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Chapter 1
Introduction

1.1 Summary

| Template matching is a basic componéht in a variety of computér vision systems. It -
~ could .found 1n various applications sﬁch as imag_e;—based rending, image comp'res- »
sion, object detéétion, image matching, and action recognition, etc. The mechanism
is straightforward: a large number’ of candidate windows are sampled in the target
imége, followed by a similarity measure between each pajr.of candidate window
éﬁd template. The similarity score plays a core role in measuring the conﬁdéhce _
- of distinguishing fhe real target region from the candidate regions. The design of a
good similarity measure is still difﬁcult, because of the following cases. (1) The size‘
of the. target object is diffefent in the template and target image. (2) The tefnpiate;
includes sdme background regions, which differ from occlusion, noise, and appear-
ance change. (3) The target object has some deformations in the tafget image (e.g.,

rotation, non-rigid deformation). (4) The illumination conditions differ largely be-

tween the tempiaté and the target image. (5) The target object has multiple types.

1



In this thésis, the’ feature extraction based similarit;i metric foi object detection is
discussed. |

Speciﬁcally,v for a single object, a universal similarity measure method is pro-
posed that can be applied in unconstrained environments. Wliich is referred tn as tne
diversity similarity measure against scaling, rotation, and illurnination (DS-SRI).
\ Sp'eciﬁéally, DS-SRI exploits .bidirectional diversity calculateci’ from tlie nearest
neighbor (NN) matéhes between two sets of points. Scaling and rotation chzinges are
taken into consideration by introdncing a normalization term on the scale changé,
and géometric consistency term with ‘rc_éspect to the nolai coordinate system. More-
ovei, to deal with the illumination change and further deformation, illumination
corrected local appearance nnd rank information are jointly exploited during the
NN search. All the féatures of DS-SRI are étntistically assessed,. and the extensive
visual and nuantitative results on both synthetic and real-world data show thét DS-
SRI/can' signiﬁcantly outperfonn’state-of—thé-art methods for tlie above prpblems :
‘ (1), (2), (3), and (4). Howeyer, DS-SR_I cannnt deal With the prciblem (5).

" Furthermore, a novel rule-based similarity measure (RBSM) method is pro-
posed. This method can measnre the similarity for niultiple types of objects in a
complex environment, ‘owing to that RBSM based on universal features. Similar
" to the DS-SRI, the template can be t_reatedvas a dictionary and utilized to check
the nnndidaté is ihe target or not according to some rules. Unlike DS-SR-i, which
confirms all pi)-(els,. th¢ RBSM veriﬁés some super pixels to calculate the similarity.
Here, super pixels are some subrégions that are _grouped rby the common ‘feature’o‘f
all objects. | |

In this thesis, two practical problems are considered to evaluate the RBSM.
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The first one is the 'vehicleviﬁspection sticker detection (VIS). Localization of VIS
is difficult because the VIS is small and.hard to be recognized due to the projec-
tive transformation and various environmenfal changes. Moreover, the typev>0f VIS
varies from month to month.} To solye this problem: the RBSM method with adap-
tive backgrbund constraints}is proposed that can deal with the illumination change

‘and the projective transfc;rmation. Speciﬁcally, the métching problem is solved by

treating it as an optimization proﬁlém., Which the optimization problem is solved

by the genetic algorithm (GA). The vexperimental results show that the. pr.oposedv
method can robustly localize various VIS under different environments.

The séc'ond practicai problem, which is handled by RBSM, is the roast fish bart |
(RFP) detection. The van'ous shape, sizes, and colors of the fish body parts lead
us to develop an algorithm to deal with the challenge of detécting multiple RFP.
To solve this pfoblem, a RBSM based multi-object matching method is proposed.
Similar fo the VIS d¢tection,_ the univeréal features of RFP ére utilized té design
the RBSM function and a supporting template. The RBSM function is utilized to
measure the\probability of the candidate being RFP. Then, a mathematical model
is used to obtain the candidaté regioné. via template mapping. vFi‘nall)'(, GA is used
to séérch for thé local optimal solution by introducing DCAPD for. muiti-éﬁject
detection. Ou? metho& achieVés goOd performance with fast speed. The results of
these practical pfoblems illustrate that RMBS can cover all the aBb\}e difficulties
with suitable templates and rules. Eut this method still has some limitations. For
~ example, the template and rules are designed manually. That will be solved in the

future.



1.2 Background

Template matching, also known as pattern matching, is a vital component in a va-
riéty of computer vision applicétions. It is utilized to seeking a given tembiate in
a target image, as illustrated in Fig.‘ 1.1. Template matching 1s widely used in
computer vision, .sign'al, ifnage,- and .video processing. It can be found in varied
applications such image based rending [lj, quality control [2], super resolution [35, ,
image corhpression [4], object detection [5], texture syhthesis [6], block rriatching ;
‘in _motidn estimation [7, 8], image denoising [9, 10, 11], mouth/eye trécking [121,
road/path tracking [13], image inatching [14] and action recognition'[IS]. Thét is
sﬁtveyed by a good réview [16]. Although there are many ways t§ mapcli templates,
no one method can be applied to all problems.

As the most crucial techﬁidué in template Ihatching tésks, similarity meésure
has beeﬁ studied for decades ahd yields in \.fariouS methods from the classié meth-
éds such as the sum of absolute differences (SAD), the sum of .squared distances
~_(SSD) to recent best buddies similarity (BBS) [17], deformable diversity similé.rity :
(DDIS) [18] _'Also,: similarity méasures have been widely applied to image pro-
ce‘ssing \;v)r(.)blems sucil as image segmentation [19], visual tracking [20]', and ‘image ‘
te.gistration‘[Zl]. | | |

Despite the successes of template matching, several considerable issues still

need to be addréssed:

* In most applications, users prefer obtaining the matéhing result with a free-
scale bounding box to exactly including the region of the target object rather

than a fixed-scale bounding box. Nevertheless, setting geométric parameters
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Figure 1.1: Example of template matching. The blue quadrilateral illustrates the

candidate window. The red quadrilateral illustrates the template and matched result.
This image is from [17].

(d)

Figure 1.2: Diversity similarity against scaling, rotation and illumination (DS-SRI)
for template matching. A doll is placed under different unconstrained environments.
(a) Reference image. The template is marked by a red rectangle. (b), (c), (d) and
(e) are the matching results over different target images with our proposed DS-SRI.



like scaling factors to the bounding box can result in an explosive growth of
candidates for evaluation, forcing the similarity measure to be more discrim-

inative to specify the matching result.

« Dense template matching usually takes all the pixels/features within the tem-
plate and candidates into account to measure the similarity even some in-
formation .is not desirable (e.g.,'occlusion, noise, appearance change), this

requires a similarity measure to be consistent with noises and outliers.

* Inorder to deal with the deformation on the target object, a functional simi-
larity measure is expected to be independent with the spatial correlation (e.g.,

vwhén the object within a candidate window is sfrOngly rotated, the local im-

age patches in template and candidate are no longer spatially consistent).

* The illumination conditions can differ largely between the template and the
target images, which will cause different appearances (e.g., color, intensity,
. contrast) and lead to a small value of similarity even between two same ob-

jects.

* Last but not least, in some scenes, the object may be not one but multiple.
And all objects needed to be matched. Furthermore, the color, size, and shape

of the objects are not exactly.

In this thesis, the following two scenes are focused on. One is the template
matching in unconstrained scenarios. That is, a rigid/nonrigid object moves in 3D
space, with variant/invariant background, and the object may undergo rigid/nonrigid

deformations and partial occlusions. Besides, in this environment, the illumination



condition may be changed, as demonstrated iﬁ Fig. 1.2, that are focus on above (1),
(2); (3), and (4)“ problerhs. The second is the temblate matching for multi-object.
That is matched for a class of objects. And in this class of objects the color, sizé,
and shape are not exactly. Which are aBove all problems. An exampie is shown in
Fig. 1.3. To solvé these problems two methods will b¢ introduced aé follows. The
DS-SRI for the unconstrained scenarios problem and rule-based matching mgthod
for the multi-objects prqblem.

As {o state-of-the-art mét'hods',' both BBS and DDIS are proposed mainly to
settle the above issue (2) by exploiting the properties of the hearest neighbors (NNs).
Here, each NN is defined by a pair of patches between the template and the tafget.
In the case of BBS, if énd only if each patch in a patcﬁ pair is the NN of the other,
a match is defined and the number of such matches determines the BBS vs_core. |

. DDIS fuithér irﬁproves the BBS by introducing relevanf diversit& of patch subsets
between the targét and the template, wlﬁch leads to the robustness of BBS against
the occlusions and defo@ation. Although these methods can deal with'deformation
within a window to some extént, there remain limitations éspecially on the issue (1),

3), (@), and (5).

1.3 Problem Setting

The template rhatching problem can be converted to a mathematical problem as
follows. The target image is the input, denoted by I, with a sier of n x m. The
purpose is to detect some objects from I. And objects-are given, denoted by set o.

Here, the number of the object is zero or more. The object candidates are denoted as



¢; € C. And the function S(-) is the similarity‘ measure funcﬁon for the candidate

and object. There are two _diffe;rent general directions to meet differeﬁt practical

. .purposes. One is detecting a'speciﬁc target of 0*. An example is shown in Fig. 1.2.
In this case, the target image maybe has some similar object, but our purpose is to
detect the most similarity c*. The purpose of this problem cén be converted to the |

( following:_ | |

ct = argmaxS(c, 0*) c€C. - (1.1)

The second is detecting a class of objects. The clasé of the ‘objectb maybe has some
‘_diffverences, noted as 0 = 0" + o'. Here, 0" respect to the part thét‘ ali object is thé
same, o' mean the difference for each object. The pﬁrposé isto déte'ct all objects,
these objects noted‘ as C' in the target imagef An example is shown in iFig. '1.3.
Fér detected all objecté, ‘the different part (' is ignoring. Thus, the purpqse ’(:)f this

problem can be converted to the following:
C'=§(S(c,0¥) ceC, a2

where the §(-) is a conditional functioh', it utilized to select the candidates based on
the result of the similarity measure. When the S(-) meeting the rule, the c is a target

candidate.



/
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1.4 Diversity similarity measure against scaling, ro-

tation, and illumination

In this-thesis, to solve thé problems (1), (2), (3), and (4), the NN pa_ir is redeﬁned‘
based on the relevant diversity statistics and pfopbse diversify similarity against

scaling, rotétio_ﬁ, and illumination changes (DS-SRI) to address all the abO\Ire is-

sﬁes. DS-SRI éan Be appli.edeith a multi-scale sliding window search for template

matching, and no specific parametric deformation model is needed to be imposed

on the target 6bject.

From a general perspective, both terﬁplate and each candidate can be viewed as
imageg cpnsist of small patches. ;Tl-_lgrefore, the visﬁal similarity can then be viewed
as a similarity meaéure betweeh two point sets if treated each image ‘patch as a point
and each image as a point. set. Like the first feature, DS-SRI alldws siniilarit& meé—
sure betWeen two sets of points in different sizes, aﬁd the magnitude of the score is

‘normalized. Ir.l’contrast, ‘the magﬁitudé of fhe DDIS or BBS score grows with the
increase of scales, which makes the- larger candidate windows more competitive to-
be matched.- T§ alleviate the unfaimess'cavused by scaling, DS-SRI introduces bidi-
rectional relevant diversity and normalizes scaling changes> to make the employment
of a multi-scale sliding windov.v.» feasible. The second feature of DS-SRI is its in-‘
variance\ against in-plane rotation. .Both BBS and DDIS involve a spatial distance
ierm in NN search and/or the similarity calculation based on a strong prior ass'umpf
tion that the tw6 pointé of ‘an arbitrary NN pair from two¥point sets are spatially
close when plotted on the same coordinate system. This prior caﬂ indeed reduce the

number of outliers of NN pairs when the object is stationary but becomes a false



constraint in the presence of large ;otation. In this paper, inétead of calculating spa-
iial distance on the Cartesian coordinate, the polar coprdinate is exploited fo release
the limitation of in-plane rotation brought by the spatial assumption. Besides, local
rank information of patches is employed fof searching NNs along with appearance
information, which helps to find more-confident NNs and yields a significant im-
provement when large rotation takes place_.

As the last featpre, DS—:SI‘QI is robust against the illumination change. NN-based
methods suffer from th§ Changé of illumination beca:use the illumination can largely
afféct the appearance of the target object and thus reduce the valid NN pairs between
'p‘oint'sets. As an extreme example, if the object in the target image is expésed to
intense light; all the patches of a candidaté can appear white and point to the ;ame
patch in the template as the NN. In this paper, an illumination correctoi‘ is intro-

_ duced to the distaflce function f'or‘searching the NNs. The corréctor is inﬁoduced to
synchronize the ‘illumination effect on the témplate and the'candidate. All the.above

featufés of DS-SRI are well statistically justified in Sec. 3.4.

1.5 - Rule-based similarity measure

Above mentioned methods, such as bg:st—’buddiés similarity (BBS) [22], deformable
diversity similarity (DDIS) [18] gnd diversity similarity measure against scaling.
7rotation and illumination (DS-SRi), handle "t'he complex eﬁviromrient very well.
Which the difﬁculties inciude non-rigid geometric deform;ltions, Background clut-
ter, and occlusions. However, all the abqu-mentioned methods are only in the case

of identical or high-similarity objects o*, To use these similarity measures for a -
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classof objects 0 = o0* + 0/, that have many difference’s, multiple templates may be
needed, and the candidates may also need multiple measures. These requirements
will increase tbe suffering from times cost. To solve this problem, a rule-based
measure rnethod is 'proposed for a class of objects.

The rule—basetl method can be diyided into:the following three-part. 'l‘he first
part'is according to the shape and color distribution design a rulebtemplate. Then
according to the common feature of targets design some-rules.to measure the prob-
ability. Finally, accorcliné to the rules distinguish the object from the candidate.
Rule-based matching can be utilized to deal With all the above problems with the
appropriate rules. However, the rule-based matching method still has some ydis-
advantages. Which the template and rules are designed.manually, and different
problems need riifferent ternplates and rules. In this thesis, the rule-based matching '
method is tested in two fact problems. Which are vehicle inspection sticker (VIS)

detection and roast fish parts (RFPs) detection.

1.6 OptimiZation algorithm

To rletect the object faster, some optinﬁiarion algorithms also,be introdu'ced to re-
duce the candidates. For optimal candidate detection, the traditional metbod is a
‘ brute force, testing of all candidates, but the brute force method is difficult to use if
the sample set islar‘ge. In the past decade, some more efficient optimization meth-
ods have been proposed and used in template matching, such as general GA [23]
and ‘particle swarm optimization [24], which can only efficiently acquire a global

optimum. Here, the general GA is utilized to detect a single object.
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There are some multi-objective evolutionary algorithfns [25, 26, 27, 28] that not

" only acquire the global optimum but alsolocal optima. And due to their population- |

based nature, evolutionary algorithms can approximate the whole Pareto set of a

- multi-objective optimization problem in a single running. In this thesis, a GA that

uses DCAPD while distributing the population is used for acquiring the local opti-

~mal solution. -

1.7 Constitution

This paper is composed of 5 chapters, the constitution is shown as follows. Chap-
ter 1, the background of this research is introduced, and two proposed methods

are simply proposed. Chapter 2, the related works are introduced from purpose

and method two aspects. Chapter 3, the similarity measure method DS-SRI is in-

troduced for unconstrained scenarios, diversity similarity measure against scaling
rotation, and illumination (DS-SRI). Chapter 4, the similarity measure method for
multi-object, rule-based matching -method, is introduced. Chapter 5 introduce the

conclusion and future work.
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Figure 1.3: Example for image processing. (a) The target image, in which the blue
rectangle marks the region of interest. (b) Wire belt segmentation result. (c) Object
region estimation result. (d) Fish roast fish part direction results.
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'Chapter 2
Related Work

In this chapter, the related work is introduced from two parts, similarity measure

and Optimizatioﬁ algorithm.

2.1 Similarity measure

’Templa.te métching is a classic research topic mainly for object localization. The
mechanism isl straightforward: alarge number of candidate windows are sampled in
the target imﬁge, followéd by a siinilarity measure between each candidate window
and template.. The similarity score plays a key role in measuring the confidence
and distinguisﬁiné thé target object from the backgfound. ‘The most widely used
off-thé-shelf tech_niqugs are pixel-wise methodé. 'sﬁch as SSD, SAD and normalized
cross-correlation (NCC) [29, 30], owing to their simplicity and efﬁciéncy. These
m;athods have been combined with tone mapping [31] for handling illumination
change, with asymmetric correlatidn [32] to deal with noise.

To handle the geometric changes on the target, extending the candidate sampling

14



with planar parafnetric transformation models have been consideréd in many works,
such as translation [32, 33, 34], Similari’ty transformation [35, 36], affine transfor-
mation [37, 38, 39] and projective transformation [23]. However, these methods
: usuélly fail in the caée of 3D ’deformations> because the pixel-wise similaﬁty method
relies on 'the. correct correspondences bétween the pixelé of the template and the
candidate, which is hard to be modeled by the planar transformation. Other met-
rics focus on improving the robustness against noiée, e.g- Hamming-based distance
[40, 34], M-éstimatofs [33, 41], which are robust against the pixel-wise noise suéh
as additive noise and salt and papér noise. The interested re_aders are referred to a
comprehensive survey [42]. |
In unconstraihed environments, to deal with non-rigid transformations and other
noises, invollving global vinformation’ instead of pixel-wise lbcai infoﬁnation for de-
signing a roﬁust similarity is a key cue. Histogram matching (HM) [43, 44, 45],
| whic;h mainly r_neésures the similarity between two color histograms, is not re-
stricted bsr the geometric transformation. Howevér, it is usually not a good choice
' :wheh background clutter and occlusions .appcar within the Caildidate windows.
Anofher wildly used measure method is the Haﬁsdor_ff distance in the context of
template matchjng.' In [46], the k" farthest point‘ to replace the’tradi‘tional farthest
poiﬁt to deal with occlusions or ‘degraidation .p’roblém. However, k is hard to be
determined in different cases. Moreover, in [471, a modified Haqsd_orff distance
(MHD) is ‘proposed by replacing the generalized max operator with‘ sum to deal
with noise on different levels. In [48], Hausdorff distance is used as a similarity
measure between a candidate and a general face model.

Earth mover’s distance (EMD) [49] is a metric for comparing sets of featurés,
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pbints, and signatures‘ that captﬁre the distributions, and is also widgly applied in

template matching. It is ,deﬁnéd as the minimum mﬁount of work needed to chang¢
. one distribution into the other distribution. EMD is robust Qith the deformation
| ’because it does not .c;nsider any spatial coﬁespondence. However, EMD is difficult
to deal with scaling beéaﬁse it requires 1:1 rﬁatching. Furthermore, a more robust B
approach [50] is'pr.oposed by using spatial-appearance representation to meaéure
the EMD.

An eye-catching family of sim_ilarityw fneasures in recent years is to explore a
global statistic property over 'thévé\fvo-point sets. Bi-directional similarity [51] pro-
poses that two-point sets are considered similar if all points of one set are contained
in the other, and vice versa. BBS [22, 17] counts the mutual twé—side NNs asasim- .
ilarity statistié. The DDIS [18] meaéure; 'the diVersity of feature matches between
the two sets and is repqrted to outperform BBS ny revealihg the “deformation” of
the NN field. Despité the robustness of BBS aﬁd DDIS against 'the transformations
S Within the search winddwé, séaling' and rotation Qn £he whole search windows have
not been considered. Furthermore}:,rNN is viewed as a p(;werful cue in many tasks,
suph as image matching [52], classiﬁcation of néttural language data [53]_, image
classiﬁcation [54], clu'steﬁng [55], »etc; In this paper, the mutual nearest neighbors :

~ are exploited in the bidirectional diversity similarity.

2.2 Gelietic algorithni

In template matching, another problem is the huge amount of candidates search

for our targets. Genetic algorithms (GA) are introduced to ifnprove speed. GA
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[56, 57, 58, 59] are randomized‘saml.)lin.g and optinﬁzation techniques that guided
by the biolégy of evolution and natural genetics. GA performs a search in mas- »
sive candidate space, obtain the near-optimal solution for an optimization pr(':»blemf -
}Genetic algorithms are widely used various ﬁeids_, such as image processing [60],’
machine learning [61], neural networks [62], etc. in the area of the image process,
a parameter selgction method is needed to obtain bpﬁmum solutions in complex
spaces.. Some mé’;hods utilize the genétic algorithm to segment the image [63, '60].-
‘Basred" oh genetic algofithm object detection and recognition method .[64, 635, 66]
also is comm_on; Furthermore, I propose é template matching method with an adap-
 tive background model'lu‘r;der the GA framework to localize the VIS over projective
space. The proposals are also.stated in [67, 68].

Tﬁe traditional méthod is a brute force,- testing of all parameters, but the brute |
force methoci is difficult to use ‘v if the sample set is large. In the past decade,
some more efﬁcient‘optimizati.on mefl;ods have been proposed and used in template
matching, such as GA [23] and particle swarm optirﬁizéti()n [241, which can only
efficiently acquire a global optimum. There are some multi-objective evolutionary
alfgorithnis [25, 26, 27, 28] that not only acquire the global optimum but also local
optima. And due to their population-based nature, evolutionary algoﬁthms.can ap-
proximate the whole Pareto set 6f a multi-objective optimization problérﬁ ina single
running. In this system, a GA that uses DCAPD\ while distributing thé population

is used for acquiﬁng the local optimal solution.
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Chapter 3

| Dive‘rsity similarity against scaling,

rotation, and illumination

3.1 Overview

’In'thié chapter, a template matching method is introduced for a single objeqt. The
~ key component is behjna a general similarity measure referred to as the diversity
similarity measure against scaling, rotation, and illumination (DS-SRI). Specifi-
| cally, DS-SRI exploité bidirectional divérsity calculated from ‘theb nearest neighbor

(NN) matéhes between two seté of points. Scaliﬁg and rotatién changes are taken
into cor’lsidera_tion by iﬁtroduéing nonn;llization térm on the scale change, and geé— .
metric cOnsistency term with respect to thé polar coordinate system. Moreover, to
deal with the iHurhination change and further deformatioﬁ; illumination-corrected
local appearance and rank information are joinfly exploited during the NN search.

All the features of DS-SRI are statistically assessed, and the extensive visual and

quéﬁtitative results on both synthetic and real-world data show that DS-SRI can

18



signiﬁcantiy outperform state-of-the-art methods.

3.2 Nearest neighbor based similarity measure

Given a template cropped f'rorn. a reference image and a target image related by
- unknown geornetrie transforrnation and/or photometric transfonnation, our purpose
is to design a similarity measure, which can distinctively localize a region ilr the
target image that exactly includes the same object of the template by maximizing the
matching 'similarity 4;core‘. Each candidate region in the target irnage is represented
by a recrangular vr'indow, and the candidate in the target imegeis sampled in a way
of the multiple-ecale sliding window. Taking the template image T’ = {h}:;l and a
candidate window @ = {g;} ", frem target image Q = {q,},~, as inputs, a DS-SRI
score in real number can be calcuiated, Where tlre t; and g; represent non-overlapped
patch from the template and a candidate window, respectively. t; and q; can also be
treated as points when T’ gnd ( are explained as point sets for generality. QCO,
.andm < M. |
Nearest neighbor has been shown to be a strong feature for designing similarity
measure in some prior researches [17, 18]. To better address the difference, ﬁrstly
BBS [17, 22] is recalled which ceunts the number of bidirectional NN"matclres
between T and Q

BBS =c|{3t; € T, 3g; E‘ Q:
3.1

NN(ti, Q) = q]' A NN(C]J, T) = ti}|7
where NN(¢;, Q) = arg ming, ¢ d(t;, ¢;) is a function returns the NN of ¢; with
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respect to (), and the d(-) is a distance function. |{-}| denotes the size of a set, and
¢ = 1/min{n,m} is a normalization factor.
The distance function in Eq.3.11is dcﬁned‘by

2" : 2
=P, + 247 - 47, 62
2 : 2

Wnere (A) denotes pixel appearance (e.g., RGB feature) and (L)'denotes pixel lo-
cation (z,y) within the patch and coordinates are nofmalized to the range [0, 1]. In
the stage of NN searching, nnder the assumption that illumination and large defor—
mation do not occur within the patch, the_coinbinatio‘n of the appearance and spatial
terrns contribute to searching NNs by conﬁrming thc consistency of>appearance and
position.

On the other‘ hand, the diversity similarity (DIS) [18] has a diffnrent usage of

NN, Which is defined as
DIS =c|{t; € T : 3g; € Q,NN(g;, T) = t:;}|. (3.3)

: Where ¢ is the normalization factor. Unlike BBS, DIS counfs a certain type of
point in 7', which is the NN of point(s) in Q (defined as diversity in the direction of
T —= Q). | |
I conclusion, in order to design a good NN baséd‘s,imilarity measure, two as-
pects need to be designed carefully, (1) Usége of the NNs; (2) The distance function

for searching the NNs.
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Figure 3.1: Intuition for distinguishing between DIS and BDS. Each arrow points to
the NN of a start point. (a)(b)/(c)(d) show two examples of NN search results bidi-
rectionally when 7" (circles) and @ (triangles) are drawn from the same/different
distribution respectively. Different distributions can result in lower similarity. Fol-
lowing Eq. 3.3 (¢ = 1) and Eq. 3.6 (\; = 1), DIS and BDS can be calculated from
the number of end points of arrows. In (a)(b), DIS = 7, BDS = 49 (i.e., 7x7). In
(c)(d), DIS = 3 and BDS = 6 (i.e., 3x2). Obviously, BDS has a greater variation
in similarity value.
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Figure 3.2: Illustration of DIS and BDS against scaling change. (a)(b)/(c)(d) show
two examples of NN search results when downscaling/upscaling occurs in 7" (repre-
sented by circles) respectively. The gray/red circle represents for the deleted/added
circle during downscaling/upscaling respectively. Following Eq. 3.3 (¢ = 1) and
Eq. 3.6 (A\; = 1), in (a)(b), DIS = 6 and BDS = 36 (i.e., 6x6). In (c) and (d),
DIS = 7 and BDS = 56 (i.e., 7x8). Obviously, the variation of BDS score is larger
comparing to DIS. :
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3.3 Diversity Similarity against Scaling, Rotation, and
INlumination

I 'am now ready to introduce our method in a top-down fashion: first the the DS-SRI

similarity, and then the distance function for NN search.

-3.3.1 Usage of the NNs |

In [18], DIS is claimed as an unidirectional diversity which provides a good approx-
imatfon to BBS with less computation. To vdes’ign, a more discfirtﬁnative similarity
measure, bidifectional diversity calculated is exploited with respect to T" and Q (i.e., ’
not only ' — @ but also Q — T). Specifically, first the foilowing function e(t;) is‘
déﬁned which‘in'dicatges the number of points g; € () whose NNs are e'quai tot; in

' directionT — Q, |

ett)=|{g €Q:NN(g;, T) =}, - (4

: wherel NN(-) returns the nearest neighbor yvith the} distance function defined in»Eq.
38, whiéh will be explained later. -

To understand the equation, it is‘analyzed how Eq. 3.4 affects the diverﬁity
v- similarity defined in Eq. 3.'3.frv0m twov.s'ituatio-ns with Q| fixed. (1) For:[T| =1Q|
when e(tz) > 1, the value is inversel); pmportional to the diversity contribution.
That is, large value of s(t,-) indicates fhat many points in ) have the same NN of ¢;,
which will lower the di\}ersity defined in Eq 3.3. When &(t;) ‘= 0, it indicates that

a t; is not a NN of any g¢;, which also hinders the increase of diversity similarity as

no NN is utilized. It is easy to understand that an ideal situation is that for each ¢,
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e.(ti) = 1. (2) For |T| # |@|, the situation becomes more complex. Assume that
s|T| = IQ], when e(t;) = 0, it means no contribution to the diversity similarity.
- Considering the scaling s between @) and T, a point in T' can be the NN of multiple
points in Q when 1 < £(t;) < s, Which will increase thé value of the diversity
similarity. When £(t;) > s, it will contrarily lower the maximumi similarity. |

The simultaneously is firstly introduced that the diversity similarity to direction
Q) — T. This is not straightforward in the caé_e of template matching because
the candidate @ usually 'bélongs to a target image Q, where |Q| > Q). ‘That is,
when ﬁnd\ing NNs in the direction of T — @, as T is fixed and.the preparétion for
NN séarch (e.g., sorting for brute force search, building kd-tree; etc.) only need
to be conducted 6nc;é. In the case of Q — T, as such prepafﬁtion for NN seérch
'-has tobe conducted over each @, it ‘will suffer from computational burden. To
tackle this pfoblem, an assumption is posed that NN(¢;, @) has a high probability
to be included in the set of k approximate NNs (ANNs) with respect to Q, which is
_denotéd By ANN’“ (t:;, Q). Formally, the folloWing function is defined which counts
the number of points (i.e., patches in the image) ¢; € T' whose ANNs include g; in

vdiréction Q—-T,
f(qj) = |{t: € T,Q € Q: ¢; € ANNF(t;, Q)}- 35

Formally, the bidirectional diversity similarity (BDS) is proposed as followirig:

- BDS(T,Q,Q) =\ Y I(r(g) £0) x 3_I(t) £0), 69

24



where \; = 1/(m x n) is the normalization factor and I(-) is an indicator function
that turns true and falsevi_nto 1 and 0. Only points in T which hold e(t;) # 0, and
points in Q which hold 7(g;) # 0 can possibly contribute tr) the increase of the
diversity. . |
The BDS and DIS is visually compared for clarity in Fig. 3.1 and Fig.‘ 32. In
Fig. 3.1, comparisons of DIS and BDS when T" and () are drawn from the same
distribution (top roW) and different distributions (bottom row) are ,illustrated. Es-
peéially, when T and Q folIow different distributiohs, certain data points could
-probably become shared ‘end points of arrows, which yields the decrease of similar-
ity scr)re. On the other hand, comparing to DIS, the variation of the value of BDS
is larger.because of the “multiplicatron effect”, which can \enllar‘ge the gap between
similar/dissimilar point sets. Furthermore, when scaling takes place‘, From Fig.v 32
it can be fined that BDS score varies more lairgely than DIS, which can help to Spéc-
ify the scaling factor during matching. These characteristics of BDS will be furthér
justified in the nr:xt ser:rién. | |
‘ Brclsed on BDS, DS-SRI is furthér defined to quantify the the similarity between
| template T arld candidatéQ with given target image Q and scaling factor s =

1QI/IT1,

. . BDST,Q.Q)
PESRIL Q0 Q)= e ey — s NG ©7

Where parameter ), is a normalization factor inversely proportional to the in-
creasé of 5 (e.g., A2 = s71). p(-) returns the radius of a pixel in a polor coordinate,

with the pole being set at the according geometric center of 7" and (). The denom-
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inator of Eq 3.7 peﬁalizes the spatial inconsistency in polar coordinate, in order to
increase'the;robustness against in-plan rotation. Tenh U is a normalizaﬁon term for
the number of NNs With respect to scaling. In our implementatiqn, U is defined as -

Zt;,s(ti)SO exp (I(s/e(t;) > 1) + I(s/e(t;) < 1)s/e(t;) — 1), Which increases when
more t; holds s/e(t;) > 1. In conclusion, SR-SRI can be viewed as a similarity |
measure consisting of three terms: (1) 'fhe nurherator term to evaluate the bidirec-
tional -diversjty, (2) the denominator term to evaluate the spatial consistency, (3) the

U term to normalize the number of NNs with respect to s.

3.3.2 Distance metric for NN/ANN search

Until n§w, the scaling-inéensitivity and the rotation-insensitivity of DS-SRI are re-
alizea by BDS and polar coordinate respectively. The remaining issues are the
: negati\‘/e effects brought by (1) illumination change, (2) Iargé deformation, ‘v?hich
couldbprobably break the NN correspondence and spaﬁal consistency by influenc-
ing Eq. 3.2. Td coﬁnter the negatiVe effects, we pljopqse to combine the appeérahce
~ and rank information for designing the distance meﬁc for NN/ANN search. For a

certain point pair of t €Tandqe @,
d (¢, q) = disAppear (t,q) + AsdisRank (¢, q) . " (3.8)

Where ); is a weighting coefficient. In the distance term of appearance, Gamma
corrector is introduced to reduce the effect brought by illumihation change, specifi-

cally,
A -
disAppear (¢,q) = Ht(A) — (q(A))lh . 3.9

2
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Where the upper script (A) means the feature of appearance, speci‘ﬁcally the RGB
color channels in our implementation. The illumination change can be caused by
.‘ exposﬁré adjustment; change of light source, appearance of shadow, etc, which can
dramatically change the appearance of the target_'objéct. Gamma correction [70,
71, 72] provides a way of power iaw transform to equalize the imbalance between
images. Here, The «y calculated from the avefage local gifay intensities to correct

each color channel,

7= 1log (7) /1og (T@), - (310)

, 'where_: W denotes the average gray intensity over the template and e dénotes
the average gray intensity dVer a local region.in the target image. The locai region
can be‘deﬁned'as a circular (i.e., meanshift stylé) or rectahgular.(i.e., integral image-
style) window.
» | On the other hand, to deal with large defoMatidn; we proposé to utilize the rank

information of local appearance, specifically,
disRank (¢,¢) = [t® — ¢ P[5, 3 1))

where the uppér script (R) means the rank information based on the local appear-

ance. Take t(® as an example,

= 3" I(¢"W >tW) /. (3.12)

pecircle(t,r)
In the case of 3-channel q and ¢, the indicator function counts. the number of chan-
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nels in which the value of ¢ is greéter. The origin of the circle window cifcle(t, r)is
the coordinate of i, with a support radius of r. 72 is a nbrmalization term. The ap-
pearance rank defined by Eq. 3.12 is insensitive to local geometric changes, which
| can also be considered as structural information. (e.g., the shape of the distribution
of pixel values) extrécted from a local region. As geometric changes can hardly
Idestroy thié structure, it is reasonable to explain its insensiti\}ity against rotation and -

certain deformations.

3.4 Statistical Analysis

In this section, the features of DS-SRI described is statistically analyzed in the pre-
vious section for justification, including scaling-insensitivity, rotation-insensitivity,

and illumination-insensitivity of the matching results.

3.4.1 Analysis of scaling-insensitivity

Oné important feature for a robust metric is the ability to p‘reservé the similarity
score of the same object against scaling change. To .as.sert this feame in DS-SRI,
in Fig. 3.3,a 1D stétistical ahalysis is first provided as followingr [22, 18]. The
cxpectatidns of similarity between twé point sets drawn fr’om_’tWo diffeﬁent 1D
Gaussian models are caléulated for comﬁarison, where point sets are castvas tem-
plate/candidate, points are cast as patches. Monte-Carlo integration is utilized for
appfoximating thie expectation as suggested in [>1 8]. The ﬁrst observation from Fig.
3.3 is that the expectation of DS-SRI is maximal when the two Gaussian,modéls

are the same and decrease fast when models separate. The second observation from
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Fig. 3.3 is that DS-SRI is scaling-insensitive, i.e., the heat maps of Fig. 3.3(g), (h),
@) are almost the same. “ |

Another important feature to confirm is whether the scaling factor of the target
object with respect to 7' can be appropriately éétimated by maximizingb DS-SRI.A |
statistical result is provided in Fig. 3.4. Similar Wim Fig. 3.3, T' is drawn from
N(0,1) and Q is generated frém anoiﬁer source for the generation of "expectation
map. Thé difference is, I further prepare Q which involves not ohly @ but also
baékground points to simulate the template matching fask. Here, Q=TU B,
GT;|T|+|B| = |Q| and B is _co’mpc¥sed of backgroﬁﬁd points drawn from N (u, o),
\&ith u € [0,10],0 € [0,10]. In this demonstration, |T'| and. |Q| are set to 100 and
200 respecti;/ely. |Q| = s|T| and s varies from 0.5 fo 2 with step of 0.1. TheQ |
- can be treated ﬁs a caﬁdidate Windéw in the template matching task and is sampled
from Q by preferentiall& sample poinfs in/T>(i.é., nearest neighbor interpolati;)n).
For example, when s = 1.5,' 150 points need to be sampled to coﬁsttjuct @, with 100
* points from 7" and 50 points from B. Estimated § — arg m‘axs DS-SRI(T, Q, s; Q)
is supposed to app_roximatg the ground truth scale GT, well. In Fig. 3.3(a), we can-
observe that high expeétation valueé of DS-SRI distribute fnore densely around the
diagonal cofnparing other methods. These staﬁstical analyses clearlsr show the ro- -
bustness of DS-SRI against scaling change, and the ability for estimating the proper

- scale of the target object.

3.4.2 Analysis of rotation-insensitivity

To show the robustness against rotation, the expectation of similarity is analyzed

between two sets T and @Q drawn from 2D Gaussian models. As shown in Fig. 3.5,
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the parameters are fixed except 9 and o to validate the effect df rotation ang1¢ with
the Gaiussian of ﬁxed shape. As.points in T and @ are exactly the same except the
rotation angle, the similarity between 1" and @ is expected to be the maximum value
no ’matter’ how the 6 varies. In the case of BBS, as we can observe from Fig. 3.5
‘ (c) when o5 is extremely small, the points drawn are likely to form a line, which is
sensitive to rotzﬁion as the intersection of two lines is small. This is also the case
when gy > I, as it can be observed that thé expectation décreaSes gradﬁally With
the increése of o5. Also, isotropié Gauss‘ian. is supposed to be unaffected by the -
rotation, which can be convinced from Fig. 3.5 (c) that when o; = 03 = 1, the
expectation ke¢ps well with respect to the rotation. On the other hand, SDS and
DS-SRI show the invariance to the rotation despite. the shape change of distribution

in Fig. 3.5 (d) and Fig. 3.5 (¢) . -

343 »Analysis of illumination-insensitivity

~ To show the robustness against illuminétion, the expectation of similarity is ana-

lyzed betwgen two sets T"and @ that drawn from 1D Gaussian models N (0,1) and

N(0, o) ’,0 € [0, 10] respectively. ’Moreover_», to simulate fhe illamination change,

- the Q ié Gamma corrected with random v €{0.5,2]. The resu‘.ltsv are sﬁown in Flg _
3.6_.. It can be observed that the expectation of DS-SRI is almost constant and ap-
‘proximate's‘to 1. However, other metrics inéluding BBS, DDIS, and our previously
proposed SDS decreases gradualiy whén the y gets away from 1. Alsc,), the value of

- DS-SRI dfops fastest when o gets é\%/ay vfrom 1. Similarly, this ¢an be observed in
Fig 3.7 when the o and verify p is fixed .frorﬁ 0to 10 for san{pling Q. Wecanalso -

observe that only DS-SRI shows a high ekpectation value around the setting of the
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Table 3.1: Average overlap rate. The red and blue colors indicate the best and the
second best method respectively.

Data category : #lmages DS-SRI*  DS-SRI SDS* . SDS [69]

Scaling-change-only 166 0.66 0.45 - 067 045
Rotation-change-only 166 058 - 0.60 0.59 0.60
lllumination-change-only 112 0.63 0.64 0.28 0.30
All-change _ 280 0.54 042 049 0.40
ALL E 724 0.59 - 0.50 052 - 044
Data category ' DDIS* DDIS [18] BBS[17] HOG [73] HM
Scaling-change-only 043 0.44 o 0.38 - 0.28 0.38
Rotation-change-only 0.40 - 0.53 043 0.18 036
Hllumination-change-only 024 039 - 0.37 - 0.55 0.15
All-change - 0.31 0.38 0.35 0.13 0.22

All ' 0.35 043 0.38 024 - 0.26

| terhplate (1 = 0) with respect to the change of .

3.5 Experiment of DS-SRI

To show the stétistically justified feafures of “DS-SRI can really help bto improve
the peﬁoﬁnmce of Vtemplate matching task on»real-world data, a rcoﬁlprehen'sive
experiment is conducted with béth qualitative and qﬁantitative tests to validate the

| superiority of DS-SRI comparing with the state-of-the-art methods BBS [22, 17], »'
DDIS [18], our previous wqu SDS [69], as well as several conventional methods

[18,17,73].

3.5.1 Dataset

For comparison, 724 image pairs (reference-target pair) are originally collected un-

der different unconstrained environments and categorize to create a dataset for eval-
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uating the performance of »ternplatev matching involving overall scaling, rotation,
and illumination ’changes on tﬁe target object. Besides, these images also iriclud_e ,
other uncontrolled.challenges like complex deformations, occlusion, background
clutter, etc. Thé bounding box of each’ ground tmth is annotated manually image
by the image with a free-scale rectangle. r"I‘he dataset is further subdividéd iﬁto
‘/.four categdﬂes: (1) scaling-change-only, (2) rdtaiioh-change-only- 3 illumination-
éhange-only and (4) all-change for detail{ evaluation and discussion, which include
‘ | 166, 166, 112, 280 r'eference-vtarget image pairs, respgc;tively. Itis noteworfhy that
each catégor& also includes other ﬁncontrolled photometric and geometric-transfor- |

- mations as they are taken under unconstrained environments.

3.5.2 Quantitative Evaluation

The same procedure is follOwed as suggested in [22, 18] for a fair-compaﬁsqﬁ. As
to the evaluation criterion, folldwing [22, 18], The success ratio is employed based
onlthe overlap rate between ground truth Wg and matching result W, to measure the
accuracy, which isvdéﬁned‘as: W, OW,| /W, U W,|. Here, the operator || is to
count the number of piXels within a window. In the template matching task, simi-
larity m¢triCS have to be combined with search methods. For clearness, whén both -
single-scale and multi-scale séarch.metﬁbds are comparéd for the same simila‘rity ‘
metric, the {-}* is used to denote the approach that combined with a multi-srcale |
search window. The seérch method is ﬁxe;d to the sliding window inkthe; exper-
iment.» Note that only DS-SRI and SDS are §rigina11y designed to be employed

with search windows in multi;scale. For fairness, as a referepce, the perforrnance
of DS-SRI is simultaneousiy conipax_"ed with a single—scaie search window. In ad--
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dition, the DDIS also employed with a multi-scale search window for cor'_nparison,
denoted as DDIS*.

We compare our proposed methods (DS-SRI, DS-SRI*) to DDIS, DDIS*, SDS,
SDS#*, BBS, HM, HOG, and SAD. In the case of a ﬁxed—séale seérch winddw, the
window size of Candidatgs equals the size of the templafe. In the case 6f a multi-
scale séarch window, the scaling factor With' respect to both z and y axes vrange from
0.5 fo 2, with step 0.1. The'patch,size of DS-SRI, SDS, DDIS, and BBS patch is
fixed to 2 x 2 pixel. The results are reported in Fig. 3.8. As we can observe from
F1g 3.8(a) and Fig.b 3.8(b), the performance of DS-SRI/DS-SRI* agaiﬂst scaling
and rotation changes are almbst the same as our previous work SDkS/SDS* with re-
spect to the area-under—éurve (AUC) score. In Fig. 3.8(&), multi-scale approaches
DS-SRI* aﬁd=SDS* largely outberform their fixed-scale versions DS-SRI and SDS. |
On the other hand, in Fig. 3.8(b) and Fig. 3.8(c), since no largevscaling changes
‘ _are‘involved, multi-scale approaches did notvshow the advantage. In Fig. 3.8(c), the

proposed DS-SRI/DS-SRI* shoWs its ‘superiority over-illuminatioﬁ change against
other .metﬁods. Also, in Fig. 3.8(d), which involves all thé changes, our method
~ outperforms others. Fig.. 3.9 averages. the success curves over all the data (Fi;g. 3.8
(a)N(d)) to summarize. Also, the HOG featyre is compared to assess the reasonable-
ness of each data category. Rather than a similarity metric, HOG is a gradient-based
featﬁre descﬂptq; calculated from a uniformly spaéed dense grid of blocks and cells
and is knoWn to be‘robl.lst against illumination change and weak on defdrmations.
As expected, HOG based mafching performs well against illumipation change in .
Fig. 3.8(c), bﬁt is ineffective to deal with scaling and rotation in Fig. 3.8(a)(b). The

comparison of average overlap rate between results and ground truths are summa-
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-rized in TABLE 3.1, proposed DS-SRI/DS-SRI* achieves the best result over three

categories out of four, results in the overall best performance.

3.5.3 Qualitative Evaluation

Matching exémples are shown in Fig. ‘.3.10. 1Ast‘~2nd rows, 3rd~4th rows, 5th~6th
rows‘are_‘ the exémple fesults from category scaling-change-only, rotati&n-’change-
»bnly, -and illumination-change-only respecti\.le_ly. Exéinple results froi_n all-change
are shown in the last th:ee rows. As we can observe, the proposed DS-SRI/DS-SRI*
is the only Iﬁethod correctly matching the téfnplate in all the challenging examples.
By oﬁserving Fig. 3.10(b) and Fxg 3.10(c) we can find that the likelihood maps
. of DS-SRI-"< and DS-SRI are almdst the séme, which is evidencé to indiéate that

our method is robust‘agavlinst scaling change. Furthermore, comparing to the stéte- |
. of-the;art method DDIS (Fig. 3.10(e)), we vcan cléarly ﬁnd that our rﬁethod' (Flg
3,10(0/) ) largely outperforms since high similarity values a‘re. mostly calculated on
the object of interest and drop faster when the candidates getaway.' Ih general, the
likelihood maps of DS-SRI/DS-NSRI afe more distinct and yield in better-localized
modes. In the 6th réw, cdmpared to the face in the refefence imaée, there is a
| very large change in illumination and facing direction. DDIS is trapped by a sim-
ilar patt;am in the baci(ground while our method can distinguish the faée from the

backg_round clutter.
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3.6 Conclusion

< A novel multi-scale template matchi»ng‘ method is »proposed in unconstrained envi-
ronments, which is rdbust against scaling,-rotation, and illumination changes. Also,
it tarkes advantage of the global statistic to deal with complex deformaﬁons, oc-
clusions, etc. ‘Extended bidirectional diVersity; combined with rank-based nearest
neighbor sear'ch‘ forms a scale-robust similarity measure, and the exploit of polar
c‘o.or_dinvate further improves \thev'robust,ness against ‘er'atio‘n. Moreover, in order to
deal with the illumination‘change and further deformation, illunﬁnatidn-correc?ted
locél appearance and rénk informéﬁbn are. jdirltiy _expioi_ted durirlg the NN search.
The experimental results havre shown that DS;SRI can remarkably “outp'erfoyrrn other -
compétitive methods. | |
Despite the robustness of our method, it still has a few limitations.' Itis likely to \
- mislocate the objer:t'When the color distribution of the templatr: is" flat. Itis al‘so the
case when the patches in the template ;are simﬂar to eéch other. And it can not deal -
~with the multible oﬁject case.
In future work, T would like to dévélob effective §ca1e search methods to redUce:
the number of similarity calculations and thereby the computational cost. I would
-also like to apply DS-SRI with high-level features like deep features té improve the

_matching perfor,man’ée.
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w
(a) SSD,s =1 (b) BBS[17],s =1 (c) DDIS[18],s =1
- | . | . |
4 4 1
(d) SDS[69],s =1 (e) SDS [69], () SDS [69],
(g) DS-SRI,s =1 (h) DS-SRI, s = 0.5 (i) DS-SRI, s =2

Figure 3.3: Expectation maps of SSD, BBS [17], DDIS [18], SDS [69] and DS-SRI
in 1D Gaussian case. Two points sets, 7' and () are randomly drawn from two 1D
Gaussian models N (0, 1) and N(p, o), respectively. Q is set to be the same with
Q. All of point are normalized within [0,1]. In (a)~(d), (g), |7'| and |Q)| are set to
= 100 and |Q| = 50 (i.e., s = 0.5). In
= 100 and |@| = 200 (i.e., s = 2). In each graph, the parameters of the
Gaussian for generating () increase from left-top (. = 0,0 = 0) to right-bottom. It
can be clearly observed that SDS and DS-SRI drop faster than other methods when
(i # 0,0 # 1), and DS-SRI preserve the map best against scale change.
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Figure 3.4: Scale estimation by similarity maximization. (a) shows the expectation
map concerning the variation of ground truth G7; and estimated s. SDS and DS-SRI
(second row and bottom row) achieve maximum expectation values on the diagonal
while BBS (top row) fails in estimating the proper scale. High expectation values
of DS-SRI distribute more densely around the diagonal comparing other methods.
(b)~(d) demonstrates the normalized histogram of estimated s based on 200 random
trials. In the case of SDS and DS-SRI, the according bin of s = G7T achieves the
highest frequency. BBS (top row) performs well in a local scale range while fails in
the global.
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(a) Example of T'

o
2
y 038
. 0.6

(c) BBS (d) SDS (e) DS-SRI

Figure 3.5: The expectation maps of BBS, DS-SR, and DS-SRI in 2D Gaussian case
with rotation. Points in 7" are drawn from N (u, 01, 03), with p = (0,0), o7 = 1, and
o2 € (0, 10]. Points in @ are copied from 7" and further rotated by 6, 6 € [0, —7].
(a) shows an example of 7" and (b) is generated by rotating (a). (c), (d) and (e) are
the expectation maps of BBS, SDS and DS-SRI respectively by varying 6 and o5. It
can be clearly observed that the expectation of SDS and DS-SRI is almost invariant
to rotation while BBS drops most when 7" and () overlap least (i.e., § = —7/2).
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(a) BBS (b) DDIS

(c) SDS (d) DS-SRI

Figure 3.6: Expectation maps of BBS, DDIS, SDS and DS-SRI in 1D Gaussian case
with illumination change (simulated by gamma correction). Two points sets, 7" and
@ are randomly drawn from two 1D Gaussian models N(0,1) and N(0,0),0 €
[0, 10], respectively. Q is set to be the same with Q. In (a), (b), (¢) and (d), |T'| and
|@)| are set to 100 (i.e., fixed scale). The parameters for generating () increase from
left-top (v = 0.5,0 = 0) to right-bottom, v € [0.5,2] and o € (0, 10]. It can be
clearly observed that the expectation of DS-SRI value is invariant against -y increase
and drops shapely when o gets away from 1.
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(a) BBS (b) DDIS

7 7
(c) SDS (d) DS-SRI

Figure 3.7: Expectation maps of BBS, DDIS, SDS and DS-SRI in 1D Gaussian case
with illumination change (simulated by gamma correction). Different to Fig. 3.6, T’

and @ are randomly drawn from two 1D Gaussian models N (0, 1) and N(p, 1), u €
[0, 10], respectively.
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Figure 3.8: Comparison on success rate with respect to the variation of the overlap
rate threshold. DS-SRI* , SDS*, and SDDIS* run with multi-scale search window
and others are with fixed-scale. The dotted curve NGT is the performance of the
ground truth with fixed-scale search window for reference (i.e., each ground truth
of NGT is represented by a bounding box which has the centroid of the annotated
ground truth and the size of the template). Numbers in the legend are the AUC
values, i.e., the average success rate with respect to each curve. (a), (b), (c) and
(d) show the success curves over four categories (scaling-change-only, rotation-
change-only, illumination-change-only, all-change respectively. Best viewed in

color.

41



== = NGT(0.63)
DS-SRI*(0.59)
SDS*(0.52)
DS-SRI(0.50)
SDS(0.44)
e DDIS(0.43)
e BBS(0.38)
DDIS*(0.35)
HM(0.26)
HOG(0.24)
SAD(0.21)

\
\
O 1 L

0 0.2 0.4 0. 0.8 1
Threshold

Figure 3.9: Comparison on success rate over all the data (Fig. 3.8 (a)~(d)).

=
o0

=
o

Success rate

=
bo
T

42



y

(a) Template (b) Matching Results (c)DDIS [2] (d) DS-SRI (ours)  (e) DS-SRI* (ours)
wes DS-SRI* == DS-SRI SDS* SDS DDIS* == BBS == DDIS HM == HOG == SAD

Figure 3.10: Examples of matching results. (a) The template is represented by a
red rectangle. (b) The plot of detected bounding boxes. (c)~(e) The likelihood
maps of DS-SRI*, DS-SRI and DDIS, respectively. The candidate window with the
global maximum similarity in each map is selected as the final matching result. In
the likelihood map of DS-SRI*, every pixel has multiple similarity values due to
multi-scale candidates, and only the maximum one is shown.

43



Chapter 4
Rule-based similarity méasurg

Although DS-SRI dealé with the singlé Objeét problem very well, it cannot uti-
iize fora cl‘asysv'obj(ect 0* + ¢ detection. To solve the disadvéntage of DS-SRI, the
rule-based similarity rheasure is proposed. In this chapter,I the rﬁle-baéed similar-
ity measure inethod will be introduced from the following aspecté. (1) designing
a template for ‘a‘ class of objects. (2)‘deternﬁning candidate by mathematics model
and template. (3) méking rules for measure candidatés_. }(4)' searching object.from»

~all éandidates.

41 RBSM

: 4.1‘.1 Template -

In common template matching, the template is selected from a reference image,
that the user wants to detected or tracked. However, in rule-based matching, it
is different. The template is designed manually accoi‘ding to the universal feature

distribution of the objects. In tﬁis thesis, only the RGB feature is discussed, but it
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also can be utilized in other features easily. Firstly, the shape Of objects is utilized
to design the template shape. Then, according to the object colbr distribution, the
template is divided into several areas. The template needs to descry the objects

common part O*. The'template is noted as T

4.1.2 Candidates

Ther candidates are deéided by the practical problem, it needs to ‘cover all pgssible.
And all candidates C' are obtained By template 7" with a mathematical model M. ,
‘The mathematical model will decide the hﬂmbe‘r of the céndi.date. A good template
can reduce.tvhe éompleXity of the mathematical model. Thaf can reduce the numi)er

 of the candidate.

- 4.1.3 Rules

\

The rules are designed according to thé color distributiqn. Rules are utilized to
measure that the éandidate is the object or not. For detected the object, these rules |
need to ineas’ure the sinﬁlarity of the common part O*, and ignore the different pai't
O'. And the 'ruleé come with the template.' In this thesis, the pixel relationship
between different regions of the template is considered as a feature. These rules ﬁe

repfesented by the function R. .

'4.1.4 Optimization

With the rules and candidates is defined, the object can be selected from the whole

candidate set. However, when the mathematics modal, that is utilized to gener-
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ate the caﬁdidafe combines with the template, is complex, the candidate number
will be a huge amount. T}le brute force search is an exhaustive search for all can- ‘
didates is véry time-canum_ing, due to the massive number of caﬁdidates. Thus.
some optimization algorifhms are needed to reduce the candidates. And due to their
pdpulation-based nature, evolutionary élgorithms are able to approximate the whole
Pareto setofa single-objective/multi-objective Optinﬁzation problém in .a single run-
ning. Inthe aBove section, tﬁe candidates and similarity measure funétion is defined.
The .DS-SRIv can be detected fhe object very fast by exhaustive'search, results from
the candidate ére not many candidates. However, for sdme cases of RBSM, the
rotation and deformable cbvér by the canc.iidates.‘ That is ‘exhaustive éearch for all
candidates is very time-coﬁsuming, due to the massive number of candidates. Thus
some optimiiation algorith}ns are ‘needed to reduce the candidates. Ana due to their
population-based nature, evolutionary algorithms can approximate the whole Pareto
setof a sinéle—objectiVe/multi-objective optinﬁzation problem in a single running.’
In this thesis, the optiniization algorithm under the genetic algéﬁtﬁm frame-
work. GA is a search vheuristic that is inspired by Charl_es Darwin’s theOry of natural
evolﬁtion. This algoriﬂlfn reflects the process of natural selection where the ‘ﬁt'tesit
individuals are selected -'forbreproduction in order to produce offspring of the next
generation. In GA, a very imﬁortant notion is natural selection. vThe process of nat-
urai selection Stans with the ‘selec,tion of the fittest individuals from a population.
They prodﬁce offspring §Vhich inherit the chai‘acteristics. of the farents and will be
added to the next generation. If parents have better fitness, their offspring will be
better than parents and have a better chance of surviving. This prqceSs keepé on -

itefating and in the end, a géneration with the fittest individuals will be found. This
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notion can be applied to a search problem. We considér a set of solutions for a
’ problgm and select the set of best ones out of them.

Five phases are considered in a ggnetic algorithni. 1). Initial populativgn. 2).
Fitneés function. 3. Sélectioﬁ. 4). Crossover.-5). Mutation. In‘ the following, these

phases will be introduced one by one.

Initial population

In the GA, the process starts with a group of individuals, which is called a popu-

lation. Each individual is the solution to the problem we are trying to solve. An-

individual is characterized by a set of parameters (variables) called genes. The

genes are linked together into a string that forms a chromosome (solution). The set

of genes of an individual is represented asa string. Usually, binary values (strings of

1 and 0) are used. The genes are encoded in a chromosome. In the template match-

ing, each individual is a candidate régiOn. And the paraméters of the candidate are

coded by chromosome.

. Fitness function

- Fitness function determinés an individual’s level of fitness (én’individual’S ability
to competé with other indi\}iduals). It gives each individﬁal a fitness score. An in-
dividual’é probability of being selected for breeding is based on its fitness score. In
template matching, the fitness function is the similarity measure function designed

by the user.
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Selection

~ The idea behind the selection phase is to select the most suitable individuals to pass
on theii g_én‘es to the next generation.k Two pairs of individuals (parents) are vselected
based on their suitability scores. Individualé with high fitness scores have a greater
chance of being seleéted for réproduction. In our probigm, the suitable individual

means the high singularity score of the candidate.

Crossover

Crossover is the most important stage in the genetic algorithm. For each pair of
 parents to be mated, an intersection is randomly selected from the genes. There is
various crossover method in the existing literature. Such as single-point Crossover,

two-point, and k-point crossover, uniform crossover, crossover for ordered lists.

Mutation

In certain new offspring formed, some of their genes can be subjected to a mutation
- with a low random probability. This implies that some of the bits in the bit string
can be flipped. The mutation occurs to maintain diversity within the population and ‘

prevent premature convergence.

~ Termination

If the populatidn has converged (does not produce offspring that are significantly
i diffefent from the previous generation), then the algorithm is terminated. Then it

can be said that the genetic algorithm has provided a set of solutions to our problem.
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4.2 Rule-based matching for VIS detection

Two practical examples are considered to introduce the ruie-based matching method.
These examplés are the vehicle inspection sticker (VIS) and roast ﬁsh parts (RFP)
_détection. In these .examples,_thé target object is a class of objects. In VIS detec-
tion, there is only one object in a target image. But for the RFP detection, there ﬁe

maybe multi-object in a target image. For these problems, the background, designed

template, candidates, rules, as well as optimization will be introduced._:

4.2.1 Background

Image processing technqlogy has been widely appliéd in vehicle-related researches.
However, vehicle inspection sticker (VIS) detection and recognition have not been. A
widely Stﬁdied. Inspecting Whether a -\,'ehicle.inspection is expired or not still de-
pends on.the,ménual check. The high:c;)st of human labor leads to the fact that dnly
asmall portion of VIS éan be inspected. As a result, some drivers will keep ‘driving
with expired vehicle ins.pectic_invbecéuse of the high cost of vehicle inspéction or
éther reasons, which is a gréat security risk». | |

On the other hand, the vehicle inspection sticker (VIS) is issued by the special-
ized agencies aftér the.annual inspection is qualified, the expired date is written bn
vthe vehicle inspection. 'Iﬁ order to show the public and the traffic poli.ce that the ve-
hicle inspection has not expired, the relevant laws and regulations stipulate that the
VIS must stickered on the front window of the vehicle. Therefore, I can obtain the
vehicle inspection expired date from the image of the front window. It will be very

convenient if VIS can be automatically detected by a single camera on the image of
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the front window.

However, it is difficult to localize the VIS from‘a single image, which is affected
- by the following factors. 1) The VIS is very small eompared with the license-plate.
2)‘There exists a cornplex positio’n relationship between VIS and camera, such that
VIS is usually perspectively transfermed in the target iinage. 3) The VIS changes
appearance under different illumination conditions. 4) The feature of VIS is difficult
to utilize for simplicity, this owing to there are different 12 charactera on the VIS.

Thus, applying local features to the localization of the VIS is difficult.

422 Problem description

‘Targ'et imaée in grayscale is _the input, denoted by I;, with size of n; x my. Nor-
malizing each pixel value of I; from [0,255] to [O,Il. According to the pixel value
distribution of \VlS, I create a template with a size of ny x ™Mo pixel, denoted by
M. Candidate regidn I.isM mapped to I l)y homogiaphic 0 € PS, while §is the

_ projectivity operation matrix, shotv'n in‘Fig. 4. 1 An arbitrary pixel in M 1s ‘denoted
by p, while p? corresponds to a pixel of I,. Based on the pixelvalue distribution of

. VIS, I create some rnles to measure the similarity between VIS and I.. According

to these rnles, the rule-based Siniilarity fnnetion Fis deﬁned; then F is utilized to
measure the fitness of I.. And the acoie of F' is smallef, the degree of similarity ‘

is higher between the VIS and I.. With the F' defined, the VIS localization can

be converted to the problem thatdetection optimal 4* to rninimize F' in projection
épaee PS.-

0" = arg min F(I,, M, ¢) 5€PS. : (4.1)k

50



4.2.3 Without character information template

Iﬂ tﬁis méthod, The optimum region is searched in the projective space, thus the

template size does not directly impéct oﬁr result. In order to calculate speed, the
| terﬁplate size is set as small,32 x 32 pixéls, denoted by Ma, shown in4.2. Fuﬁher,
i | divided \M2 into tw§ parts, including the VIS vareavl and the front glass area, fespec-
tively denoted by M3 and M3. The position of M7 is in the cenger of Ms; with. the

size is 16 x 16 pixels. The template is shown in Fig. 4.2.

4.2.4 - Candidates

in this se(.:tion, I detailed define pfojective transformation §. According tp the |
pin—hole camera modei we can know _that the 2D projective transformation can
be viewed as a transformation within the 3D énd then projected onto a 2D plane.
It is comprising by eight simple transformations on 3D, shown in 4.3. These trans-
forrﬁationé include scaling with X and Y axes, rotation with X , Y and Z axes,
translation with X and Y axes. Others, the changes of distance between the target
and the optical center. Therefore, I use 8 parameters to idescribe>6, they are Sz, Sy,

0., 0y, 0, z, y and Z,. Accordingly, the projective transformation & can be defined
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Target image

Figure 4.1: Candidate regions are shown by blue box on target image. Each candi-
date region is mapped to target image by homographic §".

Figure 4.2: Without character information template Ms. M, also can be divided
into two parts, VIS region M, and the front galss around the VIS region MJ. The
position of M3 is in the center of M.
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as formula 4.2:

0 S, 00 |0 cosf, sinf, O

0 0 0O 0 —sin&ac cos 0, 0

o 0 ool [0 o 0 1
‘ cos‘ 0, 0 —sinb, 0 ’ cos8, sind, -0 0
0 1 0 ol |-sin 0, cosf, 0 0
x x | 42)
sinf, 0 cosf, 0O 0 0 10
o 0 0 1 o 0 ‘01
_ 1T

zy01l [0 0 0 Z

There parameter 0,, 6, and 6, are rotation angles with correspon;iing to each
axis. Parameter x, y are the translation sizé'with respect to z, y axis on the target
image plane. Pardmete:r Sy and S, are scale size with respect to each axis. Param-
eter Z, is the distance between térget aﬁd optical centér, Which the éffect of Z, 1s
different in image size. Howé:ver, I know that imgge size can be controlled by S,
Sy. Therefore, Z, can be fixed on a constant. With the & deﬁned, the p° c'én be

calculated by multiply the matrices:

0 =p6 pe RV _§c R&Y. (43)
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Target image plane

U
Principle point P

LT
4
-
.
L
gmm b m oy

4
'

Optical center
c= (Te,Yes Ze)

Figure 4.3: Pin-hole camera model, From the model we can know that the 2D
projective transformation can be viewed as a transformation within the 3D and then
projected onto a 2D plane. It is comprising by eight simple transformations on 3D.
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Here the p is defined as p = (pz, py, 0, 1). In this method, when the coordinate -

of p° is calculated, the value of four dimensions should be normalized to one.

4.2.5 RBSM for VIS

In this method, three constraints are designed according to the inherent pixel distri-
bution of the VIS area and thé area around tﬁe VIS. Firstly, the pixel value distri-
o
bution of the VIS region is not flat, because the VIS is the green paper with written
back. In thisrmethod, I utilize the pixel values at the highest a perbent to approx-
imate the pixel values of VIS backgrour‘ld' in M3 for eVery candidate region. And
- utilize the pixel values at the lowest b percent to ai)proximate the pixel values of the
VIS text region. Where a,b € R+, a+b< L. Secondly, the pig(el value distribution
between the sticker background region and glass region is not flat. Thirdly, the glass

around VIS is an approximate flat.

I degine a func'tion_’T (.) to measure the flatness degree of VIS:

lgeMg (11(p%))
Bery (11(P%)) + ugeMg(Il @) |

T(I1, My, §) = - (44)

Lesis sum of the pixel value at lowest ¢ percént in the set S. u;E g is sum of ihe
pixel Valﬁe at highesf t percent in the set S. From the section 4.2.5 analysis, I can
know that lower score of T'(.) means a more similar betWeen the candidate region
with the VIS.

Besides, I define a function H (.) to measure the degree unflatness between VIS
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backgrouhd region and glass region.

B(I,, My, §) = ZpEMg(Il(plé)) .
. o > peng(11(P%)) + “ZeMg(Il(PJ))

(4.5)

As I can observe from above function, a lower score means a more adaptive con-
straint.

Moreover, a function G(.) is defined to measure the flat degree of glass area.

Upe g (I 1(P%))
Upensg (11(P)) + Loepsg (1 ®))’

c€ R",c<0.5. (4.6)

. G(Ila M27 5) =

In the result, the lower score of G(.) means that the glass area is more flat. With

function T(..), B(.) and G(.) defined, I can define F> as

Fy(Iy, My, 8) = wy x T(Iy, My, 6) +ws x H(Iy, My, ) -
' | ' @7y

+we x G(I1, My, 8), wy,ws,ws € [0,1].

Where w;, w, and w are the weights within [0, 1]. The experiment will be introduce

in next.

4.2.6 Optimization for VIS
Coding of projective fransformation parameter

For detecting the VIS, there still exists a problem that is continuous pararhcter space
of projective transformation PS corresponding to infinite candidate regions. It is
impractical from the infinite candidate regions to researching the optimum region.

To solve this problem, a finite discrete set is extracted from PS by uniform step, in
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which the number‘of each parameter is 27. The discrete set correspondiﬁg to a finite
candidate fegion space is noted as DPS. When the finite candidate space is larger
enough, then the optimum solution ¥ in DPS is very close to the optimum solution
6*. Through experiménts, when n is 8 the accuracy of the result is satisfactory.
In order to search for the optimum solution in the DPS, all possibilitiés of DPS is
needed to code into the chromo~some. Accordingly, each parameter of ¢ is coded in» ’

an 8-bit binary.

Searching optimum region

Accordipg to. section 4.2.6, the problem converted to that from the finite discrete
‘sclet DPS to find .;am optimurﬁ solution. There still exists a problem that the ‘DPS is
‘massive. It has 256 possibilities. This causes testing the complete discréte candidate

space difﬁcultfy. In order to overcome this prol;lem, Tuse a level-wise adaptive

sampliﬁg (LAS) algoﬁthm '[23] to evaIuat_e the approximate optimum solution. The
flow chart of this algorithm is shdwn in Fig.4.5. Next; I will introduce\this algorithm

7 and analysis the advantage of this algorithm for this method.

Initialization

In this algorithm, the initial generation is noted as PP, it includes n individuals.
Each individual chromosome refer to a candidate region, Each individual chromo-
some generates by random 56 binary genes. Each individual chromosome corre-

sponds with randomly parameters of projective transformation DPS.
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Determine homographic §

Figure 4.4: Chromosome. Yellow part are genes of candidate region, green part are
genes of template background pixel value, each paramter coded by 8 bit gene.

T

Figure 4.5: level-wise adaptive sampling algorithm flow chart.
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" Selection individuals with level-wise adaptive

In this sectic_)n, Aécording fo the fitness value, some individuals are deleted. The
specific seiection method is as follows. Firstly, based on the chromosome, calculate
each individual of generation P3™ correspond pararbnetersld and o, where m is the
- generation number. Then 'ac‘cording to thé dand o calculatioﬁ the fitness Valué to
each individual. Finally; deléte some individuals 'of which ﬁtneés value are smaller
than fhe threshold THT" in geﬁeration P3™. Especially, the T'H,, is level-wise -
adapﬁve, every time de]etéd individuals is close to a fixed proportion of the current
generation,lwhere the proporﬁpﬁ in the range [dl, dp]. The remained individualé
form a temporary generation of P3™+1,
The T'H,, is level-wise adaptive and the massive number of individuals reskults
“in a new problem, deciding the THm value is difﬁcﬁlt. To solve fhis prpblem, in thié
algoﬁthm, a gtepwise appréximation method is used, this method based on proba-
bility and statistics theory utilizes some random s‘ampling‘ ,to" e‘sitimatév the fitness
value distribution of the whole generation. The method is as follows:
~ Stepl: Initial the T'H, as the fitness value‘-of the opti._mumv individual in the
current generation. | | |
B Stepé: Randomly sampling an indl;vvidl/lal set that has T' individual from thé
~ current \generation,' the random set is noted RS.
Step3: calculaté thé proportion PT' that is individual’ fitness value more than

the T'H, in the RS. Then put PT into the equation 4.8:
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(

THtX]..l , PT<dt

TH = \TH,x09 , PT>d," - @y

TH, others .
\

Step4: Repeating thé step2 to setp3 until the PT belbng.t.ﬁe range [d;, dp,]. The
threshold TH, is outputted threshold T H,,. 'The mefhod of level-Wise adaptive
choosing individuals suiis our method very wélly_. The distribution of fitness value is
diﬁerent in the different environments, the fitness values may bé concentrated in a
small range in a generation. if an fixed threshold is utilized to select the individuals,
the run time;’and the resulf accuracy is out of control. Thus, the level-wise adaptive
selection method is sele;:tgd to delete individuals.

After deleted sorﬁe individuals, a uniform sampling method is utilized to select
the nexf geperation of individuals. Firstly, the range of ﬂtness‘value in P:“”H‘1 is

- evenly divided into ¢ range. Then, the same,nurhber of individuals is rand‘onﬂy
extracted in each range. The extracted individuals fo@ a tempofary genération of
P3m+2 And the number 6f p3m+2 inciividual is the same with the P3™*2, Tt is
noteworthy that an individual can be extracted many times.

The similarity evaluatioﬁ function 4.7 include three-part rulés. -It is possible that
there is a candidate region where a part rule or two-p.art rules has a higﬁ similarity
with VIS, But another part is nof, which Will cause a problem that the algorithm
may fall into a local optimum solution. The operatioh can imprové géne 'divérsity,
which is conduci\@ to escape from local optimums. It has a great éigniﬁcance to

" this method.
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Crossover

The uniform crossover operation is used to increase the diversity bf chromosomes.
The operator is shown in Fig.5. Parents are randomly generated from generation
P3m+2 And the children chromosome is obtained by miﬁing parents gene, the mix-
ing ratio is mr. As a result, the children’s ch;omosomes inherit the parent gene.
And a child chromosome ihheﬁts approximate mr genes of the:s’econd parent, an-
other inherits the genes of the first parent. Especially, the operator is not fér all
the individuéls in P3m+2 it only operates randomly rc i)eréentage individuals. The

operation results form a new generation P>™*3, and I note it is generation m+1.

‘Terllnination and output

The selection of individuals process to the crossover process is repeated until the
termination condition has been reached.’ In the algorithm, the terminating condi-
tion is that the number of individuals of m generation is smaller than g. The best

homography ¢~ with minimum ﬁtness value is outputted.

4.2.7 Experiment
Datasets

In order to evaluate the RMSM for VIS, three datasets are collected in a different.
environment. These datasets are utilized to evaluate the performance in different
- aspects.

Datase/t.Dl isr taken in the garage with 10>images, which the environment changes

include illumination and position relationship between target and camera. And in
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dataset D1, all of the Véhicle ihspection sticker the month is November. In addi-
tion, in order to more comprehensifve -check, the robustness of the proposed method
Gaussiaﬁ I_ioise is added. The dataset D1 utilize to evgluate proposed methods can
location the VIS in projective space. |
| Dataset D2 includes 527 images, which took in the following enviror;ment. The
camera is ﬁxé;d on a moving car, and the distance between the éamcra and VIS is 20
centimeters. And the car is driven‘through different places. And the month on the
'Vehicle inspection sticker includes J. anuz;ry and Nox)ember, and the D2 includes 327
_ imagés of November and 200 images of January. This method utilizes The dataset
D2 utiliZed to evaluate the performancé for reflection.
Moreover, 50 images are takeﬁ in the gas station to construct a dataset D3. These
images are taken at night, the camera position is fixed and the height of the camera
'. poSition is 2 meters. Then, the car is moving in the direction of the camera. This
:dataset is utilized to evaluate the practical perqumance of the proposed methods.

And for every image, the ground truth is demarcated by the manual.

Result evhluati’on

For evaluate the performance of RMSM for VIS, the overlap rate between ground
truth and our result is utilized. When the overlap rate is more than a threshold, that
is judged the localization success, The threshold as th. The determination method

5

is as fdilowing,

true , if overlaprate >th - _
result = ' ’ . 4.9)

| false ., others
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>
Table 4.1: List of each projective transformation parameter’s range, the step size
and amount in sampling set. »

Paraxﬁeter : Range Step amount .| Step size
0z 0,0.3x] oon 0.3m/2"
0y {—0.057,0.057] 2n 0.1x /2"
0 [~0.057,0.057] | on 0.1w/2"
T - [0,m4] on ny /2"
Y- ~10,m1] |2 my /27
Sy -[1.0,3.01 on, 2.0/2n
Sy [1.0,3.0) on 2.0/2n
Z, |- - - -

Parameter setting

In the.experiment, the projecti\.Ie transformation parémeters are'a} set as Tab 4.1.‘
Others, the initial generation number n is _sét as 150,000, fhe 1ast genefation number
g is 1,000. The threshold T'H,, is that every time éliminate 5% to 10% of last
generation. \ |

Moreover, according to the real VIS the shape of template is set as follows.
The b‘ackg”round of VIS a is 70% and the text area of VIS b is 15%, which the rest
15% is an uncertain area. The glass of around VIS top a.ndrv low part g set as 20%.

It is noteworthy that, in different experiments the fitness functions parameters are

different.

Results

In the following experiment, the overlap rate threshold is set as 0.5, when the over-
lap rate is more than 0.5, the location result is judged as a success. When the weight
of fitness function are that wy = '1,> ws = 1 and wg = 1, the IRBM for the dataset

DI the success rate is 90%, the example of results is shown in Fig. 4.7.
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Whenthe weight ‘of fitness function are t'hat’ wy = 0.5, ws = 0.5 and wg = 1, )
Athe iRBM for the dataset D2 the success rate is 94.1%, the exarhple of results is
shown in Fig.4.8. The Fig.4.8 and the numerical results indicate that the IRBM has
robust performance against reflection. |

Moreover, the vdatasetkD3 is used to evaluate the practical ability of IBRM. The
experimental position is the gas station, when fhe vehicle is refueling, the vehicle
position is anproximately fixed. Thus, in this experiment, the region of interest
(RO)) is utilized to instead ’target 'nhe image. Wnere the RO is fixed to the middle
one-third of the target image, shown in 4.9 the blue rectangle. When the weight of .
the, fitness funntion'is that wy = 0.5, ws = 1.and wg = 1, the success rate is 92%,
which the. IRBM for the dataset D3. the example of résults is shoWn in fig. 4.8.
vAnd the last three images of D3 are blurred inlages, shown in location false image
in Fig.4.9. Wnen the dataset D3 exclude the last fhree image, the sncceSS rate is
98%. The high success rate indicates that the proposed method IBRM is can be

used at the gas station for locating the VIS.

43 Rule-based matching for RFP detection

4.3.1 Background

To save on thé human labor costs, I herein plan to implément an automatic canning
robot for packaging roast fish from the wire mesh belt conveyor (WMBC) line. Onér
of the principal challenge that must be addressed is the development of a machine
vision system. The roast fish parts have the following featurés. Allvpartvs have
various patterns, size, snape, cnlor, and color cornbination. Also, the sizé of RFP is
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Figure 4.6: Uniform crossover operator.

Figure 4.7: Visual results of RBSM for dataset D1. Localization results is repre-
sented with yellow bounding box. The red rectangle marks the error results.
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Figure 4.8: Visual results of RBSM for dateset D2. Localization results is repre-

sented with green bounding box. The red rectangle matks the error results. These
images indicate that the IRBM has robust performance for different VIS.
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Figure 4.9: Visual results of RBSM for dataset D3. Localization results is repre-
sented with green bounding box. The red rectangle marks the error results. These
images indicate that the RBSM has robust performance for different VIS.
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bigger and the shape is‘mOré unified than the tail paft. To guide the robot arm While’
canning roast fish, the Iﬁachine ;lision system must meet the folloWing requirefﬁents.
(1) All parts are the canning material. This system must senée the angle and position
of all parts to guide the robot arm. (2) To make thé product more attractive, the
bigger and more uniﬁéd fish part should be put on the top. :For this canning rule, the
system needs to be distinguished two kinds of ﬁllebtvs; because of the feature of fish
parts. (3) Because there are various production environments, the illuminations are
differeﬁt. Furthermore, there could be soﬁe shadow caused by the staff or machine
. working sit¢ iead to tha’; the system should be robust to. the levél of illunﬁnation.
- And in‘this thesis, bnly the RFP detection is-introduced, owing to the tail part is
deal with by apother methéd. And the RFP is noted as the roast fish part (RFP).
There are 'somé difﬁcul_ties fo develop é vision s};stem, Which satisfies the above
requirements. ;First, the sizé, shapé, and color are not exactly the same vyi%hin the-
same type. Second, the cbnneCtéd objects make it extremely difficult to detect; '
because some o,bjeds are put very close (Fig. 3.10(&)). The uncertain“ number of

objects is also challenging, making it more difficult.

4.3.2 Problem description

To deyélop a robust-assistgd packaging system, which can guide the robot arms
to péck the\roa.lst ;sauries ihto cans, it needed to detect the réast sauriés part. For
gn'pping strategy generation, the system is required not only to be able to détect the
roas t séury area but also to estimate the ‘geometric parameters. Besides, accofding
to different cannin g requirements, it is also necessary to distinguish £he ktype'of fish
parts. In this thesis, a rule-based mafching method is utilized to detect akind ‘of‘ﬁsh
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part. And the left part can be detected‘by’other methods, such as some segmentation
method [74]. And in this thésis, only the rule-based matching meth\od‘is intrbduced.
The example is showﬁ in Fig. 1.3.
A target 4imag'e is given, noted as T. And T can be divided into two parts. oné
is the background. The other part is the roast fishes. - And as illustrated in 4.10.,
the roasf ﬁshes include two kinds of fish part. body and té}il parts, that have the
following features. All-parts héve »va.l-'iouks patterns, sizes, shapes, colors; and chior
combinations. Also, ‘th'e size rof”the RFP is biggéf and the shape is more unified than
the tail part The RFP is noted as b € B. The number qf elerr‘lent‘svof the set B can
be zero or more. Our purpose is to detect all élenipnts in B. |
In the RFP detection, the input is the gfay—scale ROI image Ig and the outputl of

the object region O. For'rthe better quality of products, thé RFP will be put facing
the skin surface to the pamera. As shéwn in Fig. 4.10(a); RFPs havé two kinds

"of patterns: white-black-white (WBW) and bléck-&hite—black (BWB). The black
region is dﬁe’ v,to the region of the body with some internal organs and blood, ‘as
this part will become black after roastiﬁg. Differences during cutting then lead to
these two diffe;ent patterns. The various shape, sizes, and colors of RFPs lead us
to develop an algorithm to deal with the challen‘ge Qf detecting multiple RFPs With
two patterns. To solve this problem, a rule-baséd multi-object mafchjng methbd is
introduced. Firstly, the common feafures of RFPs are utilized to design some rules
and a supporting template. These rules are utilized to measure the probability that :
the candidate is thé RFP Then, a mathematical model is used to obtain the candidate

| regions via template mapping. Finally, a GA is used to search for the local optimal

solution by introducing DCAPD for multi-object detection,
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Figure 4.10: Sample fish parts. (a) Some samples of fish pieces are considered to
be the RFP. These samples can be divided into two-part white-black-white (WBW,
first and two rows) and black-white-black (BWB, the last row) patterns. (b) Some
samples of fish pieces are considered to be tail parts. These tail samples have large
differences in size, shape, and color. The third row of the second column sample is
a broken RFP and is viewed as a tail part.
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43.3 Flexible Template

Although the RFPs are different in shape, sizé, and.color,vthey still have some com-
monalities. ”fhe shape of the RFPs is an approximate rectangle. Furthermore, ac-
- cording to tﬁe colof, the two patterns of fish RFPs can l?e. divided into three parts.
However, as shown in Fig. 4.10(a), the shapes, and size of each part is not fixed. To
solve this pfoblem, fhe fuzzy field ‘is introduéed to the templa&:. Therefofe, the tem-
pléte is shown in Fig. 4.11(a), denoted as T, with size 50 x 50 pixels. This template
includes following four regions, they are the left end T3, right end T5, ’nﬁddle T3,
A ahd T’ which is the boundary of 13 with T gnd T2’ the sizes of 77 and 75 are 8 x 50
pixels. The size of T3 is 16 x 50 pixels, and each part of 7} is 9 x 50 pixels. The
717 and T refér to the black region in the BWB pattern or the Whité region in the
WBW patterﬂ, T3 refer to the white region in the BWB éattern or fhe black region
in the WBW pattern; and T4 canbe a @xture of bvlack and whité. Results in the T,

part of this template can be used to account for variations in the RFPs.

4.3.4 Candidates

With the‘ template deviseci, the candidate regions that may exist RFP can be evalu- |
ated using the template with éogne geometric tfansfdrmaﬁons to map to the target
image. As shown in Fig. 3.10(a), these geometric transformations include scaling,
rotation and translation. The folibwing ﬁve parameters are used. to déscribe these
transformatiqns. (1) Scaling parametérs for the z and y axes S, and Sy. (2) The
angle of the cehtér rotation 0. (3) Parallel translation for two axes z and Y. A point

(4, ) in the template can be mapped to a point p in the target image via the above
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transformation, such that p” can calculated by the following formula:

S.00) [ cosd —sind0 10z

P’=108,0]|%]|sind cosb 0|01y R (4.10)
0 01 0 0 1 001

And every point in the template T" via a T mapping to the target will result in a

- candidate ¢”. An example of ¢ is shown in Fig. 4.13.

4.3.5 Pretreatment

The regio.n of interest (‘ROI) is fixed in the target image, with a size ’of ny X my
pixels. This ROI is denoted as 1 ; as éhown in Fig. 3.10(a). The ROI can bé di\}/ided |
into three kinds of vregivons according to the WMBC position. They aire object fq-
gion O, WMBC region W, and the background regioh B. The segmentation of W
is due to some ’signiﬁcant features that can be ﬁsed, such as the edge and Shape.
.Subsequently, if B can Ee ségmented, fﬁen O is obtained By Irid of W and B

To segment W, the raw imaige I'is converted to a grayscale image, denoted és I,
The gradieﬁt feature is utilized to extract the edge of the WMBC as follows. First,
for every point, the gradient is céllculated using vthe Sobel operator in the horizonté.l
and vertical directions denoted-as 7 and &, :espectively. Then, add up the two-
directional gradient y¢ctoré to form the gradient vector §’,k as shown in Fig. 4.12,
Next, the magnitude |.§1 and angle (5) of §'is calculated for every pixel.‘/ Finally, -
based on the foilowing two conditions ju'dge whether the pixel is in the W. The

value of |3, j)| must be sufficiently large, on the other hand, the direction of §
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must be closed to the y axis. The analysis results in pixel values exhibit only a
small change inside W, .but a dramatic change at the boundary between W and B

or O. Formally, Eq. 4.11 is defended to obtained W'.

(506, 3)) > (90°xt—6),

L iy (5, 7)) <(90° x t+61),
W(i,5) = , o 4.11)

e (1,34 156.0)> T

LO, : otherwise.

In the Eq. 4.11, 6, is the threshold, which can control the segmentation results.
'Wnen tlre Oy, is larger, the region is easier to be Segmented as O, and vice versa.
The |5] is average value of gradient magnitude in 7. The vapproXimate W can ‘be' ‘
obtained by the above method, and an example result is shown in Fig. 3.10(b);
The B is d_ivided' into some narrow parts by the horizontal WBMC. Therefore, a
vertical ﬁlter is used to check W and determine B, if aregion of length without the
wire mesh is shorter than the threshold T H,, this region is determined as B. Thev
TH, is deﬁned by the gap of WMBC in the target image. The remaining region is
determined as the objectregion O In our case the over-segmentation (W or B is
segmented as O) is acceptable due to the following processing can deal with this
‘prleern. However, the under-segmentation (O is segmented zis W or B) 'wil_l give a
negative effect for the foliowing processing. The above parameters can be utilized

to avoid under-segmentation.
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43.6 RBSM for RFP

With the candidates defined, our problefn becomes searching for fhe candidates of .
 the REP, However, ii isa chéllenge that the traditional pixels-based measurement
methods; such as SSD, SAD, and BES, are ill-suited tL) measuring the fitness of
¢ , o
a candidate for the RFPs because these methods need varied templates to ideﬁtify
varied RFPs. In this work, the regioﬁal differences in gray scale value are utilizgd'
~ to devise two rules for evaluating the candidate. These rules ’relsl_only on tﬁe infér,—
mation in the candidate image. The first rule is that the gray scale value must be

_different between T}, T» and T3 in a RFPs, and the average pixel values of 77 and

T must be larger compared with that of Tg. \

peTIUT, » pETs

,E»l(IQ’T’ r) = abs ( S L) -Y 1, (pf)) (412

The second rule is that the gray scale value difference mustbbe small between Th

| and T5. Therefore, the average pixel_values must be similar between 73 and T5. -

peT D>

Ro(I1,, T, 7)=1—abs (Z I, (p7) —vZIg (pT))' | (4.13) |

Furthermore, except for the gray;scale value, there is another cue for measuring
candidates’ fitness: the candidate must lie in the object part O. Accordingly, the

formula 4.14 is used to apply this rule.

EpET I.pT € OJ
ZpET I.pT € Ig_l

R3(IgavTa Oa T), = (414)
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The |-| is an indicator function that turns true and false into 1 and 0. This rule
includes an implicit condition that the candidate is an rectangle. With above three

rules are defined, the measure function can be given as follows.
f(Ig,T,O,T) = (w1 X R1 +ws X.Rg) X R (415)

The terms w;, wo are the weights of rules within the range of [0,1]. And a larger f

value means the candidate referred to 7 has a higher probability to be a RFP.

4.3.7 -Searching RFP for all local optimal solutions

Ih the RFP detection, with candidates and matching rules dgﬁned, the'p;oblem be-
conies' searching for suitable solutions overall céndidates. However, 'there'ére_ still
some problems when searching for multiple RFPs. Firstly, there are ﬁ\}e pafame—
"ters and an enorméus number of candidates. When the searching gap is small for
the candidate, the search is time-consuming, but increaéing the searching gap will
lead to reduced accuracy. Furthermore, multiple ébjeéts and the uncertain object
nﬁmber means that typical optiniizatic;n method, such as GA and particle swarm
optiiniiation [75] @SO), are -difﬁcult to bg applied to our case. A special GA, that
introduces -de_te’:rministic crowding of the populatién for thé five pararneteré being
optimized [28], is used. This mgthod isa kinld of evolutionary method. It can use a
small sample céndidate set to search for a high accuracy approximate solution.
The searching algorithm is shown in Algorithm 1. First, which ‘N parents are -

generated and each has randomly assigned values of the five parameters. Second,

fitness f is calculated for each parent. Then, the parents are checked to see if some

75



individuals meet the conditions for creating a new cluster. These conditions include
the folllowirignthree items. (1) There exists an individual 7P such that f is aibove the
__threshold th. (2) Thi.s individual does not belong to ény cluster. (3) Thé distance
betweén TP and each dluster above the threshold d;. A ciuster is constructed by
.a,regivon and"some individuals, where the region is a circle, yvhose center is the ~
center of 77 and whose iadius is threshold d;. Third, the children S is generated
by selecting parents P for crossover and r_nutation. Fourth; the fitness is calculated
fdr each child. Fifth, tlie children are compared with their respective parents and if
the f of the children is larger than that ny the parents, then the children are used to
replace the p‘aren_ts. We repeat the processing from the second to thé ﬁftli until the
termination condition is met. Finally, the optimum solutions of each cluster in the

final generation are our results.

4.3.8 Experiment
- Dataset

The proposed system is tested with the experimental system which simulated the
reavl,fe.lctory enviro;meilt; The target image is taken by the camera in the box, as
shown in Fig. 3.10(a). And we manualiy'ﬁxed an ROI for analysis, the size of which
is 320 x 480 pixels, while the real working region size is 300 x 450 millimeters.
Furthermore, an efficient range is utilized to prevent part of the object outside the

- ROI region, which is the center of ROI with the Size of 320 x 380 pixels. Tlie _

performance of the prof)osed system is evaluated by two original sets of data. In

dataset 1, the object distribution is.scattered and regular in each image. Dataset 1
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(a)

Figure 4.11: Template and two pattern samples, (a) is the template. It can be divided
into four parts. (b) is the examples of BWB pattern part. (c) is the examples of
WBW pattern part.

Algorithm 1 DCAPD for RFPs detection
Input: input parameters 7', Q)
Output: Optimum solution of each cluster

1: Generate N parents P = {77! 772 .. 7P~} randomly
2: Calculate fitness f for each parent

3: while (Not termination condition) do

4 if Meet the condition of create new cluster then

53 Create new clusters

6 end if

7 Generate children S = {7°, 752, ..., 75V } by parents
8 Calculate the fitness f for each child

9 Compare and replace the parents with children

10: end while
11: return Clusters C
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Figure 4.12: Example of horizontal wire mesh judgment. Point A indicates the wire
mesh, and the magnitude of the gradient vector ¢4 that is calculated in the vertical
direction Soble operator is large. Therefore, the magnitude of sj, which is the sum
of 74 and c3, is also larger here than at other points, and the direction is close to
the y axis. The points B and C are located in the background and object regions,
respectively, and the magnitude of s and s¢> are small, and its direction is irregular.

has 55 images that include 195 RFPs. Dataset 2 includes 45 images composed of

166 RFPs, and the distribution of the objects is close and irregular.

Results for object region estimation

To verify the effectiveness of the foreground segmentation method, we implemented
two kinds of segmentation methods Otsu segmentation and background subtraction.
And we employ the overlap rate (O R) between ground truth W, and the segmented
result W, to measure the results, which is defined as: |W, N W,| / |W, U W,|. Here,
the operator |-| is used to count the number of pixels within a set. The higher OR
means that the result is closer to the ground truth. In addition, we use the under-
segmented ratio of USR to evaluate the negative effect of under-segmentation.

Which the OSR is defined as |W, — W, N W,| /|W,|. The USR is the error ra-
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~ Table 4.2: Results for object region estimation

-~ Method Dataset 1 | Dataset 2 | All dataset
Our OR 0.773 | 0.762 " | - 0.768
o USR| 0.053 10.098 0.068
Background subtraction OR | 0281 0.325 0.301

USR| 0573 | 0552 0.563
OR | 0322 | 0431 0.371
USE| 0390 | 0.368 0.380

Otsu segmentation

~ tio that foreground is wrongly segmented as background. The results are shown in
Table4.2. The highest OR and lowest average M SR indiéa’te that our method is the

. most effective with the least negative impact on the three methods: |

Detection results

In RFP detection, thé GA that introducés DCAPD is utilized for parametér op-
timization. The population size is set to 350, the crossover rate is 0.7, and the
- mutation rate is 0.05. In addition, to fix the running time, the terinination condi-
tion is set as the generation number reaching 1200. The parameters of the trans-
formation model are shown in Table 4.3, and each parameter is c;odedusing 8-bit
binary. To validate the superiority of rule—bésed matching compared with the com-
monly used pixel-based matching r‘nethodsy for a class of objects, we iﬁlplen@nted
two pixel-based measurement metﬁods, the_ traditional SAD and the state-of-the-art
BBS. These methods use two kiﬁds of templates, that asb shown in Fig. 4.11(b) ar\ld
Fig. 4.11(c), running_‘two times. Furthermore, for a fair compariéon, we set the
parameters of the optimization éigorithm to be the same as in our methods.

Three important metrics is considered to evaluate detection results. One is the

weight center deviation (WCD), that is, the weight center distance between ground
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Figure 4.13: Example of a candidate. In this example, the translation length is
x = 100 pixels, y = 200 pixels, the scaling size is S; = 1.5, S, = 2 and the
rotation size is § = 7 /4. Notice that the figure is rotated 7/2 counterclockwise to
save space.

Table 4.3: Geometric parameters range

X y g By 0
[0,319] | [0,479] | [1.2,2.2] | [1.4,2.4] | [O,7]

Table 4.4: Results of RFP detection

Method | Dataset | Objects | TP | Error | Miss | AOR ARD AWCD
(degree) | (pixels)
1 195 189 3 6 0.73 6.42 5.24
Our 2 166 158 2 8 0.73 6.82 5.00
All 361 347 5 14 | 0.73 6.60 5.13
1 195 177 | 50 18 | 0.62 18.43 15.34
SAD 2 166 136 | 39 30 | 0.60 19.79 16.50
All 361 313 | 89 48 | 0.61 19.02 15.85
1 195 171 | 45 24 | 0.65 14.92 13.71
BBS 2 166 139 | 36 27 | 0.62 16.49 15.67
All 361 310 | 81 51 | 0.64 15.62 14.59
1 195 165 | 27 33 | 0.65 12.78 12.51
DS-SRI 2 166 134 | 22 29 | 0.62 11.67 13.39
All 361 299 | 59 62 | 0.64 12.29 12.90
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truth and the results. After all the objects are detected, the robot arm sucks the cen-
ter of gravity of the object with a‘s‘uction _éup to‘ handing the object. Theréfore, the
WCD has a crucial effect on the grabbiﬁg success rate. The second metric is the
angle 'devia_tion (AD), which is the éb_solute difference from the actual angle. In ad-
dition, the OR between results aﬁd ground truth is alsb utilized to auxiliary evaluate
the results. The results are shown in Table 4.4, where the TP me‘ans the number of
true positive (TP). Table 4.4 showé that 'our method perforrhs our method is better
than tﬁe others in TP, error rafe, av_erage WCD (AWCD), éverag.e‘AD (AAD), and
a;ferage OR (AOR). | |
Furthermore, the success‘rate curve for the threshold of WCD is given in Fig. 4. 14‘, '

Fig. 4.15, Fig. 4.16. The effective working rangé of the suction cup is a circle with a
radius of 15mm. And in our impierhented environment, one pixel is 'apprroximate,ly
bne millimgter. ﬁus, the threshold of WCD threshold is set ;13 15 pixels, the suc-
cess réte achievés 0.936. This high avccuracy‘ shows that our method is efféctive'for
detecting the RFP. Figure 4.14 demonétrates that the performaﬁce of BBS is better

- than that' of the traditional mefhods SAD, but BBS is still significantly behind our
method. And some results of examples are stllown“in Fig. 4.18, where fhe ;esults
also illustrate that‘the two patterns of RFP are détected significantly well. Moré—
>0\‘/er, DS-SRI also is employéd to.show the superiority of RBSM, the results aré
shown in 4.17. We can observe. that tﬁe_rés'ults' of DS-SRI are the same as BBS.

And the RBSM can outperformance these methods in RFP detection.
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Figure 4.14: Success curve of RFP detection. This figure demonstrates three meth-
ods for the RFP detection: our method and two pixel-based methods, sum of abso-
lute difference (SAD) and best-biddies similarity (BBS).
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Figure 4.15: Success curve of RFP detection for dataset 1
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Figure 4.16: Success curve of RFP detection for dataset 2.

Table 4.5: Running time

body
Pre Our TSAD | BBS Proposed system
Times(ms) | 251 | 2237 | 2694 | 32638 2488
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Figure 4.17: Success curve of RFP detection for all dataset. This figure demon-
strates four methods for the RFP detection beside our method and two pixel-based
methods, sum of absolute difference (SAD) and best-biddies similarity (BBS), DS-
SRI all is employed.

Figure 4.18: Visualization results. (a), (e) ROI of target images. (b), (f) Results
of object region estimation, where the results demonstrate that almost all the back-
ground region is excluded, and the target region is well preserved. (c), (g) Results of
RFP detection. (d), (h) Visual results of tail segmentation by efficient graph-based
segmentation. In (c), (d), (e), and (f) the red line marked the efficient range.
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Implementation environment and running time

This fish canhing vision system is implemented using Visual Studio 2015 in Win-

dows 10, and the mnning speed is about v'one second on a 2.7 GHz Pentium i7. The

running time is givén in ‘Table 45. From this table, we can know that our rﬁle-based

| similarity measurement method is close té the simplesf similar measqrerﬁent, SAD,
aﬁd significantly fastef than BBS. This method sﬁll is acceptable for our system
and conspicuously‘fasti'ar than the mean-sﬁift method. This system processes one
image the average time is about 2.5s. This sbeed is fast éhough fo‘r the fish canning
Tobot because With an efﬁcieﬁt working length of 380 pixels, about 356 mm in real

| space. In the real factory,. the ﬂow speed of WMBC is 2000mm per minute, and the
efficient working range neéds about 10.6 s. Accordiﬁgly, our processing speed is

fast enough for the roast fish cannihg.

44 Cohclusion |

The rule-based matching‘method is pfop0scd for a class of objeéts. In this method,
‘the pixel distribution of the objects is utilized to design a template. Thén, some rules
are designed by the ‘common feature of the objects.' Finally, Some 6ptimization .
algorithms are used to find targets from candidates.
Tb make our approach more intuitive, the rule-based method is intrpduced throﬁ gh
two examples, which are rule-baséd matéhing for vehicle inspection sticker (VIS) ,
dgtection and rule-based matching for roast fish part (RFP) detection. FirStly, arule-
based si_milarity. method (RB SM) under the GA framework to solve the problem of

locating the VIS region over the projective space. First of all, a template without
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character information is made manually according to the real VIS and discusses
its projective iransformation. Then, aécording to the fgature distributioﬁ of VIS,
3 rules are untitled to evaluate the sinﬁiarity between candidate and VIS. Finally,
levél—Wise adaptive. sémpling is applie_d. The results show that this methoa has a
satisfactory performance under diffe;ent environmental conditions. |

The second piratical problem is RFP deteétion. The roast fish parts have a large -
differeh‘ce. The color distribution can be divided into‘.two patterns black-white-
black and whi‘te‘-bl'ack—white. Moreover, the same pattern object aléo has sofne
differences. Accordiﬁg to the color distribution olf' objects, a flexible template is
designed ‘fcl)r two patterns. Then, the common features of objects are utilized to
designed 3 Vrule’s. These rules are utilized to evaluate the candidate is the target or
not. Finally, under the genetic algorithm framework combine with the deterministic
crowding technique, determinisﬁé crowding with adaptive populétion distribution
. (DCAPD) is .utilized to search mqlﬁ-object at the same time. Thé résult showed
that RBSM outperforms the other metﬁods with adeqﬁate speed for the Idetection éf
objects. | ) |

The rule-based métching method c_aﬁ deal with multi-object at(thel same time,
it can ignore somé unneeded differené‘es. With some specific templa’fe and rule, it
can deél with the illumination change, rotation, and violently deformed. Moreover,
this method can deal with various problems with various templates and rules. The
mbst di_sadvantage is thé rhles are designed manually. Some objects may not havé

enough rules for objective evaluation.
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Chapter 5

ConClusion and future work

In this thesis, a novel similarity metric based terhplaté hlatchjng method is propbsed
for object direction. The désign of a good similarity metric is still difﬁcult, be-
cause of the following problems, scaling, background occlusion, deformation, illu-
mir‘lationv change, multiple types of objects. Firstly, the diversity similarity measure -
against scaling, fotation, and illumination (DS}-SRI) is proposed for single object de-
teétion. it takes advantage of the global statistic to deal with complex déformations, ‘
occlusions, etc. Extended bidirectional diversity combined with rank—baséd neérest
- neighbor search forms a scale&obust sinﬂlgﬁty measure, and the exploit of polar
coordinate further improves the robustness against rotation. Moreover, in order to
deal with the illumination change and furthé_r deformation, illuminatién—corrected '
local ’appeérance and rank information are jointly exploited during the NN search. ’_
The éXpériméntal results have shown that DS-SRI can rerﬁarkably outperform other
cémpetitive niethbds. |

Despite the robustness of DS-SRI, it still has a few limitations. It is likely to

mislocate the object when the color distribution of the template'is‘ﬂat. Itis also the
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case when the patches in the template are similar to eachother. Another it can not
deal with the multipleobject case.‘ |

Moreover, the rule-based similarity measure (RBSM) method is propoaed to
bandle all problems, RBSM is proposed for a class of objects. In this method, the
pixel distribution of the objects is ‘utili\zed to destgn a tempiate. Then, some rules |
are designed by the common feature of the objects. Finally, Some optimization
algorithms are used to find targets from candidates. |

To make our approach more intuitive, the tule-based method is introduced through :
two ex.amplesx, which are rule-based matching for Vebicle inspection sticker (VIS)
detection and rule-based matching for roast fish part (RfP) detection. Firstly, a rule- »
* based similarity method (RBSM)‘ under the GA framework to solve the problem of ‘
’locattng the VIS region over the projective space. First of all, a template without
character information is made tnapually according to the real VIS and discusses‘
ifs projective tratlsformation. Then, according _to the- feature distribution of VISt,
3 rules are untitled to evaluate the ﬁmilatity betvtzeen candidate and VIS. Finally,
level-wtse ‘ad'aptive samplihg is applied. The results show that this method has a
satisfactory pcrfotrnaﬁce under different environmental conditions.

' Tbc second piratical problem is RFP detection. The roast fish parts have a large
difference. Tbe color distﬁbution can be divided into two patterns black-white-
black and white-black—white. Moreover, the same pattern object also has some
differences.. According to the color distribution of objects, a flexible template is
designed for two patterds. Then, the common features of objects are utilized to
designed 3 rules. Thcse rules are utilized to eValuate the candidate is _the target or

not. Finally, uhder the genetic algorithm framework combine with the deterministic
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crowding technique, deterministic crowdihg with adaptive population distribution
(DCAPD) is utilized to search inulti—object at the same time. The result showed
that RBSM outperforms the other methods, that include the DS-SRI, with adequate

speed for tﬁe roalst fish part detection.

The resulfé of these practicai problems illustrate that RMBS can cover all the
above difﬁéulties with suitable templates and rules. The mle;Based matching method
can deal with multi-object at the same time, it can ignore some unnéedéd differ-
ences. With some specific template and rule, it can deal with the illuminat_ion
change, fotatio_n, and violently deformed. Moreover, this me_thod can deal witlrl-
: vaﬁous problems with \}arious templates and rulés. The fnoét disadvantage is the
rules are; designed manually. Some objects v,r‘n’ay not have enough rules for objéctiVé ‘
evaluatioﬁ.

In t_hé future, I will focus on developing an autom.;ltic method for multiple types
of thé iject detection method. SpeciﬁCally, templates and rules are automatically *
designed for the RBSM method. More details. the objects are di\(ided into sorﬁe_
sﬁpe'r pixels automatically, and‘ the rules are also Tautomatically designed according

to some training data.
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