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Plant species detection and classification with image analysis

focused on deep learning techniques in natural environments
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Forests, with an area of 4.15 billion hectares, cover large areas of the earth surface and provide essential
economic, environmental, and social services, like balancing carbon cycles, conserve biodiversity and
regulate fresh water supplies. Human disturbances and climate change affect forest ecosystems, their
growth and resilience. Changing forest stresses and changes in the ecosystem increased the demand of
accurate forest information. This is especially important in Japan, due to the sheer magnitude and
complexity of the forest area, composed of natural mixed broadleaved deciduous forests.

Traditionally, information about forests has been collected using expensive and work-intensive field
inventories collecting data about tree species compositions, distributions and forest structures by
identifying trees and counting them. These and further information are needed to do sustainable forest
management and monitoring of the ecosystems. Challenging environments restricted forest inventories
to be conducted in small field plots and data were scaled-up to forest stand levels. In natural mixed
forests small field plots were found to be less representative for the forests studied.

In recent years Unmanned Aerial Vehicles (UAVs) have become very popular as they represent a simple
and inexpensive way to do automated flied surveys by gathering high resolution data of large forested
areas. Among the many sensors that UAVs can carry, RGB cameras are fast, cost-effective and make the
data gathering and interpretation easy, as they do not need intensive calibrations or pre-processing. With
spatial resolution of less than 1 m, canopy structures and even leave structures can be identified, so that
tree species classification can be performed from images. In addition, deep learning (DL) has also been

catching more attention in the field of forestry. In particular as a way to include the knowledge of



forestry experts into automatic software pipelines, to deal with tree detection, tree health or tree species
classification. The increasing numbers of studies performed in forestry using DL together with
improving software and data availability increased the need of such kind of studies in Japan’s forests.

In this study three methodologies were applied to characterise and evaluate natural mixed forests in
Japan regarding their tree species composition, distribution and structure: Field surveys, Image analysis
with GIS application and deep learning. These three methodologies were used for the main analysis of
the Yamagata University Research Forest (YURF) sites, as one aspect was that the deep learning results
needed to be evaluated regarding their accuracy compared with field inventories. The other aspect was
that the collected images could further be used for image analysis with Geographic Information
Systems (GIS). Therefore, field data were collected in the traditional way of classifying tree species and
counting them in the field. Data were collected for seven sites with distribution and survey maps, while
for three slope sites only tree counting information were provided. For the total of 13 sites, image
analyses were performed using manual annotations and GIS applications generating tree survey, tree
distribution, density, count, hot spot, DEMs, aspect and slope maps for the different sites and tree
species. In total, 70 tree species were identified in the field, while 41 species classes were identified
from the images. Field and image results were analysed regarding biodiversity, densities, frequencies
and dominant tree species in the different considered sites. Results of the image analyses and the field
analyses were similar, when canopy and subcanopy species were considered; differences were mainly
found for understory vegetation and shrubs, which were hardly identifiable from images. Significant
differences occurred only in the slope sites, where small Quercus mongolica and Fagus crenata trees
were covered by canopy layer species, but still dominated those forests, according to the field data. The
image data identified several species as dominant, depending on the observed site (Magnolia obovata,
small-leaved Acer, Acer mono maxim and Quercus mongolica. In riparian and terrace sites, Juglans
ailantifolia, Pterocarya rhiofolia, Salix species and Acer species dominated the sites. Biodiversity
measures indicated a higher diversity when field data were used, in contrast to image data. While the
Shannon diversity values ranged between 1.73 and 2.39 (with the evenness ranging between 55 % and
82 %) for the image analysis results, it ranged between 2.14 and 2.76 (evenness: 71 % - 84 %).
Layering of the forest was better classified with the field data, as all layers could be easily identified,
while most of the lower vegetation could not be identified from images. The forest sites were classified
based on the layering and the dominance of tree species, while the dominance of canopy areas was used
for the classification. Riparian and terrace sites were Juglans ailantifolia forests with Pterocarya
rhiofolia and Salix as co-dominant species. According to the results of the image analyses, Juglans
ailantifolia, Acer species, Magnolia obovata and Quercus mongolica were the dominant species, which
confirmed the field analysis, but with a different order (small-leaved Acer and Quercus mongolica were

the majority). The evaluation of the images with GIS tools enhanced the visibility of important aspects



hidden in the data, and spatial information could be easily extracted and interpretated.

Generally, image analyses of tree canopy areas provided more accurate information than tree counting,
as dense canopy areas hampered counting. To evaluate semi-automatic counting, field data, DEMs,
summer and winter images were used to count tree species. Highest accuracies were reached when
counting was performed on winter images, while small and young trees still remained challenging to
count.

The main aim was to classify plant species automatically with deep learning techniques. Therefore, data
were gathered in the 13 sites in the YURF in four seasons and over three years, as well as in the coastal
forest near Sakata city and in Lichtenmoor, a wetland area in Germany. The 13 sites in YURF were
divided into Riparian, Terrace and Slope sites. All images were processed with Metashape to produce
orthomosaics and DEMs (Digital Elevation Models). In a first step, deep learning was applied to a
simple example of classifying trees with leaves versus trees without leaves (deciduous vs. evergreen) in
winter images, to assess the effect of transfer learning and deep learning architectures (ResNet50 and
UNet). In this approach also multi-label patch (MLP) classification versus sematic segmentation were
studied, breaking the orthomosaics into image patches. The results showed that transfer learning is
necessary to achieve satisfactory outcome with MLP classification of deciduous versus evergreen trees.
In the winter orthomosaic dataset the improvement from no transfer learning to transfer learning from a
general-purpose dataset was 9.78 %. Furthermore, the ResNet50 architecture showed a high
performance with better results than the UNet. The results indicated already that data balancing is an
important topic. The study of invasive blueberry species, endangering sensitive wetland environments
and black locusts invading into coastal forests, were two more application-oriented examples, with an
easier problem definition: Classifying target species in a natural green environment. The ResNet50
architecture was used with transfer learning to detect black locust trees in an evergreen coniferous black
pine forest with a 75 % of True Positives (TP) and 9 % False Positives (FP) while the detection of
native trees achieved 95 % TP and 10 % FP. Detections of invasive blueberry bushes were performed
with ResNet50, transfer learning and unfrozen weights with True Positive Values (TPV) of 93.83 % and
an Overall Accuracy (OA) of 98.83 %. A refinement of the result masks reached a Dice of 0.624. Image
analyses were performed to produce maps of blueberry location, distribution and spread in each study
site, as well as bush height and area information. A preliminary study of different deep learning
networks, transfer learning, the use of data augmentation and loss functions and settings were tested for
the detection of invasive blueberry species. The challenge of the data was the imbalance, as invasive
species had fewer individuals than natural occurring plants. In this study of state-of-the-art deep
learning architectures the best results were obtained with the ResNeXt architecture (93.75 True Positive
rate), and 98.11 % accuracy for the Blueberry class with ResNet50; Densenet and wideResNet

calculated similar results. The knowledge, gained with easy examples, was then applied to automatic



tree species classification in natural mixed forest. This study provides an efficient and effective
methodology to study forests and other natural environments, like wetlands, using different techniques:
field surveys, image analyses and deep learning. Automatic generated results showed high accuracies
and indicated the applicability of the methodology in different fields. Image analyses extract the most
important information of aerial images, depending on the study focus. Field data captured a lot of
information that could not be extracted from images, and therefore the methodology set provided new

and important insights into forest environments.
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Forests, with an area of 4.15 billion hectares, cover large areas of the earth surface and provide
essential economic, environmental, and social services, like balancing carbon cycles, conserve
biodiversity and regulate fresh water supplies. Human disturbances and climate change affect forest
ecosystems, their growth and resilience. Changing forest stresses and changes in the ecosystem
increased the demand of accurate forest information. This is especially important in Japan, due to the
sheer magnitude and complexity of the forest area, composed of natural mixed broadleaved deciduous
forests.

Traditionally, information about forests has been collected using expensive and work-intensive field
inventories collecting data about tree species compositions, distributions, and forest structures by
identifying trees and counting them. These and further information are needed to do sustainable forest
management and monitoring of the ecosystems. Challenging environments restricted forest inventories
to be conducted in small field plots and data were scaled-up to forest stand levels. In natural mixed
forests small field plots were found to be less representative for the forests studied.

In recent years Unmanned Aerial Vehicles (UAVs) have become very popular as they represent a
simple and inexpensive way to do automated flied surveys by gathering high resolution data of large
forested areas. Among the many sensors that UAVs can carry, RGB cameras are fast, cost-effective and
make the data gathering and interpretation easy, as theydo not need intensive calibrations or pre-

processing. With spatial resolution of less than 1 m, canopy structures and even leave structures can be



identified, so that tree species classification can be performed from images. In addition, deep learning
(DL) has also been catching more attention in the field of forestry. In particular, the inclusion of
knowledge from forestry experts into automatic software pipelines to deal with tree detection, tree
health or tree species classification. The increasing numbers of studies performed in forestry using DL
together with improving software and data availability increased the need of such kind of studies in
Japan’s forests.

In this study three methodologies were applied to characterize and evaluate natural mixed forests in
Japan regarding their tree species composition, distribution, and structure: Field surveys, Image analysis
with GIS application and deep learning. These three methodologies were used for the main analysis of
the Yamagata University Research Forest (YURF) sites, as one aspect was that the deep learning results
needed to be evaluated regarding their accuracy compared with field inventories. The other aspect was
that the collected images could further be used for image analysis with Geographic Information
Systems (GIS). Therefore, field data were collected in the traditional way of classifying tree species and
counting them in the field. Data were collected for seven sites with distribution and survey maps, while
for three slope sites only tree counting information were provided. For the total ofl3 sites, image
analyses were performed using manual annotations and GIS applications generating tree survey, tree
distribution, density, count, hot spot, DEMs, aspect and slope maps for the different sites and tree
species. In total, 70 tree species were identified in the field, while 41 species classes were identified
from the images. Field and image results were analyzed regarding biodiversity, densities, frequencies,
and dominant tree species in the different considered sites. Results of the image analyses and field
analyses were similar, when canopy and sub-canopy species were considered; differences were mainly
found for understory vegetation and shrubs, which were hardly identifiable from images. Significant
differences occurred only in the slope sites, where small Quercus mongolica and Fagus crenata trees
were covered by canopy layer species, but still dominated those forests, according to the field data. The
image data identified several species as dominant, depending on the observed site (Magnolia obovata,
small-leaved Acer, Acer monomaxim and Quercus mongolica. In riparian and terrace sites, Juglans
ailantifolia, Pterocarya rhiofolia, Salix species and Acer species dominated the sites. Biodiversity
measures indicated a higher diversity when field data were used in contrast to image data. While the
Shannon diversity values ranged between 1.73 and 2.39 (with the evenness ranging between 55%and
82%) for the image analysis results, it ranged between 2.14 and 2.76 (evenness: 71% -84%). Layering
of the forest was better classified with the field data, as all layers could be easily identified, while most
of the lower vegetation could notbe identified from images. The forest sites were classified based on the
layering and the dominance of tree species, while the dominance of canopy areas was used for the
classification. Riparian and terrace sites were Juglans ailantifolia forests with Pterocarya rhiofolia and
Salix as co-dominant species. According to the results of the image analyses, Juglans ailantifolia, Acer
species, Magnolia obovate and Quercus mongolica were the dominant species, which confirmed the
field analysis, but with a different order (small-leaved Acer and Quercus mongolica were the majority).
The evaluation of the images with GIS enhanced the visibility of important aspects hidden in the data,
and spatial information could be easily extracted and interpretated.

Generally, image analyses of tree canopy areas provided more accurate information than tree counting,

as dense canopy areas hampered counting. To evaluate semi-automatic counting, field data, DEMs,



summer and winter images were used to count tree species. Highest accuracies were reached when
counting was performed on winter images, while small and young trees still were difficult to count.

The main aim was to classify plant species automatically with deep learning techniques. Therefore, data
were gathered in the 13 sites in the YUREF in four seasons and over three years, as well as in the coastal
forest near Sakata city and in Lichten moor, a wetland area in Germany. The 13 sites in YURF were
divided into Riparian, Terrace and Slope sites. All images were processed with Metashape to produce
orthomosaics and DEMs (Digital Elevation Models). In a first step, deep learning was applied toa
simple example of classifying trees with leaves versus trees without leaves (deciduous vs. evergreen) in
winter images, to assess the effect of transfer learning and deep learning architectures (ResNet50 and
UNet). In this approach also multi-label patch (MLP) classification versus sematic segmentation were
studied, breaking the orthomosaics into image patches. The results showed that transfer learning is
necessary to achieve satisfactory outcome with MLP classification of deciduous versus evergreen trees.
In the winter orthomosaic dataset the improvement from no transfer learning to transfer learning from a
general-purpose dataset was 9.78%. Furthermore, the ResNet50 architecture showed a high
performance with better results than the UNet. The results indicated already that data balancing is an
important topic. The study of invasive blueberry species, endangering sensitive wetland environments
and black locusts invading into coastal forests, were two more application-oriented examples, with an
easier problem definition: Classifying target species in a natural green environment. The ResNet50
architecture was used with transfer learning to detect black locust trees in an evergreen coniferous black
pine forest with a 75% of True Positives (TP) and 9% False Positives (FP) while the detection of native
trees achieved 95% TP and 10% FP. Detections of invasive blueberry bushes were performed with
ResNet50, transfer learning and unfrozen weights with True Positive Values (TPV) of 93.83% and an
Overall Accuracy (OA) of 98.83%. A refinement of the result masks reached a Dice of 0.624. Image
analyses were performed to produce maps of blueberry location, distribution and spread in each study
site, as well as bush height and area information. A preliminary study of different deep learning
networks, transfer learning, the use of data augmentation and loss functions and settings were tested for
the detection of invasive blueberry species. The challenge of the data was the imbalance, as invasive
species had fewer individuals than natural occurring plants. In this study of state-of-the-art deep
learning architectures the best results were obtained with the ResNeXt architecture (93.75 True Positive
rate), and 98.11%accuracy for the Blueberry class with ResNet50;Densenet and wideResNet calculated
similar results. The knowledge, gained with easy examples, was then applied to automatic tree species
classification in natural mixed forest. This study provides an efficient and effective methodology to
study forests and other natural environments, like wetlands, using different techniques: field surveys,
image analyses and deep learning. Automatic generated results showed high accuracies and indicated
the applicability of the methodology in different fields. Image analyses extract the most important
information of aerial images, depending on the study focus. Field data captured a lot of information that
could not be extracted from images, and therefore the methodology set provided new and important

insights into forest environments.
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