夏季建設現場における飲水とファン付き作業服による脱水の低減に関する研究建設作業での発汗量，脱水量，飲水量，および WBGT•活動量の関係
 REDUCTION OF DEHYDRATION BY WATER INTAKE AND VENTILATED WORKING WEAR AT A CONSTRUCTION SITE IN SUMMER

Relation between the sweet rate，body weight loss，water intake，WBGT and activity during construction work

山崎慶太＊1，来原浩平＊2，染谷俊介＊3，濱田靖弘＊4，小林宏一郎 ${ }^{* 5}$ Keita YAMAZAKI，Kohei KUWABARA，Shunsuke SOMEYA， Yasuhiro HAMADA and Koichiro KOBAYASHI

Abstract

To obtain basic data for prevention of heat stroke during construction work in a hot environment，we analyzed the effects of wearing ventilated work wear（VWW）and the sweat rate（SR），the rate of water intake（RWI），and body weight loss（RBWL）in experiments of an artificial climate chamber and outside construction site in August．We supposed there is a limit to the amount of water that workers in a construction site can drink．Thus，we verified that RBWL increased with increasing WBGT mainly due to insufficient RWI，but could be partly decreased by using VWW，which decreased the SR．

Keywords ：Heatstroke，ventilated working wear，Sweat rate，Dehydration，Water intake，Activity
熱中症，ファン付き作業服，発汗量，脱水量，飲水量，活動量

1．はじめに

われわれは，ファン付き作業服（VWW）が夏季暑熱下の建設現場の作業員の生理•心理反応に及ぼす影響を評価するために，2016年 7，8月に東京都内の建設現場で実測を行った ${ }^{1)}$ 。この現場では，体重減少量を測定しておらず，環境条件や作業量も統一できなかった ため，気温（ $29,34^{\circ} \mathrm{C}$ ），職種（鉄筋工•型枠大工）毎の模擬作業，VWW以外の服装をそれぞれ統一した被験者実験を対象に，2017年5， 6
 VWW を着用している被験者の平均皮膚温や胸部•背部皮膚温は， VWW を着用していない被験者よりも有意に低いことが明らかとな った。また，VWW 着用の有無で汗の蒸発密度 $\left[\mathrm{g} /\left(\mathrm{h} \cdot \mathrm{m}^{2}\right)\right]$ に有意な差は見られなかったものの，着衣に残った汗の量はVWW を着用し た方が有意に少なかった。このことから発汗密度 $\left[\mathrm{g} /\left(\mathrm{h} \cdot \mathrm{m}^{2}\right)\right]$ は VWW を着用した方が有意に少ないことが示された。この結果を現場で確 かめるべく，2017年8月3～8日（6日は休日）に東京都内の屋外建設現場において型枠大工や鉄筋工を対象として実測を行った ${ }^{3)}$ 。気温 $24 \sim 35^{\circ} \mathrm{C}$ の環境において，VWWを着用している被験者の平均

皮膚温や胸部•前腕皮膚温はVWW を着用していない被験者よりも有意に低かったが，大腿•下腿皮膚温に有意な差は見られなかった。 また，汗の蒸発密度と飲水密度にも有意な差は見られなかった。現場では裸体状態の体重減少量を測定できないため，人工気候室での結果をもとに蒸発密度から発汗密度を推定する回帰式を求めた。回帰式から推定された発汗密度は有意差が見られ，VWWを着用した方が発汗量は少ないことが示された。発汗量の増大は皮膚温と深部体温の影響で決まるので ${ }^{4)}$ ，VWW の影響で平均皮膚温が下がった分，発汗量が少なくなったと推定され，VWW が脱水を予防する可能性が示唆された。芳田は，熱中症を予防するためには，脱水と高体温を抑制することが重要であるので，熱中症の発生状況を調査し，温熱ストレスを高めて熱中症を多発させる気象状況や，着衣•帽子 などの環境要因を明確に示す必要があると指摘している5）。しかし ながら，脱水に影響すると想定される建設現場での発汗量，脱水量，飲水量および環境条件（WBGT など）との関係については，VWW の効果を含めて充分検証されていない。
運動現場での発汗量，脱水量，飲水量に関する既往の研究として，

[^0]佐藤らは，気温 $33^{\circ} \mathrm{C}$ ，相対湿度 60% の人工気候室内での男子学生 を対象とした自転車エルゴメーター $(600 \mathrm{kpm} / \mathrm{min}) 60$ 分間の運動を行った。体重減少量（脱水量）は，水分補給量（飲水量）の減少に伴って増大し有意な相関関係が認められる一方，発汗量は水分補給量の変化にもかかわらずほぼ一定（12．1～15．2g／（kg•h））であるとしている 6）。運動現場での WBGT と発汗量等の関係については，丹羽らが，男子バレーボール部員 11 名を対象として 4 月から 7 月を除く 9 月 までの 5 か月，一定時刻（ $16: 30 \sim 19: 30$ ）練習時を調査した。その結果，発汗量，水分補給量（飲水量）は WBGT の増大に伴って増大する有意な関係が認められたが，体重減少量（脱水量）は WBGT の変化に関わらず一定（ $4.8 \sim 5.7 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）であったとしている ${ }^{(1)}$ 。さらに中井 らは，大学の運動現場で春季•夏季に調査した。その結果，発汗量 と飲水量は，WBGT との間には相関関係が認められ，WBGT が上昇すると直線的に増すが，自由に水分を摂取できる練習環境では，体重減少量（脱水量）は WBGT の変化に関わらず一定 （ $2.02 \pm 0.43 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ：野球部員， $4.11 \pm 1.04 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ：アメリカン フットボール部員）であったとしている 8）。自由飲水の実施により，体重減少量（脱水量）は，環境温度の変化の影響を受けないことが示 された。

以上のように，運動現場での暑熱環境下の熱中症予防のための水分補給の効果や発汗量，飲水量および脱水量と環境（WBGT）の関係 については検証されているが，建設現場についての検討例は少ない。 そこで本稿は，人工気候室（Artificial chamber）実験（以降 AC 実験 と称す）9），暑熱環境下の屋外建設現場（Construction site）実測（以降 CS 実測と称す）3），それぞれの飲水量と発汗量，脱水量の関係お よびそれらの水分量と環境（WBGT）の関係について検討し，両者を比較する。さらに，活動量と水分量の関係，実際の現場で作業前か ら作業後の脱水量•脱水率を検証する。建設現場での脱水の低減の ための飲水とVWW の効果について，環境（WBGT）•活動量の影響 を考慮しながら，先行研究の運動現場と比較し，今後の建設現場で の熱中症対策の基礎データとすることを目的とする。

2．実験•実測方法と解析方法

2． 1 人工気候室実験

AC 実験は，2018年6月に北海道大学工学部フロンティア応用科学研究棟内の人工気候室にて行われた。健康な $20 \sim 60$ 歳の男性型枠大工 9 名を被験者として，被験者は二人一組とし，1日は二名と

もVWW 着用，もう 1 日は二名とも VWW 非着用とした。服装は，長袖Tシャツ，ズボン，靴下，靴，ヘルメット，腰袋である。VWW着用条件では，長袖Tシャツの上にVWW を着用している。室温は $34^{\circ} \mathrm{C}$ ，相対湿度は 50% とし，型枠大工の模擬作業を行わせた。空調服以外の服装，それぞれの条件を統制し，VWW，時間帯の効果 を評価できるようにした。作業時間は，午前，午後それぞれ前半 40分，休憩 20 分，後半 40 分の計 100 分である。衣服を着用した状態 での体重（着衣時体重）と飲水量は $0,40,60,100$ 分目に測定し，裸体時体重は $0,50,100$ 分目に測定した（AM，PM 共に）。実験開始前に，被験者には 500 mL のスポーツドリンクを摂取させ，作業中も自由に飲水できるようスポーツドリンクを用意した。飲料容器 の減少量（飲水量）を記録したが，作業中トイレを使用した被験者 はいなかった。文献 2）と同様に，作業中の各部位皮膚温，心拍，活動量を測定した。活動量は左手首にライフレコーダ（A\＆D Corp．） をとりつけ各作業時間帯の平均を求め，体重•飲水量は，電子天び ん GP－100K（T\＆D Corp．）を用いて，それぞれ測定した。Fig． 1 に，発汗量（SR），飲水量（RWI），裸体時脱水量（RBWL），着衣時脱水量 （RBWLC），着衣残留汗量（SCC），蒸発量（ER）の関係を示す。式で表 すと以下のとおりである。

$$
\begin{align*}
& \text { RBWL }=\text { 実験前裸体時体重一実験後裸体時体重 } \tag{1}\\
& \mathrm{RBWLC}=\text { 実験前着衣時体重一実験後着衣時体重 } \\
& \mathrm{SCC}=\mathrm{RBWL}-\mathrm{RBWLC} \tag{3}\\
& \mathrm{ER}=\mathrm{RBWLC}+\mathrm{RWI} \tag{4}\\
& \mathrm{SR}=\mathrm{RBWL}+\mathrm{RWI} \tag{5}
\end{align*}
$$

それぞれの量を作業時間［h］，体重［kg］で除した値を「密度」と称 し，文献 6），7），8）と比較する。通常，建築系の研究では，放熱量 を検討するために，それぞれの水分量を作業時間•体表面積で除し た値を用いることが通常であるが，本報では，運動現場での文献 6），7），8）と比較するために，発汗•飲水•脱水の水分量を作業時間［h］体重［kg］で除した値を「密度」として用いることとした。また，実験時期の札幌の日平均気温は $2018 / 6 / 11 \sim 6 / 16$ に $9.4 \sim 14.1^{\circ} \mathrm{C}$ ${ }^{10)}$ ， $6 / 26 \sim 6 / 29$ に $15.9 \sim 20.8^{\circ} \mathrm{C}{ }^{10}$ ）であり，人工気候室 $\left(34^{\circ} \mathrm{C}\right)$ に比 べて外気温が低い期間に実験を実施したことを考慮し，本報では，午前，午後の $60 \sim 100$ 分の時間帯で皮膚温などが定常状態に達した と考え，その 40 分間の平均値を解析に用いることとする。本研究 は，北海道大学工学系研究倫理審査委員会の承認（海大工第153号，平成 30 年 5 月 7 日）を得て実施した。被験者には，実験前に予め

Fig． 1 Sweet rate，water intake，body weight loss，body weight loss while fully clothed，evaporative rate and sweat content of clothing

Fig． 2 WBGT at a construction site

実験内容を説明し，承諾を得ている。

2． 2 現場実測

CS 実測は文献3）のデータを用いる。建設作業は，基本的に昼休 み（12～13時）を挟んだ 8～17時に行われ，各30分の休憩を挟んで午前 2 回，午後 2 回の計 4 回の作業時間帯（AM1，AM2，PM1，PM2 と称す）に分けられている。作業中の飲水にはスポーツドリンクを用意し，着衣時体重，飲料容器の測定を AM1，AM2，PM1，PM2 の前後に計 8 回行った。その減少量から着衣時脱水量（RBWLC），飲水量（RWI）を求め，AC 実験と同様にそれぞれの量を作業時間［h］，体重 ［kg］で除した値「密度」として比較する。CS 実測では，各作業時間帯で活動量が一定ではないので，時間帯を通しての平均値で評価す ることにした。ただし，着衣時脱水量 $[\mathrm{g}]$ ，飲水量 $[\mathrm{g}]$ を用いて解析す る際は，それぞれ BWLC，WI とした。また現場のWBGT は，式（6） を用いて求めた。ただし，湿球温度は自然湿球温度ではなく，気温 と相対湿度から計算された通風湿球温度である。
$\mathrm{WBGT}=0.7 \times$ 通風湿球温度 $+0.2 \times$ 黒球温度 $+0.1 \times$ 気温
Fig． 2 に， $8 / 5$ を除く測定日の各作業時間帯の WBGT の平均値を示す。本報では，WBGT が警戒～厳重警戒を示した $8 / 7$ ， 8 の 2 日間 （WBGT： $26.7 \sim 30.4^{\circ} \mathrm{C}$ ，以降暑い日と称す）と ${ }^{11}$ ），注意～警戒を示 した 8／3，4の 2 日間（WBGT：21．0～26．4 ${ }^{\circ} \mathrm{C}$ ，以降涼しい日と称す） に分けて分析した。被験者は，型枠大工 4 名（20～68 歳）と鉄筋工 1名（24 歳）の合計 5 名のデータを使用した。被験者の型枠大工は，地上の休憩所から RC 構造物の $5 \sim 6$ 階の作業場まで，階段を使って徒歩で作業場まで移動し，鉄筋工は休憩所に隣接する地上部で主に作業した。 CS 実測ではSRを測定できないため，ER からSRを推定する式 ${ }^{3}$ を用いて VWW 着用時，VWW 非着用時の $\mathrm{SR}_{\text {with }}$ ， $\mathrm{SR}_{\text {without }}$ を求めた。RBWLは，式（5）を用いて算出した注1）。

2．3 VWW の効果検証

AC 実験では，各時間帯で求めた SR，RWI，RBWL，RBWLC，ER，活動量について，同一被験者の同じ時間帯を比較する対応のある t検定により VWW の効果について検証する。その後，RWI と SR， RBWL の関係について検証し，水分補給•VWW の効果を，同様の環境の運動現場実測 ${ }^{6}$－-8 ）と比較して評価する。
CS 実測では，まず RWI，RBWLC，ER，活動量について，涼しい日，暑い日で同一被験者の同じ時間帯で比較する対応のある t 検定 によりVWWの効果について検証し，AC 実験結果と比較する。そ の後，WBGT と，SR，RBWL，RWI それぞれの関係について，VWW の有無で評価する。次にRWI と SR，RBWLのそれぞれの関係での，

Fig． 3 Comparisons of sweat rate，rate of water intake，body weight loss and body weight loss with clothing，evaporative rate and activity between with and without VWW measured in artificial climate chamber at $34^{\circ} \mathrm{C}, 50 \%$

水分補給•VWW の効果について AC 実験，運動現場実測 ${ }^{6)}$ と比較 して評価する。さらに，AC 実験の活動量と SR，RWI，RBWL の関係を検証して，水分量における活動量の影響を評価する。最後に， AC 実験の結果を参照して，VWW や活動量が，建設現場での BWLC の一日の変動に及ぼす影響を総合的に検証する。

（a）With VWW

（b）Without VWW

Fig． 4 Comparisons of SR，ER，RWI，RBWLC，SCC and RBWL between with and without VWW measured in artificial climate chamber at $34^{\circ} \mathrm{C}, 50 \%$ ．Unit： $\mathrm{g} /(\mathrm{kg} \cdot \mathrm{h})$

Fig． 5 Relation between rate of water intake，and sweat rate and rate of body weight loss with and without VWW measured in artificial climate chamber at a fixed temperature $\left(34^{\circ} \mathrm{C}, 50 \%\right)$ and in ref．6）．

3．実験結果

3．1 人工気候室実験

3．1．1 水分量•活動量におけるVWW の効果

Fig． 3 に，SR，RWI，RBWL，RBWLC，ER，活動量の t 検定の結果 を示す。（a）VWW を着用していない被験者の SR（平均値 $6.8 \mathrm{~g} /(\mathrm{kg}$ • h））は，VWW 着用した場合（平均値 $5.7 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）より有意に高値を示した（ $\mathrm{p}<0.001$ ）。（b）RWI は，VWW を着用しない方（平均値 $2.9 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h}))$ が，着用した場合（平均値 $1.2 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h}))$ よりも有意に高値を示した（p＜0．001）。（c）RBWL では，VWW ありとVWW なしで有意な差が認められなかった。（d）VWWを着用した被験者の RBWLC（平均値 $3.1 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）は，VWW を着用しない場合（平均値 $1.9 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h}))$ より有意に高値を示した（ $\mathrm{p}<0.001$ ）。VWW を着用し ないと，VWW を着用した場合に比べて SR が有意に高くても，RWI が有意に高かったので，RBWLC が有意に低くなったと考えられた。 その一方，（d）ER では，VWW あり（平均値 $4.2 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h}))$ と VWW な し（平均値 $4.1 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）はほぼ同等で，有意な差が認められなかっ た。（e）活動量も，VWW あり（平均値 1.84 Mets ）と VWW なし（平均値 1.88 Mets ）はほぼ同等で，有意な差が認められなかった。

Fig． 4 に，SR，RWI，RBWL，RBWLC，SCC，ER の関係を，VWW

Fig． 6 Relations between WBGT and sweat rate，rate of body weight loss and water intake with and without VWW measured in a construction site and in ref． 7 （Valley ball players）\＆ 8 （Baseball players）．

の有無ごとに示す。VWW を着用すると $\mathrm{SCC}(1.4 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h}))$ は RBWL（4．5 g／（kg • h））の 31% ，VWWを着用しないと SCC（ $1.9 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）は RBWL $(3.9 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h}))$ の 49% となり，SCC が RBWL に大きな割合を占めている。

3．1．2 飲水密度と発汗密度，脱水密度の関係

Fig． 5 に，RWI と SR，RBWL の関係を，それぞれ文献 6）の近似直線と比較して示す。文献 6）の測定は，被験者が，上半身裸体，下半身水泳パンツ着用で実施されたので，本実験の RBWL と比較 した。Fig． 5 は，N＝38 のデータであるが，RWI が 0 であった被験者が 13 名いた。

Fig． 7 Comparisons of rate of water intake，body weight loss with clothing，evaporative rate and activity between with and without VWW measured in a construction site．
（a）VWW 着用時の SRは $5 \sim 8 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ で，RWI との間に有意な相関関係（r＝0．689，p＜0．01）が認められたが，VWW を着用しないと $4 ~ 10 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ で相関がなく，両者ともRWI の変化に関わらずほぼ一定の範囲にあった。（b）RBWL は，VWW 着用の有•無で，RWI と有意な相関関係（r＝－0．863，p＜0．001，r＝－0．887， $\mathrm{p}<0.001$ ）が見られ た。RWIの増加に伴って RBWL は減少し，近似直線はほとんど差 がなかった。ほぼ同じ環境温度（ $33^{\circ} \mathrm{C}$ ）下での文献 6 ）も同様に， SR は RWI の変化に関わらずほぼ一定（ $12.1 \sim 15.2 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）の範囲にあ り，RWIの増加に伴って減少し，本実験とほほ同じ傾向が見られた。 SR，RBWL とも本実験結果の概ね 2 倍の大きさだった。これは，文献6）の自転車エルゴメーターによる代謝量が $250 \mathrm{~W} / \mathrm{m}^{2}$ であり，本実験の模擬作業の平均活動量 $83 \mathrm{~W} / \mathrm{m}^{2}$ より高かったことが要因と して考えられる。暑熱環境が厳しくても一定の環境温度下では，建設作業においても，文献6）と同様に，発汗密度（SR）は飲水密度（RWI） に依存せずほぼ一定なので，RBWL は RWI の増加によって減らす ことができ，VWW 着用有無に関係なく水分補給によって脱水密度 を減らせることがわかる。

3． 2 屋外現場実測

3．2．1 WBGT と発汗密度，脱水密度，飲水密度の関係

Fig． 6 に，WBGT と SR，RBWL，RWI それぞれの関係を示す。
（a）SR は，VWW 有無に関係なく WBGTと有意な相関関係 （ $\mathrm{p}<0.05$ ）があり，特に VWW を着用しないと WBGT $=22 \sim 30^{\circ} \mathrm{C}$ で SR が $10 \sim 15 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ に急激に増大する。（b）RBWL は，VWW な しのみ WBGT と有意な相関関係（ $\mathrm{p}<0.01$ ）があり，WBGT $=22 \sim 30^{\circ} \mathrm{C}$ で RBWL は $5 \sim 12 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ に急激に増大する。VWW を着用して いると WBGT に関係なく $5 \sim 6.5 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ で概ね一定である。（c）RWI は，VWW の有無に関わらず WBGT と有意な関係が見られない。

Fig． 8 Comparisons of ER，RWI and RBWLC between with and without VWW measured in a construction site．Unit： $\mathrm{g} /(\mathrm{kg} \cdot \mathrm{h})$

Fig． 9 Relation between rate of water intake，and sweat rate and rate of body weight loss with and without VWW measured in a construction site．

これらの結果から，VWW 非着用や WBGT 上昇により SR が多くな るにも関わらず，VWW や WBGT は RWI には影響しないため，
VWW 非着用の場合に RBWL は高くなり，かつ WBGT に伴って上昇すると考えられた。

比較のために，バレーボール部員 ${ }^{7)}$ ，野球部員 ${ }^{8)}$ の結果を Fig． 6 に示す。代謝量はそれぞれ $180,150 \mathrm{~W} / \mathrm{m}^{2}$ と想定され ${ }^{12)}$ ，現場の平均 $107 \mathrm{~W} / \mathrm{m}^{2}$ より高かった。（a）SRは，バレーボールはVWW 非着用時 と，野球はVWW 着用時とほぼ同等であった。一方，（c）運動部員の RWI は，建設作業員よりも 2 倍以上多いのが特徴であった。この結果，（b）の RBWL において，バレーボール部員が VWW 着用時とほ ぼ同程度，野球部員は VWW 着用時よりも半分以下であった。運動現場では，SR が WBGT に伴って上昇するが，RWI もWBGT に伴

Fig． 10 Relations between activity and sweat rate，rate of water intake，and body weight loss with and without VWW measured in artificial climate chamber at a fixed temperature $\left(34^{\circ} \mathrm{C}\right)$ ．

い有意に増大するので，RBWL は WBGT と関係なくほぼ一定に保 たれる。しかし建設現場では，運動現場と同様に WBGT の上昇に伴い，SR が高くなる傾向が見られるものの，RWI が WBGT の上昇に伴い増大せず，しかも運動部員より顕著に低いので，運動現場 のように RBWL をWBGTに対して一定に維持することができない。 そのような状況でもVWW を着用することでSRを低減できるため， RBWL を低減できることが示された。

3．2．2 水分量•活動量における VWW の効果

Fig． 7 に，RWI，RBWLC，ER，活動量の t 検定の結果を示す。 （a）RWI では，VWW あり（平均値 $3.1 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ），VWW なし（平均値 $3.2 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）で有意な差が認められなかった。 AC 実験に比べて若干高くなったが概ね $3 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ に留まった。（b）RBWLC では， VWW を着用しない（平均値 $8.3 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）と，VWW 着用時（平均値 $6.5 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h}))$ より有意に高値を示した（ $\mathrm{p}<0.05$ ）。（ c$) \mathrm{ER}$ も同様に，

VWW を着用しない（平均値 $11.6 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h}))$ と，VWW 着用時（平均値 $9.6 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h}))$ より有意に高値を示した（p＜0．05）。VWW を着用しな い方が蒸発密度は高いにも関わらず，飲水密度が VWW 着用時と同等であるため，着衣時脱水密度は有意に高かったと考えられた。（e）活動量は，VWW あり（平均値 2．4Mets）と VWW なし（平均値 2．38Mets）には有意な差が認められなかったが，AC 実験の平均値 1．8Metsより 30% 高くなった。現場の被験者は， 5,6 階の作業場ま での階段の昇り降りと，材料の運搬に起因する歩行作業があるため，歩行が制限される人工気候室内での模擬作業に比べて，活動量が大 きかったと考えられた。建設現場の ER が，AC 実験の平均値 $4.2 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ の $2 \sim 3$ 倍の概ね $10 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ になったのは，活動量の差に起因すると考えられる。

Fig． 8 に，VWW 有無における RWI，RBWLC，ER の関係を示す。 AC 実験では RBWLC が VWW 着用時（平均値 $3.1 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ），VWW非着用時（平均値 $1.9 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）であったのに対し，現場では概ね VWW 着用時 2 倍，VWW 非着用時で 4 倍になっている。その結果， ERに対するRWI の割合はVWW 着用，非着用で，それぞれ 32% ， 28% となっており，SCC を考慮するとさらに水分補給率（SR に対す る WI の割合）は低くなる。これらは，ほぼ同様の WBGT 環境での野球，サッカーの水分補給率，それぞれ 92.4% ， $58.4 \%{ }^{13)}$ を大きく下回る。

3．2．3 飲水密度と発汗密度，脱水密度の関係

Fig． 9 に，現場での RWIと SR，RBWLの関係を示す。
AC 実験では，VWW を着用しないと，RWI に関わらず SR はほ ぼ一定の範囲にあった（Fig．5（a））。それに対し現場では，SR が有意 な相関関係（p＜0．01）で上昇し，RWI $=4 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ では $\mathrm{SR}=13 \mathrm{~g} /(\mathrm{kg}$ • h）となり，AC 実験より約 $6 \mathrm{~g} /(\mathrm{kg}$ •h）高くなった。これには，無効発汗が寄与していると考えられた。その結果，RBWL は Fig．5（b）の ようにRWI の増加に伴って減少せず，RWI $=4 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ で RBWL＝ $10 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ となった。
VWW を着用すると，SR は RWI との間に有意な相関関係（ $\mathrm{p}<$ 0．01）があるが，AC 実験と同様に RWI の増加に対して概ね一定な ので，RWI が高くなるに従い VWW なしの SR との差が大きくなっ た。その結果，RBWL も Fig．5（b）と同様に，RWI の増加に伴い減少 し，RWI $=4 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ で $\mathrm{RBWL}=6 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ となり，VWW 着用時と比較すると $4 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ 低くなった。
森本は，すでに脱水状態にある場合には水分補給時に発汗量が増加するが，充分水分を補給されている場合には発汗量は増加しない としている ${ }^{14)}$ 。VWW を着用しない場合，脱水密度は飲水密度が上昇するにつれて高くなり，AC 実験との差が大きくなることから，既に脱水状態であると考えることができる。それに対し，VWWを着用すると，発汗密度が飲水密度に対して AC 実験とほぼ同じ傾き となり，VWW なしに比べて発汗密度が抑えられた結果，脱水密度 を飲水密度の増加に伴い低減させることができることから，充分水分が補給されている状況と想定された。

4．考察

4． 1 人工気候室実験での活動量と飲水密度•発汗密度•脱水密度の関係

Fig． 10 に，活動量と RWI，SR，RBWLの関係を示す。（a）SR は，

活動量との間に有意な相関関係が認められなかったが，活動量が高 くなるに従い，SR が若干大きくなる傾向が見られた。（b）RWI で は，VWW 有無ともに，活動量と有意な相関関係（ $\mathrm{p}<0.01$ ）があり，活動量の増加に伴って RWI が大きくなり，VWW を着用しない方が VWW 着用時に比べて傾きが大きかった。（c）RBWL は，VWW を着用すると活動量と有意な相関関係（ $\mathrm{p}<0.01$ ）があり，活動量が高くな るに従い，RBWL は小さくなる。VWW なしはデータのバラツキが大きく，活動量と有意な相関関係が認められなかったが，VWW 着用時と同様に活動量が高くなるに従い，RBWL が小さくなる傾向が見られた。RWIはVWW 着用有無で差はあるが，活動量に依存して大きくなる一方，本実験範囲では SR は活動量に関わらずほぼ一定 であるため，RBWL はVWW に関係なく活動量が高くなるに従い減少する。これは，活動量が高くても，RWIを大きくすることによっ て，RBWL が上がらずかえって小さくできることを示唆している。 3．1．2 では，VWWあり・なしに関係なく，RBWLはRWIの増大に よって減らすことができるとしているが，この RWI の増大は，活動量が高くなったことに起因すると想定できる。また，Fig．10（a）で，回帰直線を外挿すると活動量が高くなるにつれ，VWW を着用しな い方が発汗量は高くなる。これは，ER が，低活動量のAC 実験で はVWW の有無で有意差がなかったのに対し，活動量が大きい CS実測では，VWWを着用しない方が有意に高くなった（Fig．7（c））結果 と符合している。

4． 2 脱水量，脱水率の一日の経時変動における VWW 有無の影響

休咊時間•昼休みを含めた脱水状況を把握するために，建設現場 の着衣時体重減少量（BWLC［g］）と脱水率の一日の経時変化を評価した。本来は，文献 7），8）のスポーツ選手のように半裸体状態（パ ンツのみ）での体重を測定して RBWL を求める必要があるが，現場の作業員を対象に行うことは困難である。現場では活動量が大き いため，RBWLC（VWW あり，VWW なしでそれぞれ平均値が 6．5， $8 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})($ Fig．8））は SCC より充分に大きいと考え，本報では BWLC［g］を用いて評価する。暑い日，涼しい日における被験者 5名の平均 BWLC と平均脱水率の日変動をVWW の有無で比較した結果を示す（Fig．11，12）。BWLC は，各測定時の着衣体重から実測開始時（AM1 作業開始時）着衣体重を差し引くので，RBWLC と異 なり，マイナスの値になる。被験者 5 名の平均体重は 66.7 kg であ る。脱水率（Dewatering Ratio）は，AM1 作業開始時を基準とし て，以下の式（7）から求める。

脱水率（\％）＝（AM1 作業開始時体重一各作業時間帯後体重）
／AM1 作業開始時体重 $\times 100$
まず，BWLCのVWW 有無での差について t 検定した。暑い日で は，VWW なし群（平均値 981.6 g ）は，VWW あり群（平均値 732.2 g ） に対し有意に高値を示した（p＜0．05）。WI（飲水量，［g］）は，VWW な し群（平均値 165.9 g ）と VWW あり群（平均値 171.3 g ）で有意な差がな く，活動量も VWW なし群（平均値 2.49 Mets ）と VWW あり群（平均値 2.29 Mets ）で有意な差がなかった。VWW が BWLC を低減する要因として，活動量が高くなるとVWWを着用した方が発汗量は低減 すること（Fig．10（a））や，WBGT の高い環境で発汗量が低減すること （Fig．6（a））が考えられた。涼しい日では，作業時間帯の脱水量の VWW あり群（平均値 692.0 g ）と VWW なし群（平均値 752.3 g ）での有意な差は認められなかった。

Fig． 11 BWLC and dewatering ratio（hot days）．

（b）Dewatering ratio

Fig． 12 BWLC and dewatering ratio（moderate days）．

次に，昼休みと午前，午後それぞれの休憩時間後の体重から休憩時間前の体重を差し引いて休憩時間中の水分補給量とし，VWW あ り・なしについて t 検定した。暑い日では，VWW なし群（平均値 295.0 g ）は VWW あり群（平均値 421.3 g ）に対し有意に水分補給量が少ない（p＜0．05）。涼しい日では，VWW あり群（平均値 322.7 g ）と VWW なし群（平均値 313.2 g ）での有意な差は認められなかった。 VWW 有無で休憩時間中の飲水量•尿量が概ね変わらないと想定す ると，VWW なしではVWW ありに比べて，休憩時間中に着衣残留汗の蒸発によって失われる水分量が多いことと，昼休みや休憩時間 の胸部温はVWW 着用者の $32^{\circ} \mathrm{C}$ に対し，VWW 非着用者は $34^{\circ} \mathrm{C}$ で概ね $2^{\circ} \mathrm{C}$ 高かったため ${ }^{11)}$ ，休憩時間中の発汗量が多かったことが要因として考えられる。

さらに，暑い日の VWW なしでの AM2，PM2 の作業終了時の平均脱水率は，それぞれ $1.52,2.03$ になり，WBGT $=26 \sim 28^{\circ} \mathrm{C}$ の環境で の生体モニタリングで休憩させる閾値である $1.50^{15)}$ を超えた値にな る。それに対して，VWW ありでの AM2，PM2 の作業終了時の平均脱水率は，それぞれ $1.18,1.45$ で 1.50 を下回った。この VWW 有無の平均脱水率の差には，作業時間中の脱水量の差に加えて，昼休 みを含めた休憩時間中の水分補給量の差も寄与していると考えられ る。一方，涼しい日での AM2，PM2 の作業終了時の平均脱水率は，

VWW 有無とも 1.5 以下であった。
島村らは，運動部の運動（ $2 \sim 4$ 時間）で $0.7 \sim 1.8 \mathrm{~kg}$ 発汗した後， 1時間に飲めるだけ飲んでも $0.4 \sim 1.0 \mathrm{~kg}$ 程度の水負債が続いた ${ }^{16)}$ と指摘している。建設現場では，熱中症の最も発生件数が多い時間帯 は，通常最高気温を記録した後に，気温が低下する時間帯の $15 \sim 17$時であるとの指摘がある ${ }^{17)}$ 。これらの結果から，厳しい暑熱環境の建設現場では，作業時間中の脱水に加えて，昼休みを含めた休憩時間の水分補給の不足による水負債が，午後作業終了時の脱水率増加 の要因となり，15～17時に熱中症による労働災害が多い 15）17）原因 である可能性がある。

文献 18）では，日平均 WBGT $=27.6 \sim 28^{\circ} \mathrm{C}$ の環境で， 23 人（型枠大工 7 人，解体工 3 人，清掃工 2 名，鉄骨工 2 名，断熱工 2 名，大工 2 名，他 5 名）の屋内外作業を対象とした 3 日間の実測では，午前の初期体重に対する体重減少率は，昼食時にほぼ回復し，午後再度増加し，作業終了時の平均は 1.3% で， 5 人の作業員が 2% を超えてい た。本現場の実測では，文献 18）と同等の環境の暑い日において，同じ条件のVWW なしの作業員の作業終了時の平均脱水率は 2.03% であり，2人の作業員が 2% を超えていた。文献 18）の建設作業員の飲水密度は $0.2 \sim 0.4 \mathrm{~L} / \mathrm{h} / 70 \mathrm{~kg}$ で，これは概ね $3 \sim 6 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ に相当 し，本現場の飲水密度の範囲 $0 \sim 6 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ と概ね一致しており，現場の作業員の自由な飲水密度は， $6 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ 程度が限界であると推定された。

5．まとめ

建設現場での飲水と VWW が脱水の低減に及ぼす効果について，環境（WBGT）•活動量の影響を考慮に入れて，先行研究の運動現場 と比較しながら，人工気候室実験（ $34^{\circ} \mathrm{C}, ~ 50 \%$ ）と現場実測の結果を用いて評価した。
人工気候室実験では，運動現場と同様に，VWW 有無に関わらず発汗密度は飲水密度に依存せずほぼ一定なので，飲水密度が増える ことで脱水量は低下した。この飲水密度の増大は，活動量が高くな ったことに起因すると考えることができ，活動量が高くなっても，飲水密度を大きくすることによって，脱水密度を小さくできること が示唆された。

実際の建設現場では，VWW を着用しないとWBGT の上昇に伴い発汗密度が高くなったが，運動現場のように WBGT の上昇に伴い飲水密度を増大させることができなかったため，脱水密度も増大し，運動現場の 2 倍（ $10 \mathrm{~g} /(\mathrm{kg} \cdot \mathrm{h})$ ）以上にも達した。また，飲水密度の上昇に伴い，発汗密度が実験のように概ね一定とならず高くなった。 すでに脱水状態にある場合には水分補給時に発汗密度が増加するが， ヒトが発汗により脱水が生じた後に飲水しても直ちに脱水を回復で きない，自発的脱水に起因しているとも考えられた 19）。その結果，飲水密度の上昇に伴い脱水密度が高くなり，同じ飲水密度に対して実験の 2 倍になった。一方，VWW を着用すると，WBGT の上昇に伴う発汗密度の上昇を低く抑えることができた。WBGT の上昇に伴 い飲水密度は増加しなかったものの，脱水密度をVWW 非着用時の概ね $1 / 2$ に低減できた。他方，蒸発密度に対する飲水密度は 30% 程度で，着衣残留汗密度を考慮すると水分補給率はさらに低下すると考えられ，同 WBGT 環境での野球，サッカーの水分補給率である 92.4% ， $58.4 \%^{13)}$ を大きく下回った。

休憩時間•昼休みを含めた脱水状況を評価するために，作業時間前後に測定した脱水量•脱水率の一日の経時変化を評価した。暑い日（WBGT＝27～31 $\left.{ }^{\circ} \mathrm{C}\right)$ ，涼しい日 $\left(W B G T=22 \sim 26^{\circ} \mathrm{C}\right)$ それぞれの 2日間において，被験者 5 名についてVWW 有無で比較した。暑い日 にVWW を着用しないと，午前，午後の作業終了時の平均脱水率は， それぞれ $1.52,2.03$ となり，生体モニタリングで休憩させる閾値で ある 1.50 を超えた値になった。それに対し，暑い日でも VWW を着用すると午前•午後作業終了時の脱水率は 1.5 以下だった。以上 のように，建設現場でのVWW は脱水の低減に有効であり，暑熱環境が厳しい現場での熱中症対策として，VWW 着用の義務化が望ま れる。
建設現場での水分補給が運動現場よりも少ないことの対策として，環境温度が高い場合には休憩頻度の増加により，飲水頻度を多くす るように，管理者の指導計画の改善が挙げられる ${ }^{20)}$ 。一方運動現場 では，給水回数を増加させる強制飲水では，1回の飲水量は自由飲水より低値であり，必要量に見合った飲水量の調節が行われていて，自由飲水で水分補給の目的は達成できるとしているが，供給時の容器の形態と練習中に容器が選手の近くにあることも補給率を高める条件となるとしている 13）。現場で水分補給率を向上させるために，給水回数を増加させる強制飲水を試みることや，容器の形態と作業中の容器の作業員との位置関係の工夫も，今後必要である。一方，人工気候室の模擬作業では，飲水密度の変化に関わらず発汗密度が概ね一定だったので，飲水密度が増大するに従い脱水密度が低減し たが，活動量が大きい現場では，脱水状態や自発的脱水の影響で，飲水密度が大きくなるに従い発汗密度が高くなるために，脱水密度 も高くなる。脱水状態や自発的脱水の影響の対策としては，午前•午後の作業前の時間帯からの飲水が挙げられる。

謝辞

実験と現場実測にご協力いただいた東京•札幌の被験者の皆様， データ解析にご尽力いただいた北海道大学工学院空間性能システム専攻修士 1 年の山田稜君に深謝します。貴重な文献を無償で提供し ていただいた日本スポーツ協会殿に感謝します。

注

注 1）文献 3）では，被験者の飲水量が 0 だったので，回帰式は ERと とR の関係と見なした。本実験では飲水があったので，回帰式をERと SR の関係として用い，RBWLはRWIを差し引いて求めた。

参考文献

1）Yamazaki，K．，Suga，S．，Takahashi，N．，Kuwabara，K．，and Kobayashi， K．：The Psychological and Physiological Effects of Air－conditioned Wear and Other Functions on Construction Workers，No． 1 Actual Investigation at Active Construction Site，Journal of Environmental Engineering（Transactions of AIJ），Vol．83，No．747，pp．453－463， 2018． 5 （in Japanese）
山﨑慶太，菅重夫，高橋直，委原浩平，小林宏一郎：ファン付き作業服が建設作業員の生理•心理反応に及ぼす影響と他の要因に関する研究，建設現場における実態調査その 1 ，日本建築学会環境系論文集，第 83 巻，第 747 号，pp．453－463，2018． 5
2）Yamazaki，K．，Suga，S．，Kuwabara，K．，Hamada，Y．，Syu，S．，Nakano， R．，Kobayashi，K．，and Takahashi，N．：Effect of Simulated Work in Artificial Climate Chamber on Physiological and Psychological

Responses of Construction Workers with Air－Conditioned Wear， Journal of Environmental Engineering（Transactions of AIJ），Vol．83， No．748，pp．543－553， 2018.6 （in Japanese）
山崎慶太，菅重夫，来原浩平，濱田靖弘，朱楚奇，中野良亮，小林宏一郎，高橋直：人工気候室での模擬作業がファン付き作業服を着用した建設作業員の生理•心理反応に及ぼす影響，日本建築学会環境系論文集，第 83巻，第748号，pp．543－553， 2018.6
3）Kuwabara，K．，Yamazaki，K．，Suga，S．，Kobayashi，K．，Hamada，Y．， and Takahashi，N．：Effect of Ventilated Work Wear and Working Schedule on Physiological and Psychological Responses of Construction Workers，No． 2 Actual Investigation at Active Construction Site，Journal of Environmental Engineering （Transactions of AIJ），Vol．84，No．756，pp．151－159，2019． 2 （in Japanese）．
㚣原浩平，山﨑慶太，菅重夫，小林宏一郎，濱田靖弘，高橋直：ファン付 き作業服と作業時間帯が建設作業員の生理•心理反応に及ぼす影響，建設現場における実態調査その 2 ，日本建築学会環境系論文集，第 84 巻，第 756 号，pp．151－159， 2019.2
4）Kondo，K．：Thermoregulatory responses in humans，Kobe University Repository，Vol．5，No．2，pp．55－66，1998． 3 （in Japanese）
近藤徳彦：人の体温調節反応，神戸大学発達科学部研究紀要， $5,2, \mathrm{pp}$ ． 55－66， 19983
5）Yoshida，T．：Introduction of studies on the prevention of heat disorders in Japan，Jpn．J．Biometeor．，Vol．52，No．2，pp．97－104， 2015 （in Japanese）
芳田哲也：日本における熱中症予防研究，日生気誌，Vol． 52 ，No． 2 ，pp． 97－104， 2015
6）Sato，Y．，and Niwa，K．：Effects if drinking on sweating and body cooling during exercise，Jpn．J．Phys．Fitness Sports Med．，Vol．46，pp． 113－122， 1997 （in Japanese）
佐藤靖丈，丹羽健市：運動時の飲水が発汗反応及び体温冷却に及ぼす影響，体力科学，Vol．46，pp．113－122， 1997
7）Niwa，K．，Nakai，S．，Asayama，M．，Hirata，K．，Hanawa，K．，Igawa，S．， Hirashita，M．，Sugawara，M．，and Itou，S．：A survey of ambient temperature，drinking，sweating，and body temperature，Jpn．J．Phys． Fitness Sports Med．，Vol．45，pp．151－158， 1996 （in Japanese）丹羽健市，中井誠一，朝山正巳，平田耕造，花輪啓一，井川正治，平下政美，菅原正志，伊藤静夫：運動時の環境温度と飲水量•発汗量及び体温に関する実態調查，体力科学，Vol．45，pp．151－158， 1996
8）Nakai，S．，Yoshida，T．，Yorimoto，A．，Okamoto，N．，and Morimoto，T．： Relationships between environmental temperature（WBGT）and body weight loss，fluid intake and sweat loss during physical exercise，Jpn． J．Phys．Fitness Sports Med．，Vol．43，pp．283－289， 1994 （in Japanese）中井誠一，芳田哲也，寄本明，岡本直輝，森本武利：運動時の発汗量と水分摂取量に及ぼす環境温度（WBGT）の影響，体力科学，Vol．43，pp． 283－289， 1994
9）Yamada，Y．，Kaneuchi，Y．，Yamazaki，K．，Suga，S．，Kuwabara，K．， Kubo，G．，Hamada，Y．，Kobayashi，K．，and Dempoya，A．：Study on the effect of Ventilated Working Wear on physiological and psychological responses of construction workers－Part VIII， $42^{\text {nd }}$ Symposium on Human－Environment．System，pp．19－22，2018． 12 （in Japanese）山田稜，金内遥一郎，山崎慶太，菅重夫，茉原浩平，久保元人，濱田靖弘，小林宏一郎，傅法谷郁乃：ファン付き作業服が建設作業員の生理•心理反応に及ぼす影響に関する研究，第8報人工気候室内における水分損失 と皮膚温の関係，第 42 回人間－生活環境系シンポジウム報告集，pp．19－22， 2018.12

10）Observed data on weather data in July 2018 at Sapporo，Website of Ministry of Land，Infrastructure and Japan Meteorological Agency， （accessed 2019．11．25）
国土交通省気象庁ホームページ，過去の気象データ検索：札幌 2018 年 6 月（ 日 ごと の 値））主 な 要 素 https：／／www．data．jma．go．jp／obd／stats／etrn／view／daily＿s1．php？prec＿no＝14\＆bloc $k_{-} n o=47412 \&$ year $=2018 \&$ month $=6 \&$ day $=\& v i e w=$
（参照 2019．11．25）
11）Yamazaki，K．，Suga，S．，Kuwabara，K．，Hamada，Y．，Kaneuchi，Y．，and Kobayashi，K．：Study on the effect of Ventilated Working Wear on
physiological and psychological responses of construction workers－PartVII， $42^{\text {nd }}$ Symposium on Human－Environment．System， pp．15－18，2018． 12 （in Japanese）
山崎慶太，菅重夫，茉原浩平，濱田靖弘，金内遥一郎，小林宏一郎：ファ ン付き作業服が建設作業員の生理•心理反応に及ぼす影響に関する研究，第7報建設現場における水分損失と皮膚温の関係，第42回人間－生活環境系シンポジウム報告集，pp．15－18，2018． 12
12）Ministry of Health，Labor and Welfare，Kenkou－zukuri no tameno undou－shishin， 2006
厚生労働省：健康づくりのための運動指針 2006
13）Nakai，S．Yoshida，T．Yorimoto，and A．Morimoto，T．：Analysis of the Rehydration Process during Physical Training in ot Environment，Desant sports Science，No．16，pp．91－106， 1995.6 （in Japanese）
中井誠一，芳田哲也，森本武利：運動時脱水回復に及ぼす給水方法の影響，デサントスポーツ科学，No．16，pp．91－106，1995．6
14）Morimoto，T．：Undoji no necchusyo－taisaku，Jpn．J．Phys．Fitness Sports Med．， Vol．56，pp．9－10， 2007 （in Japanese）森本武利：運動時の熱中症予防，体力科学，Vol．56，pp．9－10， 2007
15）Horie，M．：Nettyusyou o Husegou，Nettyusyou Rodoutaisaku no Kihon，Chyuou Roudou Saigai Boushi Kyokai， 2009 （in Japanese）
堀江正知：熱中症を防ごう 熱中症予防対策の基本，中央労働災害防止協会， 2009
16）Shimamura，M．，Nakao，F．，and Kaneko，K．：Fluid Replacement after Sweating Caused by Physical Exercise and Guidance of Eating and Drinking after Exercise，Jpn．J．Human and Living Environment，Vol．2，No．1，pp．75－81， 1995 （in Japanese）
島村実花，中島芙美子，金子佳代子：運動による発汗後の水分補給の実態 と飲食指導，人間と生活環境，Vol．2，No．1，pp．75－81， 1995
17）Koyama，T．，Matsufuji，Y．，Koyamada，H．，and Yamaguchi，K．：Tendency of Labor Accident on Hot weather Ambience，Journal of Structural Construction Engineering（Transactions of AIJ），No．600，pp．17－21， 2006.2 （in Japanese）．小山智幸，松藤泰典，小山田英弘，山口謙太郎：暑中環境における建設災害の発生傾向に関する研究，日本建築学会構造系論文集，第 600 巻，pp． 17－21，2006． 2
18）Ueno，S．，Sakakibara，Y．，Hisanaga，N．，Oka，T．，and Yamaguchi，S．：Heat Strain and Hydration of Japanese Construction Workers during Work in Summer．， Annual of work Exposures and Health，Vol．62，No．5，pp．571－582， 2018
19）Morimoto，T．：Suibun－taisya to Nettyusyou，Heisei 3 nendo Nihon taiiku Kyoukai Sports • Ikagaku－Kenkyu－Houkoku，No．VIII Sports－Katsudo ni okeru Nettyusyou－Ziko－Yobou ni Kansuru Kenkyu，Vol．1，pp．14－26， 1993 （in Japanese）
森本武利：水分代謝と熱中症，平成 3 年度日本体育協会スポーツ・医科学研究報告，No．VIIIスポーツ活動における熱中症事故予防に関する研究—第1報一，pp．14－26， 1993
20）Kajiwara，Y．，Kawashima，S．，Itoh．K．，Izutsu，S．，and Nozaki，T．： Environmental Temperature during Summer Baseball Practice as Viewed from Problems of Heat Stress and Physiological Work Load，Kyouiku－Gakubu Kiyo， Bunkyou Daigaku Kyouiku－Gakubu，No．36，pp．73－82， 2002 （in Japanese）梶原洋子，川嶋伸次，伊東浩司，井筒柴乃，野崎忠信：夏季の野球練習時の環境温，発汗量，飲水量，脱水率，体温上昇度および心拍反応から みた生体負担度について，「教育学部紀要」文教大学教育学部，No．36， pp．73－82， 2002

REDUCTION OF DEHYDRATION BY WATER INTAKE AND VENTILATED WORKING WEAR AT A CONSTRUCTION SITE IN SUMMER

Relation between the sweet rate，body weight loss，water intake，WBGT and activity during construction work

Keita YAMAZAKI ${ }^{* 1}$ ，Kohei KUWABARA ${ }^{* 2}$ ，Shunsuke SOMEYA＊3， Yasuhiro HAMADA ${ }^{* 4}$ and Koichiro KOBAYASHI＊5

＊1 Takenaka Research \＆Development Institute，Dr．Eng．／ Visiting Prof．of Iwate University
${ }^{* 2}$ Assoc．Prof．，National Institute of Technology，Kushiro College，Dr．Eng
${ }^{* 3}$ Assoc．Chief Researcher，Takenaka Research \＆Development Institute
${ }^{* 4}$ Prof．，Graduate School of Engineering，Hokkaido Univ．，Dr．Eng．
${ }^{* 5}$ Prof．，Dept．of Systems Innovation Engineering，Iwate University，Dr．Eng．

To obtain basic data for prevention of heat stroke during construction work in a hot environment，we analyzed the effects of wearing ventilated work wear（VWW）and water intake（RWI）．First，experiments were carried out with nine male form workers in an artificial climate chamber（AC）at $34^{\circ} \mathrm{C}$ ．Second，measurements were carried out with four male form workers and one male rebar placer at an outside construction site（CS）for four days in August 2017. It was carried out from 8：00 to 17：00 and was divided into four shifts split up by breaks as follows：8：00 to 10：00， 10：30 to 12：00， $13: 00$ to $15: 00$ ；and $15: 30$ to 17：00．Activity amount（ACT）was continuously measured．WBGT was measured in the CS．The sweat rate（SR），the rate of naked body weight loss（RBWL，only in the AC），body weight loss while fully clothed（RBWLC），and RWI were each measured and calculated as the difference between the values before and after work per unit time．Evaporation rate（ER）was defined as the sum of RBWLC and RWI．SR in the CS was estimated from the ER by using the regression equation between ER and SR in the AC data．
In the AC experiment，the SR during work was constant and RBWL was negatively correlated with RWI，those were statistically significant，regardless of whether the workers wore VWW．The RWI and SR of workers not wearing VWW were significantly higher than those of workers wearing VWW．RWI increased significantly and RBWL decreased as ACT increased．This is the reason that RBWL was negatively correlated with the RWI in the AC．

In the CS experiments，the SR of workers not wearing VWW increased significantly as WBGT increased，but the RWI did not change significantly；as a result，RBWL increased significantly with WBGT．The SR of individuals wearing VWW，which was lower than that of those not wearing VWW，remained almost constant with increasing WBGT，whereas RWI did not increase with WBGT．As expected from these results，RBWL remained constant as WBGT increased and was consistently lower than that of workers not wearing VWW．The ER of works in the CS was significantly higher than that of those in the AC due to the difference between the averaged ACT in the AC（1．8 Mets）and CS（2．4 Mets）．In the CS experiments，we estimated the dewatering ratio（DR）by body weight loss while fully clothed（BWLC），since BWL was not measured．The fluctuation during working shifts of BWLC and DR of workers was compared between those wearing and those not wearing VWW on hot two days．In the shifts，the BWLC of workers not wearing VWW was significantly higher than that of those wearing VWW．Furthermore，in the breaks between shifts，the amount of water recovered by workers not wearing VWW was significantly lower than that of those wearing VWW．As a result，after the last shift，the average DR（2．03）of workers not wearing VWW was higher than that of those wearing VWW（1．53）．

We supposed there is a limit to the amount of water that workers in a construction site can drink．Thus，we verified that，in the CS setting，RBWL increased with increasing WBGT mainly due to insufficient RWI，but could be partly decreased by using VWW，which decreased the SR．

[^0]: ＊ 1 （株竹中工務店技術研究所 博士（工学）／
 Takenaka Research \＆Development Institute，Dr．Eng．／
 岩手大学理工学部 客員教授
 Visiting Prof．of Iwate University
 ＊2 釧路工業高等専門学校 准教授•博士（工学）
 ＊3 株竹中工務店技術研究所 研究主任
 ＊4 北海道大学大学院工学研究院 教授•博士（工学）
 Assoc．Prof．，National Institute of Technology，Kushiro College，Dr．Eng．
 Assoc．Chief Researcher，Takenaka Research \＆Development Institute
 Prof．，Graduate School of Engineering，Hokkaido Univ．，Dr．Eng．
 Prof．，Dept．of Systems Innovation Engineering，Iwate University，Dr．Eng．

