images and spectrograms from both datasets were downsized to 227 x 227 pixels 

according to the CaffeNet architecture. 

We train the image and audio CNN separately by adapting the weights and bi­

ases of the first seven layers derived from CaffeNet pre-trained network, discarding 
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the last fully connected layer. Instead of last fully connected layer of the pre-trained 

model, we randomly place the initialized new fully connected layer for 200-class 

bird classification (in our experiment, 194 classes due to the lack of audio dataset). 

The CNNs were trained using mini-batch stochastic gradient descent with batch 

size= 32. We initialized the fine-tuning learning rate as 0.001, which is a tenth of 

the initial CaffeNet learning rate and dropping it by hand whenever the test error 

stops improving. After this training, we can extract deep neural features based on 

the activation values of the inner layers of each CNN. In this paper, we use the 

activation values (194 features of visual and audio modality respectively as shown 

in Fig. 3.5b) of the last FC layer of each CNN as the feature vectors to train MKL. 

3.3.2 Feature combination with MKL 

In order to combine audio and visual features, and train the final classifier using 

MKL, we create multimodal feature dataset by matching two datasets and corre­

sponding labels. We perform random matching by randomly picking five audio 

samples for each image sample. Furthermore, we concatenate pair of features to 

obtain multimodal feature (194 + 194 = 388 features) and this combined feature 

vector along with the labels are used to train a classifier with MKL. 

Unlike SVM (Section. 2.3) based on a single kernel function, MKL uses multi­

ple kernels and learns the optimal convex combination of them. Research in MKL 

[29] has focused on both developing new MKL formulation (a linear combination, 

non-linear combination and data-independent combination) as well as their opti­

mization. Given a labeled training set {(xi, yi)}f:,1, where Xi is a d-dimensional 

input vector and label Yi· A linear (convex) combination of base kernels is formu-
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Figure 3.5: Deep neural features of the intermediate layers in CNNs. These are 
examples of activation values at different layers in CNNs, where (a) shows the fea­
tures of a different convolutional layer of image (left) and audio (right) network, 
and (b) shows the last FC layers of both networks which are used to train MKL. 
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lated as follows: 
K 

k(xi, Xj) = L ,Bkkk(xi, Xj) (3.1) 
k=l 

where ,Bk > 0, I:,[=
1 
,Bk = l, kk is a kth of the K available kernel, and ,Bk denotes 

the weight of the kth kernel. 

In the primal form of MKL for classification, Xi is translated via K mappings 

<h(x) i---+ Rd, k = l, . . .  , K from the input into K feature spaces ( <I>1 (xi), . . .  , <I> K(xi)) 

where d denotes the dimensionality of the feature space. Then MKL solve the fol­

lowing optimization problem: 

min 
w,b,c; 

K 

s.t. Yi(I:(wk, <I>k(xi)) + b) 2: 1 - (;i, \li 
k=l 

K 

L,Bk = 1,,Bk 2: 0,( 2: 0. 
k=l 

(3.2) 

Here, w is the normal vector to the separating hyperplane, b is a bias term, C is 

the trade-off between the generalization of MKL and its training errors which are 

similar to SVM, and ( •, •) presents inner product. 

We can see that the formulation above imposes an li-norm regularization on the 

kernel weights when ll,Blh = 1, which tends to have sparse optimal solutions (i.e., 

during the learning most kernels are assigned zero or very small weights). Con-

sequently, a non-sparse version of MKL. is proposed by Klaft et al. [64], where 

an lrnorm regularization (11,6112 = 1) is imposed instead c:if ii-norm (ll,Blh = 1). 

Furthermore, Klaft et al. [65] proposed efficient optimization method for arbitrary 

l
p
-norm (ll,611� :::; 1) with p 2: 1. In this work, lp-norm MKL [65] algorithm is em-

38 



ployed to learn the optimal convex combination of multiple kernels and optimizing 

kernel weights. We also try SPG-GMKL [77] implementation. 

3.4 Experiments and Results 

In this section, we compare our method with single-modality models and other fea­

ture combination kernel methods for bird species classification. MKL-based meth­

ods explored are l
p
-norm MKL and SPG-GMKL. Other compared methods in­

clude training combined features using single kernel SVM classifier (CNN+SVM) 

and an averaging kernel (AverageMKL) which is a simple kernel combination. 

In the experiments, we use the implementations of SVM, SPG-GMKL3, and 

lp -norm MKL in Shogun toolbox4 with one-vs-all approach for the multi-class. 

problem. In all experiments, the cost parameters C E {1, 10, 100, 1000} and other 

parameters such as kernel parameters are tuned by 5-fold cross-validation on the 

training set. The performances of all methods are measured by their accuracies on 

Table 3. 1: The accuracy (%) of SVMs by training with single modality feature and 
concatenated features with different kernels. 

Kernel/Feature Image Audio Multimodal 

Linear 35. 16 58. 10 74.74 
RBF 35.27 58.57 75.74 

Poly 35. 14 58. 12 74.76 

Sigmoid 36.10 59.01 74.85 
Laplacian 36.10 59.01 74.67 
Chi-squared 34.44 58.25 73.67 
Additive chi-squared 33.40 57.23 73.65 

3http://www.cs.cornell.edu/-ashesh/pubs/code/SPG-GMKL/download. 

html 
4http://www.shogun-toolbox,org 
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the test set. 

3.4.1 Quantitative results 

Since this dissertation aims to integrate image and audio modality, it is necessary to 

compare the performance between the single modality method and feature combi­

nation method. 

As a baseline, we first evaluate the performance of a single kernel SVM (i.e. sin­

gle modality) on each feature individually. We test linear (Eq. 2.3), RBF (Eq. 2.4), 

Polynomial (Eq. 2.6), Sigmoid (Eq. 2.5), Laplacian, Chi-squared and Additive chi­

squared kernels. The results are shown in Table 3. 1. The results show that the audio 

modality performed better than image modality. Furthermore, as shown in Table 

3.1 ,  we also trained combined features using a single kernel classifier (CNN+SVM), 

which is one of the practical kernel-based feature fusion approaches. It can be seen 

that using only a single kernel classifier for multimodal feature improved the clas­

sification accuracy by a large margin. The best performance of each feature and 

multimodal feature are given in bold font. It shows that RBF kernel achieves the 

best performance for multimodal feature, and gets third for the single modalities. 

For MKL experiments, five RBF with gamma from {2-13
, 2-12

, 2-11, 2-10, 2-9} 

and four polynomial kernel with powers of {1, 2, 3, 4} with similar to [70] are used 

for evaluation. For l
p-norm MKL methods, we consider norm p E {1, 1.2, 1.5, 2, 4, 8, 16}, 

which are presented as "CNN+MKL'' with their norms. The classification perfor-

mance of different methods are given in Table 3.2. Compared to single-modality 

methods, all methods that utilize the combination of both features efficiently im-

prove classification accuracy. Moreover as can be seen, "CNN+MKL" methods out-
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Table 3.2: The classification performance of different feature combination methods. 

Method Accuracy(%) 

CNN+SVM (Early) 75.74 

CNN+AverageMKL 74.09 

CNN+SPG-GMKL 73.24 

CNN+MKL (p = 1) 77.61 

CNN+MKL (p = 1.2) 78.09 

CNN+MKL (p = 1.5) 78.13 

CNN+MKL (p = 2) 78.01 

CNN+MKL (p = 4) 78.09 

CNN+MKL (p = 8) 78.15 

CNN+MKL (p = 16) 78.11 

perform other feature combination methods such as early fusion and AverageMKL. 

SPG-GMKL Moreover, lp-norrn MKL achieves their best performance at 78.15 with 

p= 8. 

3.4.2 Qualitative results 

We perform a qualitative study to analyse the effects of our method by comparing 

single modality and feature combination methods. First, we select some classes 

where the feature combination methods provide the correct answer while the single 

modality method produces the wrong classification. Figure 3.6 shows some exam­

ples of single modality vs. combined features classification. In the first column, 

the single modality method predicts the input image and spectrogram as the 'black 

footed albatross' and 'boat tailed grackle' respectively rather than 'nighthawk'. The 

single modality method also misclassified in case of the second column. However, 

the feature combination methods are able to predict right answer proving that com-
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Image X X X 

Audio X X ✓ 
CNN+SVM ✓ ✓ ✓ 
CNN+AverageMKL ✓ ✓ ✓ 
CNN+MKL ✓ ✓ ✓ 

Image X X 

Audio X X 

CNN+SVM X X 

CNN+AverageMKL X X 

CNN+MKL ✓ ✓ 

Figure 3.6: Effects of combining image and audio features. Top two rows show 

input of sample image and spectrogram of different bird species. The bottom rows 

show the resulting classification of single modality (Image and Audio) and feature 

combination methods. 

bining features of different modalities can improve the classification performance. 

As shown in the middle column, we observed when the single modality method 

provides right answer for spectrogram, the probability of providing the right an-
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swer of feature combination methods is higher than classification is correct for an 

image. Let us mention that the audio modality performed better classification accu-

racy rather than image modality. We think that audio modality is dominant feature 

provides informative and discriminative information in our case. Furthermore, the 

CNN+MKL method is able to provide �he right answers while the other methods 

provide misclassification as shown in the last two columns. 

For lp-norm MKL with different norms, the kernel weights (fJ) of the base ker­

nels are further analyzed and shown in Fig. 3.7. We can see that l1-norm MKL 

produces sparse kernel combinations which focus the weights on one kernel and 

give zero weights to other kernels. When the norm gets bigger, larger weights are 

assigned to other kernels, and the distributions of weights are close to uniform. 

0.8 

to.6 
'iii 

� 0.4 

0.2 

2 3 4 5 
Kernel 

6 7 8 

Figure 3.7: Base kernel weights of different lp-norm MKL. 
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3.5 Summary 

In this chapter, we have presented a study of classifying bird species with audio­

visual data using CNN and MKL. Specifically, we used deep CNN to extract fea­

tures from audio and visual modality and combined these features to perform clas­

sification using MKL. In this study, we employed l
p
-norm MKL using two kernel 

functions (RBF and polynomial) in order to enhance the classification performance 

for bird species. Our experiments indicate that MKL is an effective approach to 

improve classification performance while fusing different features. 
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Chapter 4 

Multimodal Learning for 

Fine-grained Classification with 

Audio-Visual Data 

4.1 Introduction 

In this chapter, we focus on classifying bird species by exploiting the combina­

tion of both visual (images) and audio (sounds) data using CNN, which has been 

sparsely treated so far. In essence, we propose CNN-based multimodal learning 

models in three types of fusion strategies (early, middle, late) to settle the issues of 

combining training data of both modality. The advantage of our proposed method 

lies on the fact that we can utilize CNN not only to extract features from image and 

audio data (spectrogram) but also to combine the features across modalities. The 

overview of proposed method is presented in Fig. 4.1. In the experiment, we train 

and evaluate the network structure on a comprehensive CUB-200-2011 standard 
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Figure 4.1: Overview of the multimodal learning models with different fusion 
strategies. 

data set combing our originally collected audio data set (Section 3.2) with respect 

to the data species. We observe that a model which utilizes the combination of both 

data outperforms models trained with only an either type of data. We also show that 

transfer learning can significantly increase the classification performance. 

4.2 Methodology 

Our multi modal architectures extend conventional CNN for large-scale image clas-

sification [3]. Our implementation is based on CaffeNet, and can be treated as [76] 

a variation of the structure proposed by Krizhevsky et al. [3]. 

46 



4.2.1 Feature Extraction 

CNN uses hierarchical features in its processing pipeline. The features from ini­

tial layers are primitive while late layers are high-level abstract features made from 

combinations of lower-level features .  The CaffeNet consists of five convolutional 

layers (with max pooling layers following the first, second and fifth convolution 

layer) followed by three fully connected (PC) layers and a softmax classifier. Rec­

tified linear unit is applied to every convolutional layer and fully connected layer 

and local normalization are applied in the first and second convolutional layer. The 

process through this 8-layer CNN network can be treated as a process from low to 

mid to high-level features. In Fig. 4.2, it can be seen that low-level features can 

be extracted in the early layers of CNN and the high-level feature can be extracted 

in the late layers of CNN. Hence, we hypothesize, that combining the features of 

different layers in this pipeline can lead to achieve better performance. 

4.2.2 Feature Fusion 

We propose our method in three strategies to fuse features: early fusion, middle 

fusion, and late fusion. Early fusion, also known as feature level fusion, is a fea­

ture combination scheme that features from multiple modalities concatenated to 

form a merged feature vector. Middle fusion, also called mid-level combination, 

combines the high-level features learned by a single network. We use concatena­

tion to combine low and high-level features in order to acquire merged multimodal 

features and to allow the CNN to learn joint features from merged features. Late 

fusion, also caIIed decision-level fusion, combines the outputs of single modality 
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Figure 4.2: Visualization of CNN-based features based on different layers in CNN. 

The results are produced by using deep visualization toolbox by Yasinski et al. [4]. 
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and determine the final classification. We use a simple summation or a multiplica­

tion to perform a fusion of decisions obtained from each network. The summation 

and the multiplication compute an element-wise sum and element-wise product of 

each network's output. The feature combination layers can be trained with standard 

back-propagation and stochastic gradient descent. 

4.2.3 Multimodal Fusion Architectures 

The proposed multimodal learning models which combine audio and image using 

CNN by different fusion approaches are described in this section. We exploit the 

same architecture for both audio and image modalities to focus on evaluating the 

effectiveness of the feature combination approaches. 

Early Fusion Model 

One direct approach for combining audio and image is to train a CNN over the 

concatenated audio and image data as shown in Fig. 4.3. In this strategy, the in­

put vectors related to each modality are concatenated together and then processed 

together throughout the rest of the CNN pipeline. This model is the most computa­

tional efficient_comparing to the middle and late fusion models because the number 

of learnable weight parameters is almost half times less than the late fusion model. 

Middle Fusion Model 

In the middle fusion strategy, unimodal features are extracted independently from 

audio and images, then combined into a multimodal representation by concatenat­

ing the activations of the last pooling layers of two modalities. The multimodal 
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Figure 4.3: The architecture of early fusion model (Net]). 227 x 227 pixel RGB 
images of two modalities are concatenated at merging layer, which produces 227 x 
454 x 3 output volume, and the convolution layers will extract joint features from 
this merged volume. We use HDFS format to manage datasets of two modalities, 
because of it's flexible data storage and unlimited data types. 
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representation then learned in the following fully connected layers. The middle 

fusion model is shown in Fig.4.4. 

Decision or Late Fusion Model 

In contrast to the middle fusion model, extracted unimodal features are separately 

learned to compute unimodal scores, then these scores are integrated to determine a 

final score. The late fusion model consists of two-streams processing audio and im­

age data (green and blue) independently, which are fused after last fully connected 

layers as shown in Fig.4.5. Among the various ways of combining CNNs with late 

fusion approaches, one straightforward way is to concatenate the output of each 

network and add an additional fully connected layer on top of this for classification. 

Instead of using FC layer to combine the two streams, we applied element-wise 

summation and element-wise multiplication to fuse the outputs of each stream. 

4.3 Experiments and Results 

The experiments in this section are conducted to evaluate the effectiveness of our 

proposed architectures (Net l ,  Net2, Net3). In order to evaluate an advantage of our 

late fusion approach, we conduct a comparative experiment between Net3 model 

and two different existing fusion approaches [6, 7]. Besides, we have fine-tuned 

a pre-trained model for all the models (including comparative models) in order to 

improve the performance. To improve the repeatability and only focus on the eval­

uation of the fusion step, we use the well-known CaffeNet model [76] to extract 

features, train, and fine-tune the CNN with default structure and parameter setting. 
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Figure 4.4: The architecture of the middle fusion model (Net2). The activations of 
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We use stochastic gradient descent to optimize all models. Single modality model 

and all multimodality models are initialized with learning rates of 0.001 and 0.0001 

respectively, and this value is further reduced by hand whenever the test error stops 

improving. The batch size is set to 32 for single modality and 1 for multimodal 

learning due to limited resources. We use a momentum of 0.9 and a weight decay 

of 0.0005. 

4.3.1 Quantitative Result: Single Modality v.s. Multimodality 

Models 

The core idea of this work is to address the integration of the image and audio. 

Therefore, it is necessary to compare the performance between the single modality 

model (image or sound) and multimodality models (both image and sound: Netl ,  

Net2, Net3). To focus on the evaluation of fusion models, in this experiment, we 

do not introduce any transfer learning techniques (e.g., fine-tune the pre-trained 

model to help differentiate between gains from the proposed architectures). Table 

4.1 summarizes the results of single modality and proposed models. We can observe 

that combining two modalities using CNN improves the performance of those only 

Table 4.1: Comparative results between individual modality and multimodal CNNs. 

Method 
Accuracy 

(%) 

Single modality 
Image 16.2 

Audio 46.4 

Netl 50.0 

Multimodality Net2 49.9 

Net3 (summation) 53.8 
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Figure 4.6: Test accuracy vs. Epoch. 

using one modality, extracting features separately from image and audio and fusing 

them at the late stage performs better with significant gain. 

Interestingly, the performance of low-level and mid-level fusion models slightly 

better than the performance of single modality model. One possible reason is that 

CNN learns features for the predominant modality. In contrast, learning features 

separately for different modalities results in more independent features, which leads 

to achieving better performance. Let us mention that the result obtained by multi­

modality model is different from simply combining the results of two CNNs trained 

separately. Indeed, the two modalities' parameters are jointly estimated and thus 

can be mutually influenced. 

Figure 4.6 plots a learning process of single modality (image only and audio 

only) and Net3 model with different late fusion approaches over learning epochs. 

It can be observed that the Net3 model with all fusion approaches significantly 

improve the results. We provide a detailed discussion in the following subsection. 
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4.3.2 Qualitative Result: Single Modality v.s. Multimodality 

Models 

We perform a qualitative study to analyze the effects of multimodal learning models 

by comparing single modality and multimodality networks. First, we select some 

classes where the multimodality models provide the correct answer while the single 

modality model produces the wrong classification. Then, we study why the multi­

modality models provide the right answers while the single modality model failed 

to produce the correct classification. 

Figure 4.8 shows some examples of single modality vs. multi modality clas­

sification. In the first column, the single modality models predict the input image 

and spectrogram as the 'barn shallow' and the 'ring-billed gull' respectively rather 

than the 'red-bellied woodpecker'. However, the multimodality models are able to 

predict the _right answer, because those models provide joint features of different 

modalities. We observe that when the single modality model provides the right an­

swer for spectrogram, the probability of providing the right answer of multimodality 

models is higher than when single modality classification is correct for an image. In 

the second column of Fig. 4.8, single modality model has misclassified the 'clark 

nutcracker' image as the 'great grey shrike', where other models provide correct 

answers. Lastly, the Net3 model is able to provide the right answers while the other 

models provide misclassification on the 'belted kingfisher' (last column). 

To better understand the difference between the models, we analyze the feature 

learned from each network by visualizing the filters of the first convolutional layers 

shown in Fig. 4.7. We see that each network's filters of different models have 
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Figure 4.7: Visualization of 96 filters of the first convolutional layer. Left side 

shows the filters related to the image network, while the right side shows the filters 

related to the spectrogram network. It can be seen that the filters (left or right side) 

of different models have a similar pattern. However, the filters of Net l seems to 

have mixed filters of both networks. 
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Figure 4.8: Effects of combining image and spectrogram. Top two rows show 
sample image and spectrogram of different bird species where are fed into single 
modality models and multimodality models. The bottom rows show the resulting 
classification, where multimodal networks provide a correct classification while the 
classification of single modality model is incorrect. 

a similar pattern. Secondly, we see that the single modality model's filters have 

more meaningful patterns than the multimodality model's filters. As we mentioned 

before it seems that the learning features separately for different modalities results 

are more independent features. Finally, it can be seen that the filters of the early 

fusion model has combined patterns from both networks, but most filters are similar 

to the spectrogram network. It reveals that the multimodal model (early fusion and 

mid-level fusion) learns features for the predominant modality. 
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(a) Two-stream CNN for RGB-D object recognition by Eitel et al. [6]. 
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(b) Two-stream architecture for action recognition method by Simonyan et al. [7] 

Figure 4.9: Existing late fusion methods presented in [6, 7]. (a) The input of the 
network is an RGB and depth image pair. Both streams (blue for RGB image and 
green for depth image) fused in one fully connected layer (gray) with tensor mul­
tiplication. (b) The input video decomposed into spatial and temporal networks, 
where spatial network inputs video frames (i.e., single image) and temporal net­
work inputs optical flow (i.e., motion across the frames). The softmax scores of two 
networks are combined by late fusion. The figures taken from [6, 7). 
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4.3.3 Quantitative Result: Net3 v.s. Existing Late Fusion Meth­

ods 

To evaluate the effectiveness of our late fusing approach, we conduct comparative 

experiments on Net3 with a basic fusion method and existing late fusing methods 

presented in [7, 6] (Figure 4.9). The differences between the late fusion approaches 

are shown in Fig. 4.10. 

• FCS concat (basic fusion): FC8 layers of each network are concatenated and 

fed into an additional fully connected layer for final classification. In other 

words, the FC8 features of each network are fused in a linear combination 

way (linear weighted fusion). 

• Eitel et al. [6]: FC7 layers (green and blue) of each network are concatenated 

and merge into the fusion layer, which performs tensor multiplication of two 

vectors. The resulting fusion vector is then passed through one additional 

fully-connected layer for classification. This means this fusion methods is a 

linear combination of pair-wise interactions between two features. However, 

this method is not suitable when the features are in different sizes. 

• Simonyan et al. [7]: Each network focus on learning features from images 

and spectrograms, respectively, and the final classification is computed as an 

average of the softmax scores of the two networks. In this fusion method, they 

do not consider pair-wise interactions between the features. However, this 

method is suitable when the model consists of different structured network 

streams. 
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Table 4.2: Classification performance of fine-tuned Net3 model with different fu­

sion and fine-tuning method. 

Method 

Fine-tuning weights of pretrained model (summation) 

Summation (ours) 

Two-stage fine-tuning Multiplication (ours) 

FC8 concat (basic fusion) 

Simonyan et al. [7] 

Eitel et al. [ 6] 

Accuracy 

(%) 

65.0 

78.9 

75.0 

75.4 

70.0 

72.5 

Figure 4.6 plots learning curve of Net3 model with different late fusing methods for 

each epoch, indicating that averaging the softmax scores gives the lowest perfor­

mance and our fusing approach performs best. 

4.3.4 Fine-Tuning the Pre-Trained Model 

Combining multi-modalities at the late stage of CNN has proven to be more effec­

tive, thus we apply different transfer learning technique to our last fusion model. 

Precisely, we conduct additional experiment with fine-tuning CaffeNet pre-trained 

CNN under Net3 model in this section. 

One natural idea for fine-tuning is to train the model by initializing both image 

and audio CNNs with the weights and biases of the first seven layers derived from 

CaffeNet pre-trained network (model is trained on the general large scale dataset 

ImageNet [58]), discarding the last fully connected layer. Instead of last fully con­

nected layer of the pre-trained model, we randomly place the initialized new fully 

connected layer for 200-class bird classification (in our experiment, 194 classes due 

to the lack of audio dataset). The experimental result given in Table 4.2. 
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Figure 4.10: Differences between the late fusion approaches. 
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Figure 4.11: Feature visualization of the network layer. These are examples of 

features of different pooling layer of image (left) and audio (right) network in Net3. 
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Figure 4.12: Feature visualization of last fully connected layer where top to bottom 

shows the features of last fully connected layer of image only, spectrogram only, 

FC8 layer using Eitel et al. [6], FC9 layer using FC8 concat (basic fusion), and 

fused layer using summation. Here, the red rectangle shows the incorrect answer, 

the green rectangle shows the correct answer of the classification. 
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Another method of fine-tuning the model is to train Net3 in two stages. First, 

training the two stream individually followed by a joint fine-tuning. We train the 

image and audio CNNs separately, adapting the weights of pre-trained model and 

learn the weights of the new 194-class output layer. After this training, the net­

works can be used to perform separate classification with respect to each modality. 

After then, we train an entire model by setting their learning rate to zero and only 

training the fusion part of the network to freeze the individual stream networks. As 

shown in Table 4.2, the transfer learning technique proves it can be improve the 

performance. The fine-tuned model using pretrained model improves the classifi­

cation performance by 11.2%, and, two-stage training resulted best performance by 

improving the classification performance with large margin (around 25.1 % ). 

As we can seen on Table 4.2 and Fig. 4.6, averaging the decisions of two net­

works gives lowest performance compared to other late fusion models. This is 

because averaging strong modality (i.e., audio) decision and weak modality (i.e., 

image) decision may degrade the strong modality decision that lead to result in final 

decision. Furthermore, the basic fusion model and the model with Eitel et al. [6] 

can capture the possible complementaries among modalities but may lead to con­

flicts between modalities. On the other hand, in our fusion model, every modality 

is always potentially useful which leads to making classification collectively. 

We also found that the fine-tuning pre-trained model to two modalities and train­

ing them simultaneously is significant worse than two-stage training. We think the 

problem relates to the difference between the size of two datasets and batch size of 

single modality and multimodality models. In this experiment, we used net surgery' 

1 https://github.com/BVLC/caffe/blob/master/examples/net_ 
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to fine-tune two different CNN using one pre-trained model and to fine-tune two 

pre-trained model into our model. 

To confirm that the features extracted from the sample image and spectrogram 

during the fine-tuning were meaningful, we visualized the activations of different 

layers, especially the fused layers in Net3. The results are shown in Fig.4.11 and 

4.12, that allowed us to confirm the learned features were meaningful and quali-

tatively resembled the sample image and spectrogram. Moreover, the activations 

of our fused layer takes advantage by incorporating the features from each stream, 

when each network failed to produce write answer. 

4.4 Summary 

In this chapter, we introduced three multimodal CNN architectures in different fu­

sion strategies, which can process jointly the image and audio data for bird classi­

fication. Experimental results verified that the two-stream multimodal CNN in late 

fusion strategy outperforms the others. 

In addition, we proposed the summed fusion method to combine multiple CNNs, 

which shows better performance comparing against several existing fusion methods. 

Moreov·er, with the help of two-stage fine-tuning, our method can be more effective. 

However, there still exist several drawbacks of our method: (1) Choosing the 

suitable duration based on the vocal features of birds to be recognized, is essen­

tial ingredients of improvement, is missed in our current work. (2) Our method 

is based on the raw image data, thus part detection and extracting features from 

surgery.ipynb 
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pose-normalized regions may improve the classification performance. 
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Chapter 5 

Conclusion 

5.1 Overall summary of the current study 

This dissertation investigated study on multi modal fusion strategies for fine-grained 

bird classification with audio-image data utilizing deep neural networks. We pro­

posed that the combination of image and sound provide richer and substantial train­

ing signal for bird species classification under CNN framework, which is the first 

attempt to the best of our knowledge. 

Therefore, I restate the research aims and objectives and summarize the main 

findings and evidence in this study. The main objective of this research was to 

study the efficient and effective multimodal fusion strategy for fine-grained bird 

classification by integrating audio and visual data through utilizing deep learning 

architecture. We summarize the main findings considering main research consider­

ations: 

• What to fuse. The sound dataset has collected and created corresponding to 

the bird image dataset. In this study, CNN has been used to learn represen-
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tations directly from the raw data and extract a set of discriminative features 

from audio and visual modality. 

• When to fuse or Level of fusion. This dissertation aimed to identify effective 

fusion strategies for fine-grained classification with audio and visual data. 

In Chapter 3, kernel-based fusion methods has been considered to combine 

CNN features from both modalities using multiple kernel learning. Exper­

imental results indicate that MKL is an effective approach to improve clas­

sification performance while fusing different features. We considered three 

fusion strategies including early fusion, middle fusion, late fusion in Chapter 

4. Based on a quantitative and qualitative analysis of bird species classifica­

tion, it can be concluded that the two-stream multimodal CNN in late fusion 

strategy outperforms the fusion strategies. 

• How to fuse. In Chapter 3, l
p
-norm MKL has been utilized to fuse CNN fea­

tures at kernel-level, which performed better accuracy compared to some sim­

ple kernel combination methods, and the conventional early fusion method. 

The summed fusion method has been proposed to combine multiple CNNs 

which shown better performance compared to several existing late fusion 

methods in Chapter 4. Moreover, with the help of two-stage fine-tuning, the 

proposed method could be more effective. 

5.2 Future work 

Multimodal research especially multimodal deep learning is an intense multi-disciplinary 

field of increasing importance and with extraordinary potential. According to the 
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[8], authors identified core challenges that are faced by multimodal deep learning, 

namely: 

• Representation: Learning how to represent and summarize multimodal data 

in a way that exploits the complementarity and redundancy. 

• Alignment: Identify the direct relations oetween (sub) elements from two or 

more different modalities. 

• Fusion: To join information from two or more modalities to perform a pre­

diction task. 

• Translation: Process of changing data from one modality to another, where 

the translation relationship can often be open-ended or subjective. 

• Co-learning: Tran sf er knowledge between modalities, including their repre­

sentations and predictive models. 

Consequently, we will focus on representation and translation ( cross-model re­

trieval) problems for multimodal deep learning. We also interested in the feature 

selection method to obtain key features from multimodal data. 
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