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Chapter 1 

Introduction 

1.1 Summary 

Template matching is a basic component in a variety of computer vision systems. It· 

. could found in various applications such as image-based rending, image compres

sion, object detection, image matching, and action recognition, etc. The mechanism 

is straightforward: a large number of candidate windows are sampled in the target 

image, followed by a similarity measure between each pair of candidate window 

and template. The similarity score plays a core role in measuring the confidence 

of distinguishing the real target region from the candidate regions. The design of a 

good similarity measure is still difficult, because of the following cases. (1) The size 

of the target object is different in the template and target image. (2) The template 

includes some background regions, which differ from occlusion, noise, and appear

ance change. (3) The target object has some deformations in the target image (e.g., 

rotation, non-rigid deformation). (4) The illumination conditions differ largely be

tween the template and the target image. (5) The target object has multiple types. 
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In this thesis, the feature extraction based similarity metric for object detection is 

discussed. 

Specifically, for a single object, a universal similarity measure method is pro

posed that can be applied in unconstrained environments. Which is referred to as the 

diversity similarity measure against scaling, rotation, and illumination (DS-SRI). 

Specifically, DS-SRI exploits bidirectional diversity calculated from the nearest 

neighbor (NN) matches between two sets ofpoints. Scaling and rotation changes ate 

taken into consideration by introducing a normalization term on the scale change, 

and geometric consistency term with respect to the polar coordinate system. More

over, to deal with the illumination change and further deformation, illumination 

corrected local appearance and rank information are jointly exploited during the 

NN search. All the features of DS-SRI are statistically assessed, and the extensive 

visual and quantitative results on both synthetic and real-world data show that DS

SRI can significantly outperform state-of-the-art methods for the above problems 

(1), (2), (3), and (4). However, DS-SRI cannot deal with the problem (5). 

Furthermore, a novel rule-based similarity measure (RBSM) method is pro

posed. This method can measure the similarity for multiple types of objects in a 

complex environment, owing to that RBSM based on universal features. Similar 

to the DS-SRI, the template can be treated as a dictionary and utilized to check 

the candidate is the target or nqt according to some rules. Unlike DS-SRI, which 

confirms all pixels, the RBSM verifies some super pixels to calculate the similarity. 

Here, super pixels are some subregions that are grouped by the common feature of 

all objects. 

In this thesis, two practical problems are considered to evaluate the RBSM. 
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The first one is the vehicle inspection sticker detection (VIS). Localization of VIS 

is difficult because the VIS is small and hard to be recognized due to the projec

tive transformation and various environmental changes. Moreover, the type of VIS 

varies from month to month. To solve this problem, the RBSM method with adap

tive background constraints is proposed that can deal with the illumination change 

and the projective transformation. Specifically, the matching problem is solved by 

treating it as an optimization problem .. Which the optimization problem is solved 

by the genetic algorithm (GA). The experimental results show that the proposed 

method can robustly localize various VIS under different environments. 

The second practical problem, which is handled by RBSM, is the roast fish part 

(RFP) detection. The various shape, sizes, and colors of the fish body parts lead 

us to develop an algorithm to deal with the challenge of detecting multiple RFP. 

To solve this problem, a RBSM based multi-object matching method is proposed. 

Similar to the VIS detection, the universal features of RFP are utilized to design 

the RBSM function and a supporting template. The RBSM function is utilized to 

measure the probability of the candidate being RFP. Then, a mathematical model 

is used to obtain the candidate regions via template mapping. Finally, GA is used 

to search for the local optimal solution by introducing DCAPD for multi-object 

detection. Our method achieves good performance with fast speed. The results of 

these practical problems illustrate that RMBS can cover all the above difficulties 

with suitable templates and rules. But this method still has some limitations. For 

example,. the template and rules are designed manually. That will be solved in the 

future. 

3 



1.2 Background 

Template matching, also known as pattern matching, is a vital component in a va

riety of computer vision applications. It is( utilized to seeking a given template in 

a target image, as illustrated in Fig. 1.1. Template matching is widely used in 

computer vision, signal, image; and video processing. It can be found in varied 

applications such image based rending [1], quality control [2], super resolution [3], 

image compression [4], object detection [5], texture synthesis [6], block matching 

in motion estimation [7, 8], image denoising [9, 10, 11], mouth/eye tracking [12], 

road/path tracking [13], image matching [14] and action recognition[15]. That is 

surveyed by a good review [16]. Although there are many ways to match templates, 

no one method can be applied to all problems. 

As the most crucial technique in templat~ matching tasks, similarity measure 

has been studied for decades and yields in various methods from the classic meth

ods such as the sum of absolute differences (SAD), the sum of squared distances 

(SSD) to recent best buddies similarity (BBS) [17], deformable diversity similarity 

(ODIS) [18]. Also, similarity measures have been widely applied to image pro

cessing problems such as image segmentation [19], visual tracking [20], and image 

registration [21]. 

Despite the successes of template matching, several considerable issues still 

need to be addressed: 

• In most applications, users prefer obtaining the matching result with a free

scale bounding box to exactly including the i:egion of the target object rather 

than a fixed-scale bounding box. Nevertheless, setting geometric parameters 
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Candidate 
window 

Matched 
window 

Template 

Figure 1.1: Example of template matching. The blue quadrilateral illustrates the 
candidate window. The red quadrilateral illustrates the template and matched result. 
This image is from [ 17]. 

(a) (b) (c) 

(d) (e) 

Figure 1.2: Diversity similarity against scaling, rotation and illumination (OS-SRI) 
for template matching. A doll is placed under different unconstrained environments. 
(a) Reference image. The template is marked by a red rectangle. (b), (c), (d) and 
(e) are the matching results over different target images with our proposed OS-SRI. 
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like scaling factors to the bounding box can result in an explosive growth of 

candidates for evaluation, forcing the similarity measure to be more discrim

inative to specify the matching result. 

• Dense template matching usually takes all the pixels/features within the tem

plate and candidates into account to measure the similarity even some in

formation is not desirable (e.g., occlusion, noise, appearance change), this 

requires a similarity measure to be consistent with noises and outliers. 

• In order to deal with the deformation on the target object, a functional simi

larity measure is expected to be independent with the spatial correlation ( e.g., 

when the object within a candidate window is strongly rotated, the local im

age patches in template and candidate are no longer spatially consistent). 

• The i~lumination conditions can differ largely between the template and the 

target images, which will cause different appearances (e.g., color, intensity, 

contrast) and lead to a small value of similarity even between -two same ob

jects. 

• Last but not least, in some scenes, the object may be not one but multiple. 

And all objects needed to be matched. Furthermore, the color, size, and shape 

of the objects are not exactly. 

In this thesis, the following two scenes are focused on. One is the template 

matching in unconstrained scenarios. That is, a rigid/nonrigid object moves in 3D 

space, with variant/invariant background, and the object may undergo rigid/nonrigid 

deformations and partial occlusions. Besides, in this environment, the illumination 
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condition may be changed, as demonstrated in Fig. 1.2,. that are focus on above ( 1 ), 

(2), (3), and (4) problems. The second is the template matching for multi-object. 

That is matched for a class of objects. And in this class of objects the color, size, 

and shape are not exactly. Which are above all problems. An example is shown in 

Fig. 1.3. To solve these problems two methods will be introduced as follows. The 

DS-SRI for the unconstrained scenarios problem and rule-based matching method 

for the multi-objects problem. 

As to state-of-the-art methods, both BBS and ODIS are proposed mainly to 

settle the above issue (2) by exploiting the properties of the nearest neighbors (NNs). 

Here, each NN is defined by a pair of patches between the template and the target. 

In the case of BBS, if and only if each patch in a patch pair is the NN of the other, 

a match is defined and the number of such matches determines the BBS score . 

. ODIS further improves the BBS by introducing relevant diversity of patch subsets 

between the target and the template, which leads to the robustness of BBS against 

the occlusions and deformation. Although these methods can deal with deformation 

within a window to some extent, there remain limitations especially on the issue (1), 

(3), (4), and (5). 

1.3 Problem Setting 

The template matching problem can be converted to a mathematical problem as 

follows. The target image is the input, denoted by I, with a size of n x m. The 

purpose is to detect some objects from I. And objects are given, denoted by set o. 

Here, the number of the object is zero or more. The object candidates are denoted as 
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ci E C. And the function S(-) is the similarity measure function for the candidate 

and object. There are two . different general directions to meet different practical 

. purposes. One is detecting a specific target of o*. An example is shown in Fig. 1.2. 

In this case, the target image maybe has some similar object, but our purpose is to 

detect the most similarity c*. The purpose of this problem can be converted to the 

following: 

c* = argmax:S(c,o*) cE C. (1.1) 

The second is detecting a class of objects. The class of the object maybe has some 

differences, noted as o = o* + o'. Here, o* respect to the part that all object is the 

same, o' mean the difference for each object. The purpose is to detect all objects, 

these objects noted as C' in the target image. An example is shown in Fig. 1.3. 

For detected all objects, the different part 0' is ignoring. Thus, the purpose of this 

problem can be converted to the following: 

C' = 8(S(c, o*)) c EC, (1.2) 

where the <5 ( •) is a conditional function, it utilized to select the candidates based on 

the result of the similarity measure. When the S ( ·) meeting the rule, the c is a target 

candidate. 
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1.4 Diversity similarity measure against scaling, ro-. 

tation, and illumination 

In this thesis, to solve the problems (1), (2), (3), and (4), the NN pair is redefined 

based on the relevant diversity statistics and propose diversity similarity against 

scaling, rotation, and illumination changes (D~-SRI) to address all the above is

sues. DS-SRI can be applied with a multi-scale sliding window search for template 

matching, and no specific parametric deformation model is needed to be imposed 

on the target object. 

From a general perspective, both template and each candidate can be viewed as 

images consist of small patches. Therefore, the visual similarity can then be viewed 

as a similarity measure between two point sets if treated each image patch as a point 

and each image as a point set. Like the first feature, DS-SRI allows similarity mea

sure between two sets of points in different sizes, and the magnitude of the score is 

normalized. In contrast, the magnitude of the DDIS or BBS score grows with the 

increase of scales~ which makes the larger candidate windows more competitive to 

be matched. To alleviate the unfairness caused by scaling, DS-SRI introduces bidi

rectional relevant diversity and normalizes scaling changes to make the employment 

of a multi-scale sliding window·feasible. The second feature of DS-SRI is its in

variance against in-plane rotation. Both BBS and DDIS involve a spatial distance 

term in NN search and/or the similarity calculation based on a i;;trong prior assump

tion that the two points of an arbitrary NN pair from two-point sets are spatially 

close when plotted on the same coordinate system. This prior can indeed reduce the 

number of outliers of NN pairs when the object is stationary but becomes a false 
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constraint in the presence of large rotation. In this paper, instead of calculating spa

tial distance on the Cartesian coordinate, the polar coordinate is exploited to release 

the limitation of in-plane rotation brought by the spatial assumption. Besides, local 

rank information of patches is employed for searching NNs along with appearance 

information, which helps to find more confident NNs and yields a significant im

provement when large rotation t~es place. 

As the last feature, DS~SRI is robust ag~nst the illumination change. NN-based 

methods suffer from the change of illumination because the illumination can largely. 

affect the appearance of the target object and thus reduce the valid NN pairs between 

point sets. As an extreme example, if the object in the target image is exposed to 

intense light, all the patches of a candidate can appear white and point to the same 

patch in the template as the NN. In this paper, an illumination corrector is intro-

- duced to the distance function for searching the NNs. The corrector is introduced to 

synchronize the illumination effect on the template artd the candidate. All the above 

features of DS-SRI are well statistically justified in Sec. 3.4. 

1.5 Rule-based similarity measure 

Above mentioned methods, such as best..:buddies similarity (BBS) [22], deformable 

diversity similarity (DDIS) [18] and diversity similarity measure against scaling 

rotation and illumination (DS-SRI), handle the complex environment very well. 

Which the difficulties include non-rigid geometric deformations, background clut

ter, and occlusions. However, all the above-mentioned methods are only in the case 

of identical or high-similarity objects o*, To use these similarity measures for a 
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class of objects o = o* + o', that have many differences, multiple templates may be 

needed, and the candidates may also need multiple measures. These requirements 

will increase the suffering from times cost. To solve this problem, a rule-based 

measure method is proposed for a class of objects. 

The rule-based method can be divided into the following three-part. The first 

part is according to the shape and color distribution design a rule template. Then 

according to the common feature of targets design some rules to measure the prob

ability. Finally, according to the rules distinguish the objec::t from the candidate. 

Rule-based matching can be utilized to deal with all the above problems with the 

appropriate rules. However, the rule-based matching method still has some dis

advantages. Which the template and rules are designed manually, and different 

problems need different templates and rules. In this thesis, the rule-based matching 

method is tested in two fact problems. Which are vehicle inspection sticker (VIS) 

detection and roast fish parts (RFPs) detection. 

1.6 Optimization algorithm 

To detect the object faster, some optimization algorithms also be introduced to re

duce the candidates. For optimal candidate detection, the traditional method is a 

. brute force, testing of all candidates, but the brute force method is difficult to use if 

the sample set is large. In the past decade, some more efficient optimization meth

ods have been proposed and used in template matching, such as general GA [23] 

and particle swarm optimization [24], which can only efficiently acquire a global 

optimum. Here, the general GA is utilized to detect a single object. 
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There are some multi-objective evolutionary algorithms [25, 26, 27, 28] that not 

only acquire the global optimum but also local optima. And due to their population

based nature, evolutionary algorithms can approximate the whole Pareto set of a 

multi-ol?jective optimization problem in a single running. In this thesis, a GA that 

uses DCAPD while distributing the population is used for acquiring the local opti- · 

mal solution. 

1. 7 Constitution 

This paper is composed of 5 chapters, the constitution is shown as follows. Chap

ter 1, the background of this research is introduced, and two proposed methods 

are simply proposed. · · Chapter 2, the related works are introduced from purpose 

and method two aspects. Chapter 3, the similarity measure method DS-SRI is in

troduced for unconstrained scenarios, diversity similarity measure against scaling 

rotation, and illumination (DS-SRI). Chapter 4, the similarity measure method for 

multi-:-object, rule-based matching method, is introduced. Chapter 5 introduce the 

conclusion and future work. 
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(a) (b) 

.. 
(d) (c) 

Figure 1.3: Example for image processing. (a) The target image, in which the blue 
rectangle marks the region of interest. (b) Wire belt segmentation result. (c) Object 
region estimation result. (d) Fish roast fish part direction results. 
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Chapter 2 

Related work 

In this chapter, the related work is introduced from two parts, similarity measure 

and Optimization algorithm. 

2.1 Similarity measure 

Template matching is a classic research topic mainly for object localization. The 

mechanism is straightforward: a large number of candidate windows are sampled in 

the target image, followed by a similarity measure between each candidate window 

and template_ The similarity score plays a key role in measuring the confidence 

and distinguishing the target object from the background. The most widely used 

off-the-shelf techniques are pixel-:wise methods such as SSD, SAD and normalized 

cross-correlation (NCC) [29, 30], owing to their ~implicity and efficiency. T~ese 

methods have been combined with tone mapping [31] for handling illumination 

change, with asymmetric correlation [32] to deal with noise. 

To handle the geometric changes on the target, extending the candidate sampling 
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with planar parametric transformation models have been considered in many works, 

such as translation [32, 33, 34], similarity transformation [35, 36], affine transfor

mation [37, 38, 39] and projective transformation [23]. However, these methods 

usually fail in the case of 3D deformations because the pixel-wise similarity method 

relies on the correct correspondences between the pixels of the template and the 

candidate, which is hard to be modeled by the planar transformation. Other met

rics focus on improving the robustness against noise, e.g., Hamming-based distance 

[40, 34], M-estimators [33, 41], which are robust against the pixel-wise noise such 

as additive noise and salt and paper noise. The interested readers are referred to a 

comprehensive survey [42]. 

In unconstrained environments, to deal with non-rigid transformations and other 

noises., involving global information instead of pixel-wise local information for de

signing a robust similarity is a key cue. Histogram matching (HM) [43, 44, 45], 

which mainly measures the similarity between two color histograms, is not re

stricted by the geometric transformation. However, it is usually not a good choice 

·when background clutter and occlusions appear within the candidate windows. 

Another wildly used measure method is the Hausdorff distance in the context of 

template matching. In [46], the kth farthest point to replace the traditional farthest 

point to deal with occlusions or degradation problem. However, k is hard to be 

determined in different cases. Moreover, in [47], a modified Hausdorff distance 

(MHD) is proposed by replacing the generalized max operator with sum to deal 

with noise on different levels. In [48], Hausdorff distance is used as a similarity 

measure between a candidate arid a general face model. 

Earth mover's distance (EMD) [49] is a metric for.comparing sets of features, 
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points, and signatures that capture the distributions, and is also widely appHed in 

template matching. It is defined as the minimum amount of work needed to change 

, one distribution into the other distribution. EMD is robust with the deformation 

because it does not consider any spatial correspondence. However, EMD is difficult 

to deal with scaling because it requires 1: 1 matching. Furthermore, a more robust 

approach [50] is proposed by using spatial-appearance representation to measure 

theEMD. 

An eye-catching family of similarity measures i~ recent years is to explore a 

global statistic property over the two-point sets. Bi-directional similarity [51] pro

poses that two-point sets are considered similar if all points of one set are contained 

in the other, and vice versa. BBS [22, 17] counts the mutual two-side NNs as a sim

ilarity statistic. The ODIS [18] measures the diversity of feature matches between 

the two sets and is reported to outperform BBS by revealing the "deformation" of 

the NN field. Despite the robustness of BBS and ODIS against the transformations 

within the search windows, scaling and rotation on the whole search windows have 

not been considered. Furthermore, NN is viewed as a powerful cue in many tasks, 

such as image matching [52], classification of natural language data [53], image 

classification [54], clustering [55], etc. In this paper, the mutual nearest neighbors 

are exploited in the bidirectional diversity similarity. 

2.2 Genetic algorithm 

In template matching, another problem is the huge amount of candidates search · 

for our targets. Genetic algorithms (GA) are introduced to improve speed. GA 
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[56, 57, 58, 59] are randomized sampling and optimization techniques that guided 

by the biology of evolution and natural genetics. GA performs a search in mas

sive candidate space, obtain the near-optimal solution for an. optimization problem. 

Genetic algorithms are widely used various fields, such as image processing [60], 

machine learning [61], neural networks [62], etc. In the area of the image process, 

a parameter selection method is needed to obtain optimum solutions in complex 

spaces .. Some methods utilize the genetic algorithm to seg~ent the image [63, 60]. 

Based on genetic algorithm object detection and recognition method [64, 65, 66] 

also is common. Furthermore, I propose a template matching method with an adap

tive background model under the GA framework to localize the VIS over projective . 

space. The proposals are also stated in [67, 68]. 

The traditional method is a brute force, testing of all parameters, but the brute 

force method is difficult to use if the sample set is large. In the past decade, 

some more efficient optimization methods have been proposed and used in template 

matching, such as GA [23] and particle swarm optimization [24], which can only 

efficiently acquire a global optimum. There are some multi-objective evolutionary 

algorithms [25, 26, 27, 28] that not only acquire the global optimum but also local 

optima. And due to their population-based nature, evolutionary algorithms can ap

proximate the whole Pareto set of a multi-objective optimization problem in a single 

running. In this system, a GA that uses DCAPD while distributing the population 

is used for acquiring the local optimal solution. 
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Chapter 3 

Diversity similarity against scaling, 

rotation, and illumination 

3.1 Overview 

In ·this chapter, a template matching method is introduced for a single object. The 

key component is behind a general similarity measure referred to as the diversity 

similarity measure against scaling, rotation, and illumination (DS-SRI). Specifi

cally, DS-SRI exploits bidirectional diversity calculated from the nearest neighbor 

(NN) matches between two sets of points. Scaling and rotation changes are taken 

into consideration by introducing normalization term on the scale change, and geo- . 

metric consistency term with respect to the polar coordinate system. Moreover, to 

deal with the illumination change and further deformation; illumination-corrected 

local appearance and rank information are jointly exploited during the NN search. 

All the features of DS-SRI are statistically assessed, and the extensive visual and 

quantitative results on both synthetic and real-world data show that DS-SRI can 
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significantly outperform state-of-the-art methods. 

3.2 Nearest neighbor based similarity measure 

Given a template cropped from a reference image and a target image related by 

.• unknown geometric transformation and/or photometric transformation, o~r purpose 

is to design a similarity measure, which can distinctively localize a region in the 

target image that exactly includes the Same object of the template by maximizing the 

matching similarity score. Each candidate region in the target image is represented 

by a rectangular window, and the candidate in the target image-is sampled in a way 

of the multiple-scale sliding window. Taking the template image T = {ti} :=l and a 

candidate window Q = {qi} ;:,1 from target image Q = { qz}~1 as inputs, a DS-SRI 

score in real number can be calculated, where the ti and qi represent non-overlapped 

patch from the template and a candidate window, respectively. ti and qi can also be 

treated as points when T and Q are explained as point sets for generality. Q ~ Q, 

andm :SM. 

Nearest neighbor has been shown to be a strong feature for designing similarity 

measure in some prior researches [ 17, 18]. To better address the difference, firstly 

BBS [17, 22] is recalled which counts the number of bidirectional NN matches 

between T and Q: 

BBS =cl{:3ti ET, :3qi E Q: 
(3.1) 

where NN(ti, Q) = arg minqjEQ d(ti, qi) is a function returns the NN of ti with 
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respect to Q, and the d( ·) is a distance function. I {·}I denotes the size of a set, and 

c = 1 / min { n, m} is a normalization factor. 

The distance function in Eq. 3.1 is defined.by 

(3.2) 

where (A) denotes pixel appearance (e.g., RGB feature) and (L) denotes pixel lo

cation ( x, y) within the patch and coordinates are normalized to the range [0, 1]. In 

the stage of NN searching, under the assumption that illumination and large defor

mation do not occur within the patch, the combination of the appearance and spatial 

terms contribute to searching NNs by confirming the consistency of appearance and 

position . 

. On the other hand, the diversity similarity (DIS) [18] has a different usage of 

NNs, which is defined as 

DIS= C l{ti ET: :3qj E Q, NN(qj, T) = ti}I. (3.3) 

Where c is the normalization factor. Unlike BBS, DIS counts a certain type of 

point in T, which is the NN of point(s) in Q (defined as diversity in the direction of 

T-+ Q). 

In conclusion, in order to design a good NN· based similarity measure, two as-

pects need to be designed carefully, (1) Usage of the NNs; (2) The distance function 

for searching the NN s. 
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Figure 3.1: Intuition for distinguishing between DIS and BDS. Each arrow points to 
the NN of a start point. (a)(b)/(c)(d) show two examples of NN search results bidi
rectionally when T (circles) and Q (triangles) are drawn from the same/different 
distribution respectively. Different distributions can result in lower similarity. Fol
lowing Eq. 3.3 (c = 1) and Eq. 3.6 (>-1 = 1), DIS and BDS can be calculated from 
the number of end points of arrows. In (a)(b), DIS = 7, BDS = 49 (i.e. , 7 x 7). In 
(c)(d), DIS = 3 and BDS = 6 (i.e. , 3 x 2) . Obviously, BDS has a greater variation 
in similarity value. 
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(d) T --+ Q (Upscaling) 

Figure 3.2: Illustration of DIS and BDS against scaling change. (a)(b)/(c)(d) show 
two examples of NN search results when downscaling/upscaling occurs in T (repre
sented by circles) respectively. The gray/red circle represents for the deleted/added 
circle during downscaling/upscaling respectively. Following Eq. 3.3 (c = 1) and 
Eq. 3.6 (,\1 = 1), in (a)(b), DIS = 6 and BDS = 36 (i.e., 6 x 6). In (c) and (d), 
DIS = 7 and BDS = 56 (i.e., 7 x 8). Obviously, the variation of BDS score is larger 
comparing to DIS. 
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3.3 Diversity Similarity against Scaling, Rotation, and 

Illumination 

I am now ready to introduce our method in a top-down fashion: first the the OS-SRI 

similarity, and then the distance function for NN search. 

3.3.l Usage of the NNs 

In [18], DIS is claimed as an unidirectional diversity which provides a good approx

imation to BBS with less computation. To desig11 a more discriminative similarity 

measure, bidirectional diversity calculated is exploited with respect to T and Q (i.e., 

not only T • Q but also Q • T). Specifically, first the following function c(ti) is 

defined which indicates the number of points qi E Q whose NNs are equal to ti in 

direction T • Q, 

(3.4) 

where NN(·) returns the nearest neighbor with the distance function defined in Eq. 

3.8, which will be explained later. 

To understand the equation, it is analyzed how Eq. 3.4 affects the diversity 

· similarity defined in Eq. 3.3 from two situations with IQI fixed. (1) For ITI = IQI, 

when c(ti) 2::. 1, the value is inversely proportional to the diversity contribution. 

That is, large value of c(ti) indicates that many points in Q have the same NN of ti, 

which will lower the diversity defined in Eq. 3.3. When c(ti) = 0, it indicates that 

a ti is not a NN of any qi, which also hinders the increase of diversity similarity as 

no NN is utilized. It is easy to understand that an ideal situation is that for each ti, 
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c(ti) = 1. (2) For ITI -1- IQI, the situation becomes more complex. Assume that 

slTI = IQI, when c(ti) = 0, it means no contribution to the diversity similarity. 

Considering the scaling s between Q and T, a point in T can be the NN of multiple 

points in Q when 1 ~ c(ti) ~ s, which will increase the value of the diversity 

similarity. When c(ti) > s, it will contrarily lower the maximum similarity. 

The simultaneously is firstly introduced that the diversity similarity to direction 

Q • T. This is not straightforward in the case of template matching because 

the candidate Q usually belongs to a target image Q, where IQI » IQI. That is, 

when finding NNs iv the direction of T • Q, as Tis fixed and the preparation for 

NN search (e.g., sorting for brute force search, building kd-tree, etc.) only need 

to be conducted once. In the case of Q • T, as such preparation for NN search 

has to be conducted over each Q, it will suffer from computational burden. To 

tackle this problem, an assumptionis posed that NN(ti, Q) has a high probability 

to be included in the set of k approximate NNs (ANNs)with respect to Q, which is 

denoted by ANNk(ti, Q). Formally, the following function is defined which counts 

the number of points (i.e., patches in the image) ti ET whose ANNs include qi in 

direction Q • T, 

(3.5) 

Formally, the bidirectional diversity similarity (BDS) is proposed as following: 
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where A1 = 1/(m x n) is the normalization factor and I(·) is an indicator function 

that turns true and false into 1 and 0. Only points in T which hold c(ti) ::/- 0, and 

points in Q which hold r(qi) ::/- 0 can possibly contrihl).te to the increase of the 

diversity. 

The BDS and DIS is visually compared for clarity in Fig. 3.1 and Fig. 3.2. Iri 

Fig. 3.1, comparisons of DIS and BDS when T and Qare drawn from the same 

distribution (top row) and different distributions (bottom row) are illustrated. Es

pecially, when T and Q follow different distributions, certain data points could 

probably become shared end points of arrows, which yields the decrease of similar

ity score. On the other hand, comparing to DIS, the variation of the value of BDS 

is larger because of the "multiplication effect", which can enlarge the gap between 

similar/dissimilar point sets. Furthermore, when scaling takes place, From Fig. 3.2 

it can be fined that BDS score varies more largely than DIS, which can help to spec

ify the scaling factor during matching. These characteristics of BDS will be further 

justified in the next section. 

Based on BDS, DS-SRI is further defined to quantify the the similarity between 

template T and candidate Q with given target image Q and scaling factor s 

IQI/ITI, 

. ( Q) . BDS(T, Q, Q)) 
DS-SRI T, Q, s, = A21= I ( ·) _ (NN( _ T))I U. 

Qj p q1 sp q1, 
(3.7) 

Where parameter A2 is a normalization factor inversely proportional to the in

crease of s (e.g., A2 = s-1 ). p(·) returns the radius of a pixel in a polor coordinate, 

with the pole being set at the according geometric center of T and Q. The den om-
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inator of Eq. 3.7 penalizes the spatial inconsistency in polar coordinate, in order to 

increase the robustness against in-plan rotation. Term U is a normalization term for 

the number of NNs with respect to scaling. In our implementation, U is defined as 

I:t;,E(t;)>O exp (I(s/c(ti) ~ 1) + I(s/c(ti) < l)s/c(ti) - 1), which increases when 

more ti holds s/c(ti) ~ 1. In condusion, SR-SRI can be viewed as a similarity 

measure consisting of three terms: (1) The numerator term to evaluate the bidirec-

.. tional diversity, (2) the denominator term to evaluate the spatial consistency, (3) the 

U term to normalize the number of NNs with respect to s. 

3.3.2 Distance metric for NN/ ANN search 

Until now, the scaling-insensitivity and the rotation-insensitivity of OS-SRI are re.:. 

alized by BOS and polar coordinate respectively. The remaining issues are the 

negative effects brought by (1) illumination change, (2) large deformation, which 

could probably break the NN correspondence and spatial consistency by influenc

ing Eq. 3.2. To counter the negative effects, we propose to combine the appearance 

and rank information for designing the distance metric for NN/ ANN search. For a 

certain point pair oft E T and q E Q, 

d (t, q) = disAppear (t, q) + ,\3disRank (t, q). ,(3.8) 

Where ,\3 is a weighting coefficient. In the distance term of appearance, Gamma 

corrector is introduced to reduce the effect brought by illumination change, specifi

cally, 

disAppear (t, q) = lltCA) - (q(A)fh11:. 
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Where the upper script (A) means the feature of appearance, specifically the RGB 

color channels in our implementation. The illumination change can be caused by 

. exposure adjustment, change of light source, appearance of shadow, etc, which can 

dramatically change the appearance of the target· object. Gamma correction [70, 

71, 72]provides a way of power law transform to equalize the imbalance between 

images. Here, The"/ calculated from the average local gray intensities to correct 

each color channel, 

1 = log ( q(A)) / log ( T(A)) , (3.10) 

· where T(A) denotes the average gray intensity over the template and q(A) denotes 

the average gray intensity over a local region in the target image. The local region 

can be defined as a circular (i.e., meanshift style) or rectangular(i.e., integral image 

style) window. 

On the other hand, to deal with large defomiation, we propose to utilize the rank 

information of local appearance, specifically, 

disRa:µk (t, q) = llt(R) - qCR) II!, (3.11) 

where the upper script (R) means the rank information based on the local appear

ance. Take tCR) as an example, 

tCR) = L I (qCA) 2 tCA)) /r2. (3.12) 
pEcircle( t,r) 

In the case of 3-channel q and t, the indicator function counts the number of chan-
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nels in which the value of q is greater. The origin of the circle window circle( t, r) is 

the coordinate of t, with a support radius of r. r 2 is a normalization term. The ap

pearance rank defined by Eq. 3.12 is insensitive to local geometric changes, which 

can also be considered as structural information (e.g., the shape of the distribution 

of pixel values) extracted from a local region. As geometric changes can hardly 

destroy this structure, it is reasonable to explain its insensitivity against rotation and 

certain deformations. 

3.4 Statistical Analysis 

In this section, the features of DS-SRI described is statistically analyzed in the pre

vious section for justification, including scaling-insensitivity, rotation-insensitivity, 

and illumination-insensitivity of the matching results. 

3.4.1 Analysis of scaling-insensitivity 

One important feature for a robust metric is the ability to preserve the similarity 

score of the same object against scaling change. To assert this feature in DS-SRI, 

in Fig. 3.3, a 1D statistical analysis is first provided as following [22, 18]. The 

expectations of similarity between two point sets drawn from two different 1D 

Gaussian models are calculated for comparison, where point sets are cast as tem

plate/candidate, points are cast as patches. Monte-Carlo integration is utilized for 

approximating the expectation as suggested in [18]. The first observation from Fig. 

3.3 is that the expectation of DS-SRI is maximal when the two Gaussian models 

are the same and decrease fast when models separate. The second observation from 
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Fig. 3.3 is that DS-SRI is scaling-insensitive, i.e., the heat maps of Fig. 3.3(g), (h), 

(i) are almost the same. 

Another important feature to confirm is whether the scaling factor of the target 

object with respect to T can be appropriately estimated by maximizing DS-SRI.A 

statistical result is provided in Fig. 3.4. Similar with Fig. 3.3, Tis drawn from 

N(O, 1) and Q is generated from another source for the generation of expectation 

map. The difference is, I further prepare Q which involves not only Q but also 

background points to simulate the template matching task. Here, Q = T U B, 

GTslTI + IBI = IQI and Bis composed of background points drawn from N(µ, a-), 

withµ E [0, 10], a- E [0, 10]. In this demonstration, ITI and I QI are set to 100 and 

200 respectively. IQI ;::::: slTI ands varies from 0.5 to 2 with step of 0.1. The Q 

can be treated as a candidate window in the template matching task and is sampled 

from Q by preferentially sample points in1 T (i.e., nearest neighbor interpolation). 

For example, whens = 1.5, 150_points need to be sampled to construct Q, with 100 

points from T and 50 points from B. Estimated s = arg max
8 
DS-SRI(T, Q, s, Q) 

is supposed to approximate the ground truth scale GTs well. In Fig. 3:3(a), we can 

observe that high expectation values of DS-SRI distribute more densely around the 

diagonal comparing other methods. These statistical analyses clearly show the ro

bustness of DS-SRI against scaling change, and the ability for estimating the proper 

scale of the target object. 

3.4.2 Analysis of rotation~insensitivity 

To show the robustness against rotation, the expectation of similarity is analyzed 

between two sets T and Q drawn from 2D Gaussian models. As shown in Fig. 3.5, 
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the parameters are fixed except 0 and o-2 to validate the effect of rotation angle with 

the Gaussian of fixed shape. As points in T and Q · are exactly the same except the 

rotation angle, the similarity betwe~n T and Q is expected to be the maximum value 

no matter how the 0 varies. In the case of BBS, as we can observe from Fig. 3.5 

(c) when o-2 is extremely small, the points drawn are likely to form a line, which is 

sensitive to rotation as the intersection of two lines is smalL This is also the case 

when o-2 » o-1, as it can be observed that the expectation decreases gradually with 

the increase of o-2 • Also, isotropic Gaussian is supposed to be unaffected by the 

rotation, which can be convinced from Fig. 3.5 (c) that when o-1 = o-2 = 1, the 

expectation keeps well with respect to the rotation. On the other hand, SOS and 

DS-SRI show the invariance to the rotation despite the shape change of distribution 

in Fig. 3.5 (d) and Fig. 3.5 (e) .. 

3.4.3 Analysis of illumination-insensitivity 

To show the robustness again,st illumination, the expectation of similarity is ana

lyzed between two sets Tand Q that drawn from lD Gaussian models N(0, 1) and 

N(0, a-), a- E [O, 10] respectively. Moreover, to simulate the illumination change, 

the Q is Gamma corrected with random 'Y E [0.5, 2]. The results are shown in F1g .. 

3.6. It can be observed that the expectation of DS-SRI is almost constant and ap

proximates to 1. However, other metrics including BBS, ODIS, and our previously 

proposed SDS decreases gradually when the 'Y gets away from 1. Also, the value of 

OS-SRI drops fastest when o- gets away from 1. Similarly, this can be observed in 

Fig 3.7 when the o- and verifyµ is fixed from Oto 10 for sampling Q. We can also . 

observe that only DS-SRI shows a high expectation value around the setting of the 
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Table 3.1: Average overlap rate. The red and blue colors indicate the best and the 
second best method respectively. 

Data category #Images DS-SRI* DS-SRI SDS* SDS [69] 

Scaling-change-only 166 0.66 0.45 0.67 0.45 
Rotation-change-only 166 0.58 0.60 0.59 0.60 
Illumination-change-only 1'12 0.63 0.64 0.28 0.30 
All-change 280 0.54 0.42 0.49 0.40 

ALL 724 0.59 0.50 0.52 0.44 

Data category DDIS* DDIS [18] BBS [17] HOG [73] HM 

Scaling-change-only 0.43 0.44 0.38 0.28 0.38 
Rotation-change-only 0.40 0.53 ·0.43 0.18 0.36 
Illumination-change-only 0.24· 0.39 0.37 0.55 0.15 
Ali-change 0.31 0.38 0.35 0.13 0.22 

All 0.35 0.43 0.38 0.24 0.26 

template(µ= 0) with respect to the change of 'Y· 

3.5 Experiment of DS-SRI 

To show the statistically justified features of DS-SRI can really help to improve 

the performance of template matching task on real-world data, a comprehensive 

experiment is conducted with both qualitative and quantitative tests to validate the 

superiority of DS-SRI comparing with the state-of-the-art methods BBS [22, 17], 

DDIS [18], our previous work SDS [69], as well as several conventional methods 

[18, 17, 73]. 

3.5.1 Dataset 

For comparison, 724 image pairs (reference-target pair) are originally collected un-

der different unconstrained environments and categorize to create a dataset for eval-
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uating the performance of template matching involving overall scaling, rotation, 

and illumination changes on the target object. Besides, these images also include 

other uncontrolled challenges like complex deformations, occlusion, background 

clutter, etc. The bounding box of each ground truth is annotated manually image 

by the image with a free-scale rectangle. The dataset is further subdivided into 

four categories: (1) scaling-change~only, (2) rotation-change-only (3) illumination

change-only and ( 4) all-change for detail evaluation and discussion, which include 

166, 166, 112, 280 reference-target image pairs, respectively. It is noteworthy that 

each category also includes other uncontrolled photometric and geometrictransfor

mations as they are taken under unconstrained environments. 

3.5.2 Quantitative Evaluation 

The same procedure is followed as suggested in [22, 18] for a fair comparison. As 

to the evaluation criterion, following [22, 18], The success ratio is employed based 

on the overlap rate between ground truth W9 and matching result Wr to measure the 

accuracy, which is defined as: IWr n W9 1 / IWr U W9 1. Here, the operator 1-1 is to 

count the number of pixels within a window. In the template matching task, simi

larity metrics have to be combined with search methods. For clearness, when both 

single-scale and multi-scale search methods are compared for the same similarity 

metric, the. { • }* is used to denote the approach that combined with a multi-scale 

search window. The search method is fixed to the sliding window in the exper

iment. Note that only DS-SRI and SDS are originally designed to be employed 

with search windows in multi-scale. For fairness, as a reference, the performance 

of DS-SRI is simultaneously compared with a single-scale search window. In ad-
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dition, the ODIS also employed with a multi-scale search window for comparison, 

denoted as ODIS*. 

We compare our proposed methods (DS-SRI, DS-SRI*) to ODIS; ODIS*, SDS, 

SDS*, BBS, HM, HOG, and SAD. In the case of a fixed-scale search window, the 

window size of candidates equals the size of the template. In the case of a multi

scale search window, the scaling factor with respect to both x and y axes range from 

0.5 to 2, with step 0.1. The patch.size of DS-~RI, SOS, ODIS, and BBS patch is 

fixed to 2 x 2 pixel. The results are reported in Fig. 3.8. As we can observe from 

Fig. 3.8(a) and Fig. 3.8(b), the performance of DS-SRI/DS-SRI* against scaling 

and rotation changes are almost the same as our previous work SDS/SDS* with re

spect to the area-under-curve (AUC) score. In Fig. 3.8(a), multi-scale approaches 

OS-SRI* and SDS* largely outperform their fixed-scale versions DS-SRI and SDS. 

On the other hand, in Fig. 3.8(b) and Fig. 3.8(c), since no large scaling changes 

are involved, multi-scale approaches did not show the advantage. In Fig: 3.8(c), the 

proposed DS-SRI/DS-SRI* shows its superiority over-illumination change against 

other methods. Also, in Fig. 3.8(d), which involves all the changes, our method 

outperforms others. Fig. 3.9 averages the success curves over all the data (Fig. 3.8 

(a)~(d)) to summarize. Also, the HOG feature is compared to assess the reasonable

ness of each data category. Rather than a similarity metric, HOG is a gradient-based 

feature descriptor calculated from a uniformly spaced dense grid ofblocks and cells 

and is known to be robust against illumination change and weak on deformations. 

As expected, HOG based matching performs well against illumination change in 

Fig. 3.8(c), but is ineffective to deal with scaling and rotation in Fig. 3.8(a)(b). The 

comparison of average overlap rate between results and ground truths are summa-
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rized in TABLE 3.1, proposed DS-SRI/DS-SRI* achieves the best result over three 

categories out of four, results in the overall best performance. 

3.5.3 Qualitative Evaluation 

Matching exampies are shown in Fig. _3.10. lst~2nd rows, 3rd~4th rows, 5th~6th 

rows are the example results from category scaling-change-only, rotaiion-change

only, and illumination-change-only respectively. Example results from all-change 

are shown in the last three rows. As we can observe, the proposed DS-SRI/DS-SRI* 

is the only method correctly matching the template in all th~ challenging examples. 

By observing Fig. 3.lO(b) and Fig. 3.lO(c) we can find that the likelihood maps 

of DS-SRI* and DS-SRI are almost the same, which is evidence to indicate that 

our method is robust· against scaling change. Furthermore, comparing to the state

of-the-art method ODIS (Fig. 3.lO(e)), we can clearly find that our method· (Fig. 

3,lO(c)) largely outperforms since high similarity values are mostly calculated on 

the object of interest and drop faster when the candidates getaway. In general, the 

likelihood maps of DS-SRI/DS-NSRI are more distinct and yield in better-localized 

modes. In the 6th row, compared to the face in the reference image, there is a 

very large change in illumination and facing direction. ODIS is trapped by a sim

ilar pattern in the background while our method can distinguish the face from the 

background clutter. 
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3.6 Conclusion 

A novel multi-scale template matching method is proposed in unconstrained envi

ronments, which is robust against scaling, rotation, and illumination changes. Also, 

it takes advantage of the global statistic to deal with complex deformations, oc

clusions, etc. ·Extended bidirectional diversity combined with rank-based nearest 

neighbor search forms a scale-robust similarity measure, and the exploit of polar 

coordinate further improves the robustness against rotation. Moreover, in order to 

deal with the illumination change and further deformation, illumination-corrected . . 

•· 

local appearance and rank information are jointly exploited during the NN search. 

The experimental results have shown that DS-SRI can remarkably outperform other 

competitive methods. 

Despite the robustness ,of our method, it still has a few limitations. It is likely to 

mislocate the object when the color distribution of the template is flat. It is also the 

case when th.e patches in the template are similar to each other. And it can not deal 

with the multiple object case. 

In future work; I would like to develop effective scale search methods to reduce 

the number of similarity calculations and thereby the computational cost. I would 

also like to apply DS-SRI with high-level features like deep features to improve the 

matching performance. 
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(a) SSD, s = 1 (b) BBS [17], s = 1 (c) DDIS [18], s = 1 

a a 

µ µ µ 

(d) SDS [69), s = 1 (e) SDS [69), s = 0.5 (f) SDS [69), s = 2 

µ µ µ 

(g) DS-SRI, s = 1 (h) DS-SRI, s = 0.5 (i) DS-SRI, s = 2 

Figure 3.3: Expectation maps of SSD, BBS [17], DDIS [18], SDS [69] and DS-SRI 
in 1 D Gaussian case. Two points sets, T and Q are randomly drawn from two 1 D 
Gaussian models N(0, 1) and N(µ , CJ"), respectively. Q is set to be the same with 
Q. All of point are normalized within [0,1] . In (a)~(d), (g), ITI and IQI are set to 
100 (i.e., with a fixed scale). In (e)(h), ITI = 100 and IQI = 50 (i.e., s = 0.5). In 
(f)(i), ITI = 100 and IQI = 200 (i.e., s = 2). In each graph, the parameters of the 
Gaussian for generating Q increase from left-top(µ= 0, CJ"= 0) to right-bottom. It 
can be clearly observed that SDS and DS-SRI drop faster than other methods when 
(µ-/:- 0, CJ"-/:- 1), and DS-SRI preserve the map best against scale change. 
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Figure 3.4: Scale estimation by similarity maximization. (a) shows the expectation 
map concerning the variation of ground truth GT8 and estimated s. SDS and DS-SRI 
(second row and bottom row) achieve maximum expectation values on the diagonal 
while BBS (top row) fails in estimating the proper scale. High expectation values 
of DS-SRI distribute more densely around the diagonal comparing other methods. 
(b )~ ( d) demonstrates the normalized histogram of estimated s based on 200 random 
trials. In the case of SDS and DS-SRI, the according bin of s = GTs achieves the 
highest frequency. BBS (top row) performs well in a local scale range while fails in 
the global. 
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(a) Example of T (b) Example of Q 

0 0 0 

(c) BBS (d) SDS (e) DS-SRI 

Figure 3.5: The expectation maps of BBS, DS-SR, and DS-SRI in 2D Gaussian case 
with rotation. Points in Tare drawn from N(µ, o-1 , o-2 ), withµ= (0, 0), o-1 = 1, and 
o-2 E (0, 10] . Points in Qare copied from T and further rotated by 0, 0 E [0, -1r]. 
(a) shows an example of T and (b) is generated by rotating (a). (c), (d) and (e) are 
the expectation maps of BBS, SDS and DS-SRI respectively by varying 0 and o-2 • It 
can be clearly observed that the expectation of SDS and DS-SRI is almost invariant 
to rotation while BBS drops most when T and Q overlap least (i.e., 0 = -1r / 2). 
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(a) BBS (b) DDIS 

(c) SDS (d) DS-SRI 

Figure 3.6: Expectation maps of BBS, DDIS, SDS and DS-SRI in 1D Gaussian case 
with illumination change (simulated by gamma correction). Two points sets, T and 
Qare randomly drawn from two 1D Gaussian models N(0 , 1) and N(0 , a-) , a- E 
[O , 10], respectively. Q is set to be the same with Q. In (a), (b), (c) and (d), ITI and 
IQI are set to 100 (i.e., fixed scale) . The parameters for generating Q increase from 
left-top ('-y = 0.5, a- = 0) to right-bottom, r E [0.5 , 2] and c;- E (0 , 10]. It can be 
clearly observed that the expectation of DS-SRI value is invariant against , increase 
and drops shapely when a- gets away from 1. 
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µ µ 
(a) BBS (b) DDIS 

µ 
(c) SDS (d) DS-SRI 

Figure 3.7: Expectation maps of BBS, ODIS, SOS and OS-SRI in 1D Gaussian case 
with illumination change (simulated by gamma correction). Different to Fig. 3.6, T 
and Qare randomly drawn from two 1D Gaussian models N(O , 1) and N(µ , 1) , µ E 

[O, 10], respectively. 
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Figure 3.8: Comparison on success rate with respect to the variation of the overlap 
rate threshold. OS-SRI* , SOS*, and SOOIS* run with multi-scale search window 
and others are with fixed-scale. The dotted curve NGT is the performance of the 
ground truth with fixed-scale search window for reference (i .e. , each ground truth 
of NGT is represented by a bounding box which has the centroid of the annotated 
ground truth and the size of the template) . Numbers in the legend are the AUC 
values, i.e., the average success rate with respect to each curve. (a), (b), (c) and 
(d) show the success curves over four categories (scaling-change-only, rotation
change-only, illumination-change-only, all-change respectively. Best viewed in 
color. 
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Figure 3.9: Comparison on success rate over all the data (Fig. 3.8 (a)~(d)). 
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(a) Template (b) Matching Resul ts (c)DDIS [2) (d) DS-SRI (ours) (e) DS-SRI* (ours) 

- DS-SRI * - DS-SRl - sos• - sos DDlS* - BBS - DDIS - HM - HOG - SAD 

Figure 3.10: Examples of matching results. (a) The template is represented by a 
red rectangle. (b) The plot of detected bounding boxes. (c)~ (e) The likelihood 
maps of OS-SRI*, OS-SRI and ODIS, respectively. The candidate window with the 
global maximum similari cy in each map is selected as the final matching result. In 
the likelihood map of OS-SRI*, every pixel has multiple similarity values due to 
multi-scale candidates, and only the maximum one is shown. 
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Chapter 4 

Rule-based similarity measure 
J 

Although DS-SRI deals with the single object problem very well, it cannot uti

lize for a class object o* + o' detection. To solve the disadvantage of DS-SRI, the 

rule-based similarity measure is proposed. In this chapter, the rule-based similar

_ity measure method will be introduced from the following aspects. (1) designing 

a template for a class of objects. (2) determining candidate by mathematics model 

and template. (3) making rules for measure candidates. (4)' searching object from 

all candidates. 

4.1 RBSM 

4.1.1 Template 

In cominon template· matching, the template is selected from a reference image, . " 

that the user wants to detected or tracked. However, in rule-based matching, it 

is different. The template is designed manually according to the universal feature 

, 
distribution of the objects. In this thesis, only the RGB feature is discussed; but it 
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also can be utilized in other features easily. Firstly, the shape of objects is utilized 

to design the template shape. Then, according to the object color distribution, the 

template is divided into several areas. The template needs to descry the objects 

common part O*. The template is noted as T. 

4.1.2 Candidates 

The candidates are decided by the practical problem, it needs to cover all possible. 

And all candidates Care obtained by template T with a mathematical model M. 

The mathematical model will decide the number of the candidate. A-good template 

can reduce the complexity of the mathematical model. That can reduce the number 

of the candidate. 

4.-1.3 Rules 

The rules are designed according to the color distribution. Rules are utilized to 

measure that the ca11didate is the object or not. For detected the object, these rules 

need to measure the similarity of the common part O*, and ignore the different part 

O'. And the rules come with the template. In this. thesis, the pixel relationship 

between different regions of the template is considered as a feature. These rules are 

represented by the function R. 

4.1.4 Optimization 

With the rules and candidates is defined, the object can be selected from the whole 

candidate set. However, when the mathematics modal, that is utilized to gener-

45 



ate the candidate combines with the template, is complex, the candidate number 

will be a huge amount. The brute force search is an exhaustive search for all can-
' 

didates is very time-consuming, due to the massive number of candidates. Thus 

some optimization algorithms are needed to reduce the candidates. And due to their 

population-based nature, evolutionary algorithms are able to approximate the whole 

Pareto set of a single-objective/multi-objective optimization problem in a single run

ning. In The above section, the candidates and similarity measure function is defined. 

The DS-SRI can be detected the object very fast by exhaustive·se~ch, results from 

the candidate are not many candidates. However, for some cases of RBSM, the 

rotation and deformable cover by the candidates. That is exhaustive search for all 

candidates is very time-consuming, due to the massive number of candidates. Thus 

some optimization algorithms are needed to reduce the candidates. And due to their 

population-based nature, evolutionary algorithms can approximate the whole Pareto 

set of a single-objective/multi-objective optimization problem in a single running. 

In this thesis, the optimization algorithm under the gen~tic algorithm frame

work. GA is a search heuristic that is inspired by Charles Darwin's theory of natural 

evolution. This algorithm reflects the process of natural selection where the fittest 

individuals are selected for reproduction in order to produce offspring of the next 

generation. In GA, a very important notion is natural selection. The process of nat

ural selection starts with the selection of the fittest individuals from a population. 

They produce offspring which inherit the characteristics of the parents and will be 

added to the next generation. If parents have better fitness, their offspring will be 

better than parents and have a better chance of surviving. This process keeps on 

iterating and in the end, a generation with the fittest individuals will be found. This 
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notion can be applied to a search problem. We consider a set of solutions for a 

problem and select the set of best ones out of them. 

Five phases are considered in a genetic algorithm. 1). Initial population. 2). 

Fitness function. 3). Selection. 4). Crossover. 5). Mutation. In the following, these 

phases will be introduced one by one. 

Initial population 

In the GA, the process starts with a group of individuals, which is called a popu

lation. Each individual is the solution to the problem we are trying to solve. An 

individual is characterized by a set of parameters (variables) called genes. The 

genes are linked together into a string that forms a chromosome (solution). The set 

of genes of an individual is represented as a string. Usually, binary values (strings of 

1 and 0) are used. The genes are encoded in a chromosome. In the template match

ing, each individual is a candidate region. And the parameters of the candidate are 

coded by chromosome. 

Fitness function 

Fitness function determines an individual's level of fitness (an individual's ability 

to compete with other individuals). It gives each individual a fitness score. An in

dividual's probability of being selected for breeding is based on its fitness score. In 

template matching, the fitness function is the similarity measure function designed 

by the user. 
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Selection 

The idea behind the selection phase is to select the most suitable individuals to pass 

on their genes to the next generation. Two pairs of individuals (parents) are selected 

based on their suitability scores. Individuals with high fitness scores have a greater 

chance of being selected for reproduction. In our problem, the suitable individual 

means. the high singularity· score of the candidate. 

Crossover 

Crossover is the most important stage in the genetic algorithm. For each pair of 

parents to be mated, an intersection is randomly selected from the genes. There is 

various crossover method in the existing literature. Such as single-point crossover, 

two-point, and k-point crossover, uniform crossover, crossover for ordered lists. 

Mutation 

In certain new offspring formed, some of their genes can be subjected to a mutation 

with a low random probability. This implies that some of the bits in the bit string 

can be flipped. The mutation occurs to maintain diversity within the population and 

prevent premature convergence. 

Termination 

If the population has converged ( does not produce offspring that are significantly· 

different from the previous generation), then the algorithm is terminated. Then it 

can be said that the genetic algorithm has provided a set of solutions to our problem. 
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. 4.2 Rule-based matching for VIS detection 

Two practical examples are considered to introduce the rule-based matching method. 

These examples are the vehicle inspection sticker (VIS) and roast fish parts (RFP) 

detection. In these examples,. the target object is a class of objects. In VIS detec

tion, there is only one object in a target image. But for the RFP detection, there are 

maybe multi-object in a target image. For these problems, the background, designed 

template, candidates, rules, as well as optimization will be introduced. 

4.2.1 Background 

Image processing technology has been widely applied in vehicle-related researches. 

However, vehicle inspection sticker (VIS) detection and recognition have not been 

widely studied. Inspecting whether a vehicle inspection is expired or not still de

pends on the manual check. The high cost of human labor leads to the fact that only 

a small portion of VIS can be inspected. As a result, some drivers will keep driving 

with expired vehicle inspection because of the high cost of vehicle inspection or 

other reasons, which is a great security risk. 

On the other hand, the vehicle inspection sticker (VIS) is issued by the special

ized agencies after the annual inspection is qualified, the expired date is written on 

the vehicle inspection. In order to show the public and the traffic police that the ve

hicle inspection has not expired, the relevant laws and regulations stipulate that the 

VIS must stickered on the front window of the vehicle. Therefore, I can obtain the 

vehicle inspection expired date from the image of the front window. It will be very 

convenient if VIS can be automatically detected by a single camera on the image of 
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the front window. 

However, it is difficult to localize the VIS from a single image, which is affected 

by the following factors. 1) The VIS is very small compared with the license-plate. 

2) There exists a complex position relationship between VIS and camera, such that 

VIS is usually perspectively transformed in the target image. 3) The VIS changes 

appearance under different illumination conditions. 4) The feature of VIS is difficult 

to utilize for simplicity, this owing to there are different 12 characters on the VIS. 

Thus, applying local features to the localization of the VIS is difficult. 

4.2.2 Problem description 

Target image in grayscale is the input, denoted by 11, with size of n 1 x m 1. Nor

malizing each pixel value of 11 from [0,255] to [0,1]. According to the pixel value 

distribution of'VIS, I create a template with a size of n2 x m2 pixel, denoted by 

M. Candidate region le is M mapped to 11 by homographic 8 E PS, while 8 is the 

. projectivity operation matrix, shown in Fig. 4.1. An arbitrary pixel in M is denoted 

by p, while p0 corresponds to a pixel of le. Based on the pixel value distribution of 

VIS, I create some rules to measure the similarity between VIS and le. According 

to these rules, the rule-based similarity function F is defined, then F is utilized to 

measure the fitness of le. And the score of F is smaller, the degree of similarity 

is high~r between the VIS and le. With the F defined, the VIS localization can 

be converted to the problem that. detection optimal 8* to minimize F in projection 

space PS. 

8* = arg min F(li, M, 8) 8 E PS. (4.1) 
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4.2.3 Without character information template 

In this method, The optimum region is searched in the projective space, thus the 

template size does not directly impact our result. In order to calculate speed, the 

template size is set as small,32 x 32 pixels, denoted by M2 , shown in 4.2. Further, 

I divided M2 into two parts, including the VIS area and the front glass area, respec

tively denoted by M2 and M2. The position of M2 is in the center of M 2 , with the 

size is 16 x 16 pixels. The template is shown in Fig. 42. 

4.2.4 Candidates 

In this section, I detailed define projective transformation 5. According to the 

pin-hole camera model we can know that the 2D projective transformation can 

be viewed as a transformation within the 3D and then projected .onto a 2D plane. 

It is comprising by eight simple transformations on 3D, shown in 4.3. These trans

formations include scaling with X and Y axes, rotation with X, Y and Z axes, 

translation with X and Y axes. Others, the changes of distance between the target 

and the optical center. Therefore, I use 8 parameters to describe 5, they are Bx, Sy, 

0x, 0y, 0z, x, y and Zz. Accordingly, the projective transformation 5 can be defined 
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Template 

Target image 

Figure 4.1 : Candidate regions are shown by blue box on target image. Each candi
date region is mapped to target image by homographic c5T. 
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Figure 4.2: Without character information template M 2 . M2 also can be divided 
into two parts, VIS region M2', and the front galss around the VIS region M2. The 
position of M2 is in the center of M2 . 
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as formula 4.2: 

X 

8= 

Bx O O O 1 0 0 0 

0 Sy O O O sin ex 0 
X 

0 0 0 0 

0 0 0 0 

0 -sin ex cos ex 0 

0 0 0 1 

cos ey O -sin ey 0 cos ez sin ez · 0 0 

-sin ez cos ez O 0 0 1 0 0 
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s_in ey O cos ey 0 
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X 

1 

1 0 0 0 

0 1 0 0 

0 0 1 0 

x y O I 

0 

0 

X 

0 

0 

1 0 

0 1 

Zz O ·o 0 

0 0 0 -1 

(4.2) 

' 
There parameter ex, ey and e2 are rotation angles with corresponding to. each 

axis. Parameter x, y are the translation size with respect to x, y axis on the target 

image plane. Parameter Bx and Sy are scale size with respect to each axis. Param

eter Z 2 is the distance between target and optical center, which the effect of Z2 is 

different in image size. However, I know that image size can be controlled by Bx, 

Sy. Therefore, Z2 can be fixed on a constant. With the 8 defined, the p8 can be 

calculated by multiply the matrices: 

p8 = p8 p E R{lx4), 8 E R{4x4). (4.3) 
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Figure 4.3: Pin-hole camera model, From the model we can know that the 2D 
projective transformation can be viewed as a transformation within the 3D and then 
projected onto a 2D plane. It is comprising by eight simple transformations on 3D. 
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Here the pis defined asp= (Px,Py, 0, 1). In this method, when the coordinate 

of p8 is calculated, the value of four dimensions should be normalized to one. 

4.2.5 RBSM for VIS 

In this method, three .constraints are designed according to the inherent pixel distri

bution of the VIS area and the area around the VIS. Firstly, the pixel value distri-
"--

bution of the VIS region is not flat, because the VIS is the green paper with written 

back. In this method, I utilize the pixel values at the highest a percent to approx

imate the pixel values of VIS background in M2 for every candidate region. And 

utilize the pixel values at the lowest b percent to approximate the pixel values of the 

VIS text region: Where a, b E R+, a + b ::; 1. Secondly, the pixel value distribution 

between the sticker background region and glass region is not flat. Thirdly, the glass 

around VIS is an approximate flat. · 

I degine a function T(.) to measure the flatness degree of VIS: 

(4.4) 

l!Es is sum of the pixel value at lowest t percent in the set S. u!Es is sum of the 

pixel value at highest t percent in the set S. From the section 4.2.5 analysis, I can 

know that lower score of T(.) means a more similar between .the candidate region 

with the VIS. 

Besides, I define a function H (.) to measure the degree unflatness between VIS 
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background region and glass region. 

, (4.5) 

As I can observe from above function, a lower score means a more adaptive con

straint. 

Moreover, a function G(.) is defined to measure the flat degree of glass area. 

(4.6) 

In the result, the lower score of G(.) means that the glass area is more flat. With 

function T(.), B(.) and G(.) defined, I can define F2 as 

(4.7) 

Where w1 , w2 and w3 are the weights within [ 0, 1]. The experiment will be introduce 

in next. 

4.2.6 Optimization for VIS 

Coding of projective transformation parameter 

For detecting the VIS, there still exists a problem that is continuous parameter space 

of projective transformation PS corresponding to infinite candidate regions. It is 

impractical from the infinite candidate regions to researching the optimum region. 

To solve this problem, a finite discrete set is extracted from PS by uniform step, in 
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which the number of each parameter is 2n. The discrete set corresponding to a finite 

candidate region space is noted as DPS. When the finite candidate space is larger 

enough, .then the optimum solution <51/J in DPS is very clos~ to the optimum solution 

&*. Through experiments, when n is 8 the accuracy of the result is satisfactory. 

In order to search for the optimum solution in the DPS, all possibilities of DPS is 

needed to code into the chromosome. Accordingly, each parameter of 6 is coded in 

an 8-bit binary. 

Searching optimum region 

According to section 4.2.6, the problem converted to that from the finite discrete 

· set DPS to find an optimum solution. There still exists a problem that the DPS is 

massive. It has 256 possibilities. This causes testing the complete discrete candidate 

space difficultly. In order to overcome this problem, I use a level-wise adaptive 

sampling (LAS) algorithm [23] to evaluate the approximate optimum solution. The 

flow chart of this algorithm is shown in Fig.4.5. Next, I will introduce this algorithm 

and analysis the advantage of this algorithm for this method. 

Initialization 

In this algorithm, the initial generation is noted as P0 , it includes n individuals. 

Each individual chromosome refer to a candidate region, Each individual chromo

some generates by random 56 binary genes. Each individual chromosome corre

sponds with randomly parameters of projective transformation DPS. 
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Figure 4.4: Chromosome. Yellow part are genes of candidate region, green part are 
genes of template background pixel value, each paramter coded by 8 bit gene. 
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Figure 4.5: level-wise adaptive sampling algorithm flow chart. 
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Selection individuals with level-wise adaptive 

In this section, According to the fitness value, some individuals are deleted. The 

specific selection method fa as follows. Firstly, based on the chromosome, calculate 

each individual of generation p 3
m correspond parameters o and O", where mis the 

generation number. Then according to the o and O" calculation the fitness value to 

each individual. Finally, delete some individuals of which fitness value are smaller 

than the threshold THm in generation p 3m_ Especially, the THm is level-wise 

adaptive, every time deleted individuals is close to a fixed proportion of the current 

generation, where the proportion in the range [d1, dh]. The remained individuals 

form a temporary generation of p 3m+1. 

The THm is level-wise adaptive and the massive number of individuals results 

in a new problem, deciding the T Hm value is difficult. To solve this problem, in this 

algorithm, a stepwise approximation method is used, this method based on proba-' 

bility and statistics theory utilizes some random sampling to' estimate the fitness 

value distribution of the whole generation. The method is as follows: 

Step 1: Initial the T Ht as the fitness value of the optimum individual in the 

current generation. 

-, Step2: Randomly sampling an individual set that has T individual from the 

current generation; the random set is noted RS. 

Step3: calculate the proportion PT that is individual' fitness value more than 

the T Ht in the RS. Then put PT into the equation 4.8: 
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T Ht x 1.1 , PT < dt 

THt= THtx0.9 , PT>dt· (4.8) 

THt others 

Step4: Repeating the step2 to setp3 until the PT belong the range [dz, dh]- The 

threshold T Ht is outputted threshold T Hm. The method of level-wise adaptive 

choosi11g individuals suits our method very welL The distribution of fitness value is 

different in the different environments, the fitness values may be concentrated in a 

small range in a generation. If an fixed threshold is utilized to select the individuals, 

the run time and the result accuracy is out of control. Thus, the level-wise adaptive 
' . ' 

selection method is selected to delete individuals. 

After deleted some individuals, a uniform sampling method is utilized to select 

the next generation of fndividuals. Firstly, the range of fitness value in p 3m+1 is 

evenly divided into ¢> range. Then, the same number of individuals is randomly 

extracted in each range. The extracted individuals form a temporary generation of 

p 3m+2 • And the number of p 3m+2 individual is the same with the p 3m+2• It is 

noteworthy that an individual can be extracted many times. 

The similarity evaluation function 4.7 include three-part rules. It is possible that 

there is a candidate region where a part rule or two-part rules has a high similarity 

with VIS, but another part is not, which will cause a problem that the algorithm 

may fall into a local optimum solution. The operation can improve gene diversity, 

whicn is conducive to escape from local optimums. It has a great significance to 

this method. 
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Crossover 

The uniform crossover operation is used to increase the diversity of chromosomes. 

The operator is shown in Fig.5. Parents are randomly generated from generation 

p 3m+2• And the children chromosome is obtained by mixing parents gene, the mix~ 

ing ratio is mr. As a result, the children's chromosomes inherit the parent gene. 

And a child chromosome inherits approximate mr genes of the second parent, an

other inherits the genes of the first parent. Especially, the operator is not for all 

the individuals in p 3m+2, it only operates randomly re percentage individuals. The 

operation results form a new generation p 3m+3, and I note it is generation m+ 1. 

Termination and output 

The selection of individuals process to the crossover process is repeated until the 

termination condition has been reached. In the algorithm, the terminating condi

tion is that the number of individuals of m generation is smaller than g. The best 

homography o~ with minimum fitness value is outputted. 

4.2. 7 Experiment 

Datasets 

In order to evaluate the ,RMSM for VIS, three datasets are collected in a different 

environment. These datasets are utilized to evaluate the performance in different 

aspects. 

Dataset D 1 is taken in the garage with 10 images, which the environment changes 

include illumination and position relationship between targetand camera. And in 
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dataset D1, all of the vehicle inspection sticker the month is November. In addi

tion, in order to more comprehensive check, the robustness of the proposed method 

Gaussian noise is added. The dataset D 1 utilize to ev~luate proposed methods can 

location the VIS in projective space. 

Dataset D2 includes 527 images, which took in the following environment. The 

camera is fixed on a moving car, and the distance between the camera and VIS is 20 

centimete~s. And the car is driven through different places. And the month on the 

vehicle inspection sticker includes January and November, and the D2 includes 327 

. images of November and 200 images of January. This method utilizes The dataset 

D2 utilized to evaluate the performance for reflection. 

Moreover, 50 images are taken in the gas station to construct a dataset D3. These 

images are taken at night, the camera position is fixed and the height of the camera 

position is 2 meters. Then, the car is moving in the direction of the caniera. This 

dataset is utilized to evaluate the practical performance of the proposed methods. 

And for every image, the ground truth is demarcated by the manual. 

Result evaluation 

For evaluate the performance of RMSM for VIS, the overlap rate between gr~und 

truth and our result is utilized. When the overlap rate is more than a threshold, that 

is judged the localization success, The threshold as th. The determination method 

is as following, 

true , if overlaprate > th 
result= (4.9) 

false , others 
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Table 4.1: List of each projective transformation parameter's range, the step size 
and amount in sampling set. 

Parameter Range Step amount Step size 

0,, [0, 0.3,r] 2n 0.3,r/2n 

0y (-0.05,r, 0.05,r] 2n 0.l7r/2n 

0z (-0.05,r, o.05,r l 2n 0.l,r/2n 

X [0,n1] 2n n1/2n 

y. [0,m1] 2n mi/2n 

Bx [1.0,3.0] 2n. 2.0/2n 

Sy [1.0,3.0] 2n 2.0/2n 

Zz - - -

Parameter setting 

In the experiment, the projective transformation parameters area set as Tab 4.1. 

Others, the initial generation number n is set as 150,000, the last generation number 

g is 1,000. The threshold THm is that every time eliminate 5% to 10% of last 

generation. 

Moreover, according to the real VIS the shape of template is set as follows. 

The background of VIS a is 70% and the text area of VIS bis 15%, which the rest 

15% is an uncertain area. The glass of around VIS top and low part g set as 20%. 

It is noteworthy that, in different experiments the fitness functions parameters are 

different. 

Results 

In the following experiment, the overlap rate threshold is set as 0.5, when the over

lap rate is more than 0.5, the location result is judged as a success. When the weight 

of fitness function are that w4 = l, w5 = l and w6 = l, the IRBM for the dataset 

D 1 the success rate is 90%, the example of results is shown in Fig. 4. 7. 
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When the weight of fitness function are that w4 = 0.5, w5 = 0.5 and w6 == 1, 

the IRBM for the dataset D2 the success rate is 94.1 %, the example of results is 

shown in Fig.4.8. The Fig.4.8 and the numerical results indicate that the -IRBM has 

robust performance against reflection. 

Moreover, the dataset D3 is used to evaluate the practical ability of IBRM. The 

experimental position is the gas station, when the vehicle is refueling, the vehicle 

position is approximately fixed. Thus, in this experiment, the region .of interest 

(ROI) is utilized to instead target the image. Where the ROI is fixed to the middle 

one-third of the target image, shown in 4.9 the blue rectangle. When the weight of 

the, fitness function is that w4 = 0.5, w5 = 1 and w6 = 1, the success rate is 92%, 

which the IRBM for the dataset D3. the example of results is shown in fig. 4.8. 

And the last three images of D3 are blurred images, shown in location false image 

in fig.4.9. When the dataset D3 exclude the last three image, the success rate is 

98%. The high success rate indicates that the proposed method IBRM is can be 

used at the gas station for locating the VIS. 

4.3 Rule-based matching for RFP detection 

4.3.1 Background 

To save on the human labor costs, I herein plan to implement an automatic canning 

robot for.J?ackaging roast fish from thewire mesh belt conveyor (WMBC) line. One 

of the principal challenge that must be addressed is the development of a machine 

vision system. The roast fish parts have the following features. All parts have 

various patterns, size, shape, color, and color combination. Also, the size of RFP is 
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Parents 

Figure 4.6: Uniform crossover operator. 

Figure 4.7: Visual results of RBSM for dataset D1. Localization results is repre
sented with yellow bounding box. The red rectangle marks the error results. 
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Figure 4.8: Visual results of RBSM for dateset D2. Localization results is repre
sented with green bounding box. The red rectangle matks the error results. These 
images indicate that the IRBM has robust performance for different VIS. 
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Figure 4.9: Visual results of RBSM for dataset D3. Localization results is repre
sented with green bounding box. The red rectangle marks the error results. These 
images indicate that the RBSM has robust performance for different VIS. 
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bigger and the shape is more unified than the tail part. To guide the robot arm while 

canning roast fish, the machine vision system must meet the following requirements. 

( 1) All parts are the canning material. This system must sense the angle and position 

of all parts to guide the robot arm. (2) To make the product more attractive, the 

bigger and more unified fish part should be put on the top. For this canning rule, the 

system needs to be distinguished two kinds of fillets, because of the feature of fish 

parts. (3) Because there are various production environments, the illuminations are 

different. Furthermore, there could be some shadow caused by the staff or machine 

working site lead to that the system should be robust to the level of illumination. 

And in this thesis, only the RFP detection is-introduced, owing to the tail part is 

deal with by another method. And the RFP is noted as the roast fish part (RFP). 

There are some difficulties to develop a vision system, which satisfies the above 

r 
requirements. First, the size, shape, and color are not exactly the same within the 

same type. Second, the connected objects make it extremely difficult to detect, 

because some opjects are put very close (Fig. 3. lO(a)). The uncertain number of 

objects is also challenging, making it more difficult. 

4.3.2 Problem description 

To develop a robust-assisted packaging system, which can guide the robot arms 

to pack the roast sauries into cans, it needed to detect the roast sauries part. For 

gripping strategy generation, the system is required not only to be able to detect the 

roast saury area but also to estimate the geometric parameters. Besides, according 

to different canning requirements, it is also necessary to distinguish the type of fish 

parts. In this thesis, a rule-based matching method is utilized to detect a kind of fish 
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part. And the left part can be detected by other methods, such as some segmentation 

method [74]. And in this thesis, only the rule-bas·ed matching meth_od is introduced. 

The example is shown in Fig. 1.3. 

A target image is given, noted as T. And T tan be divided into two parts. one 

is the background. The other part is the roast fishes. And as illustrated in 4.10, 

the roast fishes include two kinds of fish part. body and tail parts, that have the 

following features. All parts have various patterns, sizes, shapes, colors, and color 

combinations. Also, the size of the RFP is bigger and the shape is more unified than 

the tail part. The RFP is noted as b E B. The number of elements of the set B can 

be zero or more. Our purpose is to detect all elements in B . . 

In the RFP detection, the input is the gray-scale ROI image 19 and the output of 

the object region 0. For the better quality of products, the RFP will be put facing 

the skin surface to the camera. As shown in Fig. 4.lO(a), RFPs have two kinds 

· of patterns: white-black-white (WBW) and black-white-black (BWB). The black 

region is due to the region of the body with some internal organs and blood, as 

this part will become black after roasting. Differences during cutting then lead to 

these two different patterns. The various shape, sizes, and colors of RFPs lead us 

to develop an algorithm to deal with the challenge of detecting multiple RFPs with 

two patterns. To solve this problem, a rule-based multi-object matching method is 

introduced. Firstly, the common features of RFPs are utilized to design some rules 

and a supporting template. These rules are utilized to measure the probability that · 

the candidate is the RFP. Then, a mathematical model is used to obtain the candidate 

regions via template mapping. Finally, a GA is used to search for the local optimal 

solution by introducing DCAPD for multi-object detection. 
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(a) (b) 

Figure 4.10: Sample fish parts. (a) Some samples of fish pieces are considered to 
be the RFP. These samples can be divided into two-part white-black-white (WBW, 
first and two rows) and black-white-black (BWB, the last row) patterns. (b) Some 
samples of fish pieces are considered to be tail parts. These tail samples have large 
differences in size, shape, and color. The third row of the second column sample is 
a broken RFP and is viewed as a tail part. 
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4.3.3 Flexible Template 

Although the RFPs are different in shape; size, and color, they still have some com

monalities: The shape of the RFPs is an approximate rectangle. Furthermore, ac.:. 

cording to the color, the two patterns of fish RFPs can be divided into three parts. 

However, as shown in Fig. 4.l0(a), the shapes, and size of each part is not fixed. To 

solve this problem, the fuzzy field is introduced to the template. Therefore, the tem

plate is shown in Fig. 4.1 l(a), denoted as T, with size 50 x 50 pixels. This template 

includes following four regions, they are the left end T1, right end T2 , middle T3 , 

and T4 which is the boundary of T3 with T1 and T2, the sizes of T1 and T2 are 8 x 50 

pixels. The size of T3 is 16 x 50 pixels, and each part of T4 is 9 x 50 pixels. The 

T1 and T2 refer to the black region in the BWB pattern or the white region in the 

WBW pattern, T3 refer to the white region in the BWB pattern or the black region 

in the WBW pattern, and T4 can be a mixture of black and white. Results in the T4 

part of this template can be used to account for variations in the RFPs. 

4.3.4 Candidates 

With the template devised, the candidate regions that may exist RFP can be evalu

ated using the template with SOIJle geometric transformations to map to the target 

image. As shown in Fig. 3.lO(a), these geometric transformations include scaling, 

rotation and translation. The following five parameters are used to describe these 

transformations. (1) Scaling parameters for the x and y axes Bx and Sy. (2) The 

angle of the center rotation 0. (3) Parallel translation for two axes x and y; A point 

p( i, j) in the template_ can be mapped to a point p7 in the target image via the above 
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transformation, such that pT can calculated by the following formula: 

cos0 -sin0 0 

pT= X sin0 cos0 0 

0 0 1 0 , 0 1 

X 

lOx 

Oly 

0 0 1 

(4.10) 

And every point in the template T via a r mapping to the target will result in a 

candidate cT. An example of cTi is shown in Fig. 4.13. 

4.3.~ Pretreatment 

The region of interest (ROI) is fixed in the target image, with a size of n1 x m 1 

/ 
pixels. This ROI is denoted as I; as shown in Fig. 3.lO(a). The ROI can be divided 

into three kinds of regions according to the WMBC position. They are object re

gion 0, WMBC region W, and the background region B. The segmentation of W 

is due to some significant features that can be used, such as the edge and shape . 

. Subsequently, if B can be segmented, then O is obtained by I rid of W and B. 

To segment W, the raw image I is converted to a grayscale image, denoted as 19 • 

The gradient feature is utilized to extract the edge of the WMBC as follows. First, 

for every point, the gradient is calculated using the Sobel operator in the horizontal 

and vertical directions denoted as f' and c, respectively. Then, add up the two

directional gradient vectors to form the gradient vector s, as shown in Fig. 4.12. 

Next, the magnitude ls1 and angle (s'; of sis calculated for every pixel.' Finally, 

based on the following two conditions judge whether the pixel is in the W. The 

value of is( i, j) I must be sufficiently large, on the other hand, the direction of s 
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must be closed to the y axis. The analysis results in pixel values exhibit only a 

small change inside W, but a dramatic change at the boundary between W and B 

or 0. Formally, Eq. 4.11 is defended to obtained W. 

(s( i, j)) > (90° X t-0th), 

1 if (s(i,j))< (90° xt+0th), 
W(i,j) = (4.11) 

t E {1, 3}, ls(i,j)I > ls1 

0, otherwise. 

In the Eq. 4.11, 0th is the threshold, which can control the segmentation results. 

When the 0th is larger, the region is easier to be segmented as O, and vice versa; 

The ls1 is average value of gradient magnitude in I. The approximate W can he 

obtained by the above method, and an example result is shown in Fig. 3.lO(b). 

The B is_ divided into some narrow parts by the horizontal WBMC. Therefore, a 

vertical filter is used to check W and determine B, if a region of length without the 

wire mesh is shorter than the threshold T Hv, this region is determined as B. The 

T Hv is defined by the gap of WMBC in the target image. The remaining region is 

determined as the object region 0. In our case the over-segmentation (W or Bis 

segmented as 0) is acceptable due to the following processing can deal with this 

-problem. However, the under-segmentation ( 0 is segmented as W or B) will give a 

negative effect for the following processing. The above parameters can be utilized 

to avoid under-segmentation. 
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4.3.6 RBSM for RFP 

With the candidates defined, our problem becomes searching for the candidates of 

the RFP. However, it is a challenge that the traditional pixels-based measurement 

methods, such as SSD, SAD, and BBS, are ill-suited to measuring the fitness of 
r 

a candidate for the RFPs because these methods need varied templates to identify 

varied RFPs. In this work, the regional differences in gray scale value are utilized 

to devise two rules for evaluating the candidate. These rules rely only on the infor:

mation in the candidate image. The first rule is that the gray scale value mustbe 

different between T1, T2 and T3 in a RFPs, and the average pixel values of T1 and 

T2 must be larger compared W,ith that of T3 • 

(4.12) 

The sec_ond rule is. that the gray scale value difference must be small between T1 

and T2 • Therefore, the average pixel values must be similar between T1 and T2 • 

R2 (I9 , T, T) = l-abs(L 19 (p
7

) -I: 19 (p-r)) 
pET1 pET2 . · 

(4.13) 

· Furthermore, except for the gray-scale value, there is another cue for measuring 

candidates' fitness: th~ candidate must lie in the object part 0. Accordingly, the 

formula 4.14 is used to apply this rule. 

(4.14) 
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The L·J is an indicator function that turns true and false into 1 and 0. This rule 

includes .an implicit condition that the candidate is an rectangle. With above three 

rules are defined, the measure function can be given as follows. 

(4.15) 

The terms w1, w2 are the weights of rules within the range of [O, 1]. And a larger f 

value means the candidate referred to r has a higher probability to be a RFP. 

4.3~7 Searching RFP for all local optimal solutions 

In the RFP detection, with candidates and matching rules defined, the problem be

comes searching for suitable solutions overall candidates. However, there· are still 

some problems when searching for multiple RFPs. Firstly, there are five parame-

. ters and an enormous number of candidates. When the searching gap is small for 

the candidate, the. search is time-consuming, but increasing the searching gap will 

lead to reduced accuracy. Furthermore, multiple objects and the uncertain object 

number means that typical optimization method, such as GA and particle swarm 

optimization [75] (PSO), are difficult to be applied to our case. A special GA, that 

introduces deterministic crowding of the population for the five parameters being 

optimized [28], is used. This method is a kind of evolutionary method. It can use a 

small sample candidate set to search for a high accuracy approximate solution. 

The searching algorithm is shown in Algorithm 1. First, which N parents are 

generated and each has randomly assigned values of the five parameters. Second, 

fitness f is calculated for each parent. Then, the parents are checked to see if some 
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individuals meet the conditions for creating a new cluster. These conditions include 

the followingthree items. (l) There exists an individual TPi such that f is above the 

threshold th. (2) This individual does not belong to any cluster. (3) The distance 

between TPi and each cluster above the threshold dt. A cluster is constructed by 

a. region and some individuals, where the region is a circle, whose center is the · " 

center of TPi and whose radius is threshold dt- Third, the children Sis generated 

by selecting parents P for crossover and mutation. Fourth, the fitness is calculated 

for each child. Fifth, the children are compared with their respective parents and if 

the f of the children is larger than that of the parents, then the children are used to 

replace the parents. We repeatthe processing from the second to the fifth until the 

termination condition _is met. Finally, the optimum solutions of each cluster in the 

final generation are our results. 

4.3.8 •. Experiment 

Dataset 

The proposed system is tested with the experimental system which simulated the 

real factory environment. The target image is taken by the camera in the box, as 

shown in Fig. 3.lO(a). And we manually fixed an ROI for analysis, the size of which 

is 320 x 480 pixels, while the real working region size is 300 x 450 millimeters. 

Furthermore, an efficient range is utilized to prevent part of the object outside the 

ROI region, which is the center of ROI with the size of 320 x 380 pixels. The 

performance of the proposed system is evaluated by two original sets of data. In 

dataset 1, the object distribution is-. scattered and regular in each image. Dataset 1 
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(a) (b) (c) 

Figure 4.11: Template and two pattern samples, ( a) is the template. It can be divided 
into four parts . (b) is the examples of BWB pattern part. (c) is the examples of 
WBW pattern part. 

Algorithm 1 DCAPD for RFPs detection 

Input: input parameters T, Q 
Output: Optimum solution of each cluster 

I : Generate N parents P = { TP1 , TP2 , ... , TPN } randomly 
2: Calculate fitness f for each parent 
3: while (Not termination condition) do 
4: if Meet the condition of create new cluster then 
5: Create new clusters 
6: end if 
7: Generate children S = { T 81

, T 82
, . .. , T

8
N } by parents 

8: Calculate the fitness f for each child 
9: Compare and replace the parents with children 

10: end while 
I 1: return Clusters C 
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Figure 4.12: Example of horizontal wire mesh judgment. Point A indicates the wire 
mesh, and the magnitude of the gradient vector CA. that is calculated iµ the vertical 
direction Soble operator is large. Therefore, the magnitude of SA., which is the sum 
of rA and CA, is also larger here than at other points, and the direction is close to 
the y axis. The points B and C are located in the background and object regions, 
respectively, and the magnitude of s 13 and sc are small, and its direction is irregular. 

has 55 images that include 195 RFPs. Dataset 2 includes 45 images composed of 

166 RFPs, and the distribution of the objects is close and irregular. 

Results for object region estimation 

To verify the effectiveness of the foreground segmentation method, we implemented 

two kinds of segmentation methods Otsu segmentation and background subtraction. 

And we employ the overlap rate ( 0 R) between ground truth W9 and the segmented 

result W., to measure the results, which is defined as: IW .. n W9 1 / IW .. U W9 I. Here, 

the operator I· I is used to count the number of pixels within a set. The higher OR 

means that the result is closer to the ground truth. In addition, we use the under

segmented ratio of US R to evaluate the negative effect of under-segmentation. 

Which the OSR is defined as IW9 - Wr n W9 1 / IW9 1. The USR is the error ra-
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Table 42: Results for object region estimation 

Method Dataset 1 Dataset 2 All dataset 

Our 
OR 0.773 0.762 0.768 

USR 0.053 0.098 '0.068 

Background subtraction 
OR 0.281 0.325 0.301 

USR 0.573 0.552 0.563 

Otsu segmentation 
OR 0.322 0.431 0.371 

USR 0.390 0.368 0.380 

tio that foreground is wrongly segmented as background. The results are shown in 

Table4.2. The highest OR and lowest average MS R indicate that our method is the 

most effective with the least negative impact on the three methods; 

Detection results 

In RFP detection, the GA that introduces DCAPD is utilized for parameter op

timization. The population size is set to 350, the crossover rate is 0. 7, and the 

mutation rate is 0.05. In addition, to fix the running time, the termination condi

tion is set as the generation number reaching 1200. The parameters of the trans

formation model are shown in Table 4.3, and each parameter is coded using 8~bit 

binary. To validate the superiority of rule-based matching compared with the com

monly used pixel-based matching methods for a class of objects, we implemented 

two pixel-based measurement methods, the traditional SAD and the state-of-the-art 

BBS. These methods use two kinds of templates, that as shown in Fig. 4.ll(b) and 

Fig. 4.11 ( c ), running two times. Furthermore, for a fair comparison, we set the 

parameters of the optimization algorithm to be the same as in our methods. 

Three important metrics is considered to evaluate detection results. One is the 

weight center deviation (WCD), that is, the weight center distance between ground 
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Figure 4.13 : Example of a candidate. In this example, the translation length is 
x = 100 pixels, y = 200 pixels, the scaling size is Bx = 1.5, Sy = 2 and the 
rotation size is 0 = 1r / 4. Notice that the figure is rotated 1r / 2 counterclockwise to 
save space. 

Table 4.3: Geometric parameters range 

[0,319) [0,4 79) [ 1.2,2.2) [ 1.4,2.4] [O, 1r ] 

Table 4.4: Results of RFP detection 

Method Dataset Objects TP Error Miss AOR 
AAD AWCD 

(degree) (pixels) 
1 195 189 3 6 0.73 6.42 5.24 

Our 2 166 158 2 8 0.73 6.82 5.00 
All 361 347 5 14 0.73 6.60 5.13 
1 195 177 50 18 0.62 18.43 15.34 

SAD 2 166 136 39 30 0.60 19.79 16.50 
All 361 313 89 48 0.61 19.02 15.85 
1 195 171 45 24 0.65 14.92 13.71 

BBS 2 166 139 36 27 0.62 16.49 15.67 
All 361 310 81 51 0.64 15.62 14.59 
1 195 165 27 33 0.65 12.78 12.51 

OS-SRI 2 166 134 22 29 0.62 11.67 13.39 
All 361 299 59 62 0.64 12.29 12.90 
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truth and the results. After all the objects are detected, the robot arm sucks the cen

ter of gravity of the object with a suction cup to handing the object. Therefore, the 

WCD has a crucial effect on the grabbing success rate. The second metric is the 

angle deviation (AD), which.is the absolute difference from the actual angle. In ad

dition, the OR between results and ground truth is also utilized to auxiliary evaluate 

the results. The results are shown in Table 4.4, where the TP means the number of 

true positive (TP). Table 4.4 shows that our method performs our method is better 

than the others iri TP, error rate, average WCD (AWCD), average AD (AAD), and 

average OR (AOR). 

Furthermore, the success rate curve for the threshold of WCD is given in Fig. 4.14, . . 

Fig. 4.15, Fig. 4;16. The effective working range of the suction cup is a circle with a 

radius of 15mm. And in our implemented environment, one pixel is approximately 

one millimeter. Thus, the threshold of WCD threshold is set as 15 pixels, the suc

cess rate achieves 0.936. This high accuracy shows that our method is effective for 

detecting the RFP. Figure 4.i4 demonstrates that the performance of BBS is better 

than that of the traditional methods SAD, but BBS is still significantly behind our 

method. And some results of examples are shown in Fig. 4.18, where the results 

also illustrate that the two patterns of RFP are detected significantly well. More

over, DS-SRI also is employed to show the superiority of RBSM, the results are 

shown in 4.17. We can observe that the results of DS-SRI are the same as BBS. 

And the RBSM can outperf ormance these methods in RFP detection. 
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Figure 4.14: Success curve of RFP detection. This figure demonstrates three meth
ods for the RFP detection: our method and two pixel-based methods, sum of abso
lute difference (SAD) and best-biddies similarity (BBS). 
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Figure 4.15: Success curve of RFP detection for dataset 1 

82 



1 

0.8 

~0.6 
ro 
:... 
::l 
u 
u < 0.4 

0.2 

0 
0 

Average of center deviation (ACD = 5.13(pixels)) 

- Our results(D2) 
- SAD(D2) 
- BBS(D2) 

4 8 12 16 

Threshold of center deviation (pixel) 

Figure 4.16: Success curve of RFP detection for dataset 2. 

Table 4.5: Running time 

Pre 
body 

Proposed system 
Our I SAD I BBS 

Times(ms) 251 2237 I 2694 I 32638 2488 
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Figure 4.17: Success curve of RFP detection for all dataset. This figure demon
strates four methods for the RFP detection beside our method and two pixel-based 
methods, sum of absolute difference (SAD) and best-biddies similarity (BBS), DS
SRI all is employed. 

(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 4.18: Visualization results. (a), (e) ROI of target images. (b), (f) Results 
of object region estimation, where the results demonstrate that almost all the back
ground region is excluded, and the target region is well preserved. ( c ), (g) Results of 
RFP detection. (d), (h) Visual results of tail segmentation by efficient graph-based 
segmentation. In (c), (d), (e), and (f) the red line marked the efficient range. 
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( Implementation environment and running time 

This fish canning vision system is implemented using Visual Studio 2015 in Win

dows 10, and the running speed is about one second on a 2.7 GHz Pentium i7. The 

running time is given in Table 4.5. From this table, we can know that our rule-based 

similarity measurement method is close to the simplest similar measurement, SAD, 

and significantly faster than BBS. This method still is acceptable for our system 

and conspicuously faster than the mean-shift method. This system processes one 

image the average time is about 25s. This speed is fast enough for the fish canning 

robot because with an efficient working length of 380 pixels, about 356 mm in real 

space. In the real factory, the flow speed of WMBC is 2000mm per minute, and the 

efficient working range needs about 10.6 s. Accordingly, our processing speed is 

fast enough for the roast fish canning. 

4.4 Conclusion 

The rule-based matching method is proposed for a class of objects. In this method, 

the pixel distribution of the objects is utilized to design a template. Then, some rules 

are designed by the common feature of the objects. Finally, Some optimization 

algorithms are used to find targets from candidates. 

To make our approach more intuitive, the rule-based method is introduced through 

two examples, which are rule-based matching for vehicle inspection sticker (VIS) 

detection and rule-based matching for roast fish part (RFP) detection. Firstly, a rule

based similarity method (RBSM) under the GA framework to solve the problem of 

locating the VIS region over the projective space. First of all, a template without 
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character information is made manually according to the real VIS and discusses 

its projective transformation. Then, according to the feature distribution of VIS, 

3 rules are untitled to evaluate the similarity between candidate and VIS. Finally, 

level-wise adaptive sampling is applied. The results show that this method has a 

satisfactory performance under different environmental conditions. 

The second piratical problem is RFP detection. The roast fish parts have a large 

difference. The color distribution can be divided into two patterns black-white

black and white-black-white. Moreover, the same pattern object also has some 

differences. According to the color distribution of objects, a flexible template is 

designed for two patterns. Then, the common features of objects are utilized to 

designed .3 rules. These rules are utilized to evaluate the candidate is the target or 

not. Finally, under the genetic algorithm framework combine with the deterministic 

crowding technique, deterministic crowding with adaptive population distribution 

(DCAPD) is utilized to search multi-object at the same time. The result showed 

that RBSM outperforms the other methods with adequate speed for the detection of 

objects. 

The rule-based matching method can deal with multi-object at the same time, 

it can ignore some unneeded differences. With some specific template and rule, it 

can deal with the illumination change, rotation, and violently deformed. Moreover, 

this method can deal with various problems with various templates and rules. The· 

most disadvantage is the rules are designed manually. Some objects may not have 

enough rules for objective evaluation. 
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Chapter 5 

Conclusion and future work 

In this thesis, a novel similarity metric based template matching method is proposed 

for object direction. The design of a good similarity metric is still difficult, be

cause of the following problems, scaling, background occlusion, deformation, illu

mination change, multiple types of objects. Firstly, the diversity similarity measure 

against scaling, rotation, and illumination (OS-SRI) is proposed for single object de

tection. it takes advantage of the global statistic to deal with complex deformations, 

occlusions, etc. Extended bidirectional diversity combined with rank-based nearest 

. neighbor search forms a sc~e-robust similarity measure, and the exploit of polar 

coordinate further improves the robustness against rotation. Moreover, in order to 

deal with the illumination change and further deformation, illumination-corrected · 

local appearance and rank information are jointly exploited during the NN search. 

The experimental results have shown that DS-SRI can remarkably outperform other 

competitive methods. 

Despite the robustness of DS-SRI, it still has a few. limitations. It is likely to 

mislocate the object when the color distribution of the template is flat. It is also the 
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case when the patches in the template are similar to each other. Another it can not 

deal with the multiple object case. 

Moreover, the rule-based similarity measure (RBSM) method is proposed to 

handle all problems, RBSM is proposed for a class of objects. In this method, the 

pixel distribution of the objects is utilized to design a template. Then, some rules 

are designed by the common feature of the objects. Finally, Some optimization 

algorithms are used to find targets from candidates. 

To make our approach more intuitive, the rule-based method is introduced through 

two examples, which are rule-based matching for vehicle inspection sticker (VIS) 

detection and rule-based matching for roast fish part (RFP) detection. Firstly, a rule

based similarity method (RBSM) under the GA framework to solve the problem of 

locating the VIS region over the projective space. First of all, a template without . 
character information is made manually according to the real VIS · and discusses 

its projective transformation. Then, according to the feature distribution of VIS, 

3 rules are untitled to evaluate the similarity between candidate and VIS. Finally, 

level-wise adaptive sampling is applied. The results show that this method has a 

satisfactory performance under different -environme°:tal conditions. 

The second piratical problem is RFP detection. The roast fish parts have a large 

difference. The color distribution can be divided into two patterns black-white

black -and white-black-white. Moreover, the same pattern object also has some 

differences. According to the color distribution of objects, a flexible template is 

designed . for two patterns. Then, the common features. of objects are utilized to 

designed 3 rules. These rules are utilized to evaluate the candidate is the target or 

not. Finally, under the genetic algorithm framework combine with the deterministic 
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crowding technique, deterministic crowding with adaptive population distribution 

(DCAPD) is utilized to search multi-object at the same time. The result showed 

that RBSM outperforms the other methods, that include the DS-SRI, with adequate 

speed for the roast fish part detection. 
I 

The results of these practical problems illustrate that RMBS can cover all the 

above difficulties with suitable templates and rules. The rule'-based matching method 

can deal with multi-object at the same time, it can ignore some unneeded differ

ence.s. ·with some specific template and .rule, it can deal with the illumination 

change, rotation, and violently . deformed. Moreover, this method can deal with 

various problems with various templates and rules. The most disadvantage is the 

rules are designed manually. Some objects may not have enough rules for objective , 
' -

evaluation. 

In the future, I will focus on developing an automatic method for multiple types 

of the object detection method. Specifically, templates and rules are automatically · 

designed for the RBSM method. More details. the objects are di':'ided into some 

super pixels automatically, and the rules are also automatically designed according 

to some training data. 
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