# 3 EBCO 薄膜の熱処理効果

# 3.1 はじめに

酸化物超伝導体を用いた電子デバイスや電力ケーブルの応用において、安定性の向上は必須 条件である。また、その作製過程での熱処理や加工プロセスにより、超伝導性の低下が生じるこ とが良く知られている [48, 49, 50, 51, 52, 53]。そのため、超伝導特性の回復処理が必要となる ものの、劣化の原因の違いにより要求される適切な回復処理が異なる。例えば、"123"系酸化物 超伝導体における水との反応による劣化は、約 900°C の酸素雰囲気中でのアニールが必要とさ れ [54, 55]、三層ペロプスカイト構造に由来する超伝導体内の酸素欠損による劣化は、酸素雰囲 気中、400-500°C でアニールにより効果的に回復するとされている [56]。しかし、化学的反応に よる劣化の場合、超伝導性を完全に回復させることは困難である。そのため、酸化物超伝導体の 劣化とその予防策を十分理解することが高性能デバイスへの応用において、大変重要となってお り、劣化した超伝導体に対する信頼ある回復処理技術を確立することが必要不可欠となる。

また、積層型ジョセフソン接合素子などのデバイス作製において、パターニングや高温でのエ ビタキシャル多層膜の形成によって超伝導体は劣化する [57, 58]。この劣化膜を回復させるため、 しばしば純酸素雰囲気中、約500°Cでアニールされている [59, 60]。しかしながら、この回復処理 は完全なものではなく、T<sub>ce</sub>=85 K以上の"123"系膜中で酸素欠損が発生した場合、高酸素雰囲 気中でアニールを行ったにも関わらず、as-grown 膜状態まで回復しなかった。この実験結果は、 酸素アニール処理によって十分に酸素原子が膜中に供給されたにも関わらず、オルソIの酸素原 子配列が形成されていないことを意味する。そのため、酸素欠損によって劣化した薄膜を、高T<sub>c</sub> 層へ再生可能な新しいアニール処理が必要であった。

本章では、EBCO 薄膜の酸素欠損による影響の詳細な基礎データを得るために、MgO 基板上 に作製した T<sub>ce</sub>=90 K以上の c 軸配向 EBCO 薄膜を用いた。また、酸素欠損によって劣化した薄 膜を、純酸素雰囲気、及び活性化酸素プラズマ (AOP) 雰囲気での熱処理を行い、それぞれの影 響を明らかにすると共に、劣化膜を完全に回復させる技術の確立を狙いとした。



図 3.1 EBCO 薄膜の熱処理用マグネトロンスパッタリングチャンバーの概略

# 3.2 実験方法

本研究における劣化処理、及び as-grown 膜への回復処理にマグネトロンスパッタリング装置 を用いた。EBCO 薄膜付き MgO 基板を裏側からスパイラル状のカンタルヒーター線の輻射熱に よって、試料の熱処理を行った。この熱処理用スパッタチャンパー装置内の概略を図 3.1 に示す。 MgO の  $T_s$  はヒーター電流投入後直ちに上昇し始めた。ここでの  $T_s$  の測定は、基板表面に直接 クロメル・アルメル熱電対を接触させて行った。ヒーター電流 ( $I_h$ ) と加熱時間 ( $t_h$ ) に対する基 板温度依存性を図 3.2 に示す。 $t_h$  の増加に伴い  $T_s$  は急激に増加し、その後飽和した。飽和する  $T_s$  に達する  $t_h$  は、 $I_h$  が大きいほど短かった。 $I_h$ =5 A の時、 $T_s$  は 10 分で  $T_s$ =450°C、約 20 分で 飽和温度である  $T_s$ =520°C に達した。このことから、 $t_h$ =30 分は、飽和温度に達するのに十分で あった。

EBCO 薄膜は、off-axis マグネトロンスパッタリング法を用いて 7 Pa(Ar+7.5%O<sub>2</sub>)の混合ガス 雰囲気中、 $I_h=6.5 \text{ A}(650^{\circ}\text{C})$ で加熱した MgO(001) 基板上に作製した [30]。この薄膜は、 $I_h=6.5 \text{ A}$ 



図 3.2 ヒータ電流と加熱時間による基板温度依存性

で基板加熱 20 分後、成膜を開始させた。作製した EBCO の膜厚は 3000 Å であり、薄膜は完全な c 軸配向成長し、格子定数 co の値が 11.71 Å、 T<sub>ce</sub> の値は 91.3 K を示した。

先ず、この高品質 EBCO 薄膜を、低酸素雰囲気中で様々な $T_s \ge t_h$ で熱処理を行い、その影響を調べた。次に、劣化膜の回復処理として二種類の手法を用いた。一つは、純酸素雰囲気中での熱処理、もう一つは、活性化酸素プラズマ (AOP) を用いた新しい熱処理方法である。

純酸素雰囲気中での熱処理は次の手順に従って行った。EBCO 薄膜を基板ホルダーに取り付 け、チャンバー内のヒーターブロックにセットし、チャンバー内を 2×10<sup>-3</sup> Pa まで真空排気す る。その後、純酸素を所定の圧力までチャンバー内に導入し、ヒーター電流を入れ加熱する。次 に所定の時間熱処理後、ヒーター電流を切り冷却させた。もう一つの活性化酸素プラズマ中で の熱処理は次の手順で行った。EBCO 薄膜を基板ホルダーに取り付け、図 3.1 に示したように EBCO ターゲット電極に対し薄膜を覆うようにシャッターを配置し、チャンバー内を真空排気後、 Ar+7.5%O2 の混合ガスを導入しチャンバー内を7 Pa にした。薄膜作製と同様なスパッタによる プラズマを発生させ、所定時間、間接的に薄膜試料にさらした。最後に、ヒーター電流とプラズ マを止め純酸素導入後自然冷却させた。ここでのシャッターは、スパッタによるプラズマ生成したスパッタ粒子が試料表面へ付着するのを防ぐためのものである。

熱処理された EBCO 薄膜の抵抗-温度特性は、直流四端子法を用いて測定され、格子定数 c<sub>0</sub> は X線回折から求められた。AFM 観察により、劣化処理、回復処理における表面形状の変化を調 べた。

# 3.3 低酸素雰囲気中での劣化

積層型 SIS ジョセフソン接合素子作製において、積層膜作製時のスパッタ雰囲気 7 Pa(Ar+7.5% O<sub>2</sub>)、 $P_{O_2}$ =0.5 Pa 中での高温プロセスを想定し、この低酸素雰囲気における as-grown 膜への影響を明確に知るため、加熱温度 ( $T_{sa}$ )、 $t_h$ の依存性を調べた。 $T_{sa}$ による  $T_{ce}$ と格子定数  $c_0$ の変 化を図 3.3 に示す。室温から 260°C 付近では、超伝導性に変化は見られず一定であるが、 $T_{sa}$  が 260° から 520° にかけ著しい変化が現れた。すなわち、この温度領域において Cu(I)-O 面で酸素 離脱が生じていることを意味している。 $T_{sa}$  が 520°C 以上になると超伝導性を示さず、格子定数が  $c_0$ =11.86 Å となった。次に  $T_{sa}$ =520°C とし、 $t_h$ に対する超伝導性の変化を図 3.4 に示す。 $t_h$ =15 分で完全に as-grown 膜は超伝導性を失った。このとき注意しなければならないのは、 $I_h$ =5 A 投入後の  $t_h$  であり、この場合、 $T_{sa}$  が 520°C に到達するまで 20 分程度かかり、実際には 520°C に達 する前に劣化していたことになる。図 3.5 に劣化膜と as-grown 膜の抵抗-温度測定の結果を示す。劣化膜は as-grown 膜と比べ室温抵抗が 2 桁以上大きく、低温になるとともに半導体的な抵抗-温 度特性を示した。このときの格子定数は、as-grown 膜で 11.71 Å、劣化膜で 11.86 Å であった。

以上の結果をもとに本章で用いる劣化膜の出発物質に、ガス圧 7  $Pa(Ar+7.5\% O_2)$ 、 $T_{sa}=520$ °C、  $t_h=15$ 分で熱処理したものを用いた。



図 3.3 低酸素雰囲気 ( $P_{O_2}=0.5$  Pa) 中での as-grown EBCO 薄膜の  $T_{ce} \ge c_0$ の加熱温度依存性







図 3.5 抵抗温度特性 (a) as-grown EBCO 薄膜、(b) 劣化膜

### 3.4 酸素雰囲気中での熱処理

#### 3.4.1 中酸素雰囲気

中酸素雰囲気中 (1 Pa < PO2 < 2000 Pa) における EBCO 薄膜の酸素の出入りを明確にするた め、as-grown 膜と劣化膜におけるスパッタチャンバー内の酸素圧 ( $P_{O_2}$ )の依存性を図 3.6、図 3.7 に示す。このとき、T<sub>sa</sub>=520°C、t<sub>h</sub>=30分で熱処理し、冷却法は自然冷却で行った。劣化膜 と as-grown 膜は、共に PO2 が増加するに伴い Tce は増加し PO2=2000 Pa で約 Tce=50 K を呈 した。これは as-grown 膜の  $T_{ce}=91~\mathrm{K}$  であることを考慮すると薄膜中に十分な酸素が供給され ず、Cu(I)-O 面に空孔が多数存在していることが考えられる。また、2000 Pa 付近から Tce(又は c0)の値が飽和する傾向が見られた。これは R. J. Cava 等が報告した 60 K相と同様のオルソ II が薄膜中に多く存在していることが考えられる。また、Po2=2000 Pa 一定にし、Tsa に対する  $T_{ce}$  と  $c_0$  の変化を調べ、その結果を図 3.8、図 3.9 に示す。この時、 $t_h=30$  分、熱処理終了後自 然冷却で室温まで戻した。 $T_{\rm sa}$ が260°C付近までは、温度が上昇したにも関わらず as-grown 膜、 劣化膜共に変化が見られなかった。260°Cから550°Cにかけてas-grown 膜では劣化、劣化膜で は回復の兆しが見られ、550°C以上で飽和に向かった。as-grown 膜、劣化膜とも Tsa が 600°C の時Tce~50 Kを示した。以上の結果からEBCO薄膜の劣化と回復は可逆的であり、また、こ の1 Pa≤Po,≤2000 Paの領域において、薄膜の回復という事を考えると不十分であった。また、 PO2=2000 Pa以下の領域では、オルソ IIの酸素配列が優先的になり、オルソ Iの形成するため には膜中への酸素原子の供給が十分でないと考えられる。

#### 3.4.2 高酸素雰囲気

先の実験では、劣化膜を完全に回復させる事ができなかった。そこで薄膜を回復させる試みと して、高酸素圧雰囲気中 (2 kPa $\leq$ Po<sub>2</sub> $\leq$ 100 kPa) での熱処理、及び熱処理後の冷却過程に着目して 実験を行った。冷却方法として、今まで用いてきた自然冷却法、これは熱処理終了後直ちにヒータ をきる方法である。もう一つの方法として、熱処理終了後5分おきに $I_h$ を0.5 A(0.3 A) ずつ下げ、 冷却速度 ( $R_c$ )を制御する手法である。この冷却方法による冷却時間 ( $t_c$ ) と  $T_s$ の関係を図 3. 10



図 3.6 as-grown EBCO 薄膜の T<sub>ce</sub> と c<sub>0</sub>の酸素圧依存性



図 3.7 劣化 EBCO 薄膜の T<sub>ce</sub> と c<sub>0</sub>の酸素圧依存性



図 3.8 as-grown EBCO 薄膜の T<sub>ce</sub> と c<sub>0</sub> の加熱温度依存性



図 3.9 劣化 EBCO 薄膜の T<sub>ce</sub> と c<sub>0</sub> の加熱温度依存性



図 3.10 冷却時間に対する基板温度依存性 (a) 自然冷却、(b) R<sub>c</sub>=6.8°C/min、 (c) R<sub>c</sub>=4.8°C/min.

に示す。 $T_8$ が 260°C になるまでの時間は、自然冷却では 6 分かかるのに対し、 $R_c$ =6.8°C/min で は 42 分、 $R_c$ =4.8°C/min では 60 分かかる。これは、以前の実験において、 $T_{sa}$ が 260°C~550°C 付近にかけ酸素の出入りが顕著に見られたことから、この温度領域における熱処理時間を増や すことによる効果を確認する目的で行った。自然冷却による EBCO の  $T_{ce}$  と  $c_0$  の酸素分圧によ る変化を図 3.11 に、 $R_c$ =6.8°C/min の結果を図 3.12 に示す。ここでの出発物質としての試料 に劣化膜を用い、 $T_{sa}$ =550°C、 $t_h$ =60 分で熱処理後、冷却プロセスに移行する。自然冷却したも のは 5 kPa から 30 kPa にかけ回復の兆しが見られるが、酸素圧が 30 kPa 以上では飽和の傾向 が見られ、 $P_{02}$ =30 kPa で  $T_{ce}$ =60 K、 $P_{02}$ =90 kPa で  $T_{ce}$ =65 K となった。酸素圧を上げたに もかかわらず完全に回復しなかった。これは、十分に酸素を供給したにもかかわらずオルソ I の 酸素原子配列が形成されず、主に膜中ではオルソ II が優先的に存在していることを意味する。  $R_c$ =6.8°C/min の冷却法の場合、自然冷却と同様に 5 kPa から 30 kPa にかけ回復の兆しが見ら れ、酸素圧が 30 kPa 以上で緩やかに飽和していることがわかる。このとき  $P_{02}$ =30 kPa で 80 K、  $P_{02}$ =100 kPa で 88 K と 100 kPa ではほぼ完全に回復していることがわかる。これは、酸素の 出入りが顕著に見られる温度領域 (260°C $\leq T_{sa} \leq 550°$ C) での熱処理時間を増やすことによる効果



図 3.11 自然冷却法による EBCO の T<sub>ce</sub> と co の酸素圧依存性





が確認されたことを意味する。この結果は、劣化膜への酸素原子の供給はアニール処理後の冷却 過程で行われていることを意味し、回復の効果を上げるためにはさらに長時間で冷却することが 考えられる。そのため、更に降温過程を緩やかにした  $R_c=4.8^{\circ}$ C/min による冷却を行った結果、 100 kPa で 90 K の  $T_{ce}$  を呈し、ほぼ完全に as-grown 膜まで回復することが可能となった。以上 のことから純酸素中の熱処理において、100 kPa 以上、冷却速度を鈍化させることで、より効果 的な回復処理が可能となることがわかった。

### 3.5 熱処理による表面形状

EBCO 薄膜は、PO2=0.5 Pa 中の熱処理温度の上昇に伴い急速に酸素欠損が生じ、超伝導性 が激しく低下した。そこで、温度による EBCO 薄膜表面の変化を明らかにするため、Tsa に対 する表面形状の変化を AFM によって観察した。ここでは、7 Pa(Ar+7.5% O2)、PO2=0.5 Pa、 T<sub>sa</sub>=550°C~710°C で 30 分熱処理した。図 3.13 に 550°C で熱処理した時の AFM 像を示す。表 面は as-grown 膜と同様の螺旋構造が見られ、表面形態に変化は見られなかった。550°C で加熱 したものは格子定数 co=11.86 Å であり、as-grown 膜の co=11.71 Å と比べ膜中の酸素原子が多 数抜けていることがわかる。しかし、表面形状の変化がほとんど見られないことから、酸素原子 の移動だけでは表面形状に大きな変化が生じないことがわかった。次に 670°C で熱処理した時 のAFM 像を図 3.14 に示す。膜表面に螺旋構造が見られるものの、部分的に突起状グレインの 存在が確認された。格子定数は co=11.86 Å となり、550°Cの熱処理したものと同じ格子定数と なり、酸素原子以外の原子の移動が膜中で起こり表面形状を変化させたと考えられる。更に Tsa を上昇させ710°Cで加熱した表面のAFM像を図3.15に示す。表面の至る所に突起状のグレイ ンが観測され、またその数が増加し、サイズも大きくなる傾向が見られた。格子定数が11.86 A であり、これも550°Cの熱処理したものと同じ格子定数を呈した。以上の熱処理温度と表面形状 の AFM 像から推察し、表面形状と Tsa の関係を図 3.16 にまとめた。Tsa が 260°C 以下の領域 において、膜の劣化が生じていないことから EBCO 薄膜中の移動物質がないことがわかる。ま た、T<sub>sa</sub>が260°C~620°Cまでは、表面形状に変化が見られなかったにもかかわらず、薄膜は劣 化した。そのため、この温度領域においては、酸素原子のみが EBCO 薄膜中を移動することに なる。また、Tsa=620°C以上の温度領域では、Tsaの上昇に伴い表面に突起状のグレインが観察 され、EBCO 薄膜中で酸素原子の移動の他に、金属原子の移動が生じていると考えられる。した がって、酸素原子のみが EBCO 薄膜中を移動する場合、表面形状にほとんど変化がなく、主に 表面形状の大きな変化はT<sub>sa</sub>の増加に伴う金属原子の移動によるものと考えられる。

59





図 3.14 670°C で熱処理したときの EBCO 薄膜の AFM 像





図 3.16 EBCO 薄膜における熱処理温度と表面形状変化との関係

# 3.6 活性化酸素プラズマ中での熱処理

活性化酸素プラズマを用いた熱処理の効果を調べるため、次の予備実験を行った。劣化膜を AOP を発生させず、 $I_h$ =5 A(520°C)、 $t_h$ =30 分で熱処理後、導入する  $P_{O_2}$ の値を変化させ実験 を行った。その結果を図 3. 17 に示す。熱処理後の酸素分圧が上昇するに従い薄膜は回復の兆し が見られるが、 $P_{O_2}$ =2000 Pa の時で  $T_{ce}$ =85.1 K と as-grown 膜の 91 K より 5~6 K 低い値を示 した。また、2000 Pa 以上で  $T_{ce}$ 、 $c_0$  共に飽和する傾向が見られた。この結果から薄膜の回復は主 に純酸素を導入する冷却過程で起こっていることがわかった。その時の  $t_c$  と  $T_s$ の関係を図 3. 18 に示す。熱処理後の純酸素導入は 18 秒で  $P_{O_2}$ =2000 Pa とし、純酸素導入直後の  $T_s$  は約 400°C であった。これらのことから、薄膜の回復は純酸素導入過程の傾きが最も大きい部分 (急冷) で起 こっていることが考えられる。しかし、この予備実験において劣化膜は完全には回復しなかった。

そこで、as-grown 膜と劣化膜をヒータ電流  $I_{h}=5$  A(520°C)、AOP 処理時間 ( $t_{p}$ )30 分で熱処 理後、導入する  $P_{O_{2}}$  を変化させ、AOP の効果を調べた。その結果を図 3.19、図 3.20 に示す。 as-grown 膜と劣化膜では同様の傾向が見られた。導入した酸素分圧が  $P_{O_{2}}=1$  Pa の時では  $T_{ce}$ が液体ヘリウム温度以下となり、酸素分圧が増加すると共に  $T_{ce}$  は上昇し、 $P_{O_{2}}=200$  Pa のとき  $T_{ce}=82$  K を示し、 $P_{O_{2}}=2000$  Pa で  $T_{ce}\sim90$  K を示した。以上のことから、as-grown 膜と劣化膜 では同様に、AOP 処理後の導入する酸素分圧に強く依存していた。薄膜を完全に回復させるた めには約  $P_{O_{2}}=2000$  Pa 程度の酸素量が必要であった。また、先のプラズマを発生させずに行っ た予備実験では、劣化膜が完全に回復することがなかったが、プラズマを発生させて行った場合、 劣化膜は完全に回復し、 $T_{ce}=91.1$  K、 $c_{0}=11.70$  Å を呈した。この結果から、AOP は薄膜に酸素 欠損を補う何らかの効果があることが確認できた。以下の実験では、その AOP 処理による回復 過程についてより詳細に調べた。

劣化膜を  $I_{\rm h}=5~{\rm A}(520^{\circ}{\rm C})$ 、AOP 処理終了後の  $P_{\rm O_2}=200~{\rm Pa}$ とし、 $t_{\rm p}$ による依存性を調べた。 その結果を図 3. 21 に示す。 $t_{\rm p}$  が 45 分以上で EBCO 薄膜がほぼ回復していることがわかる。そ の時の  $T_{\rm ce}$  と  $c_0$  はそれぞれ 88.0 K、11.71 Å であり、as-grown 膜の  $T_{\rm ce}=91.3~{\rm K}$ と比べると若干 低い値を示した。これは終了後の酸素分圧が 200 Pa と低かったことが考えられる。この実験で









図 3.18 2000 Paの純酸素導入後の時間に対する基板温度依存性



図 3.19 活性化酸素プラズマ処理による as-grown EBCO 薄膜の T<sub>ce</sub> と c<sub>0</sub> の酸素分圧依存性





は、ヒータに電流を流してから T<sub>sa</sub> が飽和するまで 20 分程度かかる。そのため、実際には 520°C で AOP 処理を行うと、もっと短い時間で回復する可能性が考えられるが、現時点でそのような 実験を行うのは装置の関係上不可能であった。

次に AOP 処理時の  $T_{sa}$ による依存性を調べるため、 $t_p=30$ 分、終了後、 $P_{O_2}=200$  Pa、2000 Pa で行った。AOP 処理時の  $T_{sa}$ に対する  $T_{ce}$  と  $c_0$  の関係を図 3. 22 に示す。劣化膜は  $T_{sa}$  が 260°C 以下では全く回復せず、260°C から徐々に回復の兆しが見られ 550°C 前後で最も回復した。その 時、 $T_{ce}=84.4$  K、 $c_0=11.72$  Å となった。また、酸素分圧が 200 Pa の時、600°C 以上になると 徐々に  $T_{ce}$  は減少し  $c_0$  は上昇した。酸素分圧を 2000 Pa にして行った場合、600°C 前後で回復し て  $T_{ce}=91.0$  K、 $c_0=11.71$  Å となった。また、700°C 以上になると徐々に  $T_{ce}$  は減少し始めた。 このように、酸素分圧の上昇と共に  $T_{sa}$  が 600°C 前後となり、200 Pa の時と比べ回復する温度範 囲が広くなった。これは、EBCO 薄膜の  $T_{ce}$  と  $c_0$  が  $T_{sa}$  と酸素分圧に強く依存していることを示 している。以上の結果から、劣化膜を完全に回復させるには AOP 処理が有効であり、この AOP 処理は、 $T_{sa}=550$ °C、終了後の酸素分圧  $P_{O_2}$  が 2000 Pa 以上、 $t_p$  を 45 分以上で行うと劣化膜を 完全に回復させることが可能となった。この結果は、先の純酸素中での熱処理における実験で、 冷却過程を急冷にした場合、オルソ II が膜中に多数形成され、冷却速度を緩やかにした場合、膜 中に効果的にオルソ I が形成されたが、AOP による熱処理においては、急冷したにもかかわら ずオルソ I が膜中に多数形成されていることになる。このため、AOP 処理は、膜中でのオルソ I の形成を促す効果があることがわかった。

AOP 処理による実験では、ターゲットと試料の間に直径 8 cm 位のシャッターを設置していた が、それでも活性化酸素が回り込み薄膜を回復させた。そのためここでは、活性化酸素の回り込 みを調べるためシャッターの大きさを変え実験を行った。十分表面を酸化させた半径  $r_{rs}=2.1$  cm、 3.8 cm、6.8 cm、10.3 cm、15 cm のシャッターを用い、試料とシャッターの間隔を 1 cm にして 行った。空間的な配置は、基板の高さ  $H_{t-s}=5$  cm、off-center 距離  $D_{on-off}=6.5$  cm とした。回復 処理条件は、 $T_{sa}=550$ °C、 $t_p=90$ 分、終了後の酸素分圧を  $P_{O_2}=2000$  Pa とした。図 3. 23 にシャッ ターの半径に対する  $T_{ce}$  と  $c_0$  の変化を示す。シャッターの大きさに関わらず劣化膜は回復した。



図 3. 21 活性化酸素プラズマ処理による劣化 EBCO 薄膜の Tce と co の熱処理時間依存性





このことから、ターゲットと基板を完全に覆ってしまうシャッターにおいても、活性化酸素が回 り込み薄膜の回復に関与したことを意味している。また、シャッターの半径が2.1 cm の時には、 試料表面にスパッタ粒子が付着したことが確認され、シャッターとしては使用できないことがわ かった。次にシャッターの表面に付着した酸化物を完全に落とし、同様の実験を行った。図3.24 にその時のシャッターの半径に対する $T_{ce}$  と  $c_0$  の変化を示す。シャッターの大きさが大きくなる に従い $T_{ce}$  が減少し、一番大きい $r_{rs}$ =15 cm の時には $T_{ce}$ =70 K となった。これは、回り込んだ 活性化酸素がシャッター表面に吸収され、薄膜への影響が少なくなったことが考えられる。逆に 考えれば、活性化酸素がシャッターの裏側まで回り込んでいることが裏づける結果となった。

R. J. Cava 等の論文により、 $T_{ce}$ と酸素量 $\delta$ と $c_0$ の関係を求め、今回作製した試料の $c_0$ と $T_{ce}$ の関係を図 3. 25 に示す。格子定数が 11.86 Å 以上では超伝導性を示さなくなり、結晶構造においても斜方晶から正方晶に変わっていることがわかる。また、R. J. Cava 等の試料と比較すると傾きはほとんど同じであるが、実験で使用した試料の方が、少し右にシフトしていた。図から、 $\Delta c_0$ を計算すると $\Delta c_0=0.02$  Å となった。これは YBCO バルクと EBCO 薄膜の違いであると思われる。この $T_{ce}$ と $c_0$ の関係から、 $c_0$ の値がわかれば、おおよその $T_{ce}$ の値を予想することができる。

本章では、c 軸配向 EBCO 薄膜を用いて詳細に調べてきたが、純酸素及び活性化酸素プラズマ を用いた熱処理を、a 軸配向 EBCO 薄膜に施した結果、同様な傾向が見られたことから、薄膜の 配向に関係なくこの回復技術を用いることが可能であることがわかった。



図 3.23 活性化酸素プラズマ処理による劣化 EBCO 薄膜の T<sub>ce</sub> と c<sub>0</sub> のシャッターの半径に対 する依存性 (酸化皮膜処理済み)



図 3.24 活性化酸素プラズマ処理による劣化 EBCO 薄膜の T<sub>ce</sub> と c<sub>0</sub> のシャッターの半径に対 する依存性 (酸化皮膜処理無し)



図 3.25 c<sub>0</sub>に対する T<sub>ce</sub> と酸素濃度依存性

71

#### 3.7 まとめ

90 Kの $T_{ce}$ を有する高品質 as-grown EBCO 薄膜を用いて、低酸素雰囲気  $P_{O_2}$ =0.5 Pa 中で、  $T_{sa}$ による影響を調べた。薄膜の劣化は、約 260°C で始まり 320°C から急激に酸素原子の移動が 生じ、550°C 以上で c<sub>0</sub> は一定値 11.86 Å を呈した。その時、劣化膜は半導体的特性を示し、4.2 K においても超伝導性を示さなかった。c<sub>0</sub> の値は、長時間、高温での熱処理でほとんど一定値を とった。この劣化膜を回復させるため、純酸素と AOP による熱処理を用いた。

純酸素雰囲気中での熱処理は、高酸素圧、 $T_{sa}=500-600^{\circ}$ Cでアニールすることによって劣化膜を 回復させた。しかしながら、 $P_{O_2}=2000$  Paで $T_{ce}=50$  K、 $P_{O_2}=100$  kPaで $T_{ce}=70$  K と as-grown 膜状態まで回復しなかった。純酸素雰囲気中でのアニール後の冷却速度を制御することで、劣化 膜の回復がより効果的になり、 $R_c=6.8^{\circ}$ C/min で 88 K、 $R_c=4.8^{\circ}$ C/min で 90 K まで回復した。

もう一方のAOPを用いた新しい回復処理は、劣化膜を比較的短時間で完全に回復させた。劣化 膜の回復は、アニール温度、プラズマ処理時間、酸素分圧に依存し、この三つのパラメーターの最 適化を行った。その結果、AOPによる熱処理は、500°Cから 600°C、 $t_p$ =45分以上、 $P_{O_2}$ =2000 Pa 以上で回復処理を行うことにより、従来の純酸素雰囲気中での熱処理と比べ、劣化膜を効果的に 回復させ、膜中にオルソIの形成を促す効果があることが確認された。

AFM 観察から as-grown 膜同様の螺旋構造が 620°C 以下の熱処理において確認された。T<sub>sa</sub>の 上昇に伴い、螺旋構造が崩れ、突起状グレインが形成された。それは、620°C 以上の高い熱処理 温度で起こり、酸素原子と金属原子の移動によって引き起こされていることが AFM 観察から推 測された。