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Abstract 

Unsteady external flow simulation is a major topic of the numerical simulations, and 
compressibility is significant on the flows in the aerospace engineering. A Cartesian grid 
solver for unsteady flow simulations receives considerable attention with the improvement 
of the supercomputing performance and simulation scheme. Cartesian grid has advan
tages to the boundary fit grid such as the easiness to improve the spatial accuracy of the 
simulation and the robustness of the mesh generation. In the high-speed flow dynamics, 
Reynolds number based on the length of the object increases. Unsteady numerical sim
ulation of the high Reynolds number flow has a difficulty of the grid resolution of the 
turbulence boundary layer and it more significant in the Cartesian grid solver. 

Present study investigates computational fluid dynamics (CFD) result of unsteady 
external flows by Cartesian cut-cell method so that to improve the numerical prediction 
method for the high Reynolds number flow. Cartesian cut-cell method is one of the most 
accurate Cartesian grid solvers. The present study contains five chapters. Chapter 1 is 
the introduction of the present study. Chapter 2 to chapter 4 are shows the result and 
discussions of the unsteady CFD results. Chapter 2 shows the validation of the invis
cid CDF analysis for the flow includes "sharp-edge separations" using Cartesian cut-cell 
method. Chapter 3 shows the CFD result and discussions for the wall-modeled Cartesian 
cut-cell method. Chapter 4 shows the coupled CFD analysis and the aerodynamic force 
modeling of the unsteady flow with pitching motion of reentry capsule. Chapter 5 is the 
conclusion of the present study. 

In chapter 2, the CFD analysis of inviscid compressible flow using the Cartesian cut
cell method are performed. Numerical simulations of the flow past a triangular column 
are performed as a validation problem of the applicability of the inviscid simulation to 
the flow around a body with sharp-edge separation. In two-dimensional simulations, 
the difference between the calculated and experimental values of the drag coefficient, 
contrary to expectations, increase as the grid width is refined. In these simulations, it is 
found that vortex shedding is accompanied by a markedly accelerated flow and that an 
extremely large pressure drop occurred in the vortices. In contrast to the two-dimensional 
simulation, three-dimensional inviscid simulations of the flow past a triangular column do 
not exhibit vortex shedding or a large pressure drop. Two shear layers develop from the 
trailing edges of the triangular column, and grid convergence to the experimental value 
of the drag coefficient is obtained. These validations confirm that the three-dimensional 
simulations are applicable for certain kinds of the flows around a body with sharp-edge 
separation; while, the two-dimensional simulations are invalid for the flow around a body 
with sharp-edge separation. 



In chapter 3 ,  the CFD analysis by the wall-modeled Cartesian .cut-cell method is performed. The CFD analysis of the flow past a triangular column by wall-modeled Cartesian cut-cell method is performed and compare with the inviscid simulation. The result indicates that the inviscid simulation is sufficient to predict the flow which includes "sharp-edge separations". Also, numerical simulation of the flow around 3 0P3 0N threeelement high-lift airfoil configuration is performed. The aerodynamic coefficients are agreed with the experimental results. Vortex structure of the outer-layer part of the turbulent boundary layer is formed on the suction side of the main element in the present study. Moreover, the unsteady movement of the separation point on the suction side of the flap is observed. These phenomena are not observed in the Euler simulation. In chapter 4, coupled CFD analysis of the 1 -DoF pitching motion of the reentry capsule is performed and the aerodynamic force model equation using the CFD result is proposed. Limit-cycle oscillation is represented in the fine-grid simulation. Axis of the vortex ring in the wake is displaced at pitch angle a = 0, during the limit-cycle oscillation. The displacement causes the unsteady component of pitching moment around a = 0. Pitching moment during the limit-cycle oscillation is decomposed into Fourier series. The amplitude of the third harmonics is larger than the dynamic component of the fundamental frequency. The model equation for the pitching moment which fully includes third harmonics is proposed. Present model equation reproduces the oscillation growing and limit-cycle oscillation simultaneously. Moreover, dynamic component of the unsteady aerodynamic work of the present model gives better estimate than conventional model equation by Hiraki. The chapter 5 concludes the present study. 
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Chapter 1 

Introduction 

1.1 Backgound of the present study 

1.1.1 Computational grid in computational fluid dynamics 

Computational fluid dynamics (CFD) is one of the most important tools of research and 

development in aerospace engineering. In tradition, boundary fit meshes are usually 

used in the CFD of aerospace engineering. Boundary fit mesh is effective to resolve the 

boundary layer on the wall. 

Boundary fit mesh using a general curvilinear coordinate is introduced by Vinokur in 

1974[2]. Before the implementation of the general curvilinear coordinate, the boundary fit 

grid which is made by the conformal map, and the Cartesian grid were used in aerospace 

engineering. However, the conformal map could not apply to the complex geometry 

which contains multiple curves, so that the object is limited to simple geometry. General 

curvilinear coordinate realizes the generation of boundary fitted mesh on the complex 

geometry which contains multiple curves. A flat computational cell made by general 

curvilinear coordinate is effective for reducing the number of computational cell in the 

Reynolds averaged Navier-Stokes (RANS) simulation which does not require to capture 

the small-scale eddies directly. 

Cartesian mesh was mainly used in the multiphase flow containing phase interfaces 

and the external flow around the object with large deformation which is difficult to apply 

the boundary fitted mesh in the aspect of the mesh generation cost. In recent years, 
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CHAPTER 1. INTRODUCTION 
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Fig. 1. 1 :  Voxel method Fig. 1 .2: Immersed boundary method 
Cartesian mesh expands the range of the application with the increasing of the resource 
of the supercomputers and the development of the near-wall treatment. 
1.1.2 Cartesian grid solver and object definition on the Carte

sian grid 

Cartesian grid solver detects the object (or phase interface) in the Cartesian grid. It 
is advantageous regarding grid generation cost and robustness. Volume of fluid (VOF) 
method[3] and level set rnethod[4] are well-known methods that treat the phase interfaces 
of the multiphase flow. However, these methods treat the phase interface as the finite 
interface thickness ( diffusive interface), rather than a sharp interface that much thinner 
than the grid width ..6.x. This treatment of the phase interface is effective for the stability 
of the simulation. 

Cartesian cut-cell method[5, 6, 7], voxel method, and immersed boundary method[8, 
9, 1 0] are typical Cartesian-grid methods using the sharp interface treatment. Voxel 
method represents the object shape as step-wise so that the object surface accords with 
the cell-interface (Fig. 1. 1 ). Voxel method is easy to implement but it requires many 
computational cells to avoid the effect to the CFD of the step-wise wall treatment. On 
the other hand, immersed boundary method instead fixes conservative variables at the 
boundary cell to satisfy the boundary conditions; a boundary cell is a computational cell 
that includes an object surface (Fig. 1.2 ). The immersed boundary method does not 
satisfy the mass and energy conservation law in the boundary cells. 
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1. 1. BACKGOU ID OF THE PRESENT STUDY 

Fig. 1.3 :  Cartesian cut-cell method 
Cartesian cut-cell method (Fig. 2 .2 )  treats the object surface in a computational cell 

as a plane and sets wall flux vectors across the cut plane. Cartesian cut-cell method well 
follows the object surface rather than the voxel method, and conserves mass and energy. 

In general, the Cartesian mesh is more difficult to resolve the boundary layer than 
the boundary fit mesh. Grid refinement techniques, such as the quadtree grid [ll] or 
the building-cube method[ 12 ]  achieve success in grid resolution in the boundary layer. 
However, those methods require an unstructured grid system that impairs the simplicity 
of computational codes. Furthermore, the non-smooth connection of discontinuous grid
scale of those method causes numerical dissipation. It makes difficult to achieve high 
order accuracy in space. 

Cartesian mesh is advantageous to boundary fit mesh in the aspect of the robustly 
mesh generation from the "dirty" CAD data. Application range of the Cartesian grid is 
expandable using appropriate conservative equation and near-wall treatment. 
1.1.3 Wall modeling in the unsteady flow simulation 

Choi and Moin[13] estimate the number of total computational cell which is required in 
direct numerical simulation (DNS), wall-resolving large eddy simulation (WRLES) and 
wall-modeled LES (WMLES) are NDNS ~ Re37114, NwR ~ Re1317 and NwM ~ Re 

respectively. This increment of the total number of the computational cell is caused by 
the decreasing of the vortex scale with the increasing of the Reynolds number in the inner
layer part of the turbulent boundary layer which is about 10% of the turbulent boundary 
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CHAPTER 1 .  INTRODUCTION 

LES mesh 
. • • 

Fig. 1 .4: Schematic of LES grid and \,,YM grid 

WM mesh 

layer thickness. This fact shows the grid resolving of the high Reynolds number flows 

(Re > 106 ) without wall-modeling is unrealistic. 

Wall-modeled LES is categorized into hybrid LES/RANS model and wall-stress model. 

Hybrid LES/RANS model switches to RANS equation in the boundary layer. Hybrid 

LES/RANS model is categorized into seamless model (Detached Eddy Simulation [14] 

DES) and zonal model (most of hybrid LES/RANS model [15] ) .  Wall-stress model solves 

LES without non slip-wall condition and bring the wall-stress from the solution of the 

model equation. Wall-stress model is also categorized into math-based model ( control 

theory[16] , filter based [l 7] ) and physics-based model using ordinary differential equation[18] . 

The shift of the velocity distribution in the log-layer that is called "log-layer mismatch" 

is reported by Niki tin et al. [14] and Kawai & Larson[18] . Other wall models [16,  17] are 

also suffered from this error that is caused by the mismatched estimation of the skin 

friction. Kawai & Larson[18] reveal the log-layer mismatch of the wall-stress-modeled LES 

depends on the location of the connection point of the LES and the wall-stress model. 

The wall-stress model requires the instantaneous LES values of two or more distant grid 

point from the wall to prevent the log-layer mismatch[18] . 

Wall-stress-modeled LES requires to resolve the outer-layer part of the turbulent 

boundary layer (Fig. 1 .4) , and the velocity distribution of wall-stress model agrees with 

that in turbulent boundary layer . Therefore, the wall-models do not appropriate for the 

laminar boundary layer. 

In considerable high-Reynolds-number flows, the effect of the viscosity is negligible 
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1.1. BACKGOUND OF THE PRESENT STUDY 

"' Aerodynamic heating 
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e 
Parachute opening • 

Fig. 1.5: Overview of atmospheric reentry 

small rather than inertia . For this reason, inviscid numerical simulations of external flows 

by Euler equation[19, 20] or potential equation[21 , 22] were presented since the dawn of 

the history of computational fluid dynamics. Computational cost of Euler simulations 

is less t han Navier-Stokes simulations because Euler simulations do not require t he grid 

resolut ion in the boundary layer. Inviscid simulations by Euler equation is still applicable 

to the prediction of the practical flows with t he appropriate conditions. 

1. 1 .4 Unsteady aerodynamics of the reentry capsule 

Reentry capsule is essential for the development of space exploration. Reentry capsule is 

t he only way for the return of the astronauts and specimens from outside of t he earth 

after the retire of the space shuttle (Fig. 1.5) . 

Dynamic instability is one of the unsettled problems in reentry of t he blunt-body 

capsule[23]. Reentry capsule is designed to keep stable during hypersonic flight. In 

contrast , reentry capsule falls into dynamic unstable in t he transonic region or the subsonic 

region. The transonic instability may cause the failure to open the parachute in the worst 

case. Dynamically stable reentry during transonic condition before parachute opening is 

essential to the safe landing. Furthermore, stable parachute opening at low alt it ude in 

subsonic condit ion improves the accuracy of landing point owing to the reduction of t he 
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CHAPTER 1 .  INTRODUCTION 
surface wind effect . 

Free-rotation test [24, 25, 26, 27] and free-flight [25 ,  28, 29] test are typical experiments 
for dynamic characteristics of the reentry capsule. Free-rotation test is a typical experi
ment using a wind tunnel. Free-rotation test is not able to reproduce .the six degree-of
freedom (DoF) motion of the reentry capsule, but various data is obtained in free-rotation 
test in various flow conditions. Free-flight tests are conducted using the ballistic range or 
balloon. Free-flight test reproduces the 6-DoF motion of the reentry capsule, but the cost 
of this experiment is comparatively expensive in general. 

Numerical simulations that attempt to predict the dynamic instability of the reentry 
capsule had been performed in fixed capsule[30, 3 1 ,  32] and forced oscillation [33, 34] . 
However, the interactions between the pitching motion and flow around capsule is not 
discussed sufficiently. Grid generation cost in each time step associated with using the 
boundary fit mesh makes difficult to perform coupled analysis. 

Cartesian mesh does not require grid generation in each time step of the coupled anal
ysis and is applicable to the coupled analysis with multiple objects in the different inertial 
systems which is difficult to treat by arbitrary Lagrangian-Eulerian (ALE) method [35] . 
Moreover, Cartesian mesh avoids the computational cost caused by hole-cutting on the 
overset grids[36] . 
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1 . 2 .  PURPOSE OF THE PRESENT STUDY AND CONSTRUCTION OF THE PRESENT THESIS 
1 .  2 Purpose of the present study and construction of 

the present thesis 

The present study investigates the developability of the Cartesian grid solver especially 
Cartesian Cut-Cell method to the High Reynolds number flows. Application of the Euler 
equation to the sharp-edge separated flow is performed. Moreover, application of the 
wall-model to the Cartesian cut-cell method is performed. 

Chapter 1 "Introduction" introduce the background and object of the present thesis. 
Chapter 2 "Applicability of the Inviscid Simulations to the Flow around a 

Body with Sharp-Edge Separation using Cartesian Cut-Cell Method" assesses 
the applicability of the Euler simulation to the sharp-edge separated flows by the flow 
around a triangular column. 
Chapter 3 "Applicability of the Wall-Modeled Cartesian Cut-Cell Method to 

the High Reynolds Number Flows" assesses the compatibility of the wall-model and 
Cartesian cut-cell method to the high Reynolds number flows. Furthermore, the result of 
the wall-modeled Navier-Stokes simulation and Euler simulation is compared in order to 
discuss the applicable limit of the Euler simulation. 
Chapter 4 "Coupled Numerical Analysis of Three-Dimensional Unsteady Flow 

with Pitching Motion of Reentry Capsule" shows the coupled numerical analysis 
of flow and pitching motion of reentry capsule by inviscid Euler simulation. This chapter 
assesses the effect of the grid resolution of the wake to the pitching oscillation, additionally, 
the model of pitching moment which fully includes the third harmonics is proposed. 
Chapter 5 "Conclusion" concludes the present thesis based on the preceding discus
sions. 
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Chapter 2 

Applicability of the Inviscid 

Simulations to the Flow around a 

Body with Sharp-Edge Separation 

using Cartesian Cut-Cell Method 

2.1 Introduction 

Recently, computational methods using Cartesian grids have been receiving considerable 

attention [37, 12, 38] . These methods have advantages that can reduce computational 

costs and the time required to generate boundary-fitted meshes to object surfaces in the 

flow. 

The Cartesian cut-cell method [5, 6, 7] and the immersed boundary method [8 , 9, 10] 

are typical boundary treatments that use a Cartesian grid. The Cartesian cut-cell method 

treats the object surface in a computational cell as a plane and sets wall flux vectors normal 

to the cut plane. The immersed boundary method instead fixes conservative variables at 

the boundary cell to satisfy the boundary conditions; a boundary cell is a computational 

cell that includes a object surface. The immersed boundary method does not satisfy the 

mass conservation law in the boundary cells, while the Cartesian cut-cell method satisfies 

it. For this reason, the Cartesian cut-cell method is more precise than the immersed 

boundary method in general. 

Columnar objects are popular structures in constructions or mechanical products. 
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CHAPTER 2 .  APPLICABILITY OF THE INVISCID SIMULATIONS TO THE FLOW AROUND A BODY WITH SHARP-EDGE SEPARATION USING CARTESIAN CUT-CELL METHOD 
High-Reynolds-number flows are frequently observed around constructions. Sharp-edge 
separation [39] often occurs in the flow around columnar objects. Consequently, the 
efficient prediction of the flow with sharp-edge separation is significant . 

The grid resolution in the boundary layer causes an increase in the computational cost . 
Numerical simulations using the Cartesian grid with uniform interval require remarkable 
increase of the cost . Grid refinement techniques, such as the quad tree grid [1 1] or the 
building-cube method [12] achieve success in grid resolution in the boundary layer. How
ever, those methods require an unstructured grid system that impairs the simplicity of 
a computational code. Furthermore, non-smooth connection of discontinuous grid-scale 
included in those methods makes it difficult to achieve high order accuracy in space. 

The present study proposes another approach. The present study attempts to avoid 
the difficulties of grid resolution in the boundary layer by using an inviscid simulation. 
Inviscid simulations requires less computational cost than Navier-Stokes simulation with 
sufficient grid resolution in boundary layers. According to boundary-layer theory [40] and 
the perturbation method [41 ,  42] , the solution of the external stream of boundary layer is 
provided by the solution of Euler equation. These theories are valid at the upstream side 
from the sharp edge or in flows without separation points. In the present study, an inviscid 
simulation is employed for the external stream of the boundary layer to a flow around a 
body with sharp-edge separation. At the downstream side from the sharp-edge, a shear 
layer forms along the streaklines from the trailing edge of the object. In a theoretical 
solution of Euler equation, a free shear layer is a slip surface across which the velocity is 
discontinuous. However, in a numerical simulations, a free shear layer has finite thickness 
owing to the artificial viscosity. 

The present study formulates a hypothesis that the inviscid simulation predicts the 
aerodynamic force within sufficiently small error in practical applications when the aero
dynamic force hardly depends on the Reynolds number. This hypothesis can not apply 
to the flows in which the separation point is not uniquely fixed, such as a flow around a 
circular column; because the separation point and drag depend on the Reynolds number .  

The present study discuss the applicability of  the inviscid simulation using the Carte
sian cut-cell method. Numerical simulations of the flow past an NACA 0012 airfoil have 
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2 . 1 . INTRODUCTION 
been performed as a verification problem for the Cartesian cut-cell code. In addition, 
numerical simulations of the flow past a triangular column have been performed to val
idate the hypothesis of the inviscid simulations to flows around a body with sharp-edge 
separation. 
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CHAPTER 2. APPLICABILITY OF THE INVISCID SIMULATIONS TO THE FLOW AROUND A BODY WITH SHARP-EDGE SEPARATION USING CARTESIAN CUT-CELL METHOD 

>-. 0 

-1 

-1 0 

X 

Fig. 2 . 1 :  Contour lines of the level set function around a triangular column. 
2 .2  Governing equations and simulation method 

2 .2 .1 Definition of the object surface 

The object surface is defined by following function ¢:  
cp(x, y , z) > 0 ¢(x, y, z) = 0 cp(x, y, z) < 0 

in the air, on the object surface, in the object . 
l v7¢ 1 = 1 .  

(2. 1 )  
(2 .2) 

Variables x, y,  z represent spatial Cartesian coordinates. Since the definition of ¢ is the 
same as that of the distance function in the level set method [4] , this function is called 
the "level set function." Figure 2 . 1 shows the contour lines of the level set function of a 
triangular column. The level set function ¢ is given by continuous and piecewise-smooth 
elementary functions fitted the object surface in Fig. 2 . 1 .  
2.2 .2 Cartesian cut-cell method 

The Cartesian cut-cell method is a computational scheme that cuts the computational 
cells according to the object shape, as shown in Fig. 2 .2 .  The Cartesian cut-cell method 
in the present study determines the positional relationship between the cut surfaces and 
the computational cells from the values of the level set function at each grid point , namely, 

12 



2 .2 .  GOVERNING EQUATIONS AND SIMULATION METHOD 

Fl u id  

- - Object shape  

- Cut su rface 

Fig. 2 .2 :  Schematic of the Cartesian cut-cell method.  The dotted line represents the 
object shape which is defined by level set function, and the red line represents the object 
shape which is reconstructed by the Cartesian cut-cell method. 

each corner of the computational cell. The volume fraction in the computational cells and 

the surface fraction on the cell interfaces are calculated from the cutting pattern. 

A fully three-dimensional Cartesian cut-cell method becomes complicated because 

of the many cutting patterns required. However, a computational cell cut by vertical 

columnar objects is the same as a two-dimensional calculation because the object shape 

is uniform in the vertical direction. Therefore, in the present study, the same evalua

tion method for volume and surface fractions has been applied to a three-dimensional 

calculation and a two-dimensional cut-cell calculation. 

Some computational cells with small volume fractions, called "small cells," occur in 

the cut cells. The failure to satisfy the Courant-Friedrichs-Lewy (CFL) condition in a 

small cell causes instability in explicit schemes. Therefore, in the present study, the "cell 

merging" technique [5] has been used to avoid the instability caused by the small cells. 
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CHAPTER 2. APPLICABILITY OF THE INVISCID SIMULATIONS TO THE FLOW AROUND A BODY WITH SHARP-EDGE SEPARATION USING CARTESIAN CUT-CELL METHOD 
2 .2 .3 Governing equation 

The governing equation is the compressible Euler equation. Conservation laws can be 
written in the following form. 

Here, H is the Heaviside function: 
H(x, y, z) = - { 1  + sgn(¢) } = 1 { 1 

2 0 

(2 .3) 

in the air, 
in the object . (2 .4) 

The Heaviside function is determined easily from the level set function, as indicated above. 
The vector n represents a unit normal vector directed outward from the object into the 
air. The scalar product n • 'v H is the Dirac delta function, which is defined in the 
direction normal to the surface of the object. 

The variable a on the right-hand side of Eq. (4. 1 )  represents the wall flux vector (the 
interaction between the object and the air) , which is directed into the air from the object : 

0 pnx 
U =  pny (2 .5) pnz 0 

Momentum exchange through the pressure is included, while mass transfer and energy 
exchange do not exist in the problems considered in the present paper. 

The conserved quantities Q, and the fluxes E, F, and G in Eq. (4. 1 )  are defined as 
follows: 

p PUx puy PUz PUx pu; + p PUx.Uy PUxUz 

Q =  puy ' E =  PUyUx F =  pu� + p G =  pUyUz (2 .6) PUz PUzUx P._UzUy pu; + p e eux + PUx euy + puy euz + PUz 

The variable p is the density, Ux , Uy , and Uz are the components of the velocity, p is the 
pressure, and e is the total energy per unit volume: 

(2 .7) 
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2 .2 .  GOVERNING EQUATIONS AND SIMULATION METHOD 
The internal energy per unit mass is given in the linear approximation as follows: 

(2 .8) 
For the purposes of the present paper, air is considered to be an ideal gas, which satisfies 
the following equation of state: 

p =  pRT. (2 .9) 

The following equations give the gas constant R and the specific heat at constant volume 
Cy using the molar mass M and specific heat ratio ,y : 

R 
R =  M '  

R Cy = --1, , -

(2. 10) 

where R is the universal gas constant, and the specific heat at constant volume Cy is a 
constant. The speed of sound in air is given as follows: 

a =  .Jyiff. 

2 .2 .4 Generation of the _ simulation grid 

(2 . 1 1 ) 

The simulation domain consists of a uniform grid and a non-uniform grid. The Cartesian 
cut-cell method is applied in the uniform grid domain, which is placed at the center of 
the simulation domain. The non-uniform grid is used to reduce computational costs. A 
one-dimensional, non-uniform grid in xyz space is mapped onto a uniform grid in �T/( 
space: 

� = i .6.�, T/ = j '6.TJ, ( = k .6.(, 
through the following monotone-increasing functions: 

x = x(�), y = y(TJ), z = z ((). 
Here, the grid widths .6.�, '6.TJ, and .6.( are set to unity for simplicity. 

The following function is used to generate the non-uniform grid: 

(2 . 1 2 ) 

(2 . 1 3 )  

(2 . 1 4) 
Here, the constant r is the rate of increase of the grid width; r = 1.05 is used in the 
present study. The coefficients c1 -c5 are factors used to adjust the value at the connection 
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Fig. 2 .3 :  Grid distribution of all simulation Fig. 2 .4 :  Grid distribution around the condomain. nection point of uniform to non-uniform grid domain. 
point between the uniform and non-uniform parts of the grid, and the conditions at the 
connection point are given as follows: 

(2 . 1 5) 
The variable x, indicates a derivative of x respects to ( The constants �u and Xu are 
the number of grid points and the x coordinate at the connection point, respectively. 
The constant �x is the grid width in the uniform grid domain. From Eq. (2 . 1 5), the 
coefficients c1 -c5 are obtained as follows: 

(r - 1)3 

C2 = - 6 ' 
(r - 1)2 

C3 = - 2 , 

C4 = �X - ( r - l), C5 = Xu - l. (2 . 1 6) 
The non-uniform grids in the other directions are generated using similar equations. Fig
ures 2 .3 and 2 .4 show the computational grid in the xy plane. 

The conservation equation ( 4.1 ) can now be transformed into the following form using 
the one-dimensional, non-uniform grid as follows: 

(2 . 1 7) 
In the uniform grid domain, H is a function of x, y, z as shown in Eq. (4.2 ) and x, is 
equal to constant �x, while H is equal to unity and x, is a derivativbe of Eq. (2 . 1 4) in 
the non-uniform grid domain. 
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2 .2 .  GOVERNING EQUATIONS AND SIMULATION METHOD 
The governing equation (2 . 1 7) is solved using a cell-centered finite volume method 

cubic cells in �Tl( space. The ceH size in the present study is 2 6.� x 2 6.'fl x 2 6.(. 
2 .2 . 5  Simulation method and discretization based on the finite 

volume method 

The Heaviside function H in the first term on the left-hand side of Eq. (2 . 1 7) is replaced 
by the volume fraction a of the air in the computational cell. The volume fraction a is 
equal to unity in the non-uniform grid domain, and the volume fraction a in the uniform 
grid domain is given by l 

1
z+ti.z 

l
y+ti.y 1.x+ti.x a = ---- H dx dy dz. 86.x f:::.y 6.z z-.6.z y-ti.y x-ti.x (2 . 18) 

Further, the flux term Hf, Hg, and Hh of Eq. (2 .1 7) is replaced by f3xf, /3yg, and 
f3zh, respectively, at the cell interfaces. The surface fraction f3x, /3y, and /3z of the air 
are evaluated on the cell interfaces normal to x, y, and z-axis, respectively. The surface 
fraction /3 is equal to unity in the non-uniform grid domain, while in the uniform grid 
domain, it is given by 

l 1
z+ti.z 

l
y+ti.y f3x = - -- H dy dz , 4 6.y 6.z z-ti.z y-ti.y l 

1
z+ti.z 1.x+ti.x /3y = --- H dx dz ,  4 6.x f:::.z z-ti.z x-.6.x l l
y+ti.y 1.x+ti.x /3z = --- H dx dy . 46.x 6.y y-ti.y x-ti.x (2 . 1 9) 

Further, the delta function n • \J H on the right-hand side of Eq. (2 . 1 7) is replaced by 
the following equation: 

l l
y+ti.z 

l
y+ti.y 1.x+ti.x \J H = \J • ( H I ) c:::' Sf:::. 6 6 \J · ( H I )  dx dy dz 

X Y Z y-ti.z y-ti.y x-ti.x (2 . 2 0) 
where I denotes the unit tensor of the second order. Applying Gauss' divergence theorem 
to the right-hand side of this equation, we obtain 

I 
(2 .2 1 ) 
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CHAPTER 2 .  APPLICABILITY OF THE INVISCID SIMULATIONS TO THE 
FLOW AROUND A BODY WITH SHARP-EDGE SEPARATION USING 
CARTESIAN CUT-CELL METHOD 

In Eq. (2 .2 1 ) ,  the symbol fc.i. indicates the surface integral over the six cell interfaces 

of the cell cube, and dS indicates a surface element vector of each cell interface . The 

quantities ex , ey , and ez are unit vectors in the coordinate directions . The delta function 

n • 'v H can be represented using Eq. (2. 2 1) and 

as follows: 

'vH 
n = l 'vHI 

(2. 22) 

(2 .23) 

This quantity gives the area of the object surface that is clipped by the computational 

cell. If the object surface does not cross the computational cell, the delta function n · 

'v H automatically becomes zero. This approximation is formulated with second order 

accuracy. 

The advection flux of the compressible Euler equation at the cell interface is calculated 

using the SLAU method [43] . The primitive variables on the cell interface to third-order 

accuracy are reconstructed using the MUSCL scheme [44] with the Van Albada limiter 

[45] . The velocity components are obtained using the modification of the MUSCL scheme 

proposed by [46] . Also, the time integration to second-order accuracy is calculated using 

the TVD Runge-Kutta method [47] . 
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2.3 .  NUMERICAL SIMULATIONS OF FLOW PAST AN NACA 0012 AIRFOIL 
Table 2 . 1 :  Grid dependence of the maximum Mach number 

Vassberg and Jameson, 2009 [1] Coarse Medium Fine Extra Fine 

The maximum Mach number 
0.6 199 0.6061 0.6082 0 .6131 0.6 164 

2 .3  Numerical simulations of flow past an NACA 0012 

airfoil 

2.3.1 Simulation condition 

Two-dimensional numerical simulations of the flow past an NACA 0012 airfoil are per
formed for verifying the simulation code. The angle of attack of the airfoil is zero. The 
shape of the NACA 0012 airfoil is defined by the following equation [48] : 

0 12 y (x) = ±-·- (0.2969y1x - 0 . 1260x - 0.3516x2 + 0.2843x3 - 0 . 1015x4) .  0.2 (2.24) 
The simulation domain in the x and y directions is 1 20 times larger than the chord 

length c. A uniform grid is used in the domain - 1 .5c :S x ::; 1 . 5c and -0.5c ::=:; y ::; 0 .5c. 
The grid widths in this domain are 6-x = 6-y, where 6-x = 6c/ 1000 (coarse grid ) ,  
4c/1000 (medium grid) , 2c/1000 (fine grid) , and c/ 1000 (extra fine grid) .  

The ambient fluid is assumed to b e  air. The upstream and downstream boundary 
conditions are given by using constant Riemann invariants [49] , while the boundary con
ditions at y = Ymax and y = Ymin also are fixed values. The inflow Mach number is 
0 .5 .  
2.3.2 Simulation results 

The maximum Mach number for each grid width is shown in Table 2 . 1 .  For an inviscid 
simulation using a boundary-fit mesh [1] , it is 0 .6199, while the maximum Mach number 
in the present simulation is 0 .6 164.  The maximum Mach number obtained by refining the 
grid width in the present simulations approaches the reference value. 
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Fig. 2 .5 :  Drag coefficient CD on each grid width �x. Plots represent the result of the present study. The dashed line denotes the first-order accuracy, the chain line denotes second-order accuracy, and the two-dotted chain line denotes third-order accuracy. 
The drag coefficients obtained for each grid width are shown in Fig. 2 .5 .  

2D CD = --2- · 
PoUoC 

(2 . 25) 
Here, the subscript O indicates the value at the upstream boundary. The variable D 
represents the drag, which is assumed to be provided solely by the pressure. The local 
drag fxi,J on each computational cell is calculated from the following formula: 

fxi,j = Pi ,j (/3xi-l ,j - f3xi+l ,j ) �y�z. (2 . 26) 
Here, the subscripts i - 1 and i + 1 are the indices of the cell interfaces. The value of the 
drag acting on the object is obtained by applying Eq. (2 .26) over the entire surface of the 
object. The drag coefficient is calculated from the steady value of the drag. 

According to D 'Alembert 's paradox, the drag in an inviscid simulation is expected 
to vanish. Consequently, the drag coefficient shown in Fig. 2 .5  is a measure of the 
numerical error of the method. It is expected to converge to zero as �x ➔ 0. In the 
present study, the drag coefficient decreases as the grid width is refined, that is to say, 
grid convergence is obtained. The slope of double-logarithmic graph between each plot is 
1 .41 (Coarse-Medium) , 1 .83 (Medium-Fine) , and 1 .87 (Fine-Extra Fine) . The value of 
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Fig. 2.6: Surface pressure Gp distribution on each grid width. The solid line represents 
the inviscid simulation [1 ] , the circles represent the result of the present study ( coarse 
grid) ,  and the triangles represent the result of the present study ( fine grid) . 

the slope increases as the grid width is refined, and it exhibits a tendency to converge to 

second order accuracy. 

The pressure coefficient on the airfoil surface is calculated from the following equation: 

p - po Gp = 
-1 - -2 ·  
2PoUo 

(2 .2 7) 
The surface pressure distribution is shown in Fig. 2 .6. The distribution obtained in 

present simulation agrees well with an inviscid analysis [1 ] , except for the leading edge 

and the trailing edge. The pressure oscillations that occur in the coarse-grid simulation 

are mitigated in the fine grid simulation. The values of the pressure coefficient at the 

leading edge and the trailing edge approach the reference values as the grid width is 

refined. 
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CHAPTER 2 .  APPLICABILITY OF THE INVISCID SIMULATIONS TO THE 
FLOW AROUND A BODY WITH SHARP-EDGE SEPARATION USING 
CARTESIAN CUT-CELL METHOD 

2 .4  Numerical simulations of flow past a triangular 

column 

2.4 . 1 Simulation condition 

The width of the simulation domain in the x and y directions is larger than 72 0d, where 
\.• 

d is the length of one side of the triangular column. A uniform grid in the domain 

-4.62d ::; x ::; 4.62d and -4.62d ::; y ::; 4.62d is employed. The height of the simulation 

domain along the axis of the column is -6.2 8d ::; z ::;  6.2 8d, almost the same as that used 

in a large eddy simulation (LES) computed by [50] . A uniform grid in the z (vertical) 

direction is used for the three-dimensional simulation. In addition, the two-dimensional 

calculation is performed as a three-dimensional calculation in which there is only one 

computational cell in the z direction 

The grid width in the uniform grid domain is .6.x = .6.y = .6.z, and the following three 

different grid widths are used: .6.x = 4.62 x 10-2d ( coarse grid) , 2 .31  x 10-2d (medium grid) , 

and 1 . 15 x 10-2d (fine grid) . 

The ambient fluid is assumed to be air . In the three-dimensional calculation, the 

initial velocity is selected to have the following distribution to promote three-dimensional 

disturbances: 

Ux = Uxa + 0 .0luxo · sin (-z-1r) Zmax (2 . 28) 

Here, the upstream Mach number is 0 .3 ,  and the constant Zmax is half the width of the 

calculation domain in the z direction. This initial disturbance vanishes after the three

dimensional unsteady flow develops. 

The time increment of .6.t = 2 .0 x 10-7 s is used; therefore, the maximum Courant 

number in the fine grid simulation is approximately equal to 0 . 1 .  

The upstream boundary condition is fixed. The y and z components o f  the upstream 

velocity are set to zero. The downstream boundary condition is the free-outflow condition. 

The boundary conditions at y = Ymax and y = Ymin also are fixed values, and periodic 

boundary condition at z = ±zmax is used. 
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2 .4. NUMERICAL SIMULATIONS OF FLOW PAST A TRIANGULAR COLUMN 

Fig. 2 .  7: Isosurfaces of the second invariant of the velocity-gradient tensor for the entire simulation domain of z .  

Fig. 2 .8 :  Isosurfaces of  the second invariant of the velocity-gradient tensor focusing on the central domain of z. 

2.4.2 Simulation results 

2.4 .2 .1  Three-dimensional visualization of flow structure 
Figure 2 . 7 shows the isosurfaces of the second invariant of the velocity-gradient tensor in 
the uniform grid domain, and Fig. 2 .8 shows an enlarged view of Fig. 2 .7. These figures 
show that a complex vortex structure is formed in the wake of the triangular column. The 
vortex structure in the wake contains three-dimensional features that include longitudinal 
vortices. 
2.4.2 .2 Calculation of aerodynamic forces 
Using the same method used in the case of the NACA 00 1 2  airfoil, the local drag for each 
computational cell is calculated from Eq. (2 . 2 6). Similarly, the local lift fy is calculated 
using the following formula in each computational cell: 

fyi,J = Pi,J (/3yi,J- l  - /3yi,J+l) .6..x.6..z. (2 . 2 9) 
The value of the lift acting on the object is obtained by summing the values obtained 
from Eq. (2 .2 9). The drag coefficient is defined by following equation: 

2 D  CD = --2- · Pou0d 
The drag coefficient is calculated from the time-averaged value of the drag. 

2 3  

(2 .30 ) 



CHAPTER 2 .  APPLICABILITY OF THE INVISCID SIMULATIONS TO THE FLOW AROUND A BODY W ITH SHARP-EDGE SEPARATION USING CARTESIAN CUT-CELL METHOD 
Table 2 .2 : Grid dependence of drag coefficient 

Coarse Medium Fine 

2 D  Simulation CD I CD - CD,Exp l 
1.60 1 1.858 2 . 1 00 

0.276 0.53 3 0.775 

3 D  Simulation CD ICD - CD,Exp l 
1 .476 1 . 1 61 1.3 3 4  

0.151 0.1 64 0.009 

Table 2 .2 shows the drag coefficients obtained from the two-dimensional simulations 
and the three-dimensional simulations for each grid width. This table also shows the 
difference between the present simulations and the experimental value CD,Exp = 1 .3 25 
obtained at Mach number 0.3 [51 ]. In the two-dimensional simulation, the drag coefficient 
increases as the grid width is refined. Contrary to expectations, the difference I CD -
CD,Exp l also increases as the grid width is refined. 

In the three-dimensional simulation, the value of the drag coefficient is consistent with 
the experimental value despite the inviscid simulation. The drag coefficient first decreases 
and then increases slightly as the grid width is refined. The difference ICD - CD,Exp l  
decreases as the grid width is refined, and it exhibits a tendency to converge to the 
experimental value. 
2 .4.2.3 Comparison of flow field structure 
Figure 2 .9 shows the flow field around the triangular column, as obtained from the two
dimensional simulation using the fine grid. The color contours show the pressure, and the 
vectors show the velocity. Vortex shedding accompanied by a markedly accelerated flow 
and an extremely large pressure drop occurs successively at the two trailing edges of the 
triangular column. These vortices form a von Karman's vortex street in the wake. The 
velocities in the accelerated flow are appreciably greater than the upstream velocity, and 
the large pressure drop in the vortices behind the column causes an increase in the drag. 

Figure 2 . 1 0  shows the flow field around the triangular column, as obtained from the 
three-dimensional simulation using the fine grid. In contrast to the two-dimensional sim
ulations, the trailing edges of the column generate two shear layers behind the column in 
the three-dimensional simulations, and vortex streets are formed in the wake by rolling 
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Fig. 2 .9 :  Flow field in two-dimensional simulation; color counters show the pressure, and 
the vectors show the velocity. 
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Fig. 2 . 10 :  Flow field in a cross section of the three-dimensional simulation; color counters 
show the pressure, and the vectors show the velocity. 

up of the shear layers. Also, the pressure between the two shear layers is higher than 

that in Fig. 2 .9 ;  since the pressure drop in the wake is moderate in comparison to the 

two-dimensional calculation, the drag is reduced. 

The formation of shear layers in the wake has also been reported m experiments in 

which the Reynolds number Re = 520 [52] , Re ranges from 2 .9  x 103 to 1 . 1 6  x 104 [50] , 

and the LES in which Re ranges from 2 .9  x 103 to 1 . 16 x 105 [50] . The flow pattern of 

Fig. 2 . 10 is similar to that of these experiments and LES .  The results shown in Table 2 . 2  

and Fig. 2 . 10 indicate that the three-dimensional simulations reproduce the major parts 

of the real flows. These comparisons validate the inviscid simulations for certain kinds of 
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CHAPTER 2 .  APPLICABILITY OF THE INVISCID SIMULATIONS TO THE FLOW AROUND A BODY WITH SHARP-EDGE SEPARATION USING CARTESIAN CUT-CELL METHOD 
flows around a body with sharp-edge separation. 
2.4.2.4 Characteristic frequencies of lift and drag fluctuations 
The power spectra of the fluctuations in the drag and the lift are obtained using a fast 
Fourier transform (FFT) using the spectrum analysis software "SPCANA Ver. 4.92 ." 
The drag and lift histories from the fine grid simulations are used for the spectrum anal
ysis, with 81 92 data points sampled at 50kHz. Figure 2 . 1 1  shows the power spectra of 
fluctuations in the drag and the lift. 

l.00E+00 

E l.00E-01 

l.00E-02 
(1) 

l.00E-03 (1) 

l .00E-04 

_ .. -, , \ ,, ,, , .... I\ '  
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10 100 1000 
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Fig. 2 . 1 1 : Power spectra of fluctuations in the drag (solid line) and lift (dotted line). 
Each power spectrum has two major peaks, which are at a high frequency and a low 

frequency. For the lift, the peak frequencies are 482 and 67.0Hz, while for the drag they 
are 964 and 67.0Hz. Note that the higher frequency in the drag spectrum is double that 
of the high frequency in the lift spectrum. Also note that the low frequency peak in the 
spectrum of drag fluctuations is stronger than the high frequency peak of drag'. 

The Strauhal number is calculated using the characteristic frequency of the lift fluc
tuations at f = 482 Hz: 

St = jd = 0.2 0 1 .  
Uxa 

(2 .3 1 )  
Table 2 .3 shows the Strauhal numbers from the present simulations, from experiments 
[52 , 50], and from the LES [50]. The Strauhal numbers from the experiments and from 
the LES are close to 0.2 , and the Strauhal number from the present simulation matches 
these values. 
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2.4 .  NUMERICAL SIMULATIONS OF FLOW PAST A TRIANGULAR COLUMN 

Table 2 .3 :  Strouhal number of the triangular column 

Present 
Agrwal et al. [52] 
Yagmur et al. [50] 

(Inviscid) 
(Experiment) 
(Experiment) 
(LES) 

Re St 

0 .201 
520, 1 .04 X 103 0.20, 0. 197 

2 .9 X 103 - 1 . 16 X 104 0.2 1 1  - 0.225 
2.9 X 103 - 1 . 16 X 105 0 .214 - 0.230 

2.4.2 .5 Correlation between the oscillations of the two shear layers and fluctuations in the drag 
The wake of the triangular column in Fig. 2 . 10 is sandwiched between two free shear 

layers. The distance 6.8 between the two shear layers ( i .e . ,  the width of the wake) is given 

by 

6.s = 100 [l _ min {uxo , max (ux , O) } ]  dy. 
-oo Uxo 

(2 .32) 

This formula follows the displacement thickness of the boundary layer. The second term 

on the right-hand side of Eq. (2 .32) , the fast flow near the shear layers is rounded down 

to u0 ,  and the backflow in the wake is rounded up to zero. The width of the wake is 

calculated at x = 0 .565d. 

The correlation coefficient between the fluctuations in the drag and the width of the 

wake is -0.899, which represents a strong negative correlation. This indicates that the 

slow fluctuations in the drag and lift are caused by fluctuations in the width of the wake. 

27 



CHAPTER 2. APPLICABILITY OF THE INVISCID SIMULATIONS TO THE FLOW AROUND A BODY WITH SHARP-EDGE SEPARATION USING CARTESIAN CUT-CELL METHOD 
2 .  5 Con cl us ions 

The applicability of inviscid simulations to real flows is discussed using the Cartesian 
cut-cell method. The inviscid simulation is employed for external stream of the boundary 
layer theory. The inviscid simulation requires less computational cost than Navier-Stokes 
simulation with sufficient grid resolution in boundary layer. The inviscid simulation is 
useful if it predicts aerodynamic force within sufficiently small error in practical appli
cations. We exclude flows in which aerodynamic force remarkably depend on Reynolds 
number as well as flows in which separation points depend on Reynolds number. 

For verifying simulation code, numerical simulations of the flow past an NACA 0012 
airfoil are performed, and grid convergence of the maximum Mach number, drag coeffi
cient, and surface pressure distribution. are confirmed. 

For validating the applicability of inviscid simulation, numerical simulations of the 
flow past a triangular column are performed. The drag coefficients calculated from the 
two-dimensional simulations are greater than those obtained from a reference experiment 
[51] . Contrary to expectations, the drag from these simulations increases as the grid width 
is refined. In these simulations, vortex shedding accompanied by a markedly accelerated 
flow and an extremely large pressure drop occurs in the vortices. 

For the three-dimensional simulations, even though they are inviscid calculations, the 
difference between the calculated and reference experimental values of the drag coefficient 
is less than 1 % .  The difference also decreases as the grid width is refined, i .e . ,  grid 
convergence is confirmed. The trailing edges of the triangular column generate two shear 
layers behind the column. Subsequently, a vortex street is formed in the wake by rolling 
up of the shear layers. The same flow structure has been observed in experiments [52, 50] . 
These results indicate that the present inviscid simulation reproduces the main parts of 
the real phenomena. 

The major characteristic frequencies of the lift and the drag fluctuations are calculated 
using FFT analysis. The characteristic frequency of the lift match the frequency of von 
Karma.n's vortex, as obtained in both the experiments [52, 50] and the LES [50] . Moreover, 
the slow fluctuations in the drag match the fluctuations in the width of the wake (i .e . , 
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the distance between the two shear layers) . 

These validations confirm that the three-dimensional inviscid simulations provide valid 

representations of certain kinds of flows around a body with sharp-edge separation as well 

as flows without separations. However, two-dimensional inviscid simulations are invalid 

for the flows that contain flow separation. They predict extremely large pressure drops 

in the vortices, which do not occur in either the three-dimensional simulations or the 

experiments. 

The present study reveals limitation of the two-dimensional inviscid simulation and 

the applicability of the three-dimensional inviscid simulation to the flows around a body 

with sharp-edge separation. It needs further discussion of extent of the applicability of 

the three-dimensional inviscid simulation. Since the inviscid simulations do not require a 

fine grid to represent the boundary layer, the inviscid simulation by using the Cartesian 

cut-cell method is expected to evolve as a three-dimensional simulation tool within its 

applicable extent of problems. 
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Chapter 3 

Applicability of the Wall-Modeled 

Cartesian Cut-Cell - Method to the 

High Reynolds Number Flows 

3.1 Introduction 

High Reynolds number flows Re � 106 frequently appear in the aerodynamic design of 
aircrafts and spacecrafts. In the computational fluid dynamics (CFD) , Reynolds-averaged 
Navier-Stokes (RANS) simulation achieves remarkable success in steady flows. However, 
RANS simulation is difficult to apply to unknown unsteady flows. Large eddy simulations 
(LESs) are rather reliable in simulations of unknown unsteady flows. 

In the turbulent boundary layer of Re � 106 flows, LESs struggle to satisfy the 
sufficient grid resolution requirement due to the vortex scale decreasing in the inner layer 
of the turbulent boundary layer, which is about 10% of the turbulent boundary layer 
thickness. Choi and Moin [13] estimated that the total number of. the computational grid 
required in a wall-resolved LES is proportional to Re1317 . 

The wall-stress model using one-dimensional equations in wall-normal coordinates for 
turbulence boundary layer was introduced by Kawai and Larson [18,  53, 54] . This model 
yields accurate wall shear stress and heat flux using instantaneous values from the LES . 
Shear stress and heat flux are provided to the LES in the form of flux across the wall in 
this model. 

The Cartesian cut-cell method [5, 6, 7] subdivides the object surface into small flat 
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CHAPTER 3 .  APPLICABILITY OF THE WALL-MODELED CARTESIAN CUT-CELL METHOD TO THE HIGH REYNOLDS NUMBER FLOWS 
planes inside the cubical computational cells. In other words, these cells are divided by 
small cut planes into the fluid side and the object side. The interaction between the 
object and the fluid is given by wall flux vectors across the cut plane. Due to this sharp 
interface treatment and the robust grid generation of the Cartesian mesh, the Cartesian 
cut-cell method is one of the most promising methods in CFD. However, the Cartesian 
cut-cell method and other Cartesian. mesh solvers struggle to satisfy the required grid 
resolution for boundary layers because rectangular cells with an extremely large aspect 
ratio used in boundary fitted mesh are not available with these methods. To overcome 
this difficulty, an appropriate near-wall treatment is required. The wall-stress model by 
Kawai and Larson is expected to be one of the most compatible wall treatment techniques 
with the Cartesian cut-cell method. 

The present study performed numerical simulations of the flow past a triangular col
umn and 30P30N high-lift airfoil configuration using the Cartesian cut-cell method with 
the wall-stress model. The numerical results of the present study revealed the prediction 
capability of the wall-stress model to the Cartesian cut-cell simulation of unsteady flows. 

3.2 Governing Equation and Simulation Method 

3 .2 .1 Governing Equation 

The governing equation is the compressible Navier-Stokes equation. Conservation laws 
can be written in the following form: 

(3. 1 )  
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3.2 . GOVER ING EQUATION AND SIMULATION METHOD 
The conserved quantities Q; the advection fluxes Ea , Fa , and Ga ; and the viscous and 
conductive fluxes Ed , Fd , and Gd in Equation (4. 1 )  are defined as follows: 

Q =  

p 

PUx 

puy 

PUz 
e 
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0 

Txx 
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pu; + p 
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(3.2 ) 

where p is the density; ux , uy , and Uz are the components of the velocity; p is the pressure; 
and e is the total energy per unit volume. The variables T and q are the stress tensor 
and heat flux, respectively: 
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a is the speed of sound; µ is the viscosity obtained by Sutherland's law; and the Prandtl 

number Pr is 0.72. 

The product of Equation (4. 1) and the Heaviside function H(x, y,  z) is reduced to 

_oH_Q_ + _oH_(E_a_-_E_d_) + _oH_(_F_a _-_F_d) + _oH_( G_a_-_G_d_) 
at ax ay az 

aH aH aH 
= ox (Ea - Ed) +  

oy (Fa - Fd) + 
oz (Ga - Gd) - (3 . 5) 

This equation extends the simulation domain that includs the object, where the Heaviside 

function H(x, y, z) gives H = l in air and H = 0 in the object. The Heaviside function 

is treated as a generalized function [55] because it includes discontinuity at the object 

surface. Considering the relation v' H = J v'  H J  n, we obtain the following equation. 

(3 .6) 

The vector n represents a unit normal vector directed outward from the object into the 

air. The variable u on the right-hand side of Equation (3.6) represents the wall flux vector 

(the interaction between the object and the air) , which is directed from the object into 

the air. Considering the boundary condition u • n = 0 at the object surface, u is reduced 

to the following form: 

0 
pnx - Txxnx - Txyny - Txznz 

O" = pny - Tyxnx - Tyyny - Tyznz pnz - Tzxnx - Tzyny - Tzznz 
0 

0 
pnx - Twbx pny - Twby pnz - Twbz 

0 

(3 .7) 

The vector b is the stream-wise unit vector parallel to the wall. The scalar value Tw of 

the wall shear stress is obtained by the wall-stress model. Wall flux of mentum through 

the pressure and the shear stress are included, while wall flux of mass and energy do not 

exist in the problems considered here. 

The governing equation (3.6) is solved using a cell-centered finite volume method. 

The Heaviside function H in the time derivative term in Equation (3 .6) is replaced by 

the volume fraction of air in the cell, and H in space derivative terms in Equation (3.6) 

is replaced by the area fractions f3x , /3y , and /3z of air in each cell interface. We replace 
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l'v H I into the following approximation: 

(3 .8) 

where �x, �Y , and �z are the grid width. The finite volume approximation of l 'v  HI �x �y �z 

gives the area of the small cut-plane in the computational cell. 

The advection flux at the cell interface is calculated using the Simple Low-dissipation 

AUSM (SLAU) scheme [43] . The primitive variables on the cell interface are reconstructed 

using Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) of the fifth

order accuracy [56] . The velocity components are obtained using the modification of the 

MUSCL scheme proposed by Thornber [46] . The time integration to second-order accu

racy is calculated using the Total Variation Diminishing (TVD) Runge-K utta method [4 7] . 

3.2.2 Wall-Stress Model 

The wall-stress model by Kawai and Larson [18, 53, 54] for the turbulent boundary layer 

was used in the present study. Stream-wise momentum and the total energy conserva

tion equation of the wall-stress model are written in the following ordinary differential 

equations in the local wall-normal coordinate 7/ :  

d 
[ 

dU1 1 ] df/ 
(µ + µt,wm) df/ 

= 0 ,  

d 
[ 

dU1 1 ( µ µt,wm ) 
dT] 

df/ 
(µ + µt,wm ) UII df/ 

+ cP Pr + Prt,wm df/ 
= O, 

(3 .9) 

(3. 10) 

where U1 1  is the wall-parallel velocity component . Constants Pr = 0 .72 and Prt,wm = 0 .90 

are the Prandtl number and turbulent Prandtl number, respectively. The solution of the 

wall-stress model equations shows the averaged velocity and the averaged temperature 

distributions in the inner-layer part of the turbulent boundary layer. The turbulent eddy 

viscosity in the wall-stress model µt,wm is obtained using the following formula: 

ff;_ µt ,wm = KP'T/y p 
D, (3. 1 1 )  

35 



CHAPTER 3 .  APPLICABILITY OF THE WALL-MODELED CARTESIAN 
CUT-CELL METHOD TO THE HIGH REYNOLDS NUMBER FLOWS 

( a) Define the upper bound 
of the wall-stress model mesh 
using the wall distance dwm . 

(b) Generate the one
dimensioual mesh for the 
wall-stress model that is 
independent of the Cartesian 
cut-cell mesh. 

• 

• 

( c) Interpolate U1 1  and T to 
the upper boundary value of 
the wall-stress model using 
inverse distance weighting. 

Fig. 3 . 1 :  Overview of the application of the wall-stress model to the Cartesian cut-cell 
method. 

(3 . 12) 

The von Kannan constant is K, = 0.41 , and A+ is a constant that equals 17. The velocity 

scale 11,7 = � is estimated by the instantaneous wall shear stress and density. The 

dimensionless wall distance y+ in Equation (3 . 12 )  is defined as : 

P'TJ'/1,T y+ = --
/l 

(3. 13) 

The boundary value problem of the wall-stress model Equations (3.9) and (3 . 10) are 

discretized using the one-dimensional finite volume method and solved by the Thomas 

algorithm. Boundary values at rJ = rJmax = dwm are determined from the instantaneous 

value of the CFD analysis (Figure 3 . la) .  

A schematic of the application of the wall-stress model to the Cartesian cut-cell method 

is shown in Figure 3 . 1 .  An overview of the implementation is provided as follows: 

a. The upper bound of the wall-stress model mesh is set on the wall-normal line passing 

through a CFD cell center (xc , Ye , zc ) that includes the cut-plane by the object . The 

upper bound is placed at distance clw111 from the wall. The distance dwrn corresponds 

to y+ ~ 300. The location of the upper bound (xub ,  Yub ,  Zub)  of the wall-stress 
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3.2 .  GOVERNING EQUATION AND SIMULATION METHOD 
model in the CFD domain is decided as follows: 

where 'Pc denotes the distance from the wall to the CFD cell center (xc , Ye , zc ) -
b .  The one-dimensional non-uniform mesh for the wall-stress model is generated from 

the wall to the upper bound. The wall-stress model mesh is generated using the 
following formula: 

Tl = exp [(r\vm - 1) Uwm + c1 )] + C2 , (3 . 15 )  
where Jwm denotes the cell number from the wall; rwm = 1 . 1  denotes the rate of 
the increment of the grid distancing between neighboring grid points. The grid 
distancing increases by 10% between neighboring grid points. Constants c1 and c2 

is decided to satisfy the following conditions: 
rJ = 0 :  at the wall (Jwm = 0) , rJ = dwm : at the upper bound (Jwm = 80) . (3. 16)  

c. The upper boundary values U1 1  and T are decided by inverse distance weighted 
interpolation using instantaneous values of the neighbor cell-center of the Cartesian 
cut-cell simulation as follows: 

(3 . 1 7) 

Wi = ---,:,:====�==,===�==,===� ✓(xi - Xub) 2 + (Yi - Yub ) 2 + (zi - Zub) 2 
(3 . 18)  

The wall boundary condition of the wall-stress model equations is  the non-slip and 
adiabatic wall in the present study. 

d. Wall-stress model Equations (3.9) and (3 . 1 0) are solved using the finite volume 
method using the one-dimensional wall-model mesh. 

e. The obtained wall-stress Tw is provided to the CFD cell at (xc , Ye , zc ) ,  which includes 
the cut-plane by the object . 
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3 .3  Flow Around a Triangular Column 

The flow around a triangular column that contains only sharp-edge separation and hardly 
depends on the Reynolds number is calculated. The results of the wall-modeled Navier
Stokes simulation is compared using a experiment and an inviscid simulation by the Euler 
equation. 
3.3.1 Simulation Conditions 

The flow condition is shown in Table 3. 1 . The stream-wise length of the triangular column 
is 37.5mm and the length of the one side D of the triangular column is 2 5vl3 '.::::'. 43.3 mm. 
The grid system consists of a uniform grid domain and a non-uniform grid domain in 
the xy direction. The range of the uniform grid domain that consists of cubic cells with 
constant grid width .6.x is -0.2 m ::; x ::; 0.2 m, -0.2 m ::; y ::;  0.2 m, and Om ::; z ::;  0.1 6m. 
Outside the uniform grid domain, the width of the cuboid cells stretches by 1 0% between 
neighbors in the x and y directions. Inflow and outflow boundary condition is decided by 
Riemann invariants [49]. Boundary values at Ymin and Ymax are fixed to the free-stream 
condition. The grid system in the z-direction consists of only a uniform grid, and the 
periodic boundary condition is applied. 
3.3.2 Simulation Results 

Isosurfaces of the second invariant of the velocity gradient tensor ( Q-criterion) of the fine 
grid simulations are shown in Figure 3 . 2 .  The left figure shows the result of the Euler 
simulation and the right figure shows the wall-modeled Navier-Stokes simulation. In both 
figures, flow separation occurs at the downstream-side sharp edges, and a complex vortex 
structure that contains longitudinal vortices is formed in the wake. The outline of the 
flow structure by the wall-modelled Navier-Stokes simulation is the same as that of the 

Table 3. 1 : Simulation conditions for the flow around a triangular column. 
Ma Re (Wall-Modeled NS) .6.x/D 
0.3 2 . 9 X 1 05 0.092 , 0.046 
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(a) Euler simulation 

3 .3 .  FLOW AROUND A TRIANGULAR COLUMN 

(b) Wall-modelled NS simulation 

Fig. 3 .2 :  Isosurfaces of the second invariant of the velocity gradient tensor (Q-criterion) . 

Euler simulation. 

Instantaneous distribution of pressure and velocity in an xy-plane of the fine grid 

simulation is shown in Figure 3 .3 .  Free shear layers form in the wake of the sharp edges, 

and the vortices form by the rollup of the free shear layers . Pressure in the wake of the 

wall-modelled Navier-Stokes simulation is similar to that of the Euler simulation. 

Time-averaged distribution of pressure and velocity in an xy-plane of the fine grid 

simulation is shown in Figure 3 .4 .  The length of the wake of the wall-modelled Navier

Stokes simulation is almost equal to that of the Euler simulation. Pressure distribution in 

the wake of the wall-modelled Navier-Stokes simulation is slightly different from that of 

the Euler simulation. However, the surface pressure distributions of the triangular column 

in both cases do not have noticeable differences . This suggests that the flow field hardly 

depends on the Reynolds number, and the boundary layer on the triangular column does 

not play an important role. 

The drag coefficient is shown in Table 3 .2 .  The drag coefficient of the fine grid of 

the Euler simulation is 1 .282 and the difference from the experimental value [5 1] is 3 .2%. 

The difference decreases with grid resolution. The pressure drag coefficients of the fine 

grid simulation of the wall-modelled Navier-Stokes simulation is 1 . 284 . This value is 

extremely close to that of the Euler simulation. The difference in the drag coefficient of 
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Fig. 3 .3 :  Pressure contour and velocity vectors at the z = const . plane of the fine grid 
simulation. 
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Fig. 3 .4 :  Time-averaged pressure contour and velocity vectors at the z the fine grid simulation. const. plane of 
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Table 3. 2 : Drag coefficient and its difference from the experiment (%). 

Euler Wall-Modelled NS Experiment [51 ]  
Coarse Fine 

1 .2 68 (4.3%) 1 .2 82 (3.2 %) 1 .2 83 (3.1%) 1.2 91 (2 .6%) 1.3 2 5 

the wall-modelled Navier-Stokes simulation from the experiment is slightly less than that 
of the Euler simulation. This improvement is mainly provided by the additional surface 
friction of the wall-modelled Navier-Stokes simulation. Considering effect of viscosity of ' 
the fluid in the wall-modelled Navier-Stokes simulation, this relationship is reasonable. 

The computational cost of the wall-modelled Navier-Stokes simulation is 3 /2 or more 
of that of the Euler simulation. Both the wall-modelled Navier-Stokes simulation and the 
Euler simulation are valid when the separation lines are fixed to the sharp edges of the 
object. Consequently, it is possible to select one of these simulation methods according 
to accuracy and computational cost requirements when the separation lines are fixed to 
the sharp edges and the flow field hardly depends on the Reynolds number. 
3.4 Flow Around the 30P30N Three-Element High

Lift Airfoil Configuration 

Numerical Euler and wall-modelled Navier-Stokes simulations of the flow around a 3 0P3 0N 
high-lift airfoil configuration were performed. This airfoil is a model of the high-lift device 
of an aircraft that consists of a slat, main element, and flap. The simulation results were 
compared with experiments and CFD results using the boundary-fitted mesh method. 
Based on these comparisons, the prediction capability of the Cartesian cut-cell method 
with the wall-stress model by Kawai and Larson [18] was discussed. 
3 .4.1 Simulation Conditions 

The flow conditions are provided in Table 3 .3. The chord length c of the 3 0P3 0N high-lift 
airfoil configuration is 0.4 57m following the experiment by Murayama et al. [57]. The 
grid system consists of a uniform grid domain and a non-uniform grid domain in the xy 
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3 .4. FLOW AROUND THE 30P30N THREE-ELEMENT HIGH-LIFT AIRFOIL 
CONFIGURATION 

Table 3.3: Simulation conditions for the flow around a 30P30N high-lift airfoil configura
tion. 

Ma Re (Wall-Modeled NS) a 6.x/c 
Coarse Medium Fine 

0. 17  1 .71 X 106 5 .5° 2 .2  X 10-3 1 . 1  X 10-3 0.55 X 10-3 

9.5° 2.2 X 10-3 1 . 1  X 10-3 

direction. The range of the uniform grid domain that consists of cubic cells with constant 

grid width 6.x is -0. lm � x � 0 .6m,  -0.lm � y � 0. lm, and 0 � z � 0 .052m. Outside 

the uniform grid domain, the width of the cuboid cells stretches by 10% between neighbors 

in the x and y directions. The boundary condition at the outer edges of the xy-plane is 

determined by Riemann invariants [49] . The computational grid in xy-plane is shown in 

Figure 3 .5 .  The grid system in the z direction only consists of a uniform grid, and the 

20 
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x[m) 
(a) Grid in all the .computational domain 

I 

+· 

(b) Computational grid around the trailing edge 

of the slat and the leading edge of the main el
ement 

Fig. 3 .5 :  Computational grid iaround a 30P30N high-lift airfoil configuration. 

periodic boundary condition is applied. 
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3.4.2 Simulation Result by Wall-Modelled Navier-Stokes Sim

ulation 

The isosurface of the second invariant of the velocity gradient tensor (Q-criterion) around 

the 30P30N high-lift airfoil configuration at the angle of attack a = 5.5° is shown in 

Figure 3 .6 .  Vortices are shed from the trailing edge of the slat (Figure 3 .6a) , the main el-

(a) Wake of the slat (b) Vortices of the outer layer of the turbulent 

boundary layer on the suction side of the main 

element 

Fig. 3 .6 :  Q-criterion around a 30P30N high-lift airfoil configuration when a = 5 .5° . 

ement , and the flap. The intermittent vortices of the outer layer of the turbulent boundary 

layer are generated on the suction side of the main element (Figure 3.6b) and flap. 

Figure 3 .7  shows the distribution of the velocity component Ux at the nearest cell from 

the airfoil surface and an xy-plane cross-section of the fine grid simulation, providing a 

close-up view at x/c ~ 0 . 15 .  The dark blue area in Figure 3 .7 shows the negative value of 

the velocity component, which indicates that the leading-edge separation bubble forms at 

x/c ~ 0 . 1 .5. The location of the separation bubble is consistent with the experiment [58] . 

This separation bubble formed in the fine grid simulation but not in the medium and 

coarse grid simulations . 

Figures 3.8a and 3 .9  show the instantaneous and time-averaged distribution of the 

velocity component ux , respectively, around the flap when a = 5 .5° . Flow separation 

occurs on the suction side of the upstream side of the trailing edge of the flap in the 

instantaneous flow field as shown in Figure 3 .8a. It does not reattach before the trailing 

edge of the flap. In contrast with Figure 3.8a, the flow does not separate in the time

averaged flow field (Figure 3 .9) . This indicates that the separation riear the trailing edge 
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Fig. 3 .7: The leading edge separation bubble around x/c = 0 . 15  in the fine grid simulation; 
color shows velocity component Ux at the nearest cell from the airfoil surface and an x, y 
cross-section. 

Table 3 .4 :  Lift coefficient (a = 5 . 5° ) and its difference from the experiment (%) ; SA 
DDES, detached eddy simulation with Spalart-Allmaras turbulence model. 

Coarse 
Present Wall-Modelled NS Medium 

Fine 
Boundary-fitted mesh (SA DDES) [59] 
Hybrid mesh (SA DDES) [60] 
Experiment [57] 

of the flap occurs intermittently. 

Total Number of Cells Lift Coefficient 

15 , 972, 528 
93, 515 , 136 

612 , 392 , 768 
70 , 445, 430 

242 , 000 , 000 

2 .60 (7.8%) 
2 .69 ( 4 .6%) 
2 .71 (3 .9%) 
2 . 77 ( 1 .8%) 
2 .95 (4.6%) 

2.82 

The lift coefficients in this study and the a-sweep of that in the experiment in Reference 

[57] are shown in Figure 3 . 10 .  The Cartesian cut-cell simulation with the wall-stress model 

accurately predicts the lift coefficient . 

The lift coefficient of the Cartesian cut-cell simulation with the wall-stress model, the 

boundary-fitted mesh simulation [59] , the hybrid mesh simulation [60] , and the experiment 

[57] are shown in Table 3 .4 .  The hybrid mesh in Reference [60] is composed of the 

boundary fit mesh in the near-field region and the quadtree-based Cartesian mesh in the 

far-field region. Compared with the experiment, the Cartesian cut-cell simulation with the 

wall-stress model underestimates the lift coefficient . The difference from the experiment 

decreases monotonically with increasing grid resolution. However, the difference decreases 
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(a) Wall-modelled NS simulation (b) Euler simulation 
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Fig. 3 .8 :  Instantaneous distribution of velocity component Ux around the flap when a = 5 .5° . 

Fig. 3 .9 :  Time-averaged distribution of velocity component Ux by the wall-modelled Navier-Stokes simulation around the flap when a =  5 .5° . 
slower than expected accuracy in the formulation. 

The pressure coefficient in the case of a = 5 .5° is shown in Figure 3 . 1 1 .  The surface 
pressure distribution at the pressure side of this study coincides with the experiment and 
referenced simulations. It indicates that the surface pressure distribution at the pressure 
side is independent of the grid type and the near-wall treatment. 

The Cartesian cut-cell simulation of the present study well estimates the surface pres
sure distribution as well as the boundary-fitted mesh simulation [59] and hybrid mesh 
simulation [60] , except for the suction side of the slat and the main element suction side 
of x/c :::; 0. 15 .  The curvature of the pressure distribution changes around x/c = 0 .15 ,  and 
this x-coordinate coincides with the location from which the vortices of the outer layer of 
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Fig. 3. 10 :  Lift coefficient of the 30 P30 N high-lift airfoil configuration. 
the turbulent boundary layer develop on the suction side of the main element. 

The underestimation of the lift coefficient of the present study in Table 3.4 is consistent 
with the surface pressure distribution in Figure 3. 1 1. The positive error of the surface 
pressure on the suction side of the main element at x/ c ::; 0 . 15 and the suction side of 
the slat results in the underestimation of the lift. This error is caused by the mismatched 
estimation of the wall shear stress of the laminar parts of the boundary layers in these 
areas . The Cartesian cut-cell method experiences difficulty with resolving the laminar 
boundary layer due to its incompatibility with the grid concentration in the wall-normal 
direction. This problem is expected to be solved by the future development of the wall
stress model for laminar boundary layers. 

The results of the present simulations showed that Cartesian cut-cell simulation with 
the wall-stress model by Kawai and Larson [1 8] is one of the most useful schemes for the 
external flows of Re ~ 10 6 . The difference in the lift coefficient in the experiment in 
the medium grid simulation in Table 3 .4 is the same as the hybrid mesh simulation [60 ] . 
Considering the total number of computational cells, the prediction capability of the 
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Fig. 3.1 1 :  Surface pressure distribution of the 3 0P3 0N high-lift airfoil configuration when a = 5.5° ; SA DDES, detached eddy simulc:1.tion with Spalart-Allmaras turbulence model. 
present Cartesian cut-cell simulation with the wall-stress model is the same as the hybrid 
simulation [60]. Future improvements in the wall-stress model for the laminar part of 
boundary layer is expected to produce more accurate prediction within the same degree 
of accuracy as the boundary-fitted mesh simulation by Sakai [59]. 
3.4.3 Simulation Result with the Euler Equation 

Figure 3.8b shows the instantaneous distribution of the velocity component Ux of the 
Euler simulation around the flap when a = 5.5°. In contrast to the result produced with 
the wall-modeled Navier-Stokes simulation in Figure 3.8a, flow separation does not occur 
on the suction side of the flap in Figure 3.Sb. This suggests that the Euler simulation 
does not properly reproduce the flow separation from a smooth surface. 

The lift coefficient of the Euler simulation in the medium grid at a = 5.5° is 3.2 5 and 
the difference from the experimental result is 1 3.2 %. The Euler simulation overestimates 
the lift coefficient, and the difference in the lift coefficient in the edium grid of the Euler 
simulation is obviously larger than that of the coarse grid of the wall-modelled Navier-
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Stokes simulation. The Euler simulation is valid only if separation lines are fixed at the 

sharp edges of the body as shown in Figure 3.2a. 

3 .  5 Con cl us ions 

The prediction capability of the Cartesian cut-cell method with a wall-stress model was 

discussed in this paper. 

In the numerical analysis of the flow around a triangular column, the wall-modelled 

Navier-Stokes simulation adequately predicted the drag coefficient. In this case of sharp

edge separation flow, the drag coefficients of both the wall-modelled Na vier-Stokes simu

lation and the Euler simulation agreed with the experimental value within a small error. 

The value of the drag coefficient of the wall-modelled Navier-Stokes simulation was closer 

to the experimental value compared to that of the Euler simulation. 

The difference of the lift coefficient between the Cartesian cut-cell simulation and 

the experiment monotonically decreases with increasing grid resolution, in the numeri

cal analysis of the flow around the 30P30N three-element high-lift airfoil configuration. 

The intermittent vortex structure of the outer layer of the turbulent boundary layer was 

observed on the suction side of the main element and the flap. The intermittent flow 

separation from the suction side of the airfoil surface of the flap was predicted. 

The prediction result of the flows at Re ~ 106 by the Cartesian cut-cell method 

with the wall-stress model were equivalent to that by the boundary-fitted mesh methods, 

except for the laminar parts of the boundary layers. The Cartesian cut-cell method with 

the wall-stress model is one of the useful methods for high-Reynolds-number flows at 

Re ~ 106 . 
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Chapter 4 

Coupled Numerical Analysis of 

Three-Dimensional Unsteady Flow 

with Pitching Motion of Reentry 

Capsule 

4. 1 Introduction 

Dynamic instability is one of the unsettled problems in reentry of the blunt-body capsule [23] . 

The transonic instability may possibly cause the failure to open the parachute in the worst 

case. Dynamically stable reentry during transonic condition before parachute opening is 

essential to safety landing. Furthermore, stable parachute opening at low altitude in sub

sonic condition improves accuracy of landing point owing to reduction of the surface wind 

effect . 

Free-rotation test is a typical experiment using a wind tunnel. Hiraki [24, 25] and Abe 

et al. [26] conducted One degree-of-freedom ( 1-DoF) free-rotation tests using the same 

capsule shape using different supporting systems, respectively. These experiments reveals 

that the phase delay between the pitch angle and aftbody surface pressure fluctuation 

causes dynamically unstable moment around zero pitch angle . 

The Lissajous figure of the pressure difference between two measurement points on 

the aft body surface and pitch angle has two knots in Hiraki's experiment [25] . The pres

sure difference is related to the pitching moment . Considering the contribution of the 
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CHAPTER 4. COUPLED NUMERICAL ANALYSIS OF THREE-DIMENSIONAL UNSTEADY FLOW WITH PITCHING MOTION OF REENTRY CAPSULE 
base pressure fluctuation to the dynamically unstable moment, it means that the third 
harmonics have a non-negligible effect on the pitching moment. In order to deepen the 
discussion of the third harmonics of the pitching moment, it needs to obtain the time 
history of the pitching moment precisely. Coupled numerical analysis is suitable for this 
object. 

A model equation for the aerodynamic force based on the van der Pol equation was 
proposed by Hiraki. [2 4 ,  2 5] Abe et al. [2 6] and Kazemba et al.[61 , 2 3 ] proposed model 
equations introducing phase delay effect called "temporal delay" and "lag time factor," 
respectively. Abe's model is one of the extensions of Hiraki's model. These model equa
tions well reproduce most of pitch angle oscillations in experiments. However, the third 
harmonics of the pitching moment did not discussed sufficiently in these researches. Fur
ther discussion of the tl_iird harmonics of the pitching moment, which plays important 
role in limit-cycle oscillation, is necessary. 

In the present study, large-scaled numerical analysis of the three-dimensional unsteady 
flow coupled with 1-DoF pitching motion of a reentry capsule is performed. Based on the 
coupled analysis, the pitching moment coefficient is decomposed into Fourier series, and 
appropriate modeling of the third harmonics is discussed. Furthermore, a model equation 
properly considering the third harmonics of the unsteady aerodynamic force is developed. 
4.2  Governing equation and simulation method for 

CFD 

In the present study, Cartesian cut-cell method[62 ] on the Cartesian grid is used for 
computational fluid dynamics (CFD) analysis. The governing equation is compressible 
Euler equation. Conservation laws considering Cartesian cut-cell method can be written 
in the following form. 

Here, H is the Heaviside function: 
H(x, y, z)  = - { 1  + sgn(¢) } = 1 { 1 

2 0 
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in the air, in the capsule. (4.2 ) 



4.2. GOVERNING EQUATION AND SIMULATION METHOD FOR CFD 

The Heaviside function is determined easily from the level set function: </>(x, y, z) > 0 </>(x, y, z )  = 0 </>(x, y, z )  < 0 

in the air, 
on the capsule surface, 
in the capsule. 

l 'v</>I  = 1 .  

(4 .3) 

( 4 .4) 

Since the definition of ¢ is the same as that of the distance function in the level set method 

[4] , this function is called the "level set function," though level set method is not used 

in the present study but as piecewise-defined elementary functions. The scalar product 

n • 'v H is the Dirac delta function, which is defined in the direction normal to the surface 

of the capsule. 

In Eq. ( 4. 1 ) ,  Heaviside functions in the time differentiation term and the divergence 

terms are substituted by volume fraction of the cell and area fractions of the cell interface 

in each direction, respectively. The volume fraction and area fractions are evaluated by 

the Cartesian cut-cell method. The cell-merging technique[5] is used at each small-cell 

which has a small gas volume fraction. 

The variable CT on the right-hand side of Eq. ( 4. 1)  represents the wall flux vector 

(the interaction between the capsule and the air) ,  which is directed into the air from the 

capsule: 

CT = (4 . 5) 
pnz 

p(Uwxnx + Uwyny + Uwznz) 
Mass and heat transfer does not exist in the problems of the present paper. 

The conserved quantities Q,  and the fluxes E, F, and G in Eq. (4. 1 )  are defined as 

follows: 

E = 

puy 

PUxUy 

F = pu� + p 
PUzUy 

euy + puy 
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PUx 

pu; + p  
PUyUx 
PUzUx 

eux + PUx 

PUyUz 
pu; + p  

euz + PUz 

( 4.6) 
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Conservation equation ( 4. 1 ) is discretized by cell-centered finite volume method. The 

advection flux of the compressible Euler equation at the cell interface is calculated using 
the SLAU method[43]. Velocity components on the cell interface is interpolated by the 
sixth-order accuracy Weighted Essentially Non-Oscillatory (WENO) scheme[63]. The ve
locity components are obtained using the modification propo_sed by Thornber et al[46]. 
The other primitive variables (p, p) on the cell interface is incorporated by the fifth-order 
Monotone Upwind Scheme for Conservation Lows (MUSCL) [56]. Also, the time integra
tion to second-order accuracy is calculated using the TVD Runge-Kutta method[47]. On 
the coupled analysis, equation of angular motion is calculated using fourth-order Adams
Bashforth method. 
4 .3  Numerical analysis of the fl.ow around capsule 

model with fixed pitch angle 

CFD simulations of the flow around a capsule model D45S which has spherical base is 
performed for validation of our simulation code. Pitch angle of the D45S model is fixed. 
Experimental data of the wind tunnel testing with fixed pitch angle measurements of the 
D45S spherical-based model and pitching oscillation experiments of D45 frustoconical
based model has been published in Hiraki's study[2 5]. On the other hand, data of fixed 
angle measurements of the D45 model is not open to the public. Therefore, we discuss the 
fixed angle problem of D45S in this section. In the Hiraki's study, dynamic characteristics 
of the D45 and the D45S model is similar at M > 1. Unsteady numerical simulation of 
the flow around D45S model is sufficient for the validation of the simulation code to 
reproduce the dynamical characteristics of the D45 model. Schematic of the D45S scale 
model is shown in Fig. 4. 1 . Simulation conditions are shown in Table 4. 1 ; the conditions 
are decided by referring Hiraki 's experiments. [2 5] Grid width .6.x is applied on the uniform 
grid domain, and the width of the domain is -0. 1 2 m ::S: x ::s; 0.3 6m, -0. 1 2 m ::S: y ::S: 0. 1 2 m, 
and -0. 1 2 m ::S: z ::s; 0. 1 2 m. Outside of the uniform grid domain, grid width ratio between 
neighbor computational cells is 1 0%. 

Flow separation at the shoulder and the fine vortex structures in the wake are observed 
as shown in Fig. 4.2 .  Isosurfaces of the second invariant of the velocity gradient tensor are 
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4 .3 .  NUNIERICAL ANALYSIS OF THE FLOW AROUND CAPSULE MODEL WITH FIXED PITCH ANGLE 
Table 4 . 1 :  Simulation conditions for the flow around D45S model. 

a 

0° ~ 15° 

20° ~ 30° 

X 

Ala 

1 . 1  58.9 70 .6 

29 .28 

6.x/D 

0.0185,  0 .00923 

L[) 
<..D 

Fig. 4 . 1 :  Schematic of D45S scale model. 
generated not at the vicinity of the shoulder but at a certain distance from the shoulder. 
The pressure rises around the stagnation point at the nose and it gradually drops to the 
shoulder when the pitch angle o, = 0° . 

The typical flow structure in supersonic flows, which includes bow shock, expansion 
wave on the shoulder and recompression shock in the wake, is observed in Figs . 4 .3a and 
4 .3b. Standing shock wave is formed on the fore body of the D45S in case of a = 30° . 

Aerodynamic coefficients are obtained by time-averaged values of the unsteady sim
ulation. The sampling of the time-averaged value is started after initial disturbance 
converges .  The sampling time is 0 . 16s which is 100 times larger than D /u . Drag coeffi
cient , lift coefficient , and pitching moment coefficient shown in Figs . 4 .4-4 .6 fairly agree 
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Fig. 4.2: Isosurfaces of the second invariant of the velocity gradient tensor around the D45S model (a = 0° ) .  
with Hiraki 's experiments[25] . On the fine-grid simulations, the drag coefficient and the 
lift coefficient are closed to the experimental value with decreasing grid width. The mo
ment coefficient of the fine-grid simulation is in good agreement with the experimental 
value which has undulation. The aerodynamic coefficients of the coarse-grid simulation 
well follow the pitch angle dependency of the experimental results. Consequently, the 
coarse-grid simulation is also acceptable enough for the fixed CFD. 
4.4 Coupled CFD analysis with pitching rotation of 

the capsule 

Coupled CFD analysis with 1-DoF pitching rotation of the capsule is performed. Figure 
4. 7 shows'D45 model, which is a scale model of Hayabusa reentry capsule in 2010. [64] This 
frustoconical-based model is used in the coupled CFD analysis . The pitching rotation 
axis parallel to y-axis is placed at 50% position of the total length of the center axis, the 
pitching moment of inertia is 6 .07 x 10-4

. The upstream Mach number is 1 .3, and the ratio 
of grid width to shoulder diameter !:1x/ D is 0.02 (Coarse) and 0 .01 (Fine) . Grid width 6.x 
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Fig. 4 .3 :  Pseudo Schlieren image by the density gradient of the fixed pitch-angle simulation. 
is applied on the uniform grid domain -0 . lOm � x � 0 .41m, -0 . 125m � y � 0 . 125m, and 
-0 . 125m � z � 0 . 125m. Outside of the uniform grid domain, grid width ratio between 
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Fig. 4.5 :  Lift coefficient. Gray square plots show the experimental values and orange circle plots (Coarse) and blue triangle plots (Fine) show the CFD results. 
neighbor computational cells is 1 0%. Initial condition for the coupled CFD analysis is 
made by fixed CFD analysis using the D45 model at a: = 0. Furthermore, the initial 
disturbance of the pitching oscillation is not added. 

Results of the 1 -DoF coupled CFD analysis are compared with the wind tunnel exper
iment by Hiraki [2 4 ,  2 5] as shown in Fig. 4.8. Note that the amplitude of .the experimental 
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Fig. 4 .6 :  Pitching moment coefficient . Gray line show the experimental value and orange circle plots (Coarse) and blue triangle plots (Fine) show the CFD results. 
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Fig. 4 .7 :  Schematic of D45 model. 
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result continuously grows up to 20° , though Fig. 4 .8 omits the plots to ensure visibil
ity. Self-excitation of pitching oscillation occurs as well as the experiment . Subsequently, 
limit-cycle oscillation occurs in the fine-grid simulation. The amplitude fluctuations are 
found as like as that in the experiment during the limit-cycle oscillation. Oscillation fre
quency is obtained by the elapsed times of the four periods of the limit-cycle oscillation 
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of the coupled CFD analysis and eight periods of the limit-cycle oscillation of the experi
ment . The limit-cycle frequency of the coupled CFD analysis is 17 .  75Hz and that of the 
experiment is l 7 .98Hz. The limit-cycle frequency of the coupled CFD analysis well-agrees 
with the experiment . However, the amplitude is almost a half value of that in the exper
iment . This underestimate is more remarkable in the coarse-grid simulation, which has 
much lower amplitude than the experimental result. 
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Fig. 4 .8 :  Time history of the pitch angle in 1-DoF coupled CFD analysis . Gray plots are the local maximum and the local minimum values in each cycle which is picked up from the time history of the 1-DoF free oscillation in wind tunnel experiment by Hiraki. Orange and blue lines show the results of the coarse-grid simulation and fine-grid simulation, respectively. 
The result of the fine-grid simulation qualitatively agrees with the experiment . The 

time history of the pitch angle and the pitching moment are obtained. It is judged that 
the data is sufficient to deepen the understanding of the growing oscillation and the limit
cycle oscillation. However , the reason for the quantitative disagreement of the limit-cycle 
amplitude is still unclear. 

Figure 4 .9 shows the phase average of the flow field at a = 0° in pitch-up situation 
a > 0. The stagnation point in the wake is the vicinity of the axis of the capsule in the 
coarse-grid simulation. In the fine-grid simulation, the stagnation point in the wake is 
different to the coarse-grid simulation. 
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Fig. 4 .9 :  Streamlines and Pressure distribution of the phase average of the flow field in the symmetric xz plane at a = 0° and � > 0 
Figure 4. 10  shows the base pressure distribution of the capsule. Base pressure dis

tribution of the coarse-grid simulation is almost constant. On the other hand, in the 
fine-gird simulation, base pressure at the upper side is lower than that at the lower side. 
Consequently, this base pressure distribution causes the unsteady component of pitching· 
moment around a = 0° . 

Fine vortex structures in the wake in the fine-grid simulation realize the limit-cycle 
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Fig. 4. 10 :  Base pressure distribution of the phase average in the symmetric xz plane ·at a =  0° and a> 0. 
oscillation in the same order amplitude with the experiment, while self excitation of 
oscillation is very weak in coarse-grid simulation. It suggests the coupled CFD analysis 
with the capsule oscillation requires finer grid than that for the CFD analysis around a 
fixed-angle capsule. 
4.5  Fourier Analysis of Limit-Cycle Oscillation 

The pitching moment during limit-cycle oscillation is decomposed into Fourier series as 
follows: 

(4.7) 
CM =a1 cos 2 1rflim (t - t1 ) + b1 sin 2 1r.fom (t - t 1 ) 

+ a3 cos 61r.flim (t - ti) + b3 sin 61r .ftim (t - t1 ) + · · · (4.8) 

The constant t1 = 0.3 1 85 is a reference time when a = 0 and a> 0. Figure 4. 1 1 shows the 
fundamental components, the third harmonics and sum of the higher harmonics. The sine 
component of the fundamental frequency is major paJt of the pitching moment. The cosine 
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4.6 .  MODELING OF THE UNSTEADY AERODYNAMIC FORCE 

and sine components of the third harmonics are stronger than the cosine component of the 

fundamental frequency. Investigation of the third harmonics are necessary to elucidate 

the limit-cycle oscillation. 

Integral of the angular momentum equation I a = M gives angular velocity: 

(4 .9) 

where I denotes moment of inertia of the capsule. Further, integral of a gives 

(4. 1 0) 

It is noteworthy that b1 < 0, i a1 i  « l b1 I ,  i a3 i  « l b1 I ,  l b3 I  « l b 1 I as shown in Fig. 4 . 1 1 .  

Let us approximate the right-hand side of Eq. (4 .8) by using a and a/(21rflim) - Ne

glecting small terms of O ( l ai /b1 l2 ) ,  O( la3/b1 l 2 ) ,  O( l b3/b1 l 2 ) and the higher harmonics, 

Eq. ( 4 .8) is reduced to 

where 

4.6 Modeling of the unsteady aerodynamic force 

(4 . 12) 

In this section, Eq. ( 4 . 1 1 ) for limit-cycle oscillation is extended to a model equation for 

aerodynamic force during growing oscillation as well as limit-cycle oscillation. 

The relation sin2 21r flim (t - to) +  cos2 21r flim (t - to ) = 1 is reduced to 

(�;) ' { "' + c";J ' } � I + o ( I :: I) + o ( I �: I) (4 . 13) 

when a and a are given by Eqs. (4. 10) and (4.9) , respectively, in limit-cycle oscillation. 

This relation shows that the amplitude Alim of a during limit-cycle oscillation is equal to 
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Fig. 4. 1 1 :  Fourier components of the pitching moment coefficient Ct,,1; the yellow line (b1 term) is set on the right-hand vertical axis, and other lines ( a1 , a:3 and b3 terms) are set on the left-hand vertical a.,'<is. 
-bi /C1 . Using this relation, we construct the following model equation for aerodynamic 
force: 

( . ) { ( . ) 2 } ac 0' 2 2 0: CM = -Ci 0: + A3 �f· ·  Al im - 0'. - �f· · lim 7r_ !mt 7r, Inn 
b { ( . ) 2 } 

C 2 2 0: 
- -- o: Ar - a - --Ai{m im 2 7rf!im 

8a3 ( ci: ) { ( ci: ) 2 3 2 } + --3- --- --- - 0: 9Alim 2 7rfJim 2 7rflim 
8b3 { ( a ) 2 

2
} + --:3- 0: 3 -- - 0: ' 9Alim 2 7r flim (4. 1 4) 

The second and third terms of the right-hand side cause the growing oscillation, meanwhile 
limit-cycle oscillation does not affected by these terms in any values of the constants ac 
and be . 

Limit-cycle frequency flim = 1 7.75Hz is decided by the result of the coupled CFD 
analysis with the capsule oscillation, and it gives C1 = 0. 1 52 . Fourier series expansion 
decides Fourier coefficients b1 = -0.0277, a3 = 0.001 1 0  and b3 = -0.001 3 4. Fitting 
parameter be reproduces the initial frequency fo in the growing oscillation, and is estimated 
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Fig. 4 . 12 :  Time history of the pitch angle of the capsule. 

( JJ ) be = l - 12 b1 = 0 .00575 hm ( 4 . 1 5) 
where Jo = 19 .5Hz is decided by the results of the coupled CFD analysis. Another fitting 
parameter ac reproduces the envelope curve of the growing oscillation, and is estimated 
to be 0 .00481 .  

Hiraki 's model[24, 25] of the pitching moment coefficient based on  van der Pol equation 
is in the following form:  

( 4 . 16 )  
Variables a ,  b and c are fitting parameters. Only i f  ae = 8a3 /9 and be = -8b3/3, I-Iiaki's 
model coincides with Eq. (4 . 14) . Nevertheless, ac = 8a3/9 and be = -8b3/3 does not gives 
good approximation for the growing oscillation. Therefore, lack of the terms a2ci-: and &3 

in Hiraki's model is remarkable. 
Numerical solutions of initial value problem I a =  MoCM are obtained by the present 

model and Hiraki 's model . Figure 4 . 1 2  shows the time history of the pitch angle a obtained 
from the coupled CFD analysis, the present model and Hiraki 's model . Parameters a = 
-0 . 1 76 ,  b = 0.95 and c = 0 .007 are used in Hiraki 's model . The numerical solutions of a 
by both models well reproduce time history of the CFD analysis. 

Figure 4 . 13  shows the time history of the pitching moment coefficient CM obtained 
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Fig. 4 . 13 :  Time history of the pitching moment coefficient . 

from the coupled CFD analysis , the present model and Hiraki 's model. The numerical 

solution of CM by the present model reproduces the time history of the CFD analysis . The 

numerical solution of CM by Hiraki's model also reproduces the time history of the CFD 

analysis during growing oscillation. However, Hiraki's model overestimates the peak value 

of the limit-cycle oscillation and the waveform is distorted in the range of I C,w l > 0 .02. 

Moment coefficient is decomposed into static component and dynamic component as 

follows: 

( 4 . 1 7) 

Figure 4 . 14 shows the work per unit time aCMdy that the dynamic component of the 

moment does during the limit-cycle oscillation. The asymmetricity of the CFD results 

is caused by the shortage of the phase-averaged cycles . The asyrnmetricity is expected 

to reduce with the increment of the averaged cycles. The present model reproduces the 

major part of the dynamic work per unit time acting on the capsule during the limit

cycle oscillation. From the aspect of the positive dynamic work per unit time around 

maximum (or minimum) a, the present model is qualitatively agreed with coupled CFD 

result . The quantitative disagreement between the CFD result and the present model 

is caused by ignoring the higher harmonics for simplicity. On the other hand, Hiraki's 

model overestimates the dynamic work per unit time, and the local maximum phase is 

appreciably different from CFD result . Also, dynamic work per unit time of the Hiraki's 
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the capsule. 

model is not positive around maximum (or minimum) o. , thus Hiraki 's model qualitatively 

disagreed with aCMdy of the CFD result. 

Figure 4 . 15 shows the dynamic component C1,.1c1y of the moment coefficient of the 

numerical solution of the present model plotted on the o.-a/ (2n.f) phase plane. During 

the gwwing oscillation, the sign of CMc1v changes in the fundamental frequency, while the 

sign changes in the third harmonics frequency in the limit-cycle oscillation. 

Considering clockwise time-development of the state point in the phase plane, local 

maximum phase of CJ'ddy advances from vertical axis. vVe obtain the dynamic component 

CMdy = CM + C1 a from Eqn. (4. 14) . In case of limit-cycle, C11.Jdy is described by using 

trigonometric function by substituting Eqs. (4 .9) and (4. 10) . Neglecting the small terms , 

the dynamic component is reduced to cos{3(2n flimt + 'Plirn )}  with a certain coefficient. On 

the other hand, during initial stage of growing, C Afdy is reduced to ae ( CY /2nflirn ) / Alim -

bca/ Aiirn · Angular momentum equation using this approximation gives the solution 

( 4 . 18) 

Substituting this solution into the simplified equation of CMc1y and neglecting small order 

terms of O (ae/AlimC1 ) and O (be/AlimC1 ) ,  we obtain 

Ja� + b� ( Clc7T' ./Emt ) { . ( ) } CMdy = q1 A . exp 
A .  C 

cos 2n.hrn t - t1 + 'Po . l,rn l,m l 
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Fig. 4. 1 5 :  Dynamic component Ct-.fdy of the moment coefficient on the o,-a/(211.f) phase plane. 
Initial phase advance <po in the growing oscillation and phase advance 1Plim in limit-cycle 
oscillation are evaluated as follows: 

-1 ( be )  <po= tan - , 
ae 

1 _ 1 ( b3 ) 1Plirn = 3 tan - a3 . ( 4.20 ) 
Phase advance of CMdy shifts from initial value <po = 50 .1 ° to 1Plim = 1 6.9° in limit
cycle oscillation. It is suggested that progress of oscillation growth up to the limit-cycle 
oscillation is specified by 1Ptim ::; <.p ::; <.p0 . Note that the value of the P,hase advances are 
not universal but specified with the numerical ( experimental) conditions. Phase advance 
is one of the potential criteria that quantify the dynamic stability of the reentry capsule. 
It requires to validate it by many experiments and numerical simulations data. 
4. 7 Conclusions 

Coupled CFD analysis with 1 -DoF pitching motion of a scale 1:1-odel of a reentry capsule 
is performed. The following findings are obtained. 

Numerical simulations of the flow around D45S capsule with fixed pitch angle is 
performed before 1 -DoF coupled analysis. Aerodynamic coefficients coincides with the 

68 



4.7. CONCLUSIONS 

experiment [25] . 

The coupled CFD analysis with pitching oscillation of D45 capsule using a fine grid 

reproduces the same frequency and a half amplitude compared with the experimental 

result by Hiraki. [24, 25] The axis of vortex ring in the wake of the phase average is 

displaced to the lower side of the capsule base when a =  0 and a > 0, and pressure on the 

upper side of the capsule base decreases. Consequently, dynamic component of unsteady 

pitching moment arises. 

Pitching moment coefficient is decomposed into Fourier series. The amplitude of the 

third harmonics is larger than the cosine component of the fundamental frequency. 

The model equation for the pitching moment which properly considers the third har

monics is proposed. Numerical solution of a by the present model reproduces almost the 

same oscillation with the coupled CFD analysis as well as that by Hiraki 's model [24, 25] . 

Moreover, the dynamic component a CMdy of the unsteady aerodynamic work per unit 

time of the present model gives better estimate than Hiraki's model even though the 

present model equation does not require increase of the number of fitting parameters. 

Consequently, the present model equation gives better result than Hiraki's model equa

tion. 
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Chapter 5 

Conclusion 

5.1 Summary of the present study 

Chapter 2 "Applicability of the Inviscid Simulations to the Flow 

around a Body with Sharp-Edge Separation using Cartesian Cut

Cell Method" 

The applicability of inviscid simulations to real flows is discussed using the Cartesian 

cut-cell method in this chapter. 

Numerical simulations of the flow past a triangular column are performed. For the 

three-dimensional simulations, even though they are inviscid calculations, the difference 

between the calculated and reference experimental values of the drag coefficient is less than 

1 %. The difference also decreases as the grid width is refined, i.e. , grid convergence is 

confirmed. The trailing edges of the triangular column generate two shear layers behind 

the column. Subsequently, a vortex street is formed in the wake by rolling up of the 

shear layers. The same flow structure has been observed in experiments [52, 50]. These 

results indicate that the present inviscid simulation reproduces the main parts of the real 

phenomena. 

The major characteristic frequencies of the lift and the drag fluctuations are calculated 

using FFT analysis. The characteristic frequency of the lift match the frequency of von 

Karman's vortex, as obtained in both the experiments [52, 50] and the LES [50] . Moreover, 
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the slow fluctuations in the drag match the fluctuations in the width of the wake (i.e., 

the distance between the two shear layers). 

Validations confirm that the three-dimensional inviscid simulations provide valid rep

resentations of certain kinds of flows around a body with sharp-edge separation as well 

as flows without separations. However, two-dimensional inviscid simulations are invalid 

for the flows that contain flow separation. They predict extremely large pressure drops 

in the vortices, which do not occur in either the three-dimensional simulations or the 

experiments. 

Chapter 3 "Applicability of the Wall-Modeled Cartesian Cut-Cell 

Method to the High Reynolds Number Flows" 

Application of the WMNS to Cartesian cut-cell method and the applicability of invisid 

simulation of Euler equation are investigated in this chapter. 

Euler simulation and WMNS simulation of the flow around a triangular column is 

performed. According to experiments, separation line of this flow is fixed to the sharp

edge, and this flow hardly dependents on the Reynolds number. Euler simulation gives 

the qualitatively the same flowfield as the WMNS simulation. WMNS simulation gives 

a better estimation of the drag coefficient rather than the Euler simulation, but the 

difference from the experiment is at most 3.2% in the Euler simulation. This fact suggests 

the validity of the Euler simulation for the sharp-edge separation flow. Furthermore, the 

Euler simulation reduces the computational cost to 2/3 or less of WMNS's cost. This 

advantage is appreciable in lage-scale computation. 

Vortices generation in the outer-layer of the TBL in the WMNS simulation of the flow 

around the 30P30N high-lift airfoil configuration, and intermittently separation occurs 

around the trailing edge of the flap suction side. The WMNS simulation well estimates 

the lift coefficient. 

In the Euler simulation, separation on the flap suction side of the 30P30N high-lift 

airfoil configuration does not occur. Further, the Euler simulation overestimates the 

lift coefficient, and this estimation is not useful. Consequently, the Euler simulation is 

insufficient for prediction of the flow including the separation from smooth surface. 
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5. 1. SUMMARY OF THE PRESENT STUDY 

Chapter 4 "Coupled Numerical Analysis of Three-Dimensional 

Unsteady Flow with Pitching Motion of Reentry Capsule" 

Coupled CFD analysis with 1-DoF pitching motion of a scale model of a reentry 

capsule is performed. The following findings are obtained in this chapter. 

The coupled CFD analysis with pitching oscillation of D45 capsule using a fine grid 

reproduces the same frequency and a half amplitude compared with the experimental 

result by Hiraki. [24, 25] The axis of vortex ring in the wake of the phase-lock average is 

displaced to the lower side of the capsule base when a = 0 and a > 0, and pressure on the 

upper side of the capsule base decreases. Consequently, dynamic component of unsteady 

pitching moment arises. 

Pitching moment coefficient is decomposed into Fourier series. The amplitude of the · 

third harmonics is larger than the cosine component of the fundamental frequency. 

The model equation for the pitching moment which fully includes the third harmonics 

is proposed. Numerical solution of a by the present model reproduces almost the same 

oscillation with the coupled CFD analysis as well as that by Hiraki's model [24, 25]. More

over, the dynamic component a CMdy of the unsteady aerodynamic work of the present 

model gives better estimate than Hiraki's model even though the present model equation 

does not require increase of the number of fitting parameters. Phase advance of the dy

namic component CMdy of the moment coefficient on the phase plane varies from initial 

phase advance <po = 50. 1° up to limit-cycle phase advance 1Plim = 16.9°. 

The present thesis suggests the developability of the Cartesian grid solver to the high 

Reynolds number flows. Wall-modeled Navier-Stokes simulation is compatible with Carte

sian cut-cell method, and also Euler simulation which limited to sharp-edge separated 

flows gives good estimation as well as WMNS simulation. Cartesian cut-cell method is 

a useful solver for coupled analysis owing to its low grid generation cost and mass con

servation. Cartesian cut-cell method is expected to evolve as a simulation tool for high 

Reynolds number flows. 
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Appendix A 

Derivation of the Governing 

Equation using the Integral Form 

A.1  Navier-Stokes Equation in the Integral Form 

The governing equation is the compressible Navier-Stokes equation. Conservation laws 
over a cuboid control volume (x1 � x � x2 , y1 � y � y2 , z1 � z � z2 ) in the fluid can be 
written in the following integral form: 

d 
1

z2

1

Y2

1

x2 

[i

z2

1

Y2 

] 

x2 

d Qdxdydz + (Ea - Ed) dydz 
t z1 Yl X 1 z1 Yl X 1 

[1

z2

1

x2 

] 

Y2 

+ (Fa - Fd )dxdz 
z1 X1 Yl 

[1

Y2

1

x2 

] 

z2 

+ Yi xi ( Ga - Gd)dxdy zi = 0, 
(A . 1 )  

where [f(x) J :� denotes f(x2 ) - f(x1 ) .  The conserved quantities Q; the advection fluxes 
Ea , Fa , and Ga ; and the viscous and conductive fluxes Ed , Fd , and Gd in Equation (A. 1 )  
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are defined as follows: 

Q =  

Ea = 

Ga = 

p PUx puy ' PUz e 
Ea = 

0 Txx Tyx Tzx 

PUx pu; + p PUyUx PUzUx eux + PUx 

UxTxx + UyTyx + UzTzx - qx 
0 Txz Tyz Tzz UxTzx + UyTyz + UzTzz - qz 

Fa = 

Fa = 

puy PUxUy pu� + p PUzUy euy + puy 
0 Txy Tyy Tzy 

PUz PUxUz 
Ga = PUyUz pu; + p euz + PUz 

UxTxy + UyTyy + UzTzy - qy 

(A.2) 

where p is the density; Ux, Uy, and Uz are the components of the velocity; p is the pressure; 
and e is the total energy per unit volume. The variables T and q are the stress tensor 
and heat flux, respectively: 

T = �µ (2 oux _ OUy _ OUz ) xx 3 ox oy oz ' 
T = �µ (2 ouy _ OUz _ OUx ) yy · 3 oy oz ox ' 
T = �µ (2 ouz _ OUx _ OUy ) zz 3 oz ox oy ' 

( oux ouy ) Txy = Tyx = µ oy 
+ OX 

( ouy OUz ) Tyz = Tzy = µ OZ + Oy ' 
( OUz oux ) Tzx = Txz = µ OX + OZ 

1 µ oa
2 

q - - --- -x - ry - 1 Pr ox ' 1 µ oa
2 

q = - -- - -y ry - 1 Pr oy ' 1 µ oa
2 qz = - --- -

'"Y - 1 Pr oz ' 

(A.3) 

(A.4) 

where a is the speed of sound; µ is the viscosity obtained by Sutherland's law; and the 
Prandtl number Pr is 0. 72 . 
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A.2. EXTENSION OF THE NAVIER-STOKES EQUATION TO THE CARTESIAN 
CUT-CELL METHOD 

A.2 Extension of  the N avier-Stokes Equation to the 

Cartesian Cut-Cell Method 

The conservation equation in integral form over a cuboid control volume that extends 

over the two regions of the air and the object is written in the following form using the 

Heaviside function H(x, y, z) : 

d 1
z2 1Y2 1

x2 [i
zo 1Y2 ] 

x2 
- HQdxdydz + H(Ea - Ea)dydz 
dt Z1 Yl Xl Zl Yl Xl 

[1
z2 1

x2 ] 
Y2 

+ H(Fa - Fa)dxdz 
Zl X 1  Yl 

[1Y2 1
x2 ] z2 

+ Yi xi 
H(Ga - Ga)dxdy 

zi 
- 1· 0 f { (Ea - Ea) nx + (Fa - Fa )ny + (Ga - Ga )nz } dS = 0, 

lcut-plane 
(A.5)  

where the I-J;eaviside function H(x, y,  z) gives H = l in the air and H = 0 in the object; 

and the vector n represents the unit normal vector directed outward form the object into 

the air. Considering the boundary condition u • n = 0 at the object surface, Equation 

(A.5) is reduced to the following form: 

d 1
z2 1Y2 1

x2 [l
z2 1y2 ] 

x2 

d 
HQdxdydz + H(Ea - Ea )dydz 

t Zl Yl X1 Zl YI Xl 

+ [l:
2

1�
2 

H(Fa - Fa )dxdz] :: 

+ [ly2 l
x2 

H(Ga - Ga )dxdy] z
2 

= Jr f udS, (A.6) 
Y l  xi zi }cut-plane 

where the variable u on the right-hand side of Equation (A.6) represents the wall flux 

vector (the interaction between the object and the air) , which is directed from the object 

into the air :  

0 
pnx - Txxnx - Txyny - T.unz 

(T = pny - Tyxnx - Tyyny - Tyznz 
pnz - Tzxnx - Tzyny - Tzznz 0 

0 
pnx - Twbx pny - Twby pnz - Twbz 0 

(A.7) 

The vector b is the stream-wise unit vector parallel to the wall. The scalar value Tw of 

the wall shear stress is obtained by the wall-stress model. Wall flux of mentum through 
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the pressure and the shear stress are included, while wall flux: of mass and energy do not 

exist in the problems considered here. 

The governing equation (A.6) is solved using a cell-centered finite volume method. 

Cell-averaged quantities of the finite volume method are defined as follows: 1 
1

z2 

J

Y2

1

X2 
a = - Hdxdydz, 

V z1 Y1 X1 

1 
1

z2 

J

Y2 

f3x = S 
Hdydz, 

x z1 Yl 

1 
1

z2

1

x2 

/3y = S 
Hdxdz, 

Y Zl X1 

1 
J

Y2

1

x2 

f3z = S 
Hdxdy, 

z Yi X l  

Scut-plane = J
r 
{ . dS, (A.8) 

lcut-plane 
where a is the volume fraction of the air in the cell; f3x , /3y , f3z are the area fractions of the 

air in each cell interface; V is the volume of the cell; and Sx , Sy, and Sz are the area of 

each cell interfaces. Using these cell-averaged values, governing equation (A.6) is reduced 

to the following form: 

daQ [f3x(Ea - Ea)] :
2 

[/3y (Fa - Fa)fy: [/3z (G'a - G'a)] :
2 

Scut-plane _ 
-- + i + - --- � + i = ---u (A.9) dt X2 - X1 Y2 - Yl Z2 - Z1 V . 

The projection of the cut plane to each cell interface is approximated in the following 

form: 

(A. IO) 

These approximation tend to be exact equations at the limit of small curvature of the 

cut plane. Thus in the case of the sufficiently small control volume, Scut-plane and n are 

evaluated as follows: 

V [f3x]:� 
nx = --- ----, 

Scut-plane (X2 - X1) 
V [/3 ] Y2 

y Yl ny = 
( ) '  Scut-plane Y2 - Yi 
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V [/3z] =� nz = ----�--

Scut-plane (Z2 - z1 ) 
(A. 1 2 ) 
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