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1 Introduction

In 1970’s, Dr.Schumacher appealed the abolition of atomic power gener-
ations because of various poisonous influences due to radiation [2], and in
fact, even at the present day we have not found any safe disposal of the
radio-active wastes. In this paper we shall innovate a mathematical model
for the economy of atomic power generations and conduct Schumacher’s ap-
peal as a theorem. Moreover this theorem shows that the population of a
society decreases under atomic power generations, which may be a kind of
the paradox of the enrichment [1].

In the following, x(t) denotes the population of the society at time ¢.
First of all, when the society has no electric power generations, we shall
assume that x(t) obeys the logistic equation such that

dz

dt

where o is a positive constant. Secondly, when the society has electric

power generations which are not atomic, for example, hydro-dynamic or

thermal dynamic, we may assume, by setting y(¢) to be the total energy of
these non-atomic powers, that z(¢) and y(t) obey the system such that

=a(l—z)x (A)

d

d—f = a(l—-x)z+y

dy

= = —b B
7 x — by (B)

where a and b are positive constants. The meaning of (B) is the following
: the first equation shows that the growth rate of x(¢) is excited by the
addition of y(t) to the society, where the unit of the power is appropriately
chosen. Generally the electric power generation companies get their income
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from the society and pay the cost for the generation of the power, and this
manner is described by the second equation, where the income is represented
by «(t) for appropriately chosen unit and the cost by by(t), where the cost
are , for example, for the maintenance of the dam in the hydro-electric
power generation and for the fossil fuels in the thermal one. As is stated in
Theorem 1, the system (B) has a stable equilibrium point, which may claim
that our society is able to coexist with the non-atomic power generations.

Now we shall consider the case where the society has atomic power gener-
ations besides the non-atomic power generations as the case of our present
day. Setting z(t) to be the total energy of these atomic powers, we may
assume that z(t), y(¢) and z(t) obey the following system

dx

- = a(l—z)z+y+=z

dy

Y pp—

7 z — by (©)
dz .

v (1—0)x—cz—d/0 z(s) ds

where a, b, ¢, d and 6 are positive constants and 0 < § < 1. The meaning
of (C) is the following. First of all, the number ¢ = 0 of the lower extreme
value of the integral of the third equation denotes the initial time for the
atomic power generations to drive, and hence our initial condition is (1)

2(0) >0 y(0)>0 2(0)=0 (1)

The first equation shows that the growth rate of x(¢) is excited by the
addition of z(t) besides y(t) to the society. The terms 6z and (1 —6)z of the
second and the third equations show the divided incomes of z(¢) into the
two departments of the non-atomic power generations and the atomic power
ones respectively by the electric power generation companies. Moreover, in
the third equation, cz represents the cost for the uranic fuels for the atomic
power generations and the term of the integral the cost of the treatment for
the accumulated radio-active wastes from the initial time ¢ = 0 to present
time ¢, which is a feature of the atomic power generations.

2 Results
First of all, we shall treat system (B). The following Theorem 1 holds.

Theorem 1
The system (B) has the nontrivial equilibrium point P = (z,y) such that
r=1+ % and y = %(1 + %), which is asymptotically stable.
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Remark 1

The stability of P may claim that our society is able to coexist with non-
atomic powers generations. The proof of the stability of P follows from the
standard arguments about the eigenvalues of the linear variational equation
of the right hand side of(B) around P, and hence is omitted here.

Next we shall treat the system (C). From initial condition (1) we may
verify that x(t) > 0, y(t) > 0 and 2(¢) > 0 for 0 < ¢t < w, where w may be
infinite. Then Theorem 2 holds,whose proof is stated in the next section 3.

Theorem 2
The following (i) and (ii) hold

(i) Ifw is finite, then x(t), y(t) and z(t) are defined fort = w, and z(w) = 0,
while z(w) > 0 and y(w) > 0.

(ii) If w is infinite, then

A =0

. . 6
tlgglo z(t) = =z =1+ o
lim y(t) = Qxl
t—o0 b

/Ooo z(s) = (1;9)301

Remark 2
The conclusion such that either z(w) = 0 or tlim z(t) = 0 may claim the
o0

abolition of the atomic power generations. Moreover it is noted that x is
1

smaller than the x-component of the equilibrium of (B), 1+ b which may
a

claim the paradox of the enrichment [1].

‘We shall state the proof of Theorem 2 in the section 3 and several remarks
about Theorem 2 in the section 4 respectively.

3 Proof of Theorem 2

First of all we shall prove (i). Since w is finite, it follows from the second
equation that

y(w) = e *y(0) + 6 /w e @)z (s) ds
0

Since z(s) > 0 for 0 < s < w, this implies that y(w) > 0. On the other

hand, if z(w) = 0, then it follows from the first equation that dmd(f) > y(w) >
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0, which implies that z(¢) < 0 for immediately smaller than w.
This is a contradiction to the definition of w, and hence x(w) > 0. Therefore

z(w) = 0.

Next we shall prove (ii). Since w is infinite, z(t) > 0, y(¢) > 0 and
z(t) > 0 for ¢ > 0. Firstly we shall show that z(t), y(t) and z(t) are
bounded for ¢ > 0. Setting w(t) = y(t) + z(t), we shall show that z(¢) and
w(t) are bounded for ¢ > 0. Let consider the curve (z(t), w(t)) in the z — w
plane and the domains D; and Ds in the x — w plane such that

D1 = {(z,w);0<z<mz, w<w}
Dy = {(zmw)2*+w? <RY, 2>}

where 21 = 1+ =, a = min{b,c}, w; > & and R? = 2 + w?. (see
Fig.1)

w
— 1
W1 W - Ex
Dl ) e
D,
0
x2 + w?=R?
/
X1
Figure 1:

We shall show that the curve (z(t), w(t)) crosses the boundary of D;UDs,
that is, L and C, where L is the straight line such that {w = w1,0 <z < 21}
and C the part of the circle such that {z% +w? = R? 2 > 21, w > 0}, from
the outside into the inside, as t increases. In fact

dw dy(t) dz(t)

¢
== T ::c—by—cz—d/o z(s)ds
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and hence

—t<z—by—cz<z—aw

Therefore dl;gt) < 0 on L, which shows that the curve (x(t),w(t)) crosses
L from the above to the below as ¢ increases. (see Fig.2)

w

0 X1 X

Figure 2:

Moreover, setting V' (t) = 22(t) + w?(t), we may obtain that

dv(t) _ dx dw
e 2z o + 2w 7 < 2z{a(l — z)z + w} + 2w{z — aw}

and hence

dv(t) 1) T \2
—=<25a(l— — -2 - —
T < {a( x)+ a}x (\/aw \/&)
Therefore d‘ggt) < 0 for 2 > x1, which shows that the curve (x(t),w(t))
crosses C' from the outside into the inside, as ¢ increases. ( see Fig.3 )

Above all (z(t),w(t)) crosses the boundary of D; U Dy from the outside
into the inside, as increases. Since (z(0),w(0)) is contained in D; U Dy for
large w1, (z(t),w(t)) must remain in D; U Dy for ¢ > 0, which implies the
boundedness of z(t) and w(t) for ¢ > 0, that is, the boundedness of z(t), y(¢)
and z(t) for ¢t > 0.
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Figure 3:

Finally we shall show that z(t), y(t) and z(t) converge to their respective
limits, as ¢ goes to infinity. Setting

¢
u(t) = / z(s)ds
0
we may see that u(t) satisfies the equation

2
C;Tg +c% +du=(1-0)z(t)

Since z(t) is bounded for ¢ > 0, it follows that u(¢) is bounded for ¢ > 0,
that is, [¢ z(s)ds is bounded for ¢ > 0. Therefore the third equation implies
that dil—sft) bounded for ¢ > 0, and hence z(t) is uniformly continuous for
t > 0. Since z(t) > 0 for ¢t > 0, the boundedness of this integral above all

implies that tli)m z(t) = 0. Moreover the third equation implies also that
(o]

d%z dz dz
—m=1-0)— —c —dz
dt dt dt
d?z - . dz(t)
and hence ;7 is bounded for ¢ > 0. Then we may see that tl;m =0.
o0
In fact, if this is not true, there is a sequence {t;} such that t; goes to
infinity as k goes to infinity and that [%l > ¢ for some positive constant
€. Since % is bounded, there is a positive constant § such that |d3§:t)| =
dz(t
for |t — tgx| < 6, which contradicts to lim z(¢) = 0. Since lim (®) =0, it
t—o0 t—oo dt
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follows from the third equation that x(oco) := tli)m x(t) exists and is equal
o0

to ﬁ Jo7 #(s)ds. From the first equation, the same argument implies

dz(t)

that lim
t—00

= 0 and, hence that y(o0) := tli)m y(t) exists and y(oco) =
o
dy(t
—a(l—xz(00))x(c0), and moreover, from the second equation, tlim % =0
—0

and hence y(co) = 2z(c0), which implies that z(co) = 1+ . Thus the
proof of (ii) is completed.

4 Remarks

First of all. system (C) may be written as in the following 4-system

d

d—f = al-x)z+y+=z
dy

Yo Gr—b

dt e

dz

¥ _ - S
m (1-0)z—cz—du
a

where z(0) = w(0) = 0. This system has the equilibrium point P(x1, y1,0, u1)

0 0 1—-40
$1:1+%, Y1 = 3T, U1:( ] )x1

We may see from [3] that P is asymptotically stable if d is sufficiently
large.

Secondly our natural question is to determine whether w is finite or
infinite, and it seems that the saturation term a(1—xz)x of the first equation is
too rigid to this question. Therefore we shall consider to relax this saturation
term to more general function f(x), while the result of theorem 2 almost
holds, and hence treat instead of (C) the following system (D) such that

dx

o flx)+y+z2

dy

o = Ox — by (D)
dz

il (1—9)x—cz—d/0 z(s)ds

where z(0) = 0. By the same argument as in the section 2, we can prove
the following theorem, where w is the same number as in Theorem 2.
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Theorem 3
Assume that f(z) is continuous for x, f(0) = 0 and f(z) + £ < 0 for large
x > 0, where a = min{b,c}. Then the following (i) and (ii) hold

(i) If w is finite, then z(w) = 0, while z(w) > 0 and y(w) > 0.

(ii) If w is infinite, then lim z(t) = 0 and there exist lim x(t), lim y(t)
t—o00 t—r00 t—o0
and [3° z(s) ds.

In the following we assumed that ¢ = 1,6 = 1 and 0 < ¢ < 1 in (D),
which means that the electric company of the power generation divides the
total income z(t) equally to the both departments of the non-atomic power
and the atomic power and that the cost of uranium fuels is taken to be
cheaper than the one of the fossil fuels.

Example 1

We shall show the existence of f(x) for the case where w is finite. Assuming
that z(t) = 2t — > for 0 < t < 2, where w = 2, we may obtain from
the third equation that x(t) = 4 — 4(1 — ¢)t — 2ct® + 2dt*> — 2dt®. Since

dfigf) = 4c — 4 + 4(d — ¢)t — 2d¢t?, it follows that x(t) > 0 and d:zgt) < 0 for

0 <t <2 in the case where ¢ < @ and % <d<1++1-—c2, and hence in
this case, for each of [0, 2] there corresponds one and only one x such that
z = 2(t) for z(2) < z < z(0), where z(2) = 3 — 4 and 2(0) = 4, and hence
t is taken to be an function of x, say t = t(z) for (2) < x < z(0). From
the second equation we may obtain y(t) such that y(t) > 0 for 0 <t < 2 if
y(0) > 0, and from the first equation

dz(t
£ = 0 —yt) — 20

Here it is noted that the right hand side may be taken to be the function
of x by the substitution of t = t(z), while f(x) is not determined for 0 <
x < z(2) and for x > z(0).

Example 2

We shall show the existence of f(x) for the case where w is infinite. Assuming
that z(t) = (at + ft2)e~ for t > 0, where o and 3 are positive constants,
we may obtain from the third equation that

z(t) = 2d(a+28)—2e{28d+ad—a+(ad+a—act+28d—2B)t+B(d+1—c)t*}
Since

dz(t)

ke 2728 — 20 + ac + (ad + o — ac + 2Bc — 4B)t + B(d + 1 — c)t?}

it follows that dflgt) > 0 for t > 0 in case where 2d > ¢* — 2c+ 2 and 3

is sufficiently large. Therefore in this case, for each t > 0 there corresponds
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one and only one x = x(t) for (0) < z < x(c0), where £(0) = 2« and
x(o0) = 2d(a+2p), and hence t is take to be the function of z, say t = t(x).
From the second equation we may obtain that y(t) > 0 for y(0) > 0, and
from the third equation that f(x) = da;gf) —y(t) — z(t), which may be taken
to be the function of x by the substitution t = t(x), while f(x) is not

determined for 0 < z < z(0) and for z > z(00).
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