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Foreword 

On the first view this thesis gigantic number of papers, pages, images and words and the reader might 

want to put the thesis away as it just seems to be too much. But before you, dear reader, put aside 

this heavy piece of a work, take a moment for reading this foreword and reconsider your decision. This 

study is composed of the main study, a side project, three kinds of forests, 13 studied sites, three 

methodologies, four seasons of data and three years of work. During my time as a PhD student, I was 

able to learn and practice the application of three completely different topics: Forestry science, 

Geographic Information Systems and deep learning. I had three years to learn to deal with the terms 

of all these fields and to understand all three sides, and I can say I made it. I dealt with scientists from 

three different specialities, communicated between them and focussed on the main goal of this study 

to finish a work, which might influence the field I am working in. (By the way, once during my studies, 

I had a lecture in geologic engineering, as student of geosciences, and the professor told us, when you 

put an engineer and a geologist together in a room and tell them to build a house: the engineer will 

talk about constructions and the geologist about soils and rocks, but both will not understand the other. 

So, believe me, it's kind of hard work to be the facilitator between three parties that do not really 

understand each other. 

So, all the experiences I made and challenges I faced are part of this thesis. My goal with this study is 

to provide the necessary information to understand what I did and to follow the work. 

Now dear reader, I want to explain you how this thesis is supposed to work. You will find an 

introduction and state of the art, which explains the study and their objectives. The following part is a 

long methodology chapter. It is composed of information of the three methodologies applied, 

important terms, which are needed to be understood and explanations about what we need and how 

to apply. This chapter contains the explanations for the forestry side of the work. In case you are from 

the forestry side, you may want to skip explanations about the structure of forests, tree species, 

diversity indices and how forests are classified. Explanations about image analysis and more precise 

deep learning are maybe completely new for you, terms like transfer learning, raster and Gaussian 

smoothing sounds like talking about the outer space. But fast forest inventories and automatic 

classification sounds like a dream for you, then you are most probably interested in getting a quick 

overview of terms and application in my image analysis and deep learning chapter. Perhaps you are 

not from forestry, but deep learning, then you are most probably an expert in you field and don't need 

any explanations on deep leaning. You are maybe sick of medical images and now want to apply your 

skills in the field of forestry, but you don't know anything about forests or what you can do to help 

with your expertise, please have a closer look at the forestry side of this study. Please, dear reader, do 
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not misunderstand me, you don't have to be from one of the mentioned fields, as long as you are 

interested in any aspect of this thesis you are invited to have a look into this. 

As having said this also the single chapters focus on different topics: some more related to forestry, 

some to image analysis and some to deep learning. Each chapter has its own small introduction, 

methodology part, results part and discussion part. So, dear reader, you can pick a single chapter, read 

it and you will find all necessary information that you need to understand it. Again, when you want to 

know more, please refer to the methodology chapter. An exemption is my main topic, which are the 

last chapters of my thesis. Of course, you can also read single chapters there with a full understanding 

of what happened there, but this study is a comprehensive work of the different methodologies, which 

in the end work as one functional construction. Therefore, there is a separate chapter, which discusses 

the results of all results gathered for the study sites in the mixed forest in Shonai area. 

To come to an end now, I hope I was able to explain you my idea behind this work. I hope, dear reader, 

you are now less afraid of the immense number of words lying in front of you. Take your time to check 

the table of content and find the piece of work, which interests you and have a look at it. I can promise 

you will not waste your time. 
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V. Summary in English  

Forests, with an area of 4.15 billion hectares, cover large areas of the earth surface and provide 

essential economic, environmental and social services, like balancing carbon cycles, conserve 

biodiversity and regulate fresh water supplies. Human disturbances and climate change affect forest 

ecosystems, their growth and resilience. Changing forest stresses and changes in the ecosystem 

increased the demand of accurate forest information. This is especially important in Japan, due to the 

sheer magnitude and complexity of the forest area, composed of natural mixed broadleaved deciduous 

forests. 

Traditionally, information about forests has been collected using expensive and work-intensive field 

inventories collecting data about tree species compositions, distributions and forest structures by 

identifying trees and counting them. These and further information are needed to do sustainable 

forest management and monitoring of the ecosystems. Challenging environments restricted forest 

inventories to be conducted in small field plots and data were scaled-up to forest stand levels. In 

natural mixed forests small field plots were found to be less representative for the forests studied.  

In recent years Unmanned Aerial Vehicles (UAVs) have become very popular as they represent a simple 

and inexpensive way to do automated flied surveys by gathering high resolution data of large forested 

areas. Among the many sensors that UAVs can carry, RGB cameras are fast, cost-effective and make 

the data gathering and interpretation easy, as they do not need intensive calibrations or pre-processing. 

With spatial resolution of less than 1 m, canopy structures and even leave structures can be identified, 

so that tree species classification can be performed from images. In addition, deep learning (DL) has 

also been catching more attention in the field of forestry. In particular as a way to include the 

knowledge of forestry experts into automatic software pipelines, to deal with tree detection, tree 

health or tree species classification. The increasing numbers of studies performed in forestry using DL 

together with improving software and data availability increased the need of such kind of studies in 

Japan’s forests.  

In this study three methodologies were applied to characterise and evaluate natural mixed forests in 

Japan regarding their tree species composition, distribution and structure: Field surveys, Image 

analysis with GIS application and DL. These three methodologies were used for the main analysis of 

the Yamagata University Research Forest (YURF) sites, as one aspect was that the DL results needed to 

be evaluated regarding their accuracy compared with field inventories. The other aspect was that the 

collected images could further be used for image analysis with Geographic Information Systems (GIS). 

Therefore, field data were collected in the traditional way of classifying tree species and counting them 

in the field. Data were collected for seven sites with distribution and survey maps, while for three Slope 
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sites only tree counting information were provided. For the total of 13 sites, image analyses were 

performed using manual annotations and GIS applications generating tree survey, tree distribution, 

density, count, hot spot, DEMs, aspect and slope maps for the different sites and tree species. In total, 

70 tree species were identified in the field, while 41 species classes were identified from the images. 

Field and image results were analysed regarding biodiversity, densities, frequencies and dominant tree 

species in the different considered sites. Results of the image analyses and the field analyses were 

similar, when canopy and subcanopy species were considered; differences were mainly found for 

understory vegetation and shrubs, which were hardly identifiable from images. Significant differences 

occurred only in the Slope sites, where small Quercus mongolica and Fagus crenata trees were covered 

by canopy layer species, but still dominated those forests, according to the field data. The image data 

identified several species as dominant, depending on the observed site (Magnolia obovata, small-

leaved Acer, Acer mono maxim and Quercus mongolica. In Riparian and Terrace sites, Juglans 

ailantifolia, Pterocarya rhoifolia, Salix species and Acer species dominated the sites. Biodiversity 

measures indicated a higher diversity when field data were used, in contrast to image data. While the 

Shannon diversity values ranged between 1.73 and 2.39 (with the evenness ranging between 55 % and 

82 %) for the image analysis results, it ranged between 2.14 and 2.76 (evenness: 71 % - 84 %). Layering 

of the forest was better classified with the field data, as all layers could be easily identified, while most 

of the lower vegetation could not be identified from images. The forest sites were classified based on 

the layering and the dominance of tree species, while the dominance of canopy areas was used for the 

classification. Riparian and Terrace sites were Juglans ailantifolia forests with Pterocarya rhoifolia and 

Salix as co-dominant species. According to the results of the image analyses, Juglans ailantifolia, Acer 

species, Magnolia obovata and Quercus mongolica were the dominant species, which confirmed the 

field analysis, but with a different order (small-leaved Acer and Quercus mongolica were the majority). 

The evaluation of the images with GIS tools enhanced the visibility of important aspects hidden in the 

data, and spatial information could be easily extracted and interpretated. Generally, image analyses of 

tree canopy areas provided more accurate information than tree counting, as dense canopy areas 

hampered counting. To evaluate semi-automatic counting, field data, DEMs, summer and winter 

images were used to count tree species. Highest accuracies were reached when counting was 

performed on winter images, while small and young trees still remained challenging to count.  

The main aim was to classify plant species automatically with DL techniques. Therefore, data were 

gathered in the 13 sites in the YURF in four seasons and over three years, as well as in the coastal forest 

near Sakata city and in Lichtenmoor, a wetland area in Germany. The 13 sites in YURF were divided 

into Riparian, Terrace and Slope sites. All images were processed with Metashape to produce 

orthomosaics and DEMs (Digital Elevation Models). In a first step, DL was applied to a simple example 

of classifying trees with leaves versus trees without leaves (deciduous vs. evergreen) in winter images, 
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to assess the effect of transfer learning and DL architectures (ResNet50 and UNet). In this approach 

also multi-label patch (MLP) classification versus sematic segmentation were studied, breaking the 

orthomosaics into image patches. The results showed that transfer learning is necessary to achieve 

satisfactory outcome with MLP classification of deciduous versus evergreen trees. In the winter 

orthomosaic dataset the improvement from no transfer learning to transfer learning from a general-

purpose dataset was 9.78 %. Furthermore, the ResNet50 architecture showed a high performance with 

better results than the UNet. The results indicated already that data balancing is an important topic. 

The study of invasive blueberry species, endangering sensitive wetland environments and black locusts 

invading into coastal forests, were two more application-oriented examples, with an easier problem 

definition: Classifying target species in a natural green environment. The ResNet50 architecture was 

used with transfer learning to detect black locust trees in an evergreen coniferous black pine forest 

with a 75 % of True Positives (TP) and 9 % False Positives (FP) while the detection of native trees 

achieved 95 % TP and 10 % FP. Detections of invasive blueberry bushes were performed with ResNet50, 

transfer learning and unfrozen weights with True Positive Values (TPV) of 93.83 % and an Overall 

Accuracy (OA) of 98.83 %. A refinement of the result masks reached a Dice of 0.624. Image analyses 

were performed to produce maps of blueberry location, distribution and spread in each study site, as 

well as bush height and area information. A preliminary study of different DL networks, transfer 

learning, the use of data augmentation and loss functions and settings were tested for the detection 

of invasive blueberry species. The challenge of the data was the imbalance, as invasive species had 

fewer individuals than natural occurring plants. In this study of state-of-the-art DL architectures, the 

best results were obtained with the ResNeXt architecture (93.75 True Positive rate), and 98.11 % 

accuracy for the Blueberry class with ResNet50; Densenet and wideResNet calculated similar results. 

The knowledge, gained with easy examples, was then applied to automatic tree species classification 

in natural mixed forest. The DL approaches for the automatic species classification in YURF are not 

finished, yet, but promising. Some classes were already classified well, reaching accuracies of 

approximately 80 %. 

This study provides an efficient and effective methodology to study forests and other natural 

environments, like wetlands, using different techniques: field surveys, image analyses and DL. 

Automatic generated results showed high accuracies and indicated the applicability of the 

methodology in different fields. Image analyses extract the most important information of aerial 

images, depending on the study focus. Field data captured a lot of information that could not be 

extracted from images, and therefore the methodology set provided new and important insights into 

forest environments.  
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VI. Summary in Japanese 

地球上で41億5,000万ヘクタールの森林は、地表の広い範囲を占め、炭素循環の調整、生物多様

性を保全、水供給など、経済的、環境的、社会的に不可欠なサービスを提供しています。人為的

な撹乱や気候変動は、森林生態系における成長や回復力に影響を与えます。従来、森林に関する

情報は、コストと労力のかかる毎木調査によって収集されてきました。毎木調査は通常小規模な

フィールドプロットで行われ、そのデータを用いて森林レベルにスケールアップされてきました。

しかし、日本に多く分布している天然生広葉樹林は非常に複雑であるため、小さなフィールドプ

ロットでは調査対象の森林をあまり代表していないという問題が生じていました。 

近年、UAV（Unmanned Aerial Vehicle：無人航空機）が森林調査において用いられるようになって

きました。UAVが搭載できるRGBカメラは集中的なキャリブレーションや前処理を必要としない

ため、データの収集と解釈が容易です。また、1m以下の空間分解能で、林冠構造や葉の構造ま

で識別できるため、画像から樹種分類を行うことが可能です。 

本研究では、現地調査、GISを用いた画像解析、ディープラーニングという3つの方法論を用いて、

日本の天然生混合林の樹種構成、分布、構造を特徴づけ、評価した。山形大学研究林（YURF）の

合計13サイトにおいて、フィールドデータを取得し、GISアプリケーションを用 いて画像解析を

行いました。その結果、合計でフィールドデータからは70種の樹木が確認され、画像データを用

いた深層学習からは41種のクラスが特定されました。林冠種を考慮した場合、画像分析とフィー

ルド分析の結果は類似していましたが、下層植生と低木において両結果に差異が生じ、画像から

はほとんど識別できませんでした。生物多様性の指標は、画像データとは対照的に、フィールド

データを使用した場合に高い多様度示した。画像解析の結果では、シャノン多様性指数が1.73～

2.39（均等性は55％～82％）であったのに対し、2.14～2.76（均等性は71％～84％）であった。

森林の階層構造に関して、画像からは下層においては識別できませんでした。渓畔林に設置した

サイトは、実際にはオニグルミが優占する森林で、サワグルミが共優占種であったが、画像分析

の結果によると、オニグルミ、カエデ属、ホオノキ、ミズナラが優占種であると認識され、優占

度の順序が異なっていました。GISツールを使って画像を評価することで、データに隠れていた

重要な側面が見えやすくなり、空間情報を簡単に抽出して解釈することができました。 

一般的に、樹冠が密集していると個体数推定が困難になることが知られています。そこで、フィ

ールドデータ、DEM、夏季および冬季の画像を用いて樹木個体数の正確な評価を半自動解析によ

りおこないました。その結果、冬の画像でカウントを行った場合に最も高い精度が得られました

が、小さい木や若い木のカウントは依然として困難でした。 

次に深層学習技術を用いて植物種を自動的に分類するために、YURFの13のサイト、酒田市近郊の

海岸林や、ドイツの湿地帯でもデータを収集しました。すべての画像はMetashapeで処理され、

オルソモザイクとDEM（Digital Elevation Models）を作成しました。まず、冬の画像で葉のある木

とない木（落葉樹と常緑樹）を分類するという簡単な例に深層学習を適用し、伝達学習と深層学
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習のアーキテクチャ（ResNet50とUNet）の効果を評価しました。このアプローチでは、マルチラ

ベルパッチ（MLP）分類とセマティックセグメンテーションについても検討しました。その結果、

MLPによる落葉樹と常緑樹の分類で満足のいく結果を得るためには、転移学習が必要であること

がわかりました。冬のオルソモザイクのデータセットでは、転移学習を行わなかった場合と、汎

用データセットからの転移学習を行った場合の改善率は9.78%でした。さらに、ResNet50アーキ

テクチャは、UNetよりも優れた結果を示し、高い性能を発揮しました。ResNet50アーキテクチャ

を伝達学習とともに使用して、常緑針葉樹のクロマツ林におけるニセアカシアの木を検出したと

ころ、真陽性(TP)が75%、偽陽性(FP)が9%であったのに対し、在来種の木の検出ではTPが95%、FP

が10%となりました。 

本研究では、森林や湿地帯などの自然環境を調査するための効率的かつ効果的な方法論を、現地

調査、画像解析、深層学習などのさまざまな手法を用いて提供することができました。自動生成

された結果は高い精度を示し、さまざまな分野での方法論の適用可能性を示しました。画像解析

では、調査対象に応じて航空画像の中から最も重要な情報を抽出します。フィールドデータは、

画像からは抽出できない多くの情報を捉えているため、この方法論セットは、森林環境に関する

新たな重要な洞察を提供するものだと考えられます。 
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Chapter 1 Introduction 

One-third of the total land area are covered by forests, in numbers around 4.15 billion hectares, of 

which most of them are in mountainous areas.  Forests provide essential ecosystem services like 

biodiversity conservation and water supply (Lunbäck et a., 2020) and are regulators of the planet’s 

climate, as they influence carbon and water cycles and are one of the most important carbon sinks 

(Lunbäck et al., 2020). Contrary, changes in climate conditions or ecosystem changes influence forest 

ecosystems by causing several disturbances and stresses for plant communities, which further 

influence ecosystem functions and processes (Makimoto, 2019). Therefore, the study of potential 

influences or impacts of climate on forests need to be studied. Egli & Höpke (2020) pointed out, that 

forest efficiencies and resiliency are often directly connected with species richness and thus the 

accurate mapping needs to be performed to accurately assess forest inventories and biodiversity. 

Fukamachi et al. (2020) and Makimoto (2019) have pointed out that forest monitoring systems are 

needed to accurately gain long-term data about forest changes and dynamics. Accurate information 

about forests and ecosystems in general are crucial for forestry management, protection and research 

(Onishi & Ise, 2021). Providing the required information demands analyses of different forest areas, as 

those vary strongly regarding their canopy levels, ages, basal areas and biomass (Haq et al., 2020).  

Foresters conduct conventional field surveys, which require man-power, expert knowledge, 

experience, time and economical resources. With field surveys, vegetation information about the plant 

numbers, species, morphology, age and distribution are gathered achieving a high accuracy of 

information. Forests located in mountainous areas are challenging, which are sometimes not even 

accessible. Therefore, field surveys are usually provided only rarely and only for small areas, which are 

especially for mixed natural forests that are not necessarily representative.  Makimoto et al. (2019) 

further indicated that different field survey methods increase the difficulties in evaluation forests on a 

regional or even global scale, so they demand further a standard methodology for evaluating forests. 

Decreasing the number of those manual inventories can be performed by automatization of plant 

species classification with remote sensing, which has been identified as an important tool in forest 

science (Nezami et al., 2020).  

Remote sensing monitoring is already a well-studied area (Fassnacht et al. 2016, Gini et al. 2018, 

Franklin 2018), but extracting textural information, classifying single tree species are still challenging 

in natural environments because of the differences between plant species and stand conditions (Diez 

et al., 2021). Based on the selected sensor relevant features of trees can be extracted like shape, colour 

intensity, leaf properties and spectral responses, but also geometric features of trees and canopies 

(Nezami et al., 2020).  
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Unmanned aerial vehicles (UAVs) have become an important tool for remote sensing studies in forest 

areas. The benefit of these small and light-weighted tools is that they can be used in all environments, 

flexible and with low costs, while the operating of the machine is easy. Additionally, apps like DJI Go 

enables automated flights, which provide a standardized acquisition of data. The low flight altitude 

allows the gathering of high-resolution images, can be easily cooperated into photometric workflows 

and computer vision techniques (Diez et al., 2021). Satellite images, where the level of resolution 

allows biomass estimations or vegetation classifications e.g., cannot be used for single tree detections 

or classifications Fujimoto et al. (2019). High resolution images acquired by UAVs with spatial 

resolutions of 0.2 – 3.0 m can be used for detailed characterisations of tree species, as canopy 

structures or even leaves can be identified (Onishi & Ise, 2021). They can be further used for detailed 

analyses of species compositions and forests structures, as well as obtaining information about the 

state of forest ecosystems and their monitoring (Schiefer et al., 2020).  Geographic Information 

Systems (GIS) can extract information out of images. Important results can be obtained with GIS 

techniques by reducing the complexity contained in the images (using different image interpretation 

strategies) and the findings can be presented in elaborate visualizations (Heipke et al., 2000). GIS 

analysis need digitalized data, which are still labour intensive and time-consuming when annotations 

need to be performed by hand.  

Recent developments in Artificial Intelligence (AI) and increasing computational power enabled the 

use of Deep Learning (DL) in the broad field of forestry research. Data availability and free software 

make DL accessible for forest researchers. The basis of this technology are computers, that learn 

characteristics of plant species and identify patterns in images to detect and classify the species in 

images. A simple application in image analysis is object detection, where the location of a plant species 

shall be provided. Another approach is image classification with DL techniques means that images will 

be labelled automatically, by identifying the object in the foreground and the background. A final 

approach is semantic segmentation, where each pixel in an image gets assigned to a class based on 

probabilities. Consequently, DL has become a powerful tool to analyse forest images, which will 

accelerate and improve forestry research by providing robust and fast algorithms that allows the 

processing of large datasets (Diez et al., 2021).  

Still, these technologies are rarely used because of several challenges: the complexity of natural 

ecosystems with steep slopes, dense understory vegetation and canopy areas and the need of accurate 

reference material, which enables the comparison of field data with results of image analysis. 

Furthermore, experts in the fields of forestry, image analysis and DL are required to provide high 

quality results as pointed out by Diez et al. (2021). Furthermore, the alignment of gathered field data 

and remote sensing images provides several difficulties and is often not considered (Kattenborn et al., 
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2020). Most studies use manual annotations to provide information about the accuracy of DL networks 

or separately conducted fieldwork, while a direct comparison between DL and field gathered data are 

not conducted. 

This study was conducted under the supervision of experts from each mentioned field in the area of 

Northern Honshu, Japan, which makes the work unique for this research field. To the best of my 

knowledge, this study belongs to the first studies using DL with UAV gathered RGB data to classify tree 

species of mixed forests in Japan.  

The basis of this study was the mixed forest in Shonai area, represented in the Yamagata University 

Research Forest (YURF). The forest is composed of a mixture of different forest patches, composed of 

natural and planted tree species, which grow along the rivers, on the slopes and the top of the 

mountain. There were previous studies performed in YURF, which analysed species occurrence in 

different forest patches, but there is no information provided about the composition and structure of 

the different kind of forests. Due to the complexity of mixed forests, there are also no detailed studies 

provided on which species occurs where, if they are minor or dominant or if there are relationships 

and interactions between tree species. For such kind of information, the different forests patches with 

their varying characteristic need to be analysed, which has to be done in a large-scale to achieve 

superior structures and interactions. This requires a fast, efficient and standardized methodology, 

which can be provided with the use of UAVs, image analysis and specifically DL, which was studied in 

detail with this work.  A combination of field gathered data and image analysis with GIS methodologies 

provides unique insights in the studied forests sites, which are representative of cold temperate 

mountainous forests of Shonai area. Additionally, DL techniques were studied and evaluated for the 

use in forestry under the consideration of aspects like the applicability, time consideration and 

accuracy, especially in relation to precise field surveys. With such a methodology, study areas do not 

need to be localised and focussed on a small number of trees anymore, while extrapolation need to 

be performed to scale the gathered information up for regional analyses. Instead, UAV-acquired 

images in combination with DL can be used to reduce significantly surveying time, to increase study 

areas and provide accurate information without extrapolations. 

This study also used the developed techniques for applications, in coastal forests and wetlands to 

provide information about the transferability of the studied methodology. In both cases, invasive 

species were studied, which invaded into natural environments. First, invasive Black locust trees in 

Black pine coastal forests were studied, then a blueberry species, which invaded into sensitive 

wetlands in Germany. The benefit of these studies was that they provide useful insights into the 

application of DL and how to handle it, while the main focus is on the detection of only one species. 

Still, the main focus of this work were tree species classifications. For this approach, seasonality was 
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used to first classify deciduous and coniferous trees in winter images and later perform species 

classifications in summer images.  

In this study, the incorporation of all the mentioned techniques from remote sensing, GIS, computer 

vision, computational topology and artificial intelligence allows to characterise vegetation on a large 

scale, with minimum disturbances and required man-power, incorporating expert knowledge. To the 

best of my knowledge, this is the first study that includes a large dataset, and the use of different 

techniques in combination with UAV acquired data to increase the understanding of vegetations in 

natural environments, with a specific focus on automatic classifications a high number of tree species. 

 

 

Figure 1 Overview of the research flow 
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The developed and presented methodology had the following objectives as the basis to gain a deeper 

knowledge about mixed forests. 

i. Develop low cost and low time demanding methodologies for forest ecosystem analysis. 

ii. Evaluate the composition, distribution and structure of mixed natural forests in Shonai 

area. 

iii. Characterise mixed forests with the use of the state-of- the-art GIS and DL technologies. 

Hence, the development of an image analysis methodology for forestry research is presented with this 

study. The thesis the structure, first presenting YURF data analysed with field and image data and 

finally automatic DL classification (Figure 1). Gathered field data will be presented first, followed by 

diversity measures based on image analysis. Later, image analysis will be presented first only using GIS, 

then with a detailed comparison between the gathered field data and results of tree detection in image. 

At last, DL results will be presented first applying it to tree classification (winter images and tree species 

classification) and then the application for studying invasive species. Note that the invasive species 

chapter contains a GIS image analysis and a DL part, while the DL chapter explains tools, software and 

settings which benefits DL studies. In the end, this thesis provides a completed methodology, which 

can be applied in forestry research, as well as in other natural environments.  
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Chapter 2 State-of-the-Art 

The development and usability of inexpensive and easy-to-use UAVs offered the possibility to cover 

large areas with high resolution images, which have been used in agriculture (Grenzdörffer & Teichert, 

2008; Raparelli et al., 2019) and forestry (Diez et al., 2021; Natesan et al., 2019; Gambella et al., 2016) 

studies. UAVs, depending on their size, can be equipped with sensors such as LIDAR, multi- or 

hyperspectral sensors. Natesan et al. (2020) pointed out that those sensors are expensive and need a 

precise calibration. Furthermore, DL applications are known to work better with RGB images than with 

LIDAR, etc. RGB images can be directly gathered by cost-effective UAVs, as the cameras are usually 

already attached. Additionally, the images can be used for image analysis without costly pre-processing. 

Therefore, this study only considered RGB images acquired from UAVs. 

Recently, with the development and progress in computer science, DL has become popular with the 

use of RGB images (Diez et al., 2021). Data can be processed with high capabilities of computers 

allowing the processing of big datasets. With the increasing potential of computers and the expansion 

of DL to research in agriculture and forestry applications have increased immensely.  

 

Figure 2 Overview of forestry remote sensing applications (Guimarães et al., 2020) 

Figure 2 summarised studies conducted with remote sensing until 2020 in the different forestry fields. 

There were six types of sensors and two kinds of UAVs which were used: fixed- and rotary-wing types. 

Studies in the field of forest structural parameters, tree species classification and mapping, forest fires 

and health monitoring are the main applications using remote sensing, of which a small field 

additionally uses DL techniques. 

There is a small number of pioneering studies in the field of DL in forestry research with UAV acquired 

RGB images, but only two of them were conducted in Japan (Onishi & Ise, 2018 and Fujimoto et al., 
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2019). The studies, which will be presented in the following paragraphs showed the potential of the 

methodology proposed in this study to transform the way forest science research is carried on by 

developing algorithms that allow the extraction of important forest information. 

Studies use orthomosaics and Digital Elevation Models (DEMs) built from UAV-acquired images to 

locate and classify different tree species. The starting point for this kind of research was detection of 

individual trees, meaning the identification of locations of trees within forestry images. Tree top 

annotations or the use of bounding boxes around trees are the common methodologies (Diez et al., 

2020, Ocer et al., 2020), which can be combined with tree crown delineation or pixel-wise 

segmentations. The results can be used for tree counting or tree classifications.  

Chadwick et al. (2020) used Mask R-CNN to detect coniferous trees in a mixed forest with deciduous 

trees under leaf-less conditions. The high number of trees and occurring densities together in the 

environment of a valley in the Rocky Mountains provided an interesting example of DL in forestry 

research (Diez et al., 2021). The authors applied transfer learning with the COCO and Balloons dataset 

to train a Mask R-CNN network with different settings of the network, like using it frozen. Further, F1-

scores were used to evaluate the performance of the network. Best results were achieved with a 

reported precision of 0.98 and a recall of 0.85, which means that the network produced less false 

positives but 15 % of the trees were missed by the network. In a second attempt the estimation of tree 

heights was in good agreement with field measurements. Another tree detection study was offered by 

Ocer et al. (2020), detecting conifers in flat forests and urban areas with a small number of images 

(256 training images). The authors were specifically interested in detections using different image 

resolutions in training and testing images. Here, also a Mask R-CNN was trained and a precision of 0.90 

was achieved when tested with different images and resolutions. While the precision value stood 

stable for all tested images, the recall varied between 0.82 and 0.91 with the best results achieved 

with similar images and the same resolution for training and testing. This indicated that different 

resolutions have a significant impact on detection results.  

The main contributions of the two papers are the demonstration that DL can be used for practical 

applications for individual tree detection and how the studied algorithms can be used. The behaviour 

of DL models, when different resolutions are used, is of main interest, because most forests are located 

in mountainous areas, where slopes are the reason for significantly varying image resolutions. Those 

studies also indicated the usually small amount of available data in forestry research, which need to 

be addressed when DL is used for analyses. The presented methodologies still struggle in detecting all 

trees, even when only coniferous trees were analysed. Coniferous trees are beneficial for detection 

purposes as their cone-shaped canopy is easy to recognise in comparison to broad-leaved canopies.  
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A precise classification of detected trees is the aim of every study, as it is crucial to understand forest 

compositions, distributions and structures, but it is also needed for further analysis like biomass 

estimations. Therefore, studies that focus on tree species classifications will be presented in the 

following paragraphs.  

The most interesting studies are the ones from Onishi & Ise (2018 and 2021) and Fujimoto et al. (2019), 

as they were performed in Japan. The study of Fujimoto et al. (2019) was performed in coniferous 

plantation in a mountainous area. Orthomosaics and normalized DEMs were used, DEMs from which 

the floor was extracted to increase the detectability of tree tops with an iterative local maxima 

algorithm. A watershed algorithm was applied to segment tree canopy areas, which were then used 

as input for a ResNet200 network and initialised with ImageNet weights. It seemed that the tree top 

algorithm and the classification were performed separately based on the presented tree counts, which 

decreased its practical use. The classification was performed by separating 591 trees into 90 % training 

and 10 % testing set. An increase in data was performed on the training dataset by applying data 

augmentation. In the end, precisions of 0.848 and 0.821 were achieved for cypress and cedar with a 

recall of 0.856 and 0.811. In a second attempt a carbon dynamic simulation was performed. In 

comparison, Onishi & Ise (2018 and 2021) published two works based on an image collection in an 

experimental forest, which was partially natural and partially managed. The considered area was a mix 

of planted coniferous and natural broad-leaved trees in a flat area. The studies considered six tree 

classes and one non-tree class in orthomosaics of two seasons. At first, tree detections were performed 

using ArcGIS to construct a terrain model, while the commercial eCognition software was used to 

detect individual trees. A manual correction was performed before a central squared-patch around the 

detected tree tops and was cut out of the orthomosaic. These patches were used to train different 

networks: AlexNet, VGG ResNet18 and ResNet152, which were trained before with the ImageNet 

database. A further comparison between the ResNet152 and the classical machine learning technique 

SVM (Structure from motion) was performed. The evaluation was done using F1-scores reaching 0.955 

and 0.885 on average for autumn and summer images.  

Other studies focussed on semantic segmentation to solve the problem of species classifications, 

instead of considering individual trees. In semantic segmentation each pixel in images was classified 

and sorted into the considered categories. The benefit of semantic segmentations is that the 

algorithms can be directly used, but counting and tree canopies extraction cannot be performed easily. 

While there were several studies published (Morales et al., 2018, Ferreira et al, 2020, Haq et al. 2020), 

the focus of my research was on the studies of Schiefer at al. (2019) and Kattenborn et al. (2020): 

Kattenborn et al. (2019, 2020) presented two works where several datasets were considered. One of 

the datasets contained images of two invasive species, of which one was a pine tree that invaded into 
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natural forests. The pine tree was mixed with a species called Nothofagus. Orthomosaics were cut into 

tiles and data augmentation was applied before the dataset was divided into 80 % training and 20 % 

validation/testing using a random split. A UNet was then trained, achieving a classification accuracy of 

0.87 for the pine class. The study used a simple example, achieving good results but suffering from 

data leakage problems (Diez et al., 2021). In the study of 2020, another presented case study classified 

two tree species. A CNN was trained to predict cover areas in patches cut from the previously built 

orthomosaic, while the height information was used, too. The training and validation sets were divided 

2/3 and 1/3. Correlations between predicted and real cover were evaluated with a correlation 

coefficient reaching values of 0.61 and 0.82.  

The study presented by Schiefer et al. (2019) is one of the most complex works in this area with a total 

of nine considered tree species, five coniferous and four deciduous trees, three genus classes and two 

other classes. Data were gathered in two sites: a well-managed mountainous area and a flat broad-

leaved forest. Images for a total of 51 orthomosaics were gathered and nDSMs were generated. For 

the production of the nDSMs airborne laser scanners were used to extract floor regions. The data were 

considered as 3 channel (RGB) and 4 channel (RGB and the height of the DSM), which were divided 

into tiles. The tiles were separated into 90 % training and 10 % testing to train a UNet network. The 

best results were performed with tiles of a size 128 and 256 pixels achieving 0.89 overall pixel 

accuracies. Classes which were less frequent reached only 0.67, while frequent classes reached 0.897. 

Furthermore, the authors considered different pixel resolutions in their discussion.   

Most of the presented papers were published in the last years, which represent the state of forestry 

research with DL using UAV-acquired RGB images. Furthermore, most studies were performed 

analysing coniferous trees or only one or two tree species. Studies in mixed forests, especially in dense 

forest areas in mountainous environments, need to consider a higher number of tree species, face 

challenges like steep mountains and varying image resolutions. A completed workflow, which is 

applicable in several environments, from image gathering, over processing and detecting until the final 

classification, needs to be achieved. The published information was used in this study to overcome 

some of the mentioned challenges and perform tree species classification in natural environments.   
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Chapter 3 Material and Methods 

This chapter focusses on the methodologies used in this study. As the study is a combination of 

forestry, geoinformatics and computer sciences, it combines methodologies of three different fields. 

Detailed explanations are given to ensure that readers with different scientific fields can follow the 

work and gain enough background knowledge to understand this study. 

 

3.1 Climate 

Global and regional climate conditions affect tree species composition, distribution and structure in 

forests. The over 3000 km long north-south extension of Japan induced the differentiation into several 

climate zones, which means that studying forests in different areas is essential to understand the 

structure of the forests. In the south the climate is mainly sub-tropical, in higher longitudes warm-

temperate, followed by cool temperate and boreal in the north of Japan (Makimoto, 2019).  

Generally, Japan is divided into two major climate zones, the Japan Sea side and the Pacific Ocean side. 

The main study area (YURF) is located close to the North-eastern Japan Sea, which influences the 

climatic conditions of this area by heavy snowfalls in winter, strong winds and heavy precipitation in 

the July and August (Ohno, 2008). These conditions influence species compositions in forests. 

The location in the northern part of Honshu positions this forest in the cool-temperate climate zone.  

The climate conditions present an annual mean air temperature of 13.4 °C representing a cold region 

environment. The forest is affected by summer and winter monsoons, which results in mean annual 

precipitation of 2500 mm, the lowest precipitation is approximately 130 mm per month. Half of the 

precipitation falls as snow during the winter month, so the climate is humid. A cumulative solar 

radiation of approximately 3000 MJ/m² and the cumulative sunlight hours per year with 730 hours are 

common.  

The mentioned climate conditions of Japan are the reason, why the study area is located in the cool-

temperate broadleaf climate zone, which indicates that the tree species composition is influenced by 

a large distribution of beech and oak trees (Figure 3). 

 

3.2 Japanese Forests 

Two-thirds of Japan is covered by forests, which is approximately 25 Mha (Makimoto, 2019). Based on 

the climate zones, forests belong to one of five forest types: Alpine zone forests, sub-frigid forests, 

cool temperate forests, warm temperate forests and sub-tropical forests. The forests, usually, follow 
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climate zones from the North to the South, but there is also a west – east difference of forest types, as 

the high mountains in the centre in Japan influence the climate (Piazza, 2007). A detailed distribution 

can be seen in Figure 3. 

Therefore, it can be said that Japanese forests show a high biodiversity. In the southern area of Japan, 

in subtropical forests, mainly Mangroves can be found, in temperate zones broad-leaved and 

evergreen trees and in sub-frigid and sub-alpine forests mainly coniferous trees are distributed.   

Forests in Japan are mainly distributed in mountainous areas and mostly with steep slopes. The study 

of Lunbäck et al. (2020) provided further information about the forest area on slopes with a different 

steepness. Figure 4 shows a comparison between the location on slopes of forests world-wide and in 

Japan. It can be seen, that there are only 45.2 % of the forests in flat areas (0 – 15°) and more than 

50 % in steeper slopes, which is higher than for most areas of the world.  

 

Figure 3 Vegetation zones of Japan (Piazza, 2007) 

While in countries like USA or Russia the forests are mainly in flat areas, Europe, Oceania and Asia have 

30 – 40 % of their forests in steep areas, whereby Japan has with more than 50 % one of the highest 

values. This distribution of forest areas is an important factor when it comes to management tasks, 

surveying and providing information about the forest status. 
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Figure 4 Forest area in percent located in different slope angles (Modified after Lunbäck et al., 2020) 

It was estimated that 54 % of Japan’s forests are natural forests. In 1951, only 20 % forest were planted, 

while the number increased to 40 % in 2012. This whole forest area is divided into 50 % coniferous 

trees and 44 % broad-leaved trees (Makimoto, 2019). Coniferous trees are composed of 20 % Japanese 

cedar (Cryptomeria japonica) and 10 % Japanese cypress (Chamaecyaris obtuse), while the number of 

Larch (Larix kaempferi) is significantly higher than Japanese cypress when only planted trees are 

counted. The main purpose of the several forest plantations is to provide wood for timber production 

and biomass power plants. Another category of forests in Japan are coastal forests, which are man-

made forests that play an important function of protection from wind, sand movements and tsunamis. 

A third category are natural forests, which are retaining biodiversity, but nowadays also considered as 

source for biomass power plant. For broad-leaved forests it is known that 10 % are composed of 

Japanese oak (Quercus ssp.) and 4 % beech (Fagus crenata). 

The following figures, provide an overview of the species distributed in different areas of Japan. Figure 

5 shows the distribution of coniferous species. Spruce and fir trees are mainly distributed in the North, 

while cedar, larch and red pine trees are distributed in Honshu and cedar in the South. In the region of 

the study area, mainly cedar and larch were planted. 

In comparison, Figure 6 provides less information regarding the species composition. The map focuses 

mainly on oak and beech trees; all other deciduous forests were not further specified. Therefore, it is 

only known that deciduous forests are distributed all over Japan, while beech and oak forests are 

mainly distributed along the western coast of Honshu. In comparison to the previously mentioned 

Figures, Figure 7 includes relative numbers of coniferous and broad-leaved tree species. 

It can be seen, that out of the 50% coniferous trees, planted cedar and cypress are the main species, 

which can be find in Japan. Considering the broad-leaved trees, also in this figure only the species oak 



37 
 

 

Figure 5 Distribution of coniferous forests (Makimoto, 2019) 

 

 

Figure 6 Distribution of broad-leaved forests (Makimoto, 2019) 

and beech are mentioned by name. Except those, the broad-leaved trees are classified into mixed 

species, no dominant species and species other than beech and oak. It occurred that there are more 

information provided for the planted species than the natural forests and more for coniferous trees 

than mixed broad-leaved forests.  
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Figure 7 Composition of forest ecosystem by dominant tree species (Makimoto, 2019) 

 

3.3 Japan forest policy  

In general, Japan forest policy aims at preserving forests for socio-economic and environmental 

benefits (Makimoto, 2019). Field surveys are carried out every five years to gather information about 

the status, health and the population in forests. These surveys are conducted in around 13,000 sites 

to analyse effects of disturbances, climate change, infestations and invasions (Makimoto, 2019). 

Additionally, the delivery of information is essential to increase the public understanding about the 

importance of forests.  

There are several factors which have to be considered when forests are analysed. Biodiversity is one 

of the most important factors, since forests contain a substantial proportion of species, which enables 

the forest ecosystem to respond to natural and anthropogenic disturbances. Diversity can be 

significantly influenced by disturbances which can result in species decline or even extinction. 

Sufficient habitat sizes, structural diversity and protection measures are necessary to preserve 

diversity (Makimoto, 2019).  

Another indicator for the health of the forest is the number of native tree species, which helps to 

understand changes in ecosystems and relationships between species (Makimoto, 2019). The report 

of native species further indicated exotic plants which distribute in natural environments and outline 

invasive plant species invading natural ecosystems. Diseases or infections need to be monitored as 
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well, because they can alter the forest structure significantly and lead to a significant reduction or loss 

of forest areas on the one hand but could be on the other hand a mechanism for regeneration. 

Preservation of forests needs the collection of accurate data, which demands time and money. The 

study of cheaper and more efficient methodologies to gather information should be the aim to 

continue and achieve the ambitious goals of Japan´s forest policy. 

 

3.4 Forest types 

There are three types of forests introduced in the following two chapters. The first chapter considers 

riparian forests, which occurs mainly in lowland areas and along rivers. The second chapter summarises 

Quercus and Fagus mixed forests. 

 

3.4.1 Riparian forest 

Riparian forests refer to vegetations along rivers and streams, have an expansion from the active 

floodplains to the uplands (Naiman et al., 1998) and are in the transition zone between terrestrial and 

aquatic environments (Sakio & Tamura, 2008). Forest vegetation develops on fluvial terraces and 

debris flows, which are formed in or along rivers (Ohno, 2008) and vary in their longitudinal and lateral 

structure (Naiman et al., 1998). Therefore, riparian forests are often characterised as diverse mosaics 

in large landscapes (Figure 8).  

 

Figure 8 Characteristic structure of riparian forest areas (Naiman, 1997). 

The biodiversity of riparian forests provides essential ecosystem services and is of great importance 

for ecological functions (Sakio & Tamura, 2008). Their diverse ecosystem is structurally and floristically 

complex, provides high rates of nutrient cycling and productivity (Naiman et al., 1998). The forest 
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influences microclimate conditions and biochemical cycles and directly affect the stream environment.  

Water and soil temperatures are regulated by the forest and have a direct influence on air and surface 

temperature.  

The development of soils in different locations and influences the diversity of the forest additionally. 

Usually, soil conditions are rocky with a small amount of fine soil particles, which are influenced by 

sedimentation and erosion, especially in the active channels, where vegetation colonizes extensively 

and resists the shear stress of flowing water and physically disturbances, the soils are initially poor 

(Naiman et al., 1998). An organic layer is formed by organic matter of decomposing vegetation and 

increases the fertility of the soil (Ohno, 2008). Further, riparian forests offer good conditions for tree 

species regarding the location, because they have a high input of nutrients and sediment movement 

due to water dynamics (Miyawaki & Washitani, 2003). 

Riparian forests are strongly affected by topographic and hydrologic factors, which influence the 

composition of forests (Fukamachi et al., 2020). There are several disturbance systems affecting the 

forest such as floods, landslides and slope failures (Fukamachi et al., 2020). Those disturbances can 

vary in frequency and magnitude. The destruction of forests, regeneration and change in tree species 

vary with the heterogenous topography. The disturbances are responsible for the high diversity of 

forests, since they provide diverse habitats, offer several species ideal niche conditions and enhance 

species richness (Sakio et al., 2002). Riparian forests further provide a heterogenous 

microenvironment, which increases the ecological niches and therefore the species richness (Masaki 

et al., 2008). Vegetations, growing in these areas, show morphological, physiological and reproductive 

adaptations to survive in the unstable environment conditions (Naiman et al., 1998). It can be said, 

that physical processes initialize vegetation spread and growth, but species interactions and survival 

strategies adapted to riparian areas form the characteristic mosaic of vegetation structure (Naiman et 

al., 1998). Plants need to be well adapted when they grow in riparian areas, and need several 

morphological, physiological and reproduction adaptations to survive the harsh environment (Naiman 

et al., 1998). Sakio & Tamura (2008) summarised several riparian forests and their characteristic tree 

species. Throughout Japan the dominant species in riparian forests are different kinds of Salix, Alnus 

and Fraxinus species, as well as Pterocarya rhoifolia, Cercidiphyllum japonicum, Fagus crenata and 

Aesculus turbinata. Salix trees in particular are invaders, endures and resisters after all kinds of 

disturbances and therefore well adapted in these environments.  

Riparian forests are complex ecosystems with various interactions between the forest structure and 

composition and reactions to disturbances (Naiman et al., 1998). A riparian forest is therefore difficult 

to characterise and detailed analysis are necessary to identify the kind of riparian forest. Further, an 
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overview of species composition and structure is needed to give the forest a label and the possibility 

to characterise them properly.  

 

3.4.2 Quercus and Fagus forests 

Quercus and Fagus forests belong to the cold-temperate forests, which show a high tree species 

density and occurring genera, similar to the ones occurring in Europe and North America. Additionally, 

these forest types in cold-temperate forests are divided into Fagus japonica, Fagus crenata, Quercus 

serrata and Quercus mongolica, while there is another cold-temperate forest (Abies-sachalinensis-

quercus mongolica forest), which is not considered in this study. The forests are distributed in the 

lowland of northern Japan: Tohoku region and southern Hokkaido (Okitsu, 2003). Also, there is a 

division between the forests in the South and the North and between forests in the Japan sea side and 

the Pacific side. Several studies pointed out that there are significant differences between these sides 

according to the climate conditions (Hukusima et al., 2013; Okitsu, 2003; Ohno 1991, Sasaki 1970).  

Furthermore, the literature provides several categories and groupings of Fagus and Quercus forests. 

Ohno (1991) identified a combination of 20 natural forest communities with 55 related subgroups in 

the area of northern Honshu. A general overview for the Fagus and Quercus forests is given in the 

following section. 

Fagus crenata forests are composed of Fagus crenata, Viburnum furcatum, Quercus mongolica, Acer 

japonicum, Acer palmatum and Lindera umbellata, which differ slightly when they are located on the 

Japan sea side or the Pacific side (Okitsu, 2003). As there are several subcategories of Fagus forests, 

Sasaki (1970) generalised them and pointed out that the species coexisting with Fagus are Acer mono, 

Acer sieboldianum, Fraxinus sieboldiana, Tilia japonica, Quercus mongolica var. 

grosseserrata, Acanthopanax sciadophylloides, Kalopanax septemlobus, Acer rufinerve, Magnolia 

obovata, Sorbus alnifolia etc., with all of them reaching heights of 30 m. The shrub layer is usually 

composed of Lindera membranacea, Viburnum furcatum, Hamamelis japonica var. obtusata, 

Rhododendron albrechtii, Acer japonicum etc., with heights ranging between 2 and 3 m. This forest 

type distributes usually between elevations of 500 and 1800 m. Sasaki (1970) pointed out that the 

lower boundary varies depending on the climate conditions while Fagus forests can occur from 200 m 

in North of Honshu.  

Sasaki (1970) further concluded that in regions lower than 200 m Fagus forests form a secondary forest 

with one of the subgroups Quercus mongolica var. grosseserrata, Quercus serrata, Quercus dentata 

and Castanea crenata. Therefore, forests develop from lowland Quercus forests to Fagus forests in 

highlands. Quercus mongolica forests are dominated by Quercus mongolica, Kalopanax pietus, Acer 

mono, A. japonicum, Tilia japonicum, Fraxinus languniosa and Prunus sargentii (Okitsu, 2003). A 
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species that occurs in these types of forests, additionally, is Camellia japonica (Sasaki, 1970). For the 

Japan sea side of Tohoku, Ohno (1991), the community group Quercus mongolica vat. grossserrata-

Fagus crenata is identified for lower altitude regions, as considered in this study. In the case of Quercus 

mongolica forests, Okitsu (2003) pointed out, that the forest type is not well classified and needs to be 

further conducted.  

According to Okitsu (2003) these forest types distribute between 500 to 1700 m, while Ohno (1991) 

specified that the group of Quercus mongolica vat. grossserrata-Fagus crenata occurred mostly in 

lowlands and the lower montane belt (average altitudes of 400 m).  

The mentioned studies summarised a couple of studies to provide an overview of Japan 

cold-temperate forests, which will help to classify and evaluate the forest in Shonai (Table 1). 

 

Table 1 Characteristic species in Quercus mongolica forests in Tohoku area (Okitsu, 2003) 
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3.5 Composition of the research forest  

The research area for this study is located on the main Island of Japan, Honshu. The area is part of 

Yamagata prefecture, located in the northern part of the island. In the western side of this prefecture 

is the Faculty of Agriculture of Yamagata University in Tsuruoka city. Yamagata University owns a 

Research Forest (YURF), which is used for forestry investigations. YURF is located around 26 km south 

of the faculty in the northern part of the Asahi Mountains, part of the Echigo Mountain Range and the 

Wasada River Basin, covers an area of 753 ha and is crossed from north to south by the Wasada River 

(38°33’21’’N 139°51’42’’E). The highest elevation is around 860 m, based on a relief with steep slopes, 

ranging between 30 and 44 degrees, whereby approximately 50 % of the slopes are steeper than 30 

degrees.  

Generally, the mixed forest is composed by deciduous broad-leaved and coniferous trees [22]. The 

climate conditions and the location of YURF are responsible for the dominance of beech (Fagus 

crenata) forests in this area. Beech forests are mainly observed in the higher altitude areas and often 

mixed with Mongolian oak (Quercus mongolica), Japanese Bigleaf Magnolia (Magnolia obovata), 

Maple species (Acer palmatum, Acer japonica, Acer rufinerve) and Monarch birch (Bertula 

maximosicziana). In lower altitudes mixed forests are composed by Mizugi (Cornus controversa), 

Maple (Acer pictum), Japanese lime (Tilia japonica, Tilia maximowicziana), Loose-flower Hornbeam 

and Aohada (Carpinus laxiflora and Ilex macropoda). The distribution and dominance of these species 

is less studied. On the bottom of the mountain most areas in the forest are close to the river and 

characterised as riparian forest type. The main species, which can be found, are Japanese wingnuts 

(Pterocarya rhoifolia), Japanese walnut (Junglans ailantifolia), Tochinoki (Aesculus turbinata) and Salix 

species (Salix jessoensis, Salix serissaefolia). Furthermore, the forest is composed of several deciduous 

shrub species like Lindera umbellata and Hamamelis japonica (Lopez, 2014). The forest is further 

composed of three planted tree species: Japanese cedar (Cryptomeria japonica), Japanese cypress 

(Chamaecyparis obtuse) and larch (Larix kaempferi). Those species replaced the natural mixed forests 

in lower regions, especially beech forests were replaced by Japanese cedar plantations (Lopez, 2014). 

A total number of 108 families, 293 genus and 335 species have been identified in the University Forest 

by Mori (1968).  

 

3.5.1 Studied Sites 

In total 13 study sites were chosen to analyse and characterise the distribution and composition of 

mainly the mixed natural forest at YURF (Figure 9). Three types of sites with natural mixed forest and 

evergreen plantation were considered. They are located in lower altitude areas of the forest: Riparian 
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forest sites, Terrace sites and Slope sites. Riparian sites are located along the Wasada river. These sites 

are characterised by flat areas; their orthomosaic borders captured the foot of the slopes. The 

characteristics of the riparian forests were captured in sites 1, 4, 6 and 7. The second forest type is 

characteristic for a riparian and mountainous tree species composition located in steep slopes of the 

mountain, represented by sites 11, 12 and 13. Slope sites are located along the slopes in lower altitude 

areas. The tree species composition differs from riparian forest, with their characteristic tree species 

composition more similar to beech forests. These sites are represented by sites 2, 3, 5, 8, 9 and 10. The 

following passage provides information about first Riparian sites, then Terrace sites and finally Slope 

sites.  

Site 1 is characterised by a flat area covering 6 ha close to the river. In the northern part of grows mixed 

forest, in a small area surrounded by rivers on both sides that hereafter will be called “island”. During 

snowmelt and intensive rain events, the island becomes surrounded by the river. The island shows a 

characteristic tree species distribution of Juglans ailantifolia (Japanese walnut), Pterocarya rhoifolia 

(Japanese wingnut), Phellodendron amurense (Japanese wedding cake), Salix species (willow) and 

Robinia pseudoacacia (Black locust) trees. The southern part of site 1 is characterised by a dense patch 

of Pterocarya rhoifolia trees. The southernmost boundary and the eastern part of the orthomosaic 

imaged slope areas. The main species distributed in the slope is Cryptomeria japonica. All sites along 

the river (1, 4, 6 and 7) have a dense understory vegetation covering the forest floor from early summer 

until late autumn.  

Site 4 is located 350 meters north of the first study site and is smaller, with only 3 ha. The main 

characteristic of the side is a patch of young willow trees in the southern part, while in the rest of the 

site grow mainly walnut trees. The northern part the orthomosaic of this site shows the bottom of a 

slope, where mainly cedar trees were planted. The river crosses site 4 from south to north and also 

from east to west. There is a high number of young trees, belonging to different species, in the middle 

of the site.   

Site 6, covering 4.1 ha, is located at the entrance of YURF, 750 meters north of site 1, directly at the 

Wasada river, but in comparison to the other sites, where the elevation is around 1 meter higher than 

the river level.  Site 6 is on the west side of the forest road, at the river level. Therefore, most times of 

the year the soil is usually water saturated and sometimes flooded by a couple of centimetres of water. 

In this area, mainly willow trees can be identified. In general, the site shows the characteristic tree 

species composition of riparian forests with walnuts and wingnuts. The eastern and western part of 

the orthomosaic captured the bottom of the slopes, with a change of tree species distribution.  



45 
 

Site 7 is located 200 meters north of site 6, around 1 meter above the river level and covers an area of 

5.1 ha. The centre is dominated by riparian forest, with wingnuts, walnuts and willow trees. Exactly 

there a depression was found, where the soil is often saturated during the year. The western boundary 

of the orthomosaic imaged a slope and the eastern part mapped the transition to site 13, located on 

the slope. The site is crossed from the south to the north by the Wasada river. 

Site 11 is situated on a slope, facing north and covering 3.5 ha. The site is characterised by a flat area 

in the northern part and the steep slope, both captured in the orthomosaic. The southern boundary of 

the site is the transition between the mixed forest and a cedar plantation. The site shows the 

characteristic tree species of the riparian forest (walnuts and wingnuts) but also a change to tree 

species like maples, chestnuts and magnolia trees. In comparison to the river sites the density of the 

understory vegetation is less. While the sites along the river are area-wide covered with scrub 

vegetation, the Slope sites show punctual high-density clusters of scrubs, while other parts contain 

only single plants.  

Site 12, covering an area of 3 ha, is directly next to the northern boundary of site 11 and is characterised 

by a slope facing west. The area along the road is flat and starts to increase gently, while from the 

centre of the orthomosaic the slope becomes steeper to the east, partly having slope angles of almost 

90 degrees. The site is characterised by the migration of riparian species composition to dense maple 

vegetation, limited by cedar trees in the eastern part. Between site 11 and 12 a small river appears in 

the melting season and the rain season in summer. The flat area, which can be seen in the 

orthomosaics of sites 11 and 12, is at the same time always water saturated.  

Site 13 is characterised by a high density of walnut trees covering most parts of the site and 

orthomosaic. The site is located next to site 7, north of site 12 and covers an area of 4.8 ha. The slope 

in the site is facing mainly to the west; only in the southern part the slope is facing south. The eastern 

boundary is the transition to an uphill cedar plantation.  

Sites 2 and 3 are located between the sites 1 and 4, while site 3 is at the east side of the river, located 

at the northern boundary of site 1; site 2 is on the western side of the river, approximately 100 meters 

apart from site 1. The sites 2 and 3 cover 8.1 and 5.5 ha, respectively and both sites have a 

characteristic mountain ridge and two valleys along it. The ridge in site 2 is pointing to the east, while 

the one of site 3 is pointing north. The western valley in site 3 is located directly next to the Wasada 

river and the eastern valley has a small river; both are filled with water in the snow melt and the rainy 

season, as the valleys of site 2. The main difference is that site 2 has a the higher elevation than site 3 

(approximately 350 m). The species composition is similar to the riparian forest in lower altitudes and 

a change to first maple and magnolia trees, then to oak, larch and beech trees with increasing elevation.  



46 
 

 

Figure 9 Location of study areas 
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Site 5 is located north of site 4 with a south facing slope. The site boundaries are the river in the south, 

and cedar trees in all other directions. In comparison to all other Slope sites, the species richness is 

small. The main trees occurring in the site are maple, oak and magnolia trees. The site is inaccessible 

as it is directly located at the river with a nearly 90-degree cliff.     

Site 8 and 9 belong to one east facing slope, where site 8 is the lower part and site 9 the upper part of 

the slope. The sites are located on the western boundary of site 7 and cover 4.3 and 6.1 ha. In the 

northern and southern direction are also slopes, which end in a small valley formed by rivers. The 

forest is characterised by the steepness of the slope and a high mixture of tree species. The site is 

mainly composed of deciduous trees, and only in the southern part of the orthomosaic cedar trees 

occur.  

The slope of site 10 faces east and the boundaries of the mixed forest patch are cedar trees and the 

Wasada river at the bottom of the slope. The site is north of the sites 8 and 9 and has a distance of 

approximately 1.3 km to site 1. The site covers 5.4 ha and has one of the steepest slopes of all sites. 

The mixture of trees is high compared to the Riparian sites.  

 

3.5.2 YURF - Top sites 

In addition to the 13 sites in lower altitude areas, four sites were chosen on approximately 600 m.a.s.l. 

in the eastern mountain. These sites represent beech forests mixed with tree species adapted to the 

lower temperatures. The sites are mainly composed of beech (Fagus crenata), larch (Larix kaempferi) 

and oak (Quercus mongolica). Three sites show dominance in each one of the tree species and the last 

site was the natural mixture of them. These four study sites were part of the master thesis of Mr. Luca 

Tomhave (M.Sc. student of LUH) and therefore only mentioned here, because the captured species 

were additionally used for the DL methodology.   

 

3.6 Fieldwork 

The purpose of the fieldwork was to identify tree species, to count trees and to generate manual maps 

for the study sites. Results of the fieldwork were used to evaluate the accuracy of image analysis and 

DL techniques.  

Fieldwork was conducted in YURF in autumn 2019, spring 2020 and the beginning of summer 2020. 

Data for all Riparian sites (along the river and at the slope) were gathered, while four representative 

sites were chosen for fieldwork in the Slope sites. The chosen Slope sites (3, 8/9 and 10) were used 

since they provided the best environment to conduct fieldwork. The Slope sites were difficult to access 
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and the steepness of slopes decreased the possibility to gather accurate and precise information about 

tree stands. Therefore, the collected data is incomplete, the position and number of trees vary in 

comparison to the real conditions in the forest.  

In total, 14 days were needed to gather the information of tree position and tree species. It has to be 

noted, that tree locations were plotted by the relations between trees, landmarks and with the help 

of the previously gathered orthomosaics. In general, no GPS coordinates for single trees were taken 

and no fixed plots were set up, as the studied area was large and small plots were found out to be not 

representative for the whole imaged area. Only for site 1 the island was geolocated with accurate 

measurements, which needed manpower of 10-15 people for five days. After an evaluation of the grid 

results, the data were identified as insufficient as they were not representative for the studied site. 

Therefore, the method of gathering data was changed and manual maps were drawn, indicating the 

position of the tree and the species name. Images of the bark and the leaves were taken to complete 

the dataset. Manual maps were digitalized with ArcGIS and the accuracy of the maps was increased by 

using winter images as a base map. Since the focus of the study was on deciduous trees, which are 

represented by the tree stem in winter images, accurate maps could be produced.  

 

3.6.1 Tree species 

The following table gives an overview of the main tree species and shrubs identified in YURF. Table 2 

provides the scientific name in the first column, the common name in the second column, a short 

description about every species, images of the aerial view, ground view and the leaves. The description 

contains general information about the species, their bark and leaves, height and further information. 

For the aerial view, UAV-acquired images are shown with different resolutions. The first image shows 

the tree with a resolution between 2.7 and 4.5 cm/pix, while the second image shows an image with 

the resolution between 1.3 to 1.7 cm/pix (depending on the flight height and imaged site). 
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Table 2 Tree species descriptions 

Name Common 
name 

Description  Aerial view Ground view Leaf   

Juglans 
ailantifolia 

Japanese 
walnut  

Japanese walnut is a 
deciduous tree, native 
to Japan and Sakhalin. 
The tree usually 
reaches a height of 20 
m. The tree forms a 
broad and half-round 
crown. The bark has a 
light grey colour with 
reticulate grooves in 
it. The leaves are 
imparipinnate, 40 – 
60 cm long and has 11 
to 17 leaf segments. 
The shape of the leaf 
is elongated to 
elliptical and 10 – 16 
cm long. The leaf 
colour is dark green 
and turns yellow in 
autumn. The tree 
flowers in May and 
grow clusters of 20 
fruits in autumn. The 
Japanese walnut is a 
clearstem tree and 
can form multi-stems.   

 

 
https://www.cirrusimage.com/tree_japan
ese_walnut/ (latest access 02. February 
2021) 

 

https://www.cirrusimage.com/tree_japanese_walnut/
https://www.cirrusimage.com/tree_japanese_walnut/
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Pterocarya 
rhoifolia 
Siebold & 
Zucc. 

Japanese 
wingnut 

Japanese wingnut is a 
deciduous tree native 
in Japan. Its habitats 
are wet valley and 
mountain areas, 
where it dominates 
the canopy area. The 
tree grows up to 30 
m. The bark shows a 
grey greenish colour 
with fissures, while 
the leaves are mid-
green and turn yellow 
in autumn. The leaves 
imparipinnate are 20 
– 40 cm with up to 25 
leaflets, which are 
ovate to oblong 
formed and 4 x 12 cm 
in shape. The flower 
appears in June and 
the fruit in autumn. 

 

 
https://de.123rf.com/photo_68914359_ja
panische-fl%C3%BCgelnuss-pterocarya-
rhoifolia-ist-eine-baumart-aus-der-
familie-der-juglandaceae-die-in-
feuch.html (latest access 02. February 
2021) 

 

https://de.123rf.com/photo_68914359_japanische-fl%C3%BCgelnuss-pterocarya-rhoifolia-ist-eine-baumart-aus-der-familie-der-juglandaceae-die-in-feuch.html
https://de.123rf.com/photo_68914359_japanische-fl%C3%BCgelnuss-pterocarya-rhoifolia-ist-eine-baumart-aus-der-familie-der-juglandaceae-die-in-feuch.html
https://de.123rf.com/photo_68914359_japanische-fl%C3%BCgelnuss-pterocarya-rhoifolia-ist-eine-baumart-aus-der-familie-der-juglandaceae-die-in-feuch.html
https://de.123rf.com/photo_68914359_japanische-fl%C3%BCgelnuss-pterocarya-rhoifolia-ist-eine-baumart-aus-der-familie-der-juglandaceae-die-in-feuch.html
https://de.123rf.com/photo_68914359_japanische-fl%C3%BCgelnuss-pterocarya-rhoifolia-ist-eine-baumart-aus-der-familie-der-juglandaceae-die-in-feuch.html
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Magnolia 
obovata 

Japanese 
bigleaf 
magnolia 

The deciduous tree 
grows up to 30 m, 
while the spread is 
usually wider than 8 
m. It is native to Japan 
and occurs in broad-
leaved forests. The 
bark of the tree is 
slate grey, while the 
leaves are large with 
up to 38 cm length 
and 20 cm width. The 
leaf colour is green 
with a silvery to grey 
pubescent. The tree 
flowers in early 
summer and they are 
characteristic because 
of their large cone 
shape size of 20 cm.  

 

 
https://commons.wikimedia.org/wiki/Ma
gnolia_obovata (latest access 02. 
February 2021) 

 

Aesculus 
turbinata - 
Blume 

Japanese 
Horse 
Chestnut 

The deciduous tree is 
native to Japan an 
grows in mountainous 
areas, preferentially 
in moist slopes. The 
tree can reach a 
height of 20 m to 35 
m and it is a vigorous, 
spreading tree. The 
bark is dark brown  

  

https://commons.wikimedia.org/wiki/Magnolia_obovata
https://commons.wikimedia.org/wiki/Magnolia_obovata
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and peeled off and 
waved. The palmate 
compound leaves 
with 5 to 9, 15 – 30 
cm, leaves. The flower 
occurs in June and has 
a white colour. The 
fruits are formed in 
autumn.   

 

https://www.cirrusimage.com/tree_japan
ese_horse_chestnut/ (latest access 02. 
February 2021) 

Castanea 
crenata  

Japanese 
chestnut 

The medium-sized (10 
– 15 m) deciduous 
tree has a wide 
spread crown. The 
leaves are oblong-
lanceolate dark green 
leaves with tooth. 
From the bottom the 
leaf is pubescent. In 
autumn leaves change 
their colour to yellow-
bronzish. In late 
spring the flowers 
appear which show a 
characteristic upright 
catkin structure which 
are 7 – 20 cm long.  

 
 
 

 
https://tonysharks.com/Tree_of_life/Euka
ryote/Plantae/Land_plants/Kuri/Kuri.html 
(latest access 02. February 2021) 

 

https://www.cirrusimage.com/tree_japanese_horse_chestnut/
https://www.cirrusimage.com/tree_japanese_horse_chestnut/
https://tonysharks.com/Tree_of_life/Eukaryote/Plantae/Land_plants/Kuri/Kuri.html
https://tonysharks.com/Tree_of_life/Eukaryote/Plantae/Land_plants/Kuri/Kuri.html
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Salix 
jessoensis 
Seem. 

Willow  The deciduous tree is 
a weeping willow tree 
reaching a height of 
15 to 20 m. 
Preferentially the tree 
grows along rivers. 
The shape of the 
crown is round. The 
bark has a pale brown 
greyish colour and is 
furrowed. The 
toothed small leaves, 
which are powdery 
white from the 
bottom, are 10 cm 
long and have a dark 
green colour. In 
autumn the leaves 
turn brownish-yellow. 
The flower grows with 
the new leaves in 
early spring.   

 
https://www.botanic.jp/plants-
sa/siyagi.htm (latest access 02. February 
2021) 

 

https://www.botanic.jp/plants-sa/siyagi.htm
https://www.botanic.jp/plants-sa/siyagi.htm


54 
 

Salix 
serissaefolia 

Willow  This 10 to 20 m 
deciduous tree is 
native to Japan and 
occurs mainly in wet 
conditions, close to 
rivers. The bark is grey 
to brownish. The 
leaves are alternate 
organised, have a 
length of 3 to 7 cm 
with a sharp head.  

 

 
https://mikawanoyasou.org/data/kogome
yanagi.htm (latest access 02. February 
2021) 

 

Fagus crenata  Japanese 
beech 

Japanese beech is a 
deciduous tree 
growing in 
mountainous areas of 
Japan reaching a 
height of 35 m. The 
crown forms a round 
shape. The tree 
dominates deciduous 
forests, especially in 
higher altitudes. The 
bark has a light grey 
colour and a smooth 
shape. The leaves 
have an ovoid shape, 

 

 
 
 

 
https://en.wikipedia.org/wiki/Fagus_cren
ata (latest access 02. February 2021) 

 

https://mikawanoyasou.org/data/kogomeyanagi.htm
https://mikawanoyasou.org/data/kogomeyanagi.htm
https://en.wikipedia.org/wiki/Fagus_crenata
https://en.wikipedia.org/wiki/Fagus_crenata
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the leaf margin in 
notched and the 
position of the leaf is 
alternate. The colour 
in summer is dark 
green and turns gold-
brown in autumn.   

Quercus 
mongolica 

Mongolian 
oak 

The deciduous tree 
occurs in cooler 
regions of Japan. The 
tree grows up to 30 m 
and has an open 
crown spreading. The 
bark is dark grey and 
has deep ridges and 
furrows. The alternate 
position of the dark 
green, coarse toothed 
leaf with an ovoid 
shape turns red to 
dark red in autumn. 
The leaves built a 
dense cluster at the 
branch end and has a 
length of 7 – 19 cm 
and a width of 3 – 11 
cm.  

 
 

 

 
https://landscapeplants.oregonstate.edu/
plants/quercus-mongolica (latest access 
02. February 2021) 

 

https://landscapeplants.oregonstate.edu/plants/quercus-mongolica
https://landscapeplants.oregonstate.edu/plants/quercus-mongolica
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Cryptomeria 
Japonica 

Japanese 
cedar 

The evergreen, 
coniferous tree grows 
up to 65 m. The shape 
of the crown is conical 
and it has 
characteristic straight, 
slender trunk with a 
reddish-brown colour. 
The bark is fibrous 
and it can be pilled of 
in strips. Th needle 
leaves are pale green 
and arranged in a 
spirally with a length 
of 0.5 to 1 cm.  

 

 
https://greenarborists.com/sugi-trees/ 
(latest access 02. February 2021) 

 

Larix 
kaempferi  

Japanese 
larch 

The deciduous conifer 
tree has a horizontally 
trunk and horizontally 
spreading branches. 
The crown is conical 
and dense, but can 
become more open 
with age. The bark is 
scaly and fissured 
with a greyish colour. 
The 2 to 3.5 cm 
needles are blue-
green, spirally 
arranged and 
clustered in 20 to 35 

 

 

 
https://www.vdberk.com/trees/larix-
kaempferi/ (latest access 02. February 
2021) 

 

https://greenarborists.com/sugi-trees/
https://www.vdberk.com/trees/larix-kaempferi/
https://www.vdberk.com/trees/larix-kaempferi/
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short shoots. In 
autumn the needles 
change their colour to 
yellow.  

Acer mono 
maxim  

Maple The deciduous maple 
tree grows in 
mountainous areas in 
Japan. The tree 
reaches a height of 
15 m. The bark is grey 
with vertical furrows.  
The leaves grow five 
to seven lobes, which 
are 7 – 15 cm long. 
The leave colour is 
green and turns 
yellowish red.  

 
 
 

 
https://www.google.de/url?sa=i&url=http
%3A%2F%2Fwww.bjrdhj.com%2Fpd.jsp%
3Fid%3D211&psig=AOvVaw1YcZJdm5sR2-
d0yWLy3vPq&ust=1612332261565000&s
ource=images&cd=vfe&ved=0CAkQjhxqF
woTCPDo6vDDyu4CFQAAAAAdAAAAABA
D (latest access 02. February 2021) 

 

https://www.google.de/url?sa=i&url=http%3A%2F%2Fwww.bjrdhj.com%2Fpd.jsp%3Fid%3D211&psig=AOvVaw1YcZJdm5sR2-d0yWLy3vPq&ust=1612332261565000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCPDo6vDDyu4CFQAAAAAdAAAAABAD
https://www.google.de/url?sa=i&url=http%3A%2F%2Fwww.bjrdhj.com%2Fpd.jsp%3Fid%3D211&psig=AOvVaw1YcZJdm5sR2-d0yWLy3vPq&ust=1612332261565000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCPDo6vDDyu4CFQAAAAAdAAAAABAD
https://www.google.de/url?sa=i&url=http%3A%2F%2Fwww.bjrdhj.com%2Fpd.jsp%3Fid%3D211&psig=AOvVaw1YcZJdm5sR2-d0yWLy3vPq&ust=1612332261565000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCPDo6vDDyu4CFQAAAAAdAAAAABAD
https://www.google.de/url?sa=i&url=http%3A%2F%2Fwww.bjrdhj.com%2Fpd.jsp%3Fid%3D211&psig=AOvVaw1YcZJdm5sR2-d0yWLy3vPq&ust=1612332261565000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCPDo6vDDyu4CFQAAAAAdAAAAABAD
https://www.google.de/url?sa=i&url=http%3A%2F%2Fwww.bjrdhj.com%2Fpd.jsp%3Fid%3D211&psig=AOvVaw1YcZJdm5sR2-d0yWLy3vPq&ust=1612332261565000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCPDo6vDDyu4CFQAAAAAdAAAAABAD
https://www.google.de/url?sa=i&url=http%3A%2F%2Fwww.bjrdhj.com%2Fpd.jsp%3Fid%3D211&psig=AOvVaw1YcZJdm5sR2-d0yWLy3vPq&ust=1612332261565000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCPDo6vDDyu4CFQAAAAAdAAAAABAD
https://www.google.de/url?sa=i&url=http%3A%2F%2Fwww.bjrdhj.com%2Fpd.jsp%3Fid%3D211&psig=AOvVaw1YcZJdm5sR2-d0yWLy3vPq&ust=1612332261565000&source=images&cd=vfe&ved=0CAkQjhxqFwoTCPDo6vDDyu4CFQAAAAAdAAAAABAD
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Acer 
sieboldium 

Sieblod 
maple  

This tree is a 
deciduous maple, 
which is often 
characterised as shrub 
or small tree of up to 
10 m height. It grows 
often with multiple 
trunks. The leaves are 
palmately lobed with 
9 to 11 lobes. The leaf 
is dark and turns red 
in autumn.  

  
https://plants.ces.ncsu.edu/pl
ants/acer-sieboldianum/ 
(latest access 02. February 
2021) 

 

Acer 
japonicum  

Fullmoon 
maple  

This maple is a 
deciduous tree 
growing up to 10 m. It 
grows in mountainous 
areas, preferentially 
under a bit shadowed 
condition. It often 
grows with multiple 
trunks, which have a 
grey colour.  
The leaves look 
roundish and have a 
green colour which 
turn yellow and red in 
autumn. The leaves 
have 9 – 13 separate 
lobes, which are 
around 7 cm long. 

 

 

 

https://plants.ces.ncsu.edu/plants/acer-sieboldianum/
https://plants.ces.ncsu.edu/plants/acer-sieboldianum/
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Acer 
palmatum 

Japanese 
maple 

The Japanese 
deciduous maple tree 
or shrub, which grows 
up to 10 m. This tree 
can grow multiple 
trunks and often 
grows as understory 
vegetation. The leaves 
are up to 12 cm long 
and have usually 5 
lobes, which are dark 
green and turn red in 
autumn.  

 

 
https://www.gardendesign.com/japanese
-maple/ (latest access 02. February 2021) 

 

Cornus 
controversa 

Wedding 
cake tree  

The wedding cake 
tree is a 10 to 12 m 
high deciduous tree. 
The characteristic 
shape is generated by 
the horizontally 
layered branches. The 
leave has an ovate 
shape, a dark green 
colour, which turn 
red-purple in autumn. 
The leaves are 8 -
15 cm long.  

 
 

 

 
https://caraghnurseries.ie/product/cornu
s-controversa-variegata-wedding-cake-
tree/ (latest access 02. February 2021) 

 

https://www.gardendesign.com/japanese-maple/
https://www.gardendesign.com/japanese-maple/
https://caraghnurseries.ie/product/cornus-controversa-variegata-wedding-cake-tree/
https://caraghnurseries.ie/product/cornus-controversa-variegata-wedding-cake-tree/
https://caraghnurseries.ie/product/cornus-controversa-variegata-wedding-cake-tree/
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Robinia 
pseudoacacia  

Black 
locust 

Is a fast-growing 
invasive deciduous 
tree.  The crown of 
the tree is round 
shaped. The bark is 
furrowed with a dark 
brown colour. 
The leaves are 
coloured blue-green, 
which are paired by 5 
– 11 leaves of oval 
leaflets. The leaves 
change their colour to 
yellow in autumn.  

 
 
 

 
https://landscapeplants.oregonstate.edu/
plants/robinia-pseudoacacia-frisia (latest 
access 02. February 2021) 

 

Alnus fauriei  Miyama 
alder 

This deciduous tree is 
a large shrub, which 
can reach heights of 7 
m. The leaves are 
around 11 cm long 
have an obovate 
shape, look dark 
green-yellowish and 
have small teeth. 
They are often 
forming a dense 
understory 
vegetation. 

  
https://www.botanic.jp/plants-
ma/mikaha.htm (latest access 02. 
February 2021) 

 

https://landscapeplants.oregonstate.edu/plants/robinia-pseudoacacia-frisia
https://landscapeplants.oregonstate.edu/plants/robinia-pseudoacacia-frisia
https://www.botanic.jp/plants-ma/mikaha.htm
https://www.botanic.jp/plants-ma/mikaha.htm
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Morus 
australis  

Korean 
mulberry 

The deciduous shrub 
or tree is small with a 
height of maximum 
7.5 m. The crown is 
rounded with a light 
green leave colour. 
Leaves are varying in 
the size and have an 
ovate shape. The base 
is heart-shaped and 
the leaves are coarse 
toothed.  

 
 

 

 
https://www.cirrusimage.com/tree_japan
ese_mulberry/ (latest access 02. February 
2021) 

 

Hamamelis 
japonica 

Japanese 
witch 
hazel 

The up to 4 m high 
deciduous shrub or 
small tree is native to 
Japan. The grey bark 
and the oval leaves of 
5 – 7 cm length are 
characteristic for the 
tree.  

 

 
https://shop.lve-
baumschule.de/laubgehoelze/914/hama
melis-japonica (latest access 02. February 
2021) 

 

 

 

 

https://www.cirrusimage.com/tree_japanese_mulberry/
https://www.cirrusimage.com/tree_japanese_mulberry/
https://shop.lve-baumschule.de/laubgehoelze/914/hamamelis-japonica
https://shop.lve-baumschule.de/laubgehoelze/914/hamamelis-japonica
https://shop.lve-baumschule.de/laubgehoelze/914/hamamelis-japonica
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3.7 Forest classification systems 

One part of this study is to classify forests developing a methodology, which can be applied in other 

regions with a standardised basis, so that field data can be compared. There were several approaches 

presented in previous studies, which focussed on classifying Japanese forests.  

The Braun-Blanquet approach, a commonly used methodology, is cited by several papers working with 

plant species classification, field surveys and forest compositions, especially in Japan (Sakio & Tamura, 

2008). This approach uses the floristic composition to distinguish types of vegetation. The idea behind 

this technique is to understand the vegetation based on their structure, composition and community. 

Indicator or character species are identified to classify the vegetation and a differential species to 

define the syntax (Westhoff & Van der Maarel, 1978). Whitaker is another researcher, who influenced 

the vegetation classification strongly. His concept of population structure of vegetation analysis uses 

the dominance and diversity of species to indicate their importance for the ecosystem. Commonly 

used is also gradient analysis of vegetation by R.H. Whittaker, who introduced his concept to identify 

spatial patterns of vegetations to understand the structure and variation of vegetations in ecosystems 

(Whittaker, 1967).  In modern studies, like Ohno (2008), dominant tree species were identified to 

classify forests based on the idea of Braun-Blanquet. A dominant species needs to comprise 30 % of 

the forest area (Makimoto, 2019). 

The forest and forest vegetation can be further divided into different layers. Fukamachi et al. (2020) 

applied a vertical stratification and divided the forest into the layers: tree, subtree, shrub and herb. 

Sakio et al. (2002) recorded only three layers of the forest: canopy, subcanopy and understory 

vegetation. 

Kikuchi (2008), who worked in riparian forests, classified different forest sites based on their stability, 

elevation and distance to the riverbed. He classified active sites with up to 1.5 m higher elevation and 

distances up to 10 m, while stable sites were areas above a height difference of 1.5 m and a distance 

greater than 10 m. Sites, which lay in between were considered as semi-active. Masaki et al. (2008) 

classified riparian forests based on their major topographic unit as riparian area, colluvial slope, 

denudation slope and upper terrace. The different sites showed specific conditions, like terraces with 

drier soils.  

Bravo-Oviedo et al. (2014) specifically focussed on the definition and characterisation of mixed forest. 

The authors summarised different approaches used in recent years: compositional approach, 

structural approach developmental approach and functional approach. The compositional approach 

classified forests on depending on the occurrence of tree species, disregarding horizontal and vertical 

structures of the forest, as well as the spatial scale. The structural approach characterises forests based 
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on the form, type and grade of the mixture, which integrated horizontal tree pattens (form), vertical 

distributions in forest stands (type) and the number of trees (grade). The introduced development 

approach considers the development based on disturbances and natural gradients within the forest. A 

detailed classification can be found in Smith et al. (1997). The functional approach considers species 

and their functional importance for the ecosystem, instead of only considering the number of tree 

species. This approach is the most difficult one, as functions and their importance for the ecosystem 

are difficult to evaluate. In general Bravo-Oviedo et al. (2014) raised that there are missing harmonized 

definitions for mixed forests, leading to mainly three approaches: no definition of the forest, but a list 

with occurring tree species, definitions based on percentages of canopy covers, definitions based on 

other forests characteristics. The proposed definition for mixed forest were given by Bravo-Oviedo et 

al. (2014): “A mixed forest is a forest unit, excluding linear formations, where at least two tree species coexist 

at any developmental stage, sharing common resources (light, water, and/or soil nutrients). The presence of 

each of the component species is normally quantified as a proportion of the number of stems or of basal area, 

although volume, biomass or canopy cover as well as proportions by occupied stand area may be used for 

specific objectives. A variety of structures and patterns of mixtures can occur, and the interactions between 

the component species and their relative proportions may change over time.” 

Furthermore, the authors (Bravo-Oviedo et al., 2014) raised that there are four aspects, which have to 

be provided: 

- The dimension of the studied forest 

- The development stage  

- The occurrence and form of the mixture 

- Drivers of species occurrence (facilitation, niche differentiation and competition) 

The newest and most detailed approach was therefore presented by Bravo-Oviedo et al. (2014), who 

identified the most important aspects, which need to be considered when forests are classified. In the 

later chapters (4 to 8) this set of information is used to develop a new standardised methodology for 

forest classifications. 

 

3.8 Diversity measures 

Measuring the diversity in different ecosystems is an important aspect and commonly done. In this 

chapter several indices are introduced, which calculates the diversity, evenness and the effective 

number of species. In a community the number of species occurring and the evenness, which analysis 

if a species is rare or common, are important parameters to assess its diversity. There are several 

diversity indices available, which differ by the weight they put on species richness or evenness. The 

indices are highly dependent on the sampling strategy and discovered species in the community.  
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3.8.1 Species richness (S) 

Species richness is a natural value, which describes the classified species in an ecosystem. It highly 

depends on the data base because it gives each species the same weight, which means dominant and 

rare species are treated equal. 

 

3.8.2 Shannon index (H) 

It is also called Shannon entropy and calculates the diversity, considering species richness and 

evenness. The index describes the uncertainty of a randomly selected species in the community, based 

on their occurring probability. The value will be zero in the case that only one species is in the 

community and it increases with the number of species in a community. The uncertainty is higher when 

all species occur evenly, while the value is lower when the species distribution is uneven. Therefore, 

the Shannon index is the highest for even and species rich communities, but the index is more 

abundant from the richness than evenness (Zeleny, 2021). 

(1)  𝐻 =  ∑ 𝑝𝑖 ∗ ln(𝑝𝑖)𝑆
𝑖=1  

With S = species richness, pi = relative abundance of species i. 

 

3.8.3 Simpson index (D) 

This index also calculated the diversity by considering species richness and evenness, but compared to 

Shannon´s index the Simpson index is strongly influenced by the species evenness. The probability, 

that two randomly selected trees are the same species, is calculated. With increasing species richness, 

the index D becomes smaller. Some studies prefer to use the Gini-Simpson index, which subtracts the 

Simpson index from the value 1, so that the index increases with increasing species richness (Zeleny, 

2021). 

(2) 𝐷 =  ∑ 𝑝𝑖
2𝑆

𝑖=1  

(3) 𝐺𝑆 = 1 − 𝐷 

With S = species richness, pi = relative abundance of species i. 

D ranges between 0 and 1, as it is a probability. It is known, that with more than 10 species the Simpson 

index is influenced by the evenness.  
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Figure 10 shows examples of species abundance distributions depending on the evenness of a 

community. Species richness alone cannot show differences in the three communities, in combination 

with Shannon entropy and the Gini-Simpson index it can provide more detailed information. The lower 

the Gini-Simpson index and the Shannon entropy, the more uneven is the community, which can be 

seen in Figure 11.  

 

 

Figure 10 Three communities with different evenness at the top and diagrams of the species abundance corresponding to the 
three communities on the bottom. (https://www.davidzeleny.net/anadat-r/doku.php/en:div-ind, latest access 26. April 2021) 

 

Figure 11 Example diagrams for the species richness, Shannon entropy and Gini-Simpson index based on the species number 
and unevenness (https://www.davidzeleny.net/anadat-r/doku.php/en:div-ind, latest access 26. April 2021) 
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3.8.4 Shannon Evenness 

Is a measure, which describes relative species abundances in a community. The two main indices are 

Shannon´s evenness and Simpson´s evenness. Here, only the Shannon evenness is calculated by the 

ratio of the Shannon index divided by the maximum Shannon index. A value of 1 occur in case the 

species have the same relative abundance.  

(4) 𝐽 =
𝐻

𝑙𝑜𝑔𝑆
 

 

3.8.5 Hill numbers 

In the Hill numbers (or effective numbers of species) species richness, Shannon and Simpson’s diversity 

are included. Hill numbers vary by the parameter q, which sets the weight of rare species, when the 

diversity is calculated, and therefore determine the sensitivity to estimate relative frequencies (Chao 

et al., 2014). For q = 0 the Hill number is the same like species richness, for q = 1 the Hill number is the 

Shannon entropy and for q = 2 it is the Simpson diversity. The parameter q puts a weight to rare or 

abundant species and calculates harmonic, geometric or arithmetic mean values for the diversity. 1D 

is the variable, which determines the proportion of the species frequency, while 2D increases the 

weight of abundance species and decreases the weight of rare species. Chao et al. (2014) pointed out 

that q = 0 is the diversity of the species, q = 1 is the number of typical species and q = 2 is the number 

of dominant species.  

(5) 1𝐷 =  𝑒𝐻 

(6) 2𝐷 =
1

𝐷
 

(7) q𝐷 = (∑ 𝑝𝑖 
 𝑞

)𝑆
𝑖=1

1

1−𝑞 

Figure 12 shows the effective numbers of species as a function of q, as species composition is highly 

uneven and q increases the strongest decline is observed.  

 

3.8.6 Partitioning diversity 

Another approach uses alpha, beta and gamma diversities. Alpha diversity is the diversity for individual 

locations, gamma diversity the consolidation of all locations and the difference between both is the 

beta diversity. These diversities can be calculated by using the Shannon entropy, as the single entropies 

of different locations can be summarised by adding them up. Beta diversity is used to measure 

similarities or overlaps between communities and their distribution. The use of alpha and beta 
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diversities allows to compare relative abundances in different samples on a local and regional basis 

(Jost, 2007).  

(8) Hα + 𝐻𝛽 = 𝐻𝛾 

The comparison is performed using beta diversities. For a matrix, in each cell the beta diversity was 

calculated, by comparing the single sites with each other. High beta entropies stand for high 

differences between the sites, while low beta diversity stands for high similarities between them (Jost, 

2006).  

 

 

Figure 12 Diversity profiles for three communities (https://www.davidzeleny.net/anadat-r/doku.php/en:div-ind, latest access 
26. April 2021) 

 

3.9 Data gathering 

Image collection was mainly done by a small quad copter drone called DJI Phantom 4. The Phantom 4 

is a smart flying camera, able The Phantom 4 is equipped with four rotary propellers, an intelligent 

flight battery, a Micro SD card, a 3-axis Gimbal and an attached FC330 RGB camera (weight: 1.38 kg; 

max. speed: 20 m/s; flight height: up to 600 m; maximum flight duration 28 min). The camera can take 

images from different altitudes and track objects. The rotary propellers allow the drone to start and 

land vertically, which is useful for forest investigations, where space is limited. The camera 

specifications are 12 megapixels, 1/2.3’’ CMOS Sensor, a Focal length of 3.61 mm and a pixel size of 

1.56 *1.56 µm (DJI Manual, 2017). The phantom 4 is a light weighted, small and user-friendly model. 

Further studies showed that this pricy kind of drone has a high sensor quality, good functionality and 

portability in comparison to bigger and high-cost drones (Peppa et al., 2019).  
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In the end of 2020 and the beginning of 2021 another drone was used: the DJI Mavic 2 Pro, equipped 

with a fully stabilized 3-axes gimbal with a 1’’ CMOS sensor camera, shooting 20-megapixel images. In 

comparison to the Phantom 4, the Mavic 2 Pro is with 907 g lighter and with 214x91x84 mm smaller 

when folded, which makes the UAV easy to carry. The UAV can fly up to 72 km/h for 25 min when the 

UAV is flown normal (according to the DJI Manual, 2017). The maximal flight distance is 18 km under 

optimal conditions. Furthermore, the UAV is equipped with a vision system, which automatically 

detects obstacles and keeps the UAV in a safe distance.   

There were two acquisition protocols, one for the usually performed automatic flights and another 

one for manual flights. The app DJI GS Pro was used for automatic flights, which allows inputting a 

flight area with specific flight settings, like flight altitude, image overlap and time-shot of the image 

capturing. In general, 250 to 500 images were taken per flight, depending on the area of each site. 

Flight altitude was 80 to 120 m for river sites, while flight altitudes of up to 250 m needed to be chosen 

because of the steep angle of some slopes. The image overlap was always more than 90 %. Detailed 

flight protocol descriptions were given in Appendix A. However, manual flights needed to be conducted 

to capture images from the canopies as close as possible. In those cases, no standardized protocol 

could be used, images were captured manually while flying slowly, assuring enough overlap of the 

images and safe distances to trees.  

Data gathering in YURF started in summer 2018, when images of two sites (1 and 2) were captured. In 

autumn 2018, images were gathered for three sites (1 to 3), while for the winter seven flights were 

performed to gather images of the same sites, which were covered by snow at that time. Since spring 

2019 images of all 13 sites were captured continuously every week until leaf-fall in autumn 2019. 

Pre-programmed flights were used to standardize the acquisition protocol. In winter 2020 further 

seven flights were conducted to capture the sites missing in the previous year. In 2020, additionally 

flights were performed to increase the data set. Two flights were performed in monocultures of 

Castanea crenata and Salix forests in YURF, which were minor tree species in the 13 sites. In total 295 

fight missions were performed, resulting in a large forest data set.  

 

3.9.1 Georeferencing 

The dense structure of the forest, as well as the snow cover, hindered the use of manually installed 

Ground Control Points (GCP). The use of GCPs would have caused contortions in the later image 

processing steps. As only a DJI Phantom 4 and a Mavic 2 Pro drone were used for the study, the GPS 

localisations of these UAVs were used to localise the orthomosaic in ArcGIS. The location given by 

these drones was inaccurate, which caused that orthomosaics of the same site were placed in different 
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locations. In a post-processing step, the orthomosaics were manually georeferenced using marker 

points like power pole, buildings, streets or tree tops of evergreen trees. It has to be noted that this 

georeferencing method is not able to align the same pixels in two orthomosaics of the same site.  

 

3.10 Data Processing  

The collected data were pre- and post-processed with different kind of software. The first chapters 

focussed on images and their used formats to understand the different kind of data. The second part 

focussed on the software and tools, which were used to work with the data in order to process and 

understand them. 

 

3.10.1  Images  

An image stores visual information like drawings, graphs or pictures in a numeric representation. The 

numeric values are stored in each cell of an image, which is called a pixel. Every image has a specific 

number of pixels saved in rows and columns, which can be read by computers.  

The entirety of those rows and columns of an image is called matrix or array. The number of pixels 

represents the resolution of an image. The more pixels an image contains the higher is the resolution, 

which means that usually more details are visible in the image.    

Images can be binary, which means that the array of the image only contains only the values 0 or 1. 

The two colours, which are stored in those images, are black, represented by ‘0’ and white, 

represented with the value ‘1’. Greyscale images represent an image by pixel values ranging from 0 to 

255. Here, ‘0’ represents black and ‘255’ is the white colour. The numbers in between are shades from 

black to white, so different grey values. In colour images the information about the colour is stored in 

the three channels R for Red, G for green and B for blue. Every channel is stored in a pixel depending 

of the intensity of R, G and B. Therefore, every pixel contains three values. 

Another kind of images are Digital elevation models. They store information as a greyscale image with 

an additional value, the z-value. The z-value is the information about the height.  

 

3.10.1.1  Image formats 

There are several image formats available, which represent standards to organise digital images and 

the way they are stored.  
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TIFF: Tagged Image File Format is the largest file format. TIFF files are not compressed, which means 

that they contain all the information as when the image was captured, and provide therefore the 

highest image quality. In the TIFF format geographic coordinates can be stored, which makes those 

files usable in geoprocessing software like ArcGIS. Since all information are stored in TIFFs, the size of 

the files is often big, which slows down computer programs using the images.  

JPEG: Joint Photographic Experts Group is a compressed image format. The reduced size of the image 

results in a loss of information, even though the format is still capable to store a lot of pixel data. 

Therefore, the quality of the image is reduced and cannot be recovered. The benefit of this format is 

the small size and reduced storage needs. Furthermore, computer programs can handle these images 

easily.  

PNG: Portable Network Graphics have a format between the quality of TIFFs and JPEGs. The complete 

colour information can be stored in PNGs, which increases the needed storage capacity in comparison 

to JPEGs. Still, the format is compressing the image, so the size is smaller than TIFF files. In comparison 

to TIFF, PNGs cannot store geolocation information.  

In this study all three image formats were used. JPEG files are used for DL applications, since the 

computers needed to deal with a high number of images, causing a long processing time. TIFF files 

were used to geolocate the images in ArcGIS and provide the possibility to further use them for 

annotations in ArcGIS. PNG files are used to keep the high quality of the handmade annotations to 

input them into ArcGIS.  

 

3.10.1.2  Digital Elevation Models 

There are three ways to model the geospatial feature elevation: Digital Elevation Models (DEM), Digital 

Surface Models (DSM) and Digital Terrain Models (DTM) (Figure 13). Every model is different because 

of the methodologies they are using.  

The DSM captures the natural and built features on the Earth surface, so it reflects the height of the 

ground, as well as the height of buildings or tree canopies e.g., which are contained in the area. 

Therefore, the DSM is showing the earth surface including objects on it.   

The DTM shows the surface without any objects, it shows the bare-earth. Therefore, it contains 

information about the natural feature elevation of the terrain. It is a three-dimensional model of the 

terrain surface with the coordinates x, y and z.  
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Figure 13 Example images of DSM and DTM. The upper image shows a sketch, where the red line shows the DSM and the 
blueline the DTM. The bottom image shows how the DTM and DSM of a real-world example 
(https://www.gisresources.com/confused-dem-dtm-dsm/, latest access 15. March 2021) 

The DEM is the bare-earth raster grid produced especially for GIS applications. The DEM contains the 

elevation, the z-value for each cell in the raster corresponding to the terrain of a specific area. DEM is 

the hyponym, which includes DSMs and DTMs. The DEM can therefore contain objects in case they are 

imaged or the DEM can represent the terrain, in case no objects are on the imaged surface.  

Those models are especially important in forestry, since they are used for Canopy Height Models (CHM). 

The difference between the DSM and the DTM can be seen as the CHM, as it calculates the height of 

trees above the ground level. This information can be used to derive individual tree canopies, their 

area and their boundaries.   

 

3.10.3  Image Processing 

Digital images are raw data which can be processed or used as they are. Pre-processing of an image is 

used to enhance the image quality for an application or a specific task.  

Image processing can be explained as meaningful descriptions of objects which were generated 

automatically (Heipke et al., 2000). Objects in images can be identified, geometrically described and 

https://www.gisresources.com/confused-dem-dtm-dsm/
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radiometric information can be extracted. Images are interpreted using different strategies, by 

reducing the complexity contained in the images and by visualising information (Heipke et al., 2000). 

Processing images and creating orthomosaics allow the faster analysis of larger amounts of data. DL 

techniques additionally automate classifications and localisations to generate maps, enabling the 

possibility to detect invasive species and enhance the chances for providing management tasks against 

them. There are several tools and software available to pre-process images, which will be introduced 

in the following sections.  

 

3.10.3.1  Metashape 

The raw images were processed using Metashape from Agisoft. This software is an advanced image-

based modelling program. It uses the latest multi-view 3D reconstruction technology for aligning and 

reconstructing objects based on the input images. The aim of the processing is a 3D surface, 

orthomosaic and DEM (Metashape, 2018) (Figure 14). The basic steps are the alignment of the cameras, 

the single images, where the software search for common points and matches those. The results are 

a sparse point cloud and the position of the cameras. In further processing steps, the software 

generates a dense point cloud, based on the given information, a surface, which can be a mesh and/or 

a DEM and on that basis an orthomosaic will be generated. 

 

Figure 14 General workflow in Metashape, where first the acquired images are inputted, then aligned to create first a spare, 
then a dense point cloud. The dense point cloud is the basis to generate the orthomosaic, DSM and the DTM (Guimarães et 
al., 2020)  

The following important settings were used for generating each mosaic: The camera alignment was 

set to a high accuracy; Key point limit was 40,000 (and 200,000 for the manual flight acquisition) and 

the Tie point limit 0. All parameters were optimized. The dense map generation was done with medium 

quality and the filtering mode was chosen to be aggressive. The mesh was set on the surface type 

height field and the source data was the dense cloud. The DEM was produced with the coordinate 

system WGS 84 by the source of the dense cloud. Finally, the mosaic´s surface was the mesh.  
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All parameters were set due to the recommendation of Agisoft and the effective processing, 

respectively to the time-demand and the usage. The settings were stored in a batch, which was 

uploaded into Metashape for each image-processing step. 

 

3.10.3.2  GIMP  

The GNU Image Manipulation Program (GIMP) is an open-source image editor. For this study the GIMP 

versions 2.7 to 2.10 were used. The image editor provides several tools to edit images in order to 

enhance the photo quality and perform retouching. The software supports all kind of image formats 

from JPEG to TIFF, which can be processed and exported in the desired format. In this study GIMP was 

mainly used to do image annotations. Furthermore, the software was compatible with a Wacom tablet, 

which decreased the time needed for annotations. In GIMP, the orthomosaics can be overlayed by 

several separate layers in which the annotation per species was done.  For the annotations the scissor, 

bucket filling and pencil tools were mainly used. 

 

3.11 Geographic information systems 

Geographic information systems (GIS) are computer-based programs, which can display any kind of 

data with a georeferenced location. The system deals with attribute data and location data at the same 

time, which on the one hand helps to geolocate and display maps and features belonging to the data 

and on the other hand to record and analyse the characteristics of the dataset. For example, the 

dataset can contain the location of a forest and additional information about the number of trees in it, 

their species and height. The benefit of GIS is that it contains geodatabases, which can store every kind 

of information that can be correlated easily (Lillesand et al., 2008).  

 

3.11.1  ArcGIS 

ArcGIS is a commercial mapping and analytics platform, which provides contextual tools for mapping 

and spatial analysis of data to visualise and understand geographic data. The spatial analytic tool, 

which counts more than 1,000 tools available in ArcGIS, are used to visualise and interpret real world 

data for several applications. The software can be used with imagery and remote sensing data for every 

work environment and scale. The mapping options allow to visualise the gathered data within the real 

location in an eligible base map.  

For this study ArcGIS Pro version 2.4 and 2.7 were used.  
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3.11.2  ArcGIS – Tools 

Kernel density: This tool is used to calculate the magnitude-per-area from shapefiles (points and 

lines). A kernel function is used to calculate the density of features by considering their neighbourhood. 

In this study the tool was used to calculate the density of plants in their environment. The parameter 

area unit set the area units of the output density values, while the parameter method determines the 

path used (spheroid or planar).   

 

Figure 15 The equation used for calculating the kernel density of points 

The kernel density does further determine a parameter search radius that can be chosen manually. 

Larger radius values generalise the density raster and smaller values provide more details in the 

analysis.  At the centre, the location of a point is assigned the highest value, while the value is zero at 

the search radius distance from the point. Therefore, the value decreases from the point to the search 

radius distance with a smoothed curved surface. This kernel surface is applied to each point and for all 

raster cells the kernel surfaces are added to generate the population field value of each raster cell, in 

case there are overlaying kernel surfaces. The calculated density is multiplied with the number of 

points (or sum of the population field if provided) and outputted in a density map (Figure 15).   

 

Integrate: This tool identifies features located in a specific radius and assumes that those features 

belong to the same area. Points are summed up and are represented by an assigned coordinate value 

based on their location before the use of the tool.  

 

Collect events: This tool creates datasets based on weighted point data. It is usually applied after 

the tool Integrate, after the points were snapped together in feature points based on their location. 

Collect events assigns a new weight to the points considering the number of points integrated before. 

The number of points which are summed up in a location is stored in the ICount field of the output´s 

attribute table (Figure 16).  The output is usually used as input for the tool Optimized Hot Spot Analysis.  
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Figure 16 In- and output of the tool collect events, whereby the output shows the weighed points by having different radii 
(https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/collect-events.htm, latest access 14. March 2021) 

 

Optimized Hot Spot Analysis: This tool analyses the points or polygons in the input dataset, which 

are weighted features, and evaluates areas of significant hot and cold spots based on Getis-Ord Gi 

statistics. Therefore, the tool identifies statistically significant spatial clusters (Figure 17).  

 

Figure 17 Example of a hot spot analysis of a point shapefile. Red are the significant hot spots; while blue are the significant 
cold spots, while darker colours represent a higher confidence interval (https://pro.arcgis.com/en/pro-app/latest/tool-
reference/spatial-statistics/optimized-hot-spot-analysis.htm, latest access 14. March 2021) 

In a first step, the tool combines the input feature class and the optional parameters analysis field, 

bounding polygons define where incidents are possible. A minimum of 30 features is required to 

execute the tool. Optimized Hot Spot Analysis further evaluates potential outlier values by using spatial 

statistics, like average nearest neighbour or median nearest neighbour, and defines an appropriate 

scale for the analysis. Therefore, the distance and distributions are calculated and evaluated for each 

point and characterised as outliers, when they have a distance higher than three standard deviations 

from the closest neighbour.   

In another step, the data are aggregated using different incident data aggregation method, like counts 

incidents within a fishnet grid, a hexagon grid or aggregation polygons. In all methods, a basis shape is 

set in which the incidents will be counted that fall into the same shape. Considering invasive species 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/collect-events.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/optimized-hot-spot-analysis.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/optimized-hot-spot-analysis.htm
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that spread over 1 km, the ideal scale of the analysis can be set to this match. The output is aggregated, 

weighted features in specific shapes assigned with the parameters and each feature has assigned a z-

score, p-value and a Gi Bin result, as well as the numbers of considered neighbours. These three values 

indicate areas of significant hot and cold spots in a feature map (https://pro.arcgis.com/en/pro-

app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm). 

 

Filter: This tool filter is an image processing tool, which can smoothen or edge-enhance the values in 

a raster. It uses a low pass filter to smooth an image and a high pass filter to do the edge-enhancement. 

The tool is used to eliminate spurious elements in an image or enhance them so that they get visible 

in the image. Filter uses a 3x3 kernel which moves over the input image (Figure 18). Every pixel will be 

changed through the kernel using the pixel value, as well as the value of the eight direct neighbours to 

create an output value. The low pass filter, which is used in this study, increases the local variations 

and removes noises in the image. Filter calculates the average values for each pixel based on the kernel 

and the neighbour pixels. The outlier values will be discarded and average out.  

 

Figure 18 Example of Filter output using a low pass filter with a 3 x 3 kernel, https://pro.arcgis.com/en/pro-app/latest/tool-
reference/spatial-analyst/how-filter-works.htm, latest access 03. February 2021 

 

Focal Statistics: Focal Statistics calculates for every pixel a statistic value based on the 

neighbourhood. The tool uses a chosen neighbourhood to compute a new pixel value by using 

functions like maximum, average or minimum to include the neighbourhood into the output pixel value. 

The minimum was used, since it was the purpose to decrease the high outlier values. Therefore, the 

minimum value in the kernel matrix was chosen based on the neighbourhood. A window moves over 

the raster to identify the neighbourhood and performs the operation. The neighbourhood type can be 

chosen: Annulus, circle, rectangle wedge or irregular. In this work only the rectangle neighbourhood 

was used, providing a width and a height in cells, which are then considered as neighbourhood. The 

ArcGIS website provided the following two examples (Figure 19, Figure 20): 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-filter-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-filter-works.htm
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Figure 19 Example of two rectangle kernels and the included and processed cells. (https://pro.arcgis.com/en/pro-
app/latest/tool-reference/spatial-analyst/focal-statistics.htm, latest access 03. February 2021) 

 

 

Figure 20 Example of the tool Focal Statistics and how it converts the input raster into an output raster. 
(https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/focal-statistics.htm, latest access 03. February 
2021) 

 

Slope: Slope identifies the steepness of the raster based on the value stored in each pixel of the input 

image. A 3x3 kernel moves over the raster to process the data. The higher the slope value, the steeper 

is the corresponding terrain. The steepness of the slope was calculated in degrees for this study. The 

input dataset contains elevation data based on the DEMs, generated with Metashape. The tool reads 

the information of the DEM pixel values and outputs a slope raster, shading steeper slopes with a dark 

brown colour and a bright white colour, when there is no slope. The range of the output values is 

between 0 and 90 degree. The planar method was used to calculate the slope, where the maximum 

rate of change (maximum elevation over the distance) is calculated for every pixel and their neighbours, 

based on a projected flat plane using a 2D Cartesian coordinate system. The calculation is performed 

with a 3x3 matrix as a moving window over the DEM, as the following example shows (Figure 21): 

 

Figure 21 The image shows the surface scanning window as a 3 x 3 matrix. The calculation is performed for pixel e, while a to 
i are their considered neighbours (https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/how-slope-works.htm, 
latest access 09. February 2021) 
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Aspect: This tool calculates the down slope direction, which has the maximum rate of change. The 

output of the tool gives a representative value for each compass direction to the considered pixel value. 

The output values range from 0 to 360 in a 45-degree interval, where 0 and 360 represent the north 

direction, 90 the east direction, 180 the south direction and 270 the west direction (Figure 22). Flat 

areas were assigned a value of -1.  Aspect is applied to DEMs and works similar to the tool slope using 

a 3x3 matrix to calculate the aspect of each value.  

 

Figure 22 Aspect directions and their colour distribution used by ArcGIS   
(https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-aspect-works.htm, latest access 09. February 
2021) 

 

Near: Near calculates the distance between the input feature and another selected feature (Figure 

23). Thereby the closest feature of the selected feature class will be used for the method. The proximity 

between all feature classes (point, line and polygon feature class) can be calculated, as well as between 

two different feature classes. The distance is calculated based on the input geographic coordinate 

system (in meters), when the parameter geodesic was used. Furthermore, the location of the nearest 

feature can be outputted as coordinate in x and y.  

 

Figure 23 The function of the ArcGIS tool Near and how it works with different input feature classes 
(https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/near.htm, latest access 14.03.2021) 

 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/near.htm
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Extract value to point: This tool extracts values into a new point feature dataset. The value is 

extracted from a single raster, in this work the DEM, based on the input point feature. Every point gets 

the height value of the DEM stored in a separate output feature class. A new field, added to the new 

feature class, stores the extracted value in the attribute table. Therefore, the input point feature 

datasets (location of trees) and in_raster were used, the DEM, from where the value gets extracted, 

was chosen. No interpolation was chosen; hence the value in the cell centre was used.    

 

Raster to polygon: This tool raster to polygon converts a raster shapefile into a polygon, line or 

point shapefile. The tool converts areas with the same value into a corresponding polygon. The input 

file can be any raster file with any pixel size. Additionally, settings simplify the polygon, which means 

that the polygon will be smoothed into simpler shapes remaining close to the original input raster.  

 

Contour function: This tool creates contours based on the DEM, where points of the same height 

get merged together and contour lines are generated. The tool provides contours over a large area 

fast, which enhances the visualisation of the elevation when added to maps or images. The contour 

intervals can be set manually; standard sizes are 1, 5 or 10. Furthermore smoothing of the contour 

lines can be applied. Also, the type of contours can be set up, where contour lines, contour fill and 

smoothed surface only can be chosen. For this study, the filled contour was applied, which fills the 

area between the contour lines with quantized values of each elevation.  

 

Create Fishnet: This tool generates a fishnet with regular rectangle size cells and produces a polygon 

feature. Create Fishnet can use a fixed coordinate extension, which can be set manually. Additionally, 

there are two options to create the fishnet: adjusting the cell height and width or the number of rows 

and columns.  

 

Summarize Within: Summarize Within exists in ArcGIS Pro in two variations: as analysis tool and as 

geoanalytics tool, which provide the same results in a different output file, just the settings can be 

chosen differently. Both tools overlay a polygon layer with another layer (point, line or polygon) and 

summarise the number of features, which fall within the polygon layer. Basically, the tool overlays the 

layers on top of each other and then counts the numbers of point features falling into each polygon. 

Furthermore, minority attributes, majority attributes and group percentages can be set as parameter 

and added to the attribute table, when the tool is executed. For the output the geoanalytics tool can 
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be used to keep only the raster cells with points inside, while the analytics tool keeps all cells of the 

polygon raster.  A visualisation of the tool function is provided in Figure 24. Here, the tool was used to 

count points in a polygon (usually a fishnet grid).  

 

Figure 24 Example of summarizing features in polygons. First row: points in polygons; Second row: Lines in polygons; Third 
row: Polygons in polygons (https://pro.arcgis.com/en/pro-app/latest/tool-reference/big-data-analytics/summarize-
within.htm, latest access 12.04.2021) 

 

3.12 Machine learning  

3.12.1  Artificial Intelligence  

Talking about artificial intelligence means that the computer should be able to reach a similar level of 

the human intelligence by copying the human brain (Figure 25). Machine learning, especially DL, is the 

part of AI, which is used in this thesis. The computer shall learn to understand and to identify patterns 

in images and classify objects by mimicking the human intelligence. 

 

Figure 25 Diagram plotting the different fields of AI. The boxes with the green text are ways human intelligence is used and 
they are placed close to the part of how AI can copy human intelligence 
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3.12.2  Deep Learning  

DL is a part of machine learning using artificial neural networks, which are inspired by the human brain. 

The performance of this technology in the fields of image classification, translation and game-playing 

is outperforming former techniques, which leads to a rise of this technology in different research fields, 

like forestry (Diez et al., 2021).  

In DL the computer uses a network to identify features by themselves. For this task, they use neural 

networks, which are built up by several layers consisting of nodes/neurons. During the training of a DL 

network, specific nodes will be activated, which leads to a specific output. As described, DL networks 

allow the computer to mimic human brains. Even though this technique has limitations (which will be 

discussed later), DL is able to learn from visual inputs in order to recognize objects that are part of an 

image (Gupta, 2019). In this thesis, it will be examined if DL is a useful tool for tree species classification. 

 

Figure 26 Examples of kernels, which identify different feature maps (López-Jiménez, 2019) 
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3.12.2.1  Convolutional Neural Networks  

CNNs are a subcategory of Neural Networks (NNs) and one of the best performing methods for dealing 

with image classification, object detection and further image processing tasks (Diez et al, 2021). It is a 

powerful tool for detecting certain local features in an input image and for creating a hierarchical 

feature map (Kim et al., 2018). The strength of the network is its deep architecture, allowing the 

extraction of features at multiple levels by using an end-to-end learning. Feature extractions by hand 

or human experts are not required for this process (George et al., 2017). The architecture consists of 

three main layers: Convolutional, pooling and fully-connected layers (Guo et al., 2016). Convolutional 

layers create several feature maps by considering neighbouring pixels (Figure 26). Pooling layers 

reduce the dimension of the feature maps, as well as the parameters in the network. The fully-

connected layers generate 1D feature vectors out of the feature map. These vectors are leading to 

different categories for image classification (Guo et al., 2016). Furthermore, the first layers of the 

network are initial layers, extracting generic features like edges, curves etc. which are applicable in 

most image classification tasks, while the last layers are able to recognize abstract features and data-

specific features (George et al., 2017). Therefore, this network is combines low-level features with 

high-level features. 

But this technique has also major problems. It needs a large amount of labelled data. However, high 

precision labelled data need a good expertise for the training of the network. The extensive 

computational and memory resources which are needed to work with this large amount of data need 

powerful computers to process the data. The final point is the problem of overfitting and convergence 

issues, which require repetitive adjustments in the network architecture (Tajbakhsh et al., 2016). The 

capacity of the model with its large number of parameters and layers is not able to weight the model 

in a correct way, when too small or too large numbers of datasets are giving to the network (Sharma 

& Mehra, 2018). This problem is called vanishing/exploding gradients and causes overfitting 

phenomenon (Kim et al., 2018). Therefore, the network is complicated and it needs to be adjusted to 

be able to deal with the problems of overfitting and convergence (Sharma & Mehra, 2018). 

 

3.12.2.2  CNNs from an image point of view 

The starting of the technology is a problem, which shall be solved with computers by defining an error 

and trying to reduce the error, so that the machine is able to compute the solution. Usually, the aim is 

to teach the computer to split a set of data. This happens using an error function, which is naturally 

discrete, but it can be changed into a continuous function using linear regressions and penalties for 

wrong classifications. A solution, which is far away from the correct solution is given a high penalty, 
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while the ones, which are close, receive a small penalty. By moving in the direction, which is stated to 

be the correct solution, the error will be reduced until a suitable solution is found.  

One of the most important questions is how a computer sees or reads an image. Computers read pixel 

numbers, which means, that a computer classifies images by applying mathematical operations on the 

numbers each pixel contains. The benefit and advantage of computers (in contrast to humans) is that 

they are able to run fast many possibilities and process successfully mathematical operations. A 

successful operation can be found by starting first from random numbers, creating an error, which 

leads to a continuous change of numbers, following the gradient until a minimum of errors is reached. 

Usually, images are large and it is easier to break them down into smaller subcomponents in order to 

analyse those ones first and to put them together again afterwards. The breaking into smaller pieces 

is done with the convolutional layers and pooling layers within the network. Fully connected layers 

merge the pieces together and read them logically. On the small pieces, filters/kernels are applied, by 

overlaying the kernel over the image. The kernel values are multiplied with the pixel values and 

summed up. If the sum exceeds a threshold, a structure is identified. In this procedure, convolution 

layers apply the kernels by moving them over the image and the pooling layers identify if the value is 

over the threshold or not. The small pieces of the image will be then superimposed to generate the 

original image again, while the fully connected layer is logically identifying the object.  

The training of a network is done in order to create specific kernels, which are able to identify specific 

objects in images. During the training the computer will produce several kernels (convolutional and 

pooling layers), which will lead to errors. When the training starts from random numbers and by 

following the gradient descent, the network will identify the kernels, which are able to identify the 

objects in images. When a kernel fits well, it outputs a high value during the testing and low value, 

when it does not. In any application, where images shall be classified, neural networks are used to 

break down images into small pieces, identify the simplest structures and by restoring the original 

image, objects can be identified 

 

3.12.2.3  Image analysis with computer vision 

Computer vision: Computers can get a high-level understanding of image contents which is 

examined by the interdisciplinary field of computer vision. Images can be collected by satellites, planes, 

UAVs, computers, tablets, smartphones, etc. Image analysis can be divided into three levels: 1: 

categorisation of objects in an image, also called classification; 2: object detection, determining the 

location of an object in the image; 3: segmentation, where parts of an image are identified by 

understanding the object and the location of the object. The understanding of objects in images can 
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be described as evolution by moving from recognizing to localization to detected and labelled object 

regions up to single objects (Garcia-Garcia et al., 2018).  

Image segmentation: Image segmentation is one of the core tasks in computer vision being the 

initial step of image analysis (Caselles et al., 2005). The aim of this approach is to simplify image analysis 

by dividing the image into multiple regions. Pixels are classified into groups of segments by its similar 

texture features (Nadipally, 2019). In comparison to image classification there is no need-to-know 

what object is segmented in the first place. The focus is to output pixels belonging to the same class 

due to their contained information and often by adding information about contours and edges (Guo 

et al., 2018).  Thereby, the focus was on the main object in the image (Harshall, 2019). Highly variable 

image features, missing edges and low contrasts between different regions can make image 

segmentation challenging (Merjulah and Chandra, 2019). 

Object detection: It is important when an image contains multiple objects. The task is to classify and 

localize all objects by using bounding boxes to mark their position (Harshall, 2019). 

Semantic segmentation: Semantic segmentation is a deeper step into the approach of object 

recognition. This approach is used for getting a better comprehension of the environment by 

associating visual information in the images to classes considering the spatial information (Ouaknine, 

2018). Shortly, it helps to recognize what is where in an image. In comparison to object detection, 

semantic segmentation is not using bounding boxes for predicting the area where an object is located 

(Harshall, 2019). Semantic segmentation needs image classification, as well as object detection for 

localizing and classifying the pixels precisely. This kind of segmentation is also called dense prediction 

because the meaning of each pixel will be predicted by this method. The need of an efficient tool for 

doing accurate semantic segmentation with consistent labels for the pixel is high (Yu et al., 2018).  

 

3.12.2.4  Deep learning techniques and settings 

Data augmentation: This technique is used when a small number of trainings data are available, 

especially when a balance of the different classes is necessary to avoid overfitting. Data augmentation 

can therefore increase the size of the dataset by using transformations like rotation, scaling or flipping 

and can change colour properties like saturation or brightness of the trainings data (Dwivedi, 2019) 

Overfitting and underfitting: These are two error types, which can occur, when data are classified.  

Underfitting is when the problem will be underestimated, while overfitting means that the problem 

will be overestimated.  
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Learning rate (LR): The learning rate is the speed in which a network learns and is therefore a 

hyperparameter, which needs to be set up and tuned for each network. During the training of a 

network, the loss between the actual output and the predicted output shall be as small as possible. 

The loss can be also called the error, which is output by the network. The loss becomes minimized in 

each step of the training because the weights and the bias are updated. The size of the steps can be 

considered as LR, as the steps are dependent on the learning rate. LR ranges between 0.0001 and 0.1. 

Is LR high, a big step will be taken to reduce the loss, which on the one hand reduces the training time 

but can cause on the other hand that the minimum can be overseen and usually weights are 

suboptimal. Otherwise, LR can be chosen to be small, which increases the training time, but the risk of 

passing the optimal loss is reduced (Brownlee, 2019c).  

Epochs: In DL, an epoch is a full cycle of training, where the entire training set passes through the 

network, forward and backward. In each step of an epoch, the network first initializes the parameters, 

then propagates forward, computes the error and adjusts the parameters according to the output 

error. With increasing epochs, the weights of a network are better adjusted, which generalizes the 

network. However, if there are too many epochs it causes overfitting.  

Freezing networks: Layers in DL networks can be frozen and unfrozen. Thereby, freezing means 

that the changes of the weights will be controlled. In a frozen model the weights cannot be changed, 

while they can change when they are unfrozen. Therefore, freezing some layers in a network can help 

to improve the training. Especially, when transfer learning is applied, the first layers in a network can 

be frozen, while the last layers are trained with the new dataset (Sagar, 2019). When a frozen model 

is re-trained, only the final layers of the model are re-trained. When an unfrozen model is re-trained, 

all of the layers are modified (Rother, 2018). However, changing weights can demand more 

computational power. 

Transfer learning: Transfer learning is used to take advantage of a previously trained network to 

adapt it to another network. Usually, networks are trained for a single purpose for which data were 

collected. In case the data are changing, a network needs to be built up from the beginning. This is 

time-consuming, as training data need to be collected and processed again. Therefore, transferring the 

knowledge from a previously learned task to a new one can significantly decrease the needed data, 

solve new problems faster and increase the performance of the network. Figure 27 shows how transfer 

learning changes the performance of the network. There are three advantages: a higher start, slope 

and asymptote, compared with a network without transfer learning, that means, higher accuracies and 

higher speed in the end. 
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Several studies show the better performance of transfer learning in comparison to fully-trained 

networks (Sharma & Mehra, 2018; Kim et al., 2018; Tajbakhsh et al., 2016). At the beginning a network 

has randomly initialized weights, which are given on the basis of a normal distribution. Less data leads 

to wrong weights and to wrong results. Therefore, pre-trained weights are initially available before the 

training, instead of randomly initialized weights (Garcia-Garcia et al., 2018). This setting of weights is 

called Fine-tuning (Tajbakhsh et al., 2016). In CNNs changes can be done in the first layers and/or the 

last layers, it is therefore important to choose the changing layer carefully. Lower layers extract 

information of generic features while deeper layers are object-specific (Garcia-Garcia et al., 2018). 

 

Figure 27 Influence of transfer learning on the performance of a network (Brownlee, 2017) 

In the training for similar tasks a fine-tuning for the last layers is enough, while in distant tasks a deeper 

fine-tuning (a fine-tuning in early layers) is necessary (Tajbakhsh et al., 2016). Therefore, there need 

to be an understanding of the similarities and differences in the source and target task. In case of 

ImageNet, which is a general image database, the data can be used to initialize the first layers of a 

network. While a network, which is supposed to classify tree species, needs to be trained with tree 

data, to set the weights of the last layers.  

 

3.12.3  Multi-label patch classification using ResNet 

This study aimed at classifying tree species by using Convolutional Neutral Networks (CNN). Previous 

studies show the efficiency of these networks for image classification issues (Natesan et al., 2019; 

Kamilaris and Prenafeta-Boldu, 2018). CNNs are able to reach high precision levels, higher than other 

image-processing techniques (Kamilaris and Prenafeta-Boldu, 2018). The matrix of a CNN is built up by 

convolutional layers which are working as filters; extracting deeper features from the input images 

(Natesan et al., 2019). They are therefore able to classify millions of images into different classes 
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(Krizhevsky et al., 2012). Therefore, this study is using one of those architectures to perform in forestry 

research. So far, only few studies were done in forestry using CNN (Natesan et al., 2019). One approach 

of this study was to use the CNN ResNet50 to show its good performance for forestry purposes.   

ResNet50 is a network with 50 layers being able to classify images. It contains five stages with a 

convolutional and an identity block. Each of these blocks is built by three convolutional layers and has 

over 23 million trainable parameters (Dwivedi, 2019). The network uses identity shortcut connections 

to skip one or more layers whose input and output show the same dimension. Thereby, it overcomes 

problems occurring in CNNs, like the extensional computing time, the high amount of needed data or 

overfitting (Tajbakhsh et al., 2016). Furthermore, the network is using residuals instead of single 

features for the training (Sharma & Mehra, 2018).  

ResNet-50 in combination with transfer learning was chosen and the basis for the developed multi-

label patch algorithm. The multi-label patch algorithm consists of the following steps: 

Pre-processing: The first step for using the multi-label patch classification was to build an 

orthomosaic of each site, which was analysed by the classifier in the third step. Annotations of the 

desired classes were manually prepared. The mosaic and the layer of the single annotations were the 

input data for training of the ResNet.  

Patch-annotator: As mentioned before, orthomosaics generated out of the images were used. Due 

to the number of images and information contained in each image orthomosaic, the data needed a lot 

of memory and computational power to be processed. DL networks have problems dealing with such 

an amount of data. For that reason, the orthomosaic and the annotated layers were divided into 

patches using the developed image Patcher-Annotator algorithm. Patches were broken out of the 

orthomosaic during the process and .csv files was generated by using the annotated layers, containing 

the information of the patch number and the visible class on that patch. The image Patcher-Annotator 

ran with different patch sizes for a later comparison of the results with respect to the reached 

accuracies. Hence, the code produced patches with a specific size and with labels of the classes. 

Classifier: The second part of the multi-label classification algorithm was the classifier. This code uses 

the previously generated patches and .csv files for the classification. The code was running several 

times with different settings. The important settings are the LR, the epochs, the used models and the 

frozen/unfrozen status of layers. The network becomes optimised due to the learning from the input 

and output during the training. Furthermore, the classifier can be trained with different databases for 

applying transfer learning.  

Segmentation: In this work, manual segmentation was done for the orthomosaics by dividing objects 

into pre-defined classes using the visual information of the image. Automatic segmentations were 
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performed as well. The results of the multi-label algorithm were displayed and analysed on the basis 

of the output automatic segmentation. Furthermore, this segmentation was refined with watershed 

segmentation, which is described in the following chapter.  

 

3.12.4  Segmentation refinement using watersheds 

The multi-label algorithm generates a patch-based coarse segmentation. This segmentation adds 

bounding boxes around objects/object boundaries. Therefore, the segmentation contains the object, 

but also parts of other classes or the background. Thus, results need to be refined to obtain 

segmentations of the single object only. The approach is to refine this segmentation by using the 

watershed segmentation algorithm.  

Previous studies revealed that the watershed transformation is a powerful tool for segmentation 

problems (Jiang et al., 2003; Hamarneh and Li, 2009; Huang and Chen, 2004; Tarabalka, 2010). The 

algorithm is working with binary images comparing pixel information for finding objects and their 

contours (Beucher and Meyer, 1993). Here, images were handled like geological landscapes with ridges 

and basins. Basins, also called seed regions, represent objects like evergreens, deciduous, rivers, man-

made and uncovered. The ridges are the watershed lines, which separate different objects. 

Furthermore, the image is separated into the foreground, representing the objects and the background, 

representing the snow-covered soil. The initial state, before the watershed algorithm was run, was the 

identification of the sure background, the marking and labelling of the seed regions and unknown area.  

The second step was to find the contact regions between the seed regions and the unknown area. The 

morphological tool erosion eroded the pixels until the plain foreground can be distinguished, where all 

the pixels belong to the same object class. Therefore, the next step was to grow the seed regions but 

only in the unknown area. The area grows fast, as long as the pixels in their neighbourhood have the 

same values. However, when the pixel values become different the growth is slowing down, until the 

pixel values are too different and the growth stops. This is the point where a seed region gets in contact 

with another seed region or the background. At this boundary a watershed line is generated. 

Retrospectively, the growth of the seed regions is comparable with basins filled up with water until 

water of different sources would merge. There, watershed lines are built on the ridges between the 

different basins, representing different classes (Kornilov, 2018). The watershed lines are representing 

the refined segmentation. 
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3.12.5  Image segmentation using UNet 

Previous studies pointed out the efficiency of UNet for image segmentation applications, especially in 

the medical field (Chen et al, 2016; Guo et al., 2018; Siam et al., 2018; Funke et al, 2019). However, in 

comparison to ResNet, where images were classified, UNet is an efficient tool for image segmentation. 

In any case, there is a high number of architectures used for classification purposes. Furthermore, a 

comparison between different architectures provides useful information on which architectures fits 

different problems and data. Identifying the method providing the best results in the field of forestry 

is essential.  

UNet provides semantic segmentations by classifying pixels in images using a vector-basis approach. 

The UNet architecture is composed of two paths: The encoder and the decoder path. Each path 

contains several layers, whereby the initial layers detect basic features of the image (like edges or 

colours) as well as spatial information. Deeper layers are able to identify complex features by losing 

the spatial information (Gupta, 2019).  

The encoder path extracts features by passing its convolutional layers and it reduces the size of the 

image by passing the number of maximal pooling layers. Both layers use matrices to deal with the 

image and its content to combine them in a down sized feature map (Harshall, 2019). The output of 

the encoder path is object detailed information (Gupta, 2019). The decoder path is composed of 

transposed convolution layers. This path is restoring the size and the spatial information of the image 

by reducing the depth (Harshall, 2019). Feature maps from the encoder path are transferred to the 

decoder path by using skip connections. This avoids a loss of spatial or content information (Gupta, 

2019). The results are visible information and the location of objects in an image are captured in a 

semantic segmentation map.  

Further DL architectures were used in this study with detailed explanation for them in Appendix iv.  

 

3.13 Evaluation Methods 

Evaluation methods are needed to tell if a DL network is performing well or not. A DL network can in 

this case be compared with a student. Like a student is studying for an exam, a network is trained to 

classify objects. In the end, both need to be tested, whereby the student is writing an exam, while a 

network will be tested with a new set of data. Regarding the testing of a network, there is one 

important rule: Never use test data for training. The network can only be evaluated on their ability to 

classify object when the images are new to the network. Therefore, datasets are usually divided into 

training and testing data. A common applied technique is to use a K-fold cross validation, where the 
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dataset is split into four sets, while three are used for training and one for testing. In each training step, 

the test dataset can be exchanged with one training set.  

When the performance of a model is evaluated, it is assumed that it needs to be checked if the network 

is classifying an object correctly or not. Checking the correct function of a network cannot provide 

accurate and useful information. For example, if there is a big dataset consisting of 10,000 coniferous 

trees and 10 deciduous trees, the network will always predict a conifer, it will be right in 99.9 % of the 

cases, which is a high accuracy, but the network will never identify a deciduous tree in the dataset. In 

case, the task is to find trees, the trained network will never be successful.  

Therefore, confusion matrices were introduced in the field of DL (Table 3). Considering the same 

example, conifers and deciduous trees, where deciduous trees are the target tree, then there are four 

options:  

- A tree is identified as deciduous, which is in reality a deciduous tree, then it is called a true 

positive (TP), as the target class was identified correctly. 

- A tree is identified as conifer, which is in reality a coniferous tree, then it is called a true 

negative (TN), since the tree is classified correctly, but it is not the target class. 

- A tree is identified as conifer, which is in reality a deciduous tree, then it is called a false 

negative (FN), as the target tree is misclassified. 

- A tree is identified as deciduous, which is in reality a coniferous tree, then it is called a false 

positive (FP). 

Table 3 Confusion matrix for a classification of deciduous vs coniferous trees. (Images modified after 
https://www.freepik.com/free-vector/tree-icons-pack_813723.htm, latest access 16. March 2021) 

Confusion Matrix Predicted deciduous 

 

Predicted conifer 

Actual deciduous  

   

Actual conifer 

   

 

 

 

FN TP 

FP TN 
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With the confusion matrix several values can be calculated to evaluate the performance of the model.  

- Accuracy: Out of all data, how many objects were classified correctly? 

(11)  𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑃+𝑁
   (P = positives; N = negatives) 

- Precision: Out of the predicted positives (in the example: predicted deciduous), how many 

objects are classified correctly? 

(12) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

- Recall: Out of the actual positives (in the example: actual deciduous), how many objects are 

correctly classified? 

(13) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The difference between the precision and the recall is the focus of the evaluation. If the task requires 

less FP, then the precision needs to be high. If the FN task requires finding the least FN, the network 

needs a high recall. Instead of having two values, the F-score can be calculated, which uses the 

harmonic mean of precision and recall. Furthermore, there are two important terms: Sensitivity and 

specificity. Sensitivity is also called recall or true positive rate (TPR), as mentioned it is used when the 

network is supposed to rarely misclassify. The specificity is also called the true negative rate (TNR) and 

measures the proportion of negatives that are correctly identified. The benefit of a high specificity is 

that a network with a high specificity rarely outputs actual positives as negatives.  

(14) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃+𝐹𝑃
 

Classes can be chosen too complex or too simple. For example sorting the data into ‘trees’ and ‘no 

trees’ would be too simple, as the classes can be more precise like ‘conifers’ and ‘broad-leaved’ trees 

can be found. The network is further doing a mistake, which is called error due to bias. Classifying the 

data into the classes ‘green-leaved deciduous trees’ and ‘not green-leaved deciduous trees’, the 

network would still work well for the giving example, but if there is a deciduous tree imaged in autumn, 

with red leaves, the tree would be classified into the not green-leaved deciduous tree class. Therefore, 

the network would classify too specific and this error is also called error due to variance. In most 

applications, the problem of overfitting is more common, as it occurs usually when datasets are too 

small. In those cases, the network will learn to only identify the examples giving with the training set. 

Figure 28 shows the model complexity graphs, where training and validation errors are plotted. The 

shown training error should be as low as possible, so that the network classifies well. The validation 
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error shows the optimal results, which is when the curve reaches its minimum. When the trainings 

error is too low and the validation error increases, the network is overfitting.  

For this study, cross validation was applied. Therefore, the dataset is split into training, validation and 

testing set. While the training set is to train the network, the validation set is used to decide when a 

network is trained well, and the testing set is used to evaluate the network. 

 

Figure 28 Model complexity plotted against the error (https://zahidhasan.github.io/2020/10/13/bias-variance-trade-off-and-
learning-curve.html, latest access 19. March 2021) 

 

Further evaluation metrics are used: 

Full agreement - Full agreement with False positives - Partial agreement - No agreement 

Full agreement means that the algorithm is classifying and labelling every object in the patches 

correctly. In the case of Full agreement with False Positives, the classifier correctly recognizes every 

patch and also labels objects which are not displayed in the patch. Partial agreement is that the 

classifier labels some of the visible objects correctly and No agreement is related to no correct 

identification of the objects.   
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Chapter 4 Tree species classification  

This is the main chapter of the thesis, combining field inventories, image analysis and DL techniques, 

to detect and classify trees. Assessing the forest composition, distribution and structure is with the 

three different methodologies were the main goal (Figure 29). 

 

Figure 29 Structure of the tree species classification chapter. The stars indicate the different subchapters 

The following chapters use different methodologies to assess the forest composition, distribution and 

structure. The first chapter focusses on assessing information only using fieldwork data. The data were 

evaluated to extract the information mainly about the tree species composition, dominances and 

forest layering. The second chapter focusses on information extracted from images, whereby only 

counting and composition were evaluated. Those information were used together with diversity 

calculations, which are commonly used when ecosystems and their diversity are studied. The results 

and discussions in this chapter focus therefore on numbers in order to understand and compare sites. 

The third chapter explains the use of image analysis tools, where pixel counting and manual 

annotations were used to assess the data in the images by classifying tree species. The information 

were used to use calculations for densities e.g., whereby the data were again presented as numbers 

for each tree species and site. The last chapter focusses on the visualisation and the further processing 

of the data. GIS applications were used to create maps and databases, which were processed by 

different tools to decrease the amount of data and to extract the important information. 
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Chapter 4.1 Assessing natural mixed forest composition, 

distribution and structure using field inventories 

4.1.1  Problem definition 

Field surveys are the state of the art, when it comes to evaluation of forest stand structures, 

compositions and diversities. Installing fixed plots like in the studies of Sakio (2002) or Fukumachi et 

al. (2020) can help to gather information about the plot and actual forest conditions over several years. 

In this study, field surveys had another important function, as they were the ground truth data for 

verifying the manual annotations and the automatic classification.  

The methodology field survey is an accurate technique to map the location of trees and to classify 

plant species within the forest. The disadvantage is that the work requires man-power and much time. 

In this study, field surveys for all Riparian sites and Terrace sites were provided, including information 

about tree species identification, their census and location. For three of the Slope sites, where the 

access was difficult, only tree counting and species classification were done.   

For this part of the study, the main objective was: 

i. Evaluate the composition, distribution and structure of mixed natural forests in Shonai 

area 

This means, with the performed field surveys, information about tree species in the different study 

sites was gathered and their distribution in the field was determined. The composition and structure 

of the forests focus on the different forest layers and the representing tree species was provided, as 

well as the analysis of diversity and tree species dominance (Figure 30). At last, the forests were 

classified based on all gathered data.    

 

Figure 30 Structure of the chapter field inventories with the focus on forest composition, distribution and structure 
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4.1.2  Data collection 

4.1.2.1  Field surveys 

Fieldwork was conducted in autumn 2019, spring and summer 2020 in the Riparian sites 1, 4, 6 and 7, 

the Terrace sites 11, 12 and 13 and the Slope sites 3, 8, 9 and 10. The most accurate maps were 

provided for the Riparian sites, where the access was the easiest. Data were gathered for the whole 

imaged sites with areas between 3 ha and 6 ha. For the Terrace sites, data were gathered accurately, 

but challenging terrain in some areas limited the access; hence classification and counting from the 

distance was performed as well. The Terrace sites covered 3 ha up to 4.8 ha. The Slope sites had the 

most challenging environment with slopes angles generally ranging between 33 and 40°, even reaching 

90° in some areas. The sites could not be accessed in all places; therefore, the counting and 

classification of the tree species were provided for patches along the slope. An overview of the 

occurring species and their number at different elevations were generated. In general, no fixed field 

plots were used because of the site’s characteristics: dense understory vegetations, challenging slopes 

and the inaccessible areas. Surveys were done manually by assessing the species name, collecting 

leaves and images of leaves and bark, as well as localising the trees in the site, in relation to landmarks, 

surrounding tree species and the terrain. The manual data were digitalised with winter images. 

Summer images were used to accurately generate species maps of the sites 1, 4, 6, 7, 11, 12 and 13, 

while the trees were geolocated in Arc GIS. For the Slope sites only tree count surveys were evaluated. 

 

4.1.3  Results 

4.1.3.1  Species composition 

The purpose of the fieldwork was first to get an overview of the occurring tree species, dominant 

species and their location. Second, this information were combined with data structuring, especially 

dividing tree species into forest layers and detection of species which belong to a niche in the forest. 

At last, the field data was used to validate the results of the image analysis. 

70 species were identified, which belong to 31 families and 42 genera (Table 4). There were 11 species, 

which belong to the Betulaceae, of which five are Alnus and three Betula genus. Another 11 tree 

species belonged to the family Sapindaceae and six tree species to the Rosaceae family (three Prunus 

and three Sorbus species). Five species belong to the Fagaceae family, with two Quercus and two Fagus 

species.  There were three tree species each from the Juglandaceae and the Fabaceae families. The 

families of Salicaeae, Styracaceae, Pinaceae, Oleaceae, Makvaceae and Cornaceae had each two tree 

species, while all other families had only one representing tree species.   
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In total 715 trees were counted for site 1, 427 for site 4, 450 for site 6, 470 for site 7, 511 for site 11, 

458 for site 12, 374 for site 13, 635 for site 3, 639 for site 8/9 and 298 for site 10. In site 1, 27 different 

tree species were counted and one tree even could not be precisely identified. With 20 tree species, 

the number was lower than for sites 1 and 6, whereby also site 6 was inhabited by 27 species. Another 

additional eight trees were unknown. Site 7 had with 29 the highest number of tree species and eight 

unknown individuals. In the Terrace sites 11, 12 and 13, 29, 20 and 20 different tree species were 

identified. Unfortunately, there were in total 27 trees for the three sites, which could not be identified, 

as the sites were steep and partly inaccessible. The identification was therefore only performed on 

images from a camera and from the UAV. Depending on distance, blurring and light conditions, most 

of the time only one side of the leaf was imaged; hence there was no accurate identification 

performable. The same problem occurred in site 3, where 12 trees remained unidentified, but at least 

26 tree species could be identified. Site 8/9 had 23 identified tree species and site 10 19, while three 

tree species stayed unidentified. In the Slope sites the main problem was the inaccessibility and the 

height of some trees. These trees could not be reached and had high branches; therefore, no leaves 

could be reached from the ground.  

Table 4 Identified tree species in the field, with their Scientific names, family, genera and layer. The layers canopy (C), 
subcanopy (SC), understory (U) and shrub (S) were assigned to each species. 

Number Species Family Genus Layer 

1 Salix jessoensis Salicaceae Salix C 

2 Salix serissaefolia Salicaceae Salix C 

3 Juglans ailantifolia Juglandaceae Juglans C 

4 Pterocarya rhoifolia Juglandaceae Pterocarya C 

5 Aesculus turbinata Hippocastanaceae Aesculus C 

6 Magnolia obovata Magnoliaceae Magnolia C 

7 Phellodendron amurense Rutaceae Phellodendron SC 

8 Robinia Pseudoacacia Fabaceae Robinia SC 

9 Quercus mongolica subsp. crispula Fagaceae Quercus C/U 

10 Fagus Crenata Fagaceae Fagus C/U 

11 Cornus Controversa Cornaceae Cornus SC 

12 Weigela hortensis Caprifoliaceae Weigela S 

13 Alnus fauriei Betulaceae Alnus S 

14 Ilex geniculata Maxim Aquifoliaceae Ilex S 

15 Carpinus cordata Betulaceae Carpinus C 

16 Sorbus sambucifolia Rosaceae Sorbus U 

17 Sorbus alnifolia Rosaceae Sorbus U 

18 Styrax obassia Styracaceae Styrax SC/U 

19 Lindera umbellata Lauraceae Lindera S 

20 Hamamelis japonica var. obtusata Hamamelidaceae Hamamelis SC/U 

21 Cercidiphyllum magnificum Cercidiphyllaceae Cercidiphyllum C 

22 Tilia maximowiczina Malvaceae Tilia SC 

23 Morus australis Moraceae Morus SC/U 
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24 Alnus inokumae Betulaceae Alnus SC 

25 Castanea crenata Fagaceae Castanea SC 

26 Corylus sieboldiana Betulaceae Corylus C 

27 Prunus speciosa Rosaceae Prunus SC 

28 Prunus serrulata/grayana Rosaceae Prunus SC 

29 Prunus salicina Lindley Rosaceae Prunus SC 

30 Aralia elata Seemann Sapindaceae Acer U 

31 Acer palmatum Sapindaceae Acer U 

32 Acer sieboldianum Sapindaceae Acer U 

33 Acer japonicum Sapindaceae Acer U 

34 Acer mono Maxim. Sapindaceae Acer SC 

35 Alangium planifolium Cornaceae Alangium S 

36 Acer pictum subsp. mono Sapindaceae Acer SC 

37 Acer rufinerve Sieb. Et Zucc. Sapindaceae Acer SC 

38 Acer buergerianum Sapindaceae Acer SC 

39 Larix kampferi Pinaceae Larix C 

40 Ginkgo biloba Ginkgoaceae Ginkgo C 

41 Fraxinus lanuginosa Oleaceae Fraxinus SC 

42 Fraxinus platyoda Oleaceae Fraxinus C 

43 Celtic jessoensis Cannabaceae Celtis C/SC 

44 Betula schmidtii Betulaceae Betula SC 

45 Cryptomeria japonica Cupressaceae Cryptomeria C 

46 Betula maximowicziana Betulaceae Betula SC 

47 Betula corylifolia Betulaceae Betula SC 

48 Sorbus japonica Rosaceae  Sorbus U 

49 Camellia japonica Theaceae Camellia U 

50 Acer disylum Sapindaceae Acer U 

51 Tilia japonica Malvaceae Tilia SC 

52 Alnus wirsata Betulaceae Alnus U 

53 Quercus detala Fagaceae Quercus C 

54 Wisteria floribunda Fabaceae Wisteria S 

55 Fagus Japonica Fagaceae Fagus C/SC 

56 Aleurites fordii/ Vernicia fordii Euphorbiaceae Vernicia U 

57 Platycarya strobilacea Juglandaceae Platycarya SC 

58 Abizia Julibrissin Fabaceae Albizia SC 

59 Alnus pendula Betulaceae Alnus U 

60 Symplocos chinesis Symplocaceae Symplocos S 

61 Acer amonesum Sapindaceae Acer SC 

62 Pterostyrax corymbosa Styracaceae Pterostyrax U 

63 Acer nippon Sapindaceae Acer SC 

64 Alnus japonica Betulaceae Alnus U 

65 Vaccinium oldhamii Ericaceae Vaccinium S 

66 Picea abies Pinaceae Picea C 

67 Euonymus sieboldianus Celastraceae Euonymus SC 

68 Clethra barvinervis Clethraceae Clethra U 

69 Kalopanax Septemlobus Araliaceae Kalopanax SC 

70 Hydrangea species Hydrangeaceae Hydrangea S 
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The distribution of the tree species is shown in Figure 32, where the sites were clustered to their forest 

type. In the Riparian sites the most species belong to the Juglandaceae family, mainly Juglans 

ailantifolia, followed by Pterocarya rhoifolia. The characteristic Salix serissaefolia was also identified 

in site 4, however the Salix species occurred generally less frequent. Aesculus turbinata, Robinia 

pseudoacacia and Quercus mongolica grew in all sites with around 20 trees per species and site. Cornus 

controversa was also more frequent in the sites 1 and 6, Styrax obassia in sites 1 and 4. Regarding the 

Acer species, Acer palmatum occurred more frequent in site 6, Acer sieboldianum in site 4 and Acer 

japonicum in site 7, while there was only a small number of Acer mono maxim trees. The invasive 

species occurred in all Riparian sites.  In contrast, the Terrace sites contained more Juglans ailantifolia 

and Aesculus turbinata trees, less Pterocarya rhoifolia, Alnus fauriei and Quercus mongolica. In general, 

fewer trees grew in the Terrace sites. Additionally, in all sites Cornus controversa, Magnolia obovata 

and Acer mono maxim were identified. Acer palmatum and japonicum were distributed in sites 11 and 

12, while Acer sieboldianum was more frequent in site 13. Still, there could be errors in the 

classification of the three previously mentioned Acer species, as the site had difficult access and some 

species needed to be identified from distance. While the overall distribution between the Riparian and 

Terrace sites had a similar shape, the Slope sites showed a different distribution of tree species. The 

most frequent species were Acer species: Acer palmatum in sites 8 and 10 and Acer sieboldianum in 

site 3. Additionally, Acer mono maxim had high numbers in site 10, while Acer pictum was more 

frequent in site 3. Tree species like Juglans ailantifolia, Pterocarya rhoifolia, Aesculus turbinata and 

Salix species were significant less, compared to the Riparian and Terrace sites. Fagus crenata and 

Quercus mongolica showed high tree occurrences, together with Corylus sieboldiana, Larix kaempferi, 

Prunus species, Styrax obassia and Carpinus cordata, with lower numbers than Fagus and Quercus but 

more frequent than in the Riparian sites. Figure 31 shows the region, where the field data were 

collected, which was the basis for the comparison of the field data with the image data. It can be seen 

that the fieldwork area of site 3 was larger than the areas of sites 8/9 and 10. Furthermore, the 

fieldwork mainly followed regions, where the forest was accessible, which resulted in the striped shape 

in site 8/9 and in a circle in site 10.  

 

Figure 31 Investigated field survey area (approx.) for Slope sites 
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Figure 32 Species distribution in the three considered sites: Riparian (top), Terrace (middle), Slope (Bottom). The x-axis: the tree species; the y-axis: tree counts per species 
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4.1.3.2  Tree census  

The conducted fieldwork followed the strategy to identify and locate trees manually for the whole 

imaged sites. No fixed plots were used, instead only a manual map and a later digitalisation were 

performed. For site 1 a fixed plot was set on the island, covering about 55 m², where the location of 

trees was measured and classified. The results are presented in Figure 33, while Table 5 contains the 

counts for the plot and the tree numbers, which were counted for the whole study site (4.29 ha). The 

table shows that the dominant species in site 1, according to the plot, was Juglans ailantifolia, followed 

by Pterocarya rhoifolia and Phellodendron amurense, both with 18 individual trees. These numbers 

suggested that the forest is composed of mainly Juglans trees and a mixture of subdominant species 

Pterocarya and Phellodendron. Considering the whole site 1, Pterocarya had a higher number of trees 

than Juglans. Phellodendron amurense had only one tree outside the plot on the island. Cornus 

controversa and Aesculus turbinata showed the opposite characteristic, as there was only one tree in 

the plot, but 28 and 36, respectively, in the rest of the site. These results approved the new selected 

fieldwork methodology, as the field data were important for the whole imaged area, but the plot did 

not provide representative results.  

Table 5 Comparison field plot (site 1) with whole study site 1 

Tree species Plot 1 
Tree numbers 

Site 1 
Tree numbers 

Juglans ailantifolia 32 144 

Pterocarya rhoifolia 18 173 

Phellodendron amurense 18 19 

Salix jessoensis 5 9 

Conus controversa 1 29 

Robinia pseudoacacia 11 21 

Aesculus turbinata 1 37 

 

In Figure 34 the important information orthomosaic of site 1 was marked with colours and symbols. In 

plot 1, the dominant tree species were Juglans ailantifolia, which were also located in the north and 

the south of the island. The blue circle shows the location of the Phellodendron amurense trees, which 

were clustered in the island area, like the Juglans trees. In the south of site 1 are two large areas 

(marked in red), where Pterocarya rhoifolia, Aesculus turbinata and Cornus controversa occurred in 

clusters, outside of the island. The clustering shows why the island is not representative for the whole 

studied site.  
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Figure 33 Location of the trees on island of site 1 

 

Figure 34 Orthomosaic of site 1, with the purple surrounded area of the sample plot 1. In black strips, the location of Juglans 
ailantifolia trees is marked, in grey strips the location of Aesculus turbinata, in the blue circle Phellodendron amurense tree, 
in red 
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4.1.3.3  Tree species dominance  

For evaluating the tree dominance relative densities were calculated, which are provided in Appendix L, 

as well as the tree species, which contributed 95 % of the trees (Figure 35). Using this approach, site 1 

had a high number of Pterocarya rhoifolia and Juglans ailantifolia trees with 23.73 % and 19.75 %, 

followed by Acer sieboldianum and Tilia maximowicziana with 7.82 % and 7.00 %. Species like Aesculus 

turbinata, Alnus fauriei, Quercus mongolica, Cornus controversa, Magnolia obovata, Acer palmatum 

and Styrax obassia reached only between 5 % and 3 % and were not considered as dominant tree 

species of site 1. In comparison, the most frequent species in site 4 were Salix serissaefolia (29.98 %) 

and Juglans ailantifolia (23.98 %), while Pterocarya rhoifolia was less frequent with only 11.71 %. With 

6.09 %, 5.39 % and 4.92 % Acer palmatum, Styrax obassia and Aesculus turbinata still belong to the 

dominant tree species in site 4. However, the total number of trees was lower than in site 1, therefore 

the relative density of the mentioned tree species was higher. With around 15 % relative density, Acer 

palmatum, Juglans ailantifolia and Pterocarya rhoifolia were the most frequent species. Salix 

jessoensis and Robinia pseudoacacia were subdominant with 7.56 % and 6.22 %. The tree species 

densities of site 7 were similar to site 4, with a high number of Juglans ailantifolia trees and a lower 

number of Pterocarya rhoifolia. However, in site 7 Alnus fauriei was dominant and Salix jessoensis had 

low densities with only 2.77 %. Juglans ailantifolia and Pterocarya rhoifolia were always dominant tree 

species in all Riparian sites, while Acer species, Styrax obassia, Alnus fauriei and Weigela hortensis were 

dominant shrub species. The Riparian sites had maximal six dominant tree species, while the Terrace 

sites showed a higher number with seven or eight dominant species.  

In sites 11 and 12, Juglans ailantifolia (15.46 %, 22.49 %) and Pterocarya rhoifolia (9.59 %, 12.88 %) as 

well as Aesculus turbinata (8.61 %, 12.45 %) had the highest densities. Site 13 also contained a high 

number of Juglans trees (32.35 %), but only 2.14 % Pterocarya rhoifolia trees, while Cornus controversa 

(10.16 %), Acer mono maxim (6.68 %) and Magnolia obovata (5.61 %) had higher tree densities. In 

comparison, Juglans ailantifolia was the tree species with the highest relative density in sites 12 and 

13, while the species distribution was more homogeneous for the species shown in Figure 35. 

Dominant shrubs were Camellia japonica, Acer palmatum and sieboldianum, Sorbus ailantifolia, Morus 

australis and Alnus fauriei.   

The Slope sites had five to seven dominant tree species, two of them were found in all sites: Quercus 

mongolica (10.55 % site 3; 16.43 % site 8/9 and 25.50 % in site 10) and Fagus crenata (7.40 % site 3; 

10.33 % site 8/9 and 13.76 % site 10). These species did neither occur with high densities in the Riparian 

nor in the Terrace sites. Together with Acer sieboldianum (AS) and Acer palmatum (APa), Acer pictum 

(APi) and Acer mono maxim (AM) occurred with higher densities, reaching values of 21.89 % (site 3, 

AS), 26.13 %, 15.10 % (site 8/9 and 10, APa), 6.1 % (site 8/9, APi) and 12,08 % (site 10, AM). Shrub 
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species, which were dominant in the Slope sites, were Alnus fauriei (site 3; 5.98 %) and Styrax obassia 

(site8/9; 5.63 %). In site 3, Larix kaempferi, Juglans ailantifolia and Magnolia obovata were more 

frequent, while these species occurred in low numbers in sites 8/9 and 10, instead site 8/9 contained 

a higher number of Corylus sieboldianum and site 10 Aesculus turbinata trees.  

All study sites showed different characteristics regarding growing tree species and their frequency. All 

sites further had a high number of tree species, whereby most of the species only had one or two trees 

per species. Also, there were a high number tree species, which occurred in only one site with also 

only one example tree.  
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Figure 35 Tree species, which accounts 95 % of all trees 

 

4.1.3.4  Field surveys and tree distributions 

Field surveys were conducted for the Riparian sites, Terrace sites and for three Slope sites. The 

gathered data were used to geolocate tree stems and generate point maps in ArcGIS, on the basis of 

winter images. Those maps were not generated for the Slope sites, as the pathways of the field surveys 

could be only partially reconstructed, and the resulting map would have been inaccurate. All field 

survey maps are given in Appendix J, while in this chapter only two representative maps of sites 1 and 

12 are presented (Figure 36, Figure 37). The maps contained the ROI boundaries for each site. Even 

some trees outside of the ROI were classified, because the fieldwork was done before the ROIs were 

selected.  

In the map of site 1, 24 tree species were found, including one class with dead trees and another one 

containing trees, which could not be identified. Juglans ailantifolia trees spread homogeneously over 

the whole site, while trees like Salix jessoensis, Robinia pseudoacacia and Phellodendron amurense 

occurred mainly on the island of site 1. The point map (Figure 36) showed monoculture patches of 

Pterocarya rhoifolia in the south and in the centre of the map, where also no shrub or small tree species 

coexisted. On the island of site 1 a high number of Tilia species, Quercus mongolica and Alnus fauriei 

occurred. These trees were young and small, grew in the understory layer of the forest and created  
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Figure 36 Field survey of site 1, digitalised in ArcGIS pro 

Field survey site 1 
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Figure 37 Field survey of site 12, digitalised in ArcGIS pro 

 

 

Field survey site 12 (YURF) 

alnifolia alnifolia 



107 
 

dense vegetation with a small spread. Tree densities were higher towards the slope (the eastern part 

of the map), since tree points occurred in dense clusters, closer together. Small-leaved Acer species 

occurred frequently along the bottom of the slope in clusters; they had a wider spread than other small 

species. The higher slope parts, in the eastern side of the map, belonged to the Cryptomeria japonica 

patch, where tree species of the mixed forest occurred less frequent.  

The species map of site 7 showed a similar tree distribution. Along the slopes in the eastern and 

western part of the map, many small-leaved Acer species, Alnus fauriei, Lindera umbellata and Weigela 

japonica grew; all of them occurred in clusters with a small spread across the site. The main part of 

site 7 contained only widely spread large trees like Pterocarya rhoifolia, Juglans ailantifolia, Salix 

jessoensis and Robinia pseudoacacia. Those trees were well separated from each other but young trees 

grew in small clusters. This separation between the tall trees was found in sites 4 and 6. In site 4 young 

Salix serissaefolia occurred in a cluster with more than 100 trees, young trees of Robinia pseudoacacia, 

Sorbus alnifolia and a Fraxinus species in the centre of site 4. The northern slope was mainly composed 

of Cryptomeria japonica, where only a couple of mixed forest species were identified in between. The 

only old-growth trees, which grew close, were coniferous trees, like Cryptomeria japonica and Larix 

kaempferi. The tree distribution in site 6 was different, as the trees grew closer together. Species like 

Alnus fauriei, Lindera umbellata, Morus autralis, Hydrangea species and Styrax obassia, which were in 

the shrub layer, built clusters in most areas, while they did not spread over the whole site. Especially 

Pterocarya rhoifolia trees occurred often paired or in groups of three trees, usually one old-growth 

tree together with young trees. Young trees of Robinia pseudoacacia, Juglans ailantifolia and 

Pterocarya rhoifolia occurred frequent in site 6, especially along the river. Both Salix species grew in 

and around a depression, which was filled with water during the summer months. Additionally, the 

species occurred in clusters with several other species, which was not observed in other sites (except 

the young Salix trees in site 4). Furthermore, the occurring species varied for all sites, which made the 

species composition unique mosaics. 

The Terrace sites all had different distributions and compositions of tree species. In site 11, the 

numbers of shrubs and understory vegetations were high, with nine different species of which most 

occurred in small clusters. Trees like Juglans ailantifolia, the most found species, Magnolia obovata or 

Pterocarya rhoifolia spread over the whole site. Celtic jessoensis, Morus australis and Styrax obassia 

grew as shrub species, reaching heights of about 2 m. In comparison, site 12 showed a dense 

vegetation structure, where only Juglans ailantifolia trees spread over the whole site (Figure 37). Most 

small tree species like Lindera umbellata, Sorbus alnifolia and Styrax obassia occurred in clusters. The 

densest clusters were found along the river, which crosses site 12. Small-leaved Acer spread over the 

whole site, while Acer mono maxim spread primarily in higher regions. Site 13 showed evenly 
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distributed tree species, except for the southern part, where Acer species were dominant, and for the 

northern part, where Juglans ailantifolia was distributed. In the lower part of the slope Alnus fauriei 

was increasingly found. In the map (Figure 37), the two kinds of climbing plants were marked; most of 

them grew on Juglans ailantifolia or Cryptomeria japonica trees.  

Since no maps were created for the Slope sites, it should be mentioned that most species occurred in 

clusters. Small tree species grew usually in groups of three or more individuals, while species like 

Quercus mongolica, Fagus crenata, Larix kaempferi and Hamamelis japonica were found with five or 

more trees with wide gaps. Site 3 had some special characteristics. In the northern part, close to a 

small river, mainly Juglans ailantifolia trees occurred. The west facing slope of the ridge contained 

more species than the other side of the ridge, where mainly shrubs and small trees were found. On 

the top of the ridge grew large trees, like Larix kaempferi and Quercus mongolica. The whole site 

showed a high spread of small-leaved Acer species with more than 140 individuals. More small-leaved 

Acer trees were only counted in site 8/9, with more than 160 trees. In site 10 was also a change in the 

tree species composition recognisable with increasing elevation. While at the bottom of the slope 

Juglans ailantifolia and small-leaved Acer species were found, the top part was dominated by big-

leaved Acer and Fagus crenata. Species, which were distributed over the whole slope, were Corylus 

sieboldiana and Quercus mongolica. Magnolia obovata, Aesculus turbinata, Betula and Prunus species 

occurred with single trees or in small groups along the slopes. In site 10, Alnus fauriei trees grew at 

higher elevations.  

 

4.1.3.5  Forest diversity  

Forest diversity measures were explained and calculated for all sites based on the image results. Two 

calculations were performed with the field data to compare them with the image data. The Shannon 

diversity and the evenness were calculated, once including the understory vegetation (for this section: 

UV) and once without.  

The Shannon diversity was generally high for all sites, with values between 2.14 and 2.76, while 

evenness values ranged between 0.71 and 0.84. The diversity values varied for the Riparian sites, as 

site 4 had the lowest value and site 6 the highest; a similar range was observed for the Slope site values. 

The terrace values showed more constant values, ranging between 2.25 and 2.59 (Table 6). Sites 8/9 

and 12 had lower Shannon diversities but a higher evenness than sites 11, 1 and 7.  

When the understory vegetation was disregarded, the diversity and the evenness were usually lower. 

An exception was site 10, where the values with and without UV were similar. Site 10 was the site with 

the most difficult access and steepness of the slopes. 
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Therefore, the fieldwork in this forest patch focussed on tree species data, not on UV. Another 

exception was site 4, where the evenness without UV was slightly than with UV (0.72; 0.71). In general, 

the Shannon diversity values ranged between 1.75 and 2.45, and the evenness values without UV 

ranged between 0.57 and 0.78. These values showed that especially the evenness was insignificant, 

while the Shannon diversity values still showed a moderate distribution.  

The highest differences between the Shannon diversities were observed in site 7 and 11, while they 

were the lowest for site 4 and site 10. It was, however, almost the same for sites 1, 12 and 8/9, with a 

value of 0.23. While the order of the sites was the same, when differences between the evenness 

values were observed, the only difference was that the evenness of site 8/9 was higher (0.04) than site 

12 (0.02) or site 1 (0.01). The highest difference was 0.17 in site 7.  

Table 6 Diversity and evenness values calculated on the basis of the field counts 

Site Shannon 

diversity 

Shannon 

evenness  

Shannon 

diversity 

without UV 

Shannon 

evenness 

without UV 

1 2.54 0.77 2.31 0.76 

4 2.14 0.71 1.95 0.72 

6 2.76 0.84 2.45 0.78 

7 2.48 0.74 1.80 0.57 

3 2.64 0.81 2.19 0.70 

8/9 2.41 0.77 2.18 0.73 

10 2.18 0.74 2.18 0.74 

11 2.59 0.77 1.93 0.63 

12 2.35 0.79 2.12 0.77 

13 2.25 0.75 1.75 0.62 

 

4.1.3.6  Layering of mixed forests 

A forest usually grows in different layers, depending on their heights, divided as dominant, 

co-dominant, suppressed and understory trees, also called the canopy, subcanopy, understory and 

shrub layer (Table 4). They contain therefore different tree species. As the dominant canopy layer 

consists of the tallest trees with the largest canopy area, trees receive enough light, while the 

understory vegetation is usually composed of young or small trees and has to be adapted to shadow 

conditions. In this chapter, the species were assigned to the different forest layers.  

The layers in the forest were divided according to the maximal recorded height of the tree. Trees, 

higher than 20 m, were considered as canopy layer, 15 m – 20 m were subcanopy layer, 5 m – 15 m 
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were part of the understory layer and all trees lower than 5 m were classified as shrub layer (Figure 

38). In a second step, a re-evaluation was performed based on the occurrence and heights of the trees 

in the field (in case trees were smaller in some sites). Tree heights were not continuously measured 

but the layer was chosen based on field observations classified.  

 

Figure 38 Layering of the forest 

In total, there were 15 tree species assigned to the canopy layer, 24 to the subcanopy layer, 15 to the 

understory layer and 8 to the shrub layer. Salix species, Juglans ailantifolia and Pterocarya rhoifolia 

were the dominant species of the canopy layer in the Riparian sites. Species like Phellodendron 

amurense, Robinia pseudoacacia, Castanea crenata and Cornus controversa were typical examples for 

tree species in the subcanopy layer of Riparian mixed forests studied. The coniferous tree species Larix 

kaempferi and Picea abies belonged to the species growing the highest in mixed forests and were 

therefore characterised as canopy layer species. Cryptomeria japonica was also assigned to the canopy 

layer, but since it was a planted tree, it was not further considered.    

Quercus mongolica and Fagus crenata belong to the canopy layer, but in the Riparian and Terrace sites 

Quercus mongolica often occurred as young tree between the dominant tree species. Hence, they 

were assigned to the understory layer in riparian forests and to the subcanopy layer in the Terrace 

sites. Fagus crenata was only found in sites 6 and 7, where the trees were still young and hence 

belonged to the understory layer.  

The subcanopy layer in slope areas was dominated by big-leaved Acer species, like Acer mono maxim 

and Acer pictum, but also by Tilia maximowicziana, Prunus species, Alnus inokumae and Platycarya 

strobilacea. Together with the subcanopy layer species of the Riparian sites, the species formed a 

canopy layer that was lower than the ones of the canopy species, which means that these trees would 

usually be covered by canopy layer species. They were only visible from above on the borders of the 
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canopies of bigger trees or when the subcanopy species grew in clusters. Betula species grew usually 

up to 20 m, which was the limit for the subcanopy layer. Hamamelis japonica was another example for 

a small tree, which sometimes occurred as a shrub species, while it was assigned to the subcanopy and 

understory layer in this study, because the tree was usually growing high in Slope sites. Smaller trees 

occurred especially in clusters. Styrax obassia was a further species assigned to both, subcanopy and 

understory layer, as the tree grew as bushes in the riparian areas, but higher in slope areas, most 

probably because of the light conditions. 

The tree species in the understory vegetation layer were mainly Acer species like Acer palmatum, Acer 

sieboldianum and Aralia elata, but also species of the family Betulaceae, with examples like Alnus 

wirsata and Alnus japonica. These species were characterised as the understory layer, as they can grow 

as small trees or shrubs in the forest. In the Riparian sites, all of these tree species mainly grew as 

shrubs, while they were small trees in the Terrace sites. In Slope sites they grew as shrubs or small 

trees, depending on the density of the forest and the canopy cover. Species like Sorbus japonica and 

Sorbus sambucifolia, which usually grew high, were found in the YURF sites to be mainly small and 

therefore assigned to the understory layer. There were furthermore several Pterocarya rhoifolia trees 

and some Juglans ailantifolia trees, which were still young, so that they had to be considered in the 

understory layer (however the table had the focus on adult trees).  

Typical examples of the shrub layer were Weigela hortensis, Ilex geniculata, Alnus fauriei, Sorbus 

alnifolia, Wisteria floribunda and Vaccinium oldhamii. The species grew as bushes in different sizes, 

especially in lower slope areas in sites 1, 7, 11, 12 or 13. The species might also occur in higher slope 

areas, but as the access in site 8/9 and 10 was difficult, they were not specifically determined. Shrubs 

occurred in high numbers in one area, where they covered the whole ground and created a dense 

forest floor.  

Three species were classified as canopy as well as understory tree species, another three as 

subcanopy/understory layer tree and one into canopy and subcanopy. The main reason, why the trees 

could not be assigned to only one layer, was that they showed different growing behaviours in the 

forests. Out of the 15 tree species, which belong to the canopy layer, ten grew in site 10, nine in site 1 

and only five in site 13. All other sites contained six to seven tree species from the canopy layer. The 

subcanopy layer, with 24 species, had a maximum eight different species in one site, while there were 

two sites (4 and 12), where only four different species grew. Four sites had only three different 

understory vegetation species, site 7 had six different species and site 11, with 7 different species, was 

the richest site. Site 11 further contained the most different shrub species (five different ones).  
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Table 7 shows the number of trees per layer with 73.47 % of the total number of trees, most trees in 

site 4 belong to the canopy layer, while it was around 62 % in site 10 and 12 and 56.32 % in site 1. The 

canopy layer had fewer trees in sites 7 and 8/9, was around 45 %, only 36.18 % had been classified as 

canopy layer in site 11. The high number of shrub individuals in site 7, was 29.44 %, and the high 

number of understory tree species in site 11, was 44.73 %. The individuals belonging to the subcanopy 

layer ranged between 10 % and 30 %, except for site 4, where it was only 5.34 % (the shrub layer had 

only 0.47 %). In most areas the subcanopy layer was missing. The understory vegetation layer was 

relatively high with 16 % (site 10), up to 44 % (site 11), whereby most sites had around 20 % of their 

trees in this layer. Significant differences were observed when shrubs were considered, as the number 

of trees ranged between 0 % (site 10) and 29 % (site 7).  

Table 7 The calculated sum for the layers: canopy, subcanopy, understory and shrub are presented for each site 

Layer Site  
1  

Site  
4  

Site  
6  

Site  
7  

Site  
3 

Site 
8/9 

Site 
10 

Site 
11 

Site 
12 

Site 
13 

Sum C 410 313 223 210 300 291 183 182 268 185 

Sum SC 141 23 86 48 78 152 64 75 47 69 

Sum U 138 88 113 68 150 184 48 225 93 90 

Sum S 39 2 20 136 95 12 0 21 23 30 

 

 

4.1.4  Discussion 

4.1.4.1  Challenges during the field work 

During the field work all trees and shrubs were identified, and for the Riparian sites also geolocated. 

In Slope sites a geolocation was not possible because of the steep slopes and the dense vegetation. In 

the Riparian sites the shrub vegetation started to grow already, when there was still snow cover, and 

therefore reached a high density in summer, covering the whole sites and being 1 - 2 m high. 

Additionally, dangerous animals and the weather conditions with heavy rain events or storms further 

limited the time window for conducting field surveys. 

In contrast, the Slope sites were only partly covered with dense vegetation, which, however, could 

barely be cut, because of the steepness of the slopes. Setting field plots was impossible for the same 

reasons. Partly, steep areas needed to be climbed, where no data could be collected without risking 

injuries. Hence, information about the tree species and tree location needed to be gathered before 

and after the climbing. Usually, it was not possible to climb up straight, pathways needed to be found, 

which resulted in wrong positioning and mapping of trees. Marker points like open spaces or high trees 

were usually not found in the dense forest. Since most of the field works needed to be conducted over 

several days to cover major parts of each site, marker points were essential to accurately produce 
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maps. Also, large tools to cut leaves could rarely be used, mainly because of the steepness. Therefore, 

leaves from trees with high branches could not be sampled. High resolution cameras were helpful to 

make images of the leaves, but still for some leaves, the resolution was too low due to image taking 

from distance. 

Another challenge was to map the field data on the winter orthomosaics in the Terrace sites, where 

steep slopes were, too. In sites 11 and 13 (also part of site 7 along the road) field work was once 

performed from the bottom of the slope and once from the top to avoid steep passages. Therefore, 

double counting and missed trees occurred, which happened definitely in site 13, where 109 shrubs 

could be detected in the winter image, while the field data did not contain the data for that species.  

The short time, in which the forests were easily accessible, was in late spring to early summer, before 

the vegetation reached high densities. After evaluating the plot of site 1, which was not representative 

for the whole imaged site, the methodology was modified to conduct the field survey for the whole 

rest of site 1. Gathering data for all other sites were done with the same style. The proposed 

methodology for conducting field surveys included a point map, which was generated, without 

intensive and detailed tree location measurements. That allowed gathering more information about 

tree species, necessary for high precision image analysis. The combination of the field maps with 

orthomosaics in GIS applications, especially winter orthomosaics, was relatively fast and produced 

accurate maps of the forest with geolocated trees. This combination increased the precision to 

digitalise field data.    

 

4.1.4.2  Tree species distribution  

In this chapter the distribution of some of the occurring tree species will be discussed, as a discussion 

of all tree species would be out of the scope for this study.  

A dominant tree species of the riparian forests is Pterocarya rhoifolia. The species was distributed in 

all the studied Riparian sites and even occurred close to the river in sites 3, 5, 8, 11 and 12. The species 

is known for their distribution in cool temperate riparian forest of Japan. Sakio et al. (2002) explained 

that the species occupies a broad ecological niche and can grow up to 30 m. In site 1, the species 

occurred as a monoculture, which happens often according to (Ohno, 2008), as they prefer to grow in 

even-aged forests. The species were mainly found along the river, where most disturbances affect 

growth, but the well-adapted reproduction mechanisms of the tree allowed quick recovery after 

changes (Sakio et al., 2002).  Additionally, Pterocarya trees have high physically and eco-physiologically 

tolerances when rocks and stone are accumulated as disturbances take place (Suzuki, 2002).  
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Riparian sites two kind of Salix species were identified in YURF, Salix jessoensis and Salix serissaefolia. 

(Niiyama, 1990) pointed out that these species often co-exist with several other Salix species. Salix 

exclusively grew in areas close to the river, in areas where the soil was water saturated, but always in 

mixed conditions (Niiyama, 1990) or in open floodplains. Their reproduction mechanism is well-

adapted to floodplain areas, because they spread their seedlings with water and can grow well under 

moist conditions. Azami (2004) explained that Salix are pioneer species after snow melt, since seeds 

spread that way. On the other hand, growing tall is more difficult for them; an effective growth of Salix 

can be provided when they grow on sandbars with high soil moisture contents.  

Also, the deciduous tree Juglans ailantifolia prefers forest areas with high water content. Juglans 

ailantifolia trees often dominate riparian areas, because their seeds can be spread fast by animals like 

squirrels and rodents. Animals can carry the seeds or nuts of walnut trees with a high density in up to 

25 m distance (Goto and Hayashida, 2008). Furthermore, they can carry the seeds in all directions, 

along the river or up the slopes. Juglans preferentially grow in floodplains, however, in too moist 

conditions, Juglans ailantifolia trees do not grow well. This can be seen in site 6 for example, where 

there are no trees found in the moist depression. In YURF they were also distributed on the Terrace 

sites and even in dryer Slope sites showed their potential to adapt to different kinds of environments. 

There was a dominance of Juglans ailantifolia trees observed in the Riparian sites, even more in the 

Terrace site, as well as a gradual decrease with increasing elevation. Nuts were usually buried before 

heavy rain falls and snow melt, disturbing riparian areas (Goto and Hayashida, 2008). Therefore, the 

seeds are resistant to these kinds of disturbances. It was found out that Juglans ailantifolia 

distributions are less affected by elevation, however Riparian and Terrace sites seemed to be the 

preferable sites. Juglans is more affected by competition and soil conditions (Goto and Hayashida, 

2008).  

Aesculus turbinata is a tree species, which was found as small trees between Juglans ailantifolia and 

Pterocarya rhoifolia, but also as tall grown trees, preferentially in lower slope areas. The species is an 

example of a tree that can ideally survive in gaps, whereby light conditions are the driving factor for 

the survival of seedlings (Hoshisaki et al., 1999). The species prefers low-density forest areas and moist 

soil conditions. The distribution of the seeds is similar to Juglans ailantifolia trees, as nuts are carried 

by animals along rivers, but also up the mountains, up to 114 m, found in Hoshisaki et al. (1999). The 

tree species is characteristic for riparian areas, but in YURF the tree was found in higher areas, mainly 

Terrace sites, while it occurred less frequent in riparian areas. A reason might be that the competition 

in riparian areas is too high, better adapted tree species like Salix, Pterocarya rhoifolia and especially 

Juglans ailantifolia dominated most of the Riparian sites. 
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Acer mono maxim is a tree species that was found in slope areas, even though the species was 

characterised as riparian forest species (Masaki et al., 2005). They pointed out that the species needs 

a good water supply and high litter-fall to survive during the juvenile stage. Acer mono maxim is 

strongly depended on pollinators to produce enough seeds for the spreading of the species, which is 

supported when the species occur in dense stands. When the species grew in mixed and dense forest 

areas, the seeds usually grew smaller, because of increased competition (Shibata et al., 2009). The 

growth and survival of the trees is higher in riparian forests than on Terrace sites, according to Masaki 

et al. (2005). The observed pattern of the species distribution in YURF is in Slope sites preferentially 

closer to water areas, and most of the time in denser clusters of several trees. It did not grow in 

Riparian sites, which might be due to the competition with Juglans ailantifolia and Pterocarya rhoifolia, 

which occupied the largest area. Small leaved Acer occur in the same regions, distributed under closed 

canopies because of their high shade-tolerance and their strong seedlings growing in small canopy 

gaps. Their main occurrence along the bottom of the slopes can be explained by their dominance in 

intensively disturbed areas, as erosion occurs debris flow disturb these areas frequently (Suzuki, 2002).  

Another tree species is Magnolia obovata, which occurs usually in low numbers and densities in forests 

mainly composed of one dominant tree species, like Fagus crenata. As observed in this study, Isagi et 

al. (2000) stated that Magnolia obovata occurs mixed with Cornus controversa, Aesculus turbinata and 

Pterocarya rhoifolia. Also, the authors stated that the species occur in low densities, but are important 

for the structure and diversity as they dominate areas of the forest, as they grow in clusters. The 

clustering occurs because pollen grains have a limited distribution around the source, so they usually 

grow close to their adult tree. The tree species prefers moist and organic rich soils, with high 

intolerances for poor soils, in sun or partially shaded forest areas (weblink: Missouri Botanical Garden). 

The tree is a species, which can occur in riparian forests, but the most probably poor soil conditions 

and the dominance of Juglans ailantifolia trees in areas with good soil conditions are the main reasons 

for the occurrence of the species in slope areas. Suzuki (2002) characterised the soil in riparian areas 

as unstable with stony sediment structures and shallow organic layer, which is non-preferential for 

Magnolia trees. 

Quercus mongolica is one of the dominant tree species in cold temperate forests. The species needs 

large areas to regenerate, which means that dense areas with a lot of understory vegetation and 

bamboo harm growth (Suh and Lee, 1998). For a good spread the trees need to produce many acorns, 

so that animals can spread them (Fujita and Sano, 2000). When the species is established, it grows fast 

and usually taller than all other trees. Dolezal et al. (2007) concluded that Quercus mongolica is 

significantly influenced by their neighbours and reduces its growth when competition increases, it is 

also affected soil water deficiencies (Masaki et al. 2005). The benefit of the tree is that they fruit from 
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an age of 26, while Fagus crenata e.g., fruits from an age of 40. This allows Quercus mongolica trees 

to spread faster after disturbances and establish a dense forest, before competition becomes strong 

(Fujita and Sano, 2000). The species is also known for their competitivity with Fagus crenata, but there 

is less competition with other species because of the high shade and snow tolerances of both species 

(Suzuki, 2002). The distribution of Quercus mongolica is mainly in slope areas, where they grow as 

single trees or in groups. In YURF, the number of individuals was high, but heterogeneously distributed 

in the different Slope sites. It could be observed that they preferentially occurred in areas with lower 

forest density and seemed to be less frequent in dense areas. In comparison to species like Magnolia 

obovata, the species was less dominant and occupied smaller basal areas.  

Fagus crenata is like Acer mono maxim a shade-tolerant species and prefers areas with high litter fall, 

but grow preferentially in slope areas with cooler climate conditions (Masaki et al., 2005). Fagus 

crenata trees are almost uninfluenced by topography and seem to be less affected by water 

deficiencies or light conditions, according to Masaki et al. (2005), because they produce long roots. 

Precipitation in winter, warmth index and the temperature of the coldest month contribute the most 

to the distribution of the species, while topography and summer precipitation can be influential on a 

regional scale (Matsui et al., 2004). Another benefit for the species is that their stems grow straight, 

even with deep snow covers, increasing the chance to survive in winter. Fagus crenata was found in 

the Slope sites, whereby most of the trees were small, most probably because the elevation of the 

mountain was still low. The tree adapted well to colder climate regions and must compete intensively 

with better adapted trees in the lower mountain regions.  

All species information in combination with species distribution maps, density maps and count maps 

of several regions allowed an evaluation of stand conditions and species behaviours in different kinds 

of forest ecosystems. With the small amount of gathered data, it can be explained that a high number 

of Fagus crenata trees occurred, due to their characteristic shade-tolerance, but they were rarely 

visible in the orthomosaics because they only grew small. The dominance of Juglans ailantifolia trees 

was based on their high seed spread and climatic tolerances. The species occurred in all sites, while it 

only gradually disappeared in higher altitudes. This dominance, together with Pterocarya rhoifolia 

(both species grew fast and built large canopies) might be the reason, why Aesculus turbinata was rare 

in Riparian sites and mainly occurred in lower elevation slope areas, as there seemed to be more open 

spaces and good soil conditions.  

Extensive analyses could be performed, when, additionally to tree distribution, soil samples or water 

measurements would be performed in areas. Therefore, image analysis or even automatic 

classification can be the basis for focussed and precise forest investigations, which would help to 

understand the forest and its species on a single tree, stand, regional or even global level.  
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4.1.4.3  Forest structure 

The forest layer structure of all sites was found to be different. There were no trends observed when 

Riparian, Terrace and Slope sites were compared. There was a smaller number of shrubs identified in 

the Slope sites, which was most probably the result of the difficult access to the sites. Field work in site 

3 was comparably easy, as there were several flat areas or slopes with lower degrees; hence many 

shrubs were identified. Only the bottom parts of the slope in site 8/9 were considered to classify shrubs, 

resulting in only 1.8 %. Site 10 had already steep slopes at the bottom of the site, so that only trees of 

the understory, subcanopy and canopy layer were identified. This was acceptable in the study, as the 

main purpose of the field work was to gather ground truth data. The images, taken from above, usually 

could not image shrubs or understory vegetations, as they were covered by the trees of the canopy 

and subcanopy layer.  

While the canopy layer was usually composed of several tree species, the number of understory layer 

trees and shrubs was small. The reason might be that shrub grew in large clusters consisting of several 

individuals, which was similar to the understory trees, whereby usually one Acer species and one 

Sorbus species were dominant per site. The exposition of the slopes, soil conditions and the 

distribution of canopy layer trees had a significant influence, too. Especially tall trees produced large 

shadow areas, which decreased the available light for subcanopy trees and shrubs.  

The high number of shrubs in site 7 was most probably a consequence of the forest road. Understory 

and shrub vegetation were mainly identified along the bottom of the slope towards site 13, which was 

mainly open and under full light conditions. The slope was steep and mainly shrubs like Alnus fauriei 

and small trees like Acer palmatum grew under these conditions. In contrast, the centre of site 7 did 

not contain these shrubs and small trees. Instead, young trees of Pterocarya rhoifolia and Juglans 

ailantifolia trees grew there.  Another different example was site 11, with a high number of understory 

tree species. The site contained a high number of Sorbus alnifolia, Acer palmatum and Camellia 

japonica, which were distributed along the bottom and the steeper parts of the slope, where tall trees 

were rare. Also here, shrubs were dominant when the area was open and steep slopes benefit the light 

condition in the site. Furthermore, it could be observed that shrubs and understory vegetations 

occurred only in open or partly canopy-covered grounds. Consequently, when the canopy was dense, 

few or no shrubs grew. While the understory vegetation had a similar ratio along the sites, with around 

20 %, shrub vegetations were rare in Riparian sites. One reason was that those sites were located near 

the river, having high soil moisture. There were different bamboos and grasses, which covered most 

of the area and therefore decreased the area for identified shrub species. Especially sites 1, 6 and 7 

were affected, while in some areas of site 1 and site 4 those plants did not grow. These areas were in 

higher elevations; the soil moisture must have been lower, so that the bamboo and grasses could not 
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grow. Areas, which were still close to water sources and locations in lower altitude areas seemed to 

be the best places for shrubs and understory layer trees.  

Furthermore, with increasing elevation, only Acer species occurred in slopes, while all other tree and 

shrub species disappeared. Especially, the small-leaved Acer species seemed to be better adapted to 

shady conditions, as already pointed out by Lei and Lechowicz (1990). Acer trees were usually smaller 

when they were located in shady areas, while they grew tall, when there was more light available.  This 

was discussed in the study of Kneeshaw et al. (2006). Hedwall et al. (2018) already pointed out, that 

the occurrence of shade-tolerant species is often a result of life-form-specific responses, species use 

to enter niches in forests. The study of Woods and Turner (1971) explained that stomatal responses of 

species like Acer or Quercus are good for shaded conditions. This could explain the growth of several 

Acer species and also Quercus mongolica in Riparian sites. In comparison, Sorbus species were some 

of the species that disappeared towards the Slope sites. A study of Pyttel et al. (2013) indicated that 

the studied Sorbus species had significantly reduced height and growth under shaded conditions, but 

the main factor for species thinning might be the increasing competition and stresses in slopes. At the 

same time the number of tree species belonging to the canopy layer increases (Giertych et al. 2013).  

Young trees, which are part of the understory vegetation, were mainly found in Riparian sites, next to 

water channels, as well as at the bottom of slopes. These areas suffer from disturbances, like erosion, 

debris flows and flooding. When those events happened, niches were created in the forest and 

seedlings had enough space, light and less competition to grow. Disturbances mainly benefit 

Pterocarya rhoifolia, Juglans ailantifolia and Robinia pseudoacacia trees, as these species had young 

trees in sites 1, 6 and 7. Additionally, in site 1 were two patches with monocultures of Pterocarya 

rhoifolia, where shrubs and understory vegetations were rare. A similar structure was observed in 

monocultures of Cryptomeria japonica plantations. Hence, monocultures must have a significant 

influence on soil conditions, available nutrients and light availability, so that shrubs do not grow well. 

In the study of Spanner et al. (2007), where they analysed reflectance of the forests and found in open 

stands broad-leaved plants, shrubs and grasses, while closed canopy areas only signals of forest litter 

were found. Hedwall et al. (2018) pointed out that monocultures have a significant effect on light 

conditions, soil nutrients and available water. As Pterocarya rhoifolia grows large canopies, shadowing 

the whole forest floor and reducing light, this might be the main reason why no understory and shrub 

vegetations grew in these patches.  

The percentages showed that more trees in the canopy layer resulted in general in fewer trees in the 

subcanopy layer, which was observed in the Riparian sites. In the Slope sites the percentage of trees 

belonging to the subcanopy layer was high, while the percentage for trees of the canopy layer was low. 

The slope angle might cause that small growing trees could be located at the same height or even 
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higher because of the elevation of the slope. This benefits species like Betula, which are light 

demanding, but usually smaller than Quercus mongolica or Fagus crenata (Giertych et al., 2013). The 

varying tree numbers, belonging to canopy and subcanopy layers in the different sites, were also 

described in the study of Gomes da Silva et al. (2008). The authors concluded that structures in canopy 

and subcanopy individuals were influenced by light and moist conditions, but also from mainly edge 

effects and topographical gradients, as also pointed out by Svenning et al. (2004).  

The structure of forests can be regarded as a combination of disturbances, competition and stand 

conditions, which influences the occurrence of tree species, their location and distribution. First, 

disturbances can open niches, spaces for sunlight and nutrients to increase plant growth. Second, 

depending on which factors influences the site conditions the most, tree species can survive in the 

environment. And third, depending on the competition between tree species, some survive and some 

grow even tall. The interactions between physical and physiological properties of forest environments 

and tree species need to be studied further on a large scale to explain forest ecosystems.  

 

4.1.4.4  Forest classification  

In the chapter 3.2 Japanese forests, it was already mentioned that forest inventories, conducted in 

Japan, provided detailed information about forest plantations, but missed to provide forest 

classifications of mixed broad-leaved forests (Makimoto, 2019). When forests were classified, usually 

only Fagus crenata and Quercus ssp. were mentioned (Makimoto, 2019). Other studies like Fukamachi 

et al. (2020) studied cold-temperate forests and identified dominant species, but they did not classify 

riparian forests more specifically. The results of the current study analysed the relative density of tree 

species and proceeded to classify those forests. The relative densities were calculated based on tree 

counting, done in the field. Additionally, species of the shrub layer were not considered for the 

classification of mixed forests. Their contributions to the functions of the ecosystem are definitely 

interesting, but they do not affect forests that much that they need to be part of the classification. 

The Riparian sites showed different tree species densities and dominances. In site 1 Pterocarya 

rhoifolia and Juglans ailantifolia were the dominant species, followed by Acer sieboldianum and Tilia 

maximovicziana, which were considered as subspecies. Therefore, the riparian forest was called 

‘Japanese walnut and wingnut mixed forest’, with the subspecies Japanese lime and Siebold maple. 

Site 4 was a ‘willow and walnut forest’, with the subspecies Pterocarya rhoifolia and Aesculus turbinata. 

The understory vegetation was dominated by Acer palmatum and Styrax obassia. The dominant tree 

species in site 6 was Acer palmatum, which was mainly distributed along the slopes and dominated 

the understory layer. Therefore, the forest was classified as ‘Japanese walnut and wingnut forest’, with 
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the subspecies Salix jessonensis and Robinia pseudoacacia. Site 7 was a ‘Japanese walnut forest’, with 

the subspecies Pterocarya rhoifolia. The understory vegetation was dominated by Acer japonicum and 

sieboldianum. 

The Terrace sites showed a colourful mosaic of tree species dominating the sites. Juglans ailantifolia 

was the dominant canopy species in all sites; hence they were all named as Japanese walnut mixed 

forests with changing subspecies. In site 11 the subspecies were Pterocarya and Aesculus turbinata, 

with Acer amoenum and palmatum dominating the understory vegetation. Site 12 was similar, except 

that Quercus mongolica occurred additionally as subspecies, while Acer amoenum was replaced by 

Morus autralis. In site 13 the subspecies were Cornus controversa, Acer mono maxim, Aesculus 

turbinata and Magnolia obovata. Acer sieboldianum dominated the understory vegetation.  

In comparison to the Terrace and Riparian sites, Acer species grew taller and were even dominant in 

large parts of the Slope sites. As the species were found frequently distributed over the whole sites, 

they were named after them. Therefore site 3 and 8/9 were ‘maple forests’, mixed with Japanese 

walnut and oak in site 3, and only with oak in site 8/9. The subspecies in site 3 were Fagus crenata, 

Larix kaempferi and Magnolia obovata. The subspecies in site 8/9 were Fagus crenata, Corylus 

sieboldiana, Acer mono maxim and Styrax obassia (as the species occurred here as subcanopy trees). 

The forest in site 10 was classified as ‘Oak forest’ mixed with Aesculus turbinata, Fagus crenata and 

Acer mono maxim’. Acer palmatum or sieboldianum dominated the understory vegetation in all sites. 

With greater distance to the river vegetation changed from trees, well-adapted to riparian forest sites, 

over a tree mixture of riparian and slope species in the Terrace sites, Quercus mongolica and Fagus 

crenata, dominating the Slope sites. Therefore, the Slope sites were already representative for Quercus 

forests in Japan, as described by Okitsu (2003) or Sasaki (1970). The general species composition in 

YURFs Slope sites with Fagus crenata, Acer mono maxim, Acer sieboldianum, Tilia japonica, Quercus 

mongolica, Kalopanax septemlobus, Acer rufinerve, Magnolia obovata and Sorbus alnifolia would be 

also characteristic for a Japanese Fagus forest, according to Sazaki (1970). 

 

4.1.4.5  Comparison of different riparian and mountain forests in Japan 

There were a couple of studies performed in riparian forests in Japan, which were discussed in this 

chapter in order to understand the structure, composition and distribution of the Riparian sites in YURF.  

Fukamachi et al. (2020) studied a cold-temperate forest, like YURF, at the upper Watarase river basin 

in Midori City (Gunma Prefecture). The precipitation is lower than in YURF with only 1807 mm per year 

(300 mm snow precipitation). The dominant species, which they found in valley bottom areas are 

Fraxinus platypoda and Styrax obassia and with Quercus mongolica and Castanea crenata on Slope 
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sites. Fukamachi et al. (2020) monitored 600 individual trees from 2006 to 2017 in a 1 ha plot, which 

belonged to 85 deciduous species. In YURF sites, the numbers of individuals were lower, as a 3-ha plot 

had only around 400 trees. Furthermore, only 70 different species were identified in all sites, Riparian, 

Terrace and Slope. Another study was conducted by Sakio et al. (2002) in cold temperate riparian forest 

in Ooyamazawa in the Chichibu Mountains. They investigated a 4.71 ha study site, finding 46 tree 

species and a total number of 2144 trees, from which 492 trees belonged to the canopy layer. The 

number of trees in Ooyamazawa was higher than the highest number found in YURF, site 1 with 729 

trees, whereby 410 trees corresponded to the canopy layer. Masaki et al. (2008) used census methods 

to evaluate their studied plots in riparian area and Terrace sites. In the Riparian plot they identified 

Cercidiphyllum japonicum (26 %), Aesculus turbinata (19 %), Fagus crenata (15 %), Quercus crispula 

(13 %), Pterocarya rhoifolia (9 %), and Acer mono maxim (8 %) based on the total basal area at breast 

height. The study of Sakio et al. (2002) found that 61.6 % of their studied forest trees were Fraxinus 

platypoda, 16.2 % Pterocarya rhoifolia and 10.0 % Cercidiphyllum japonicum with Acer species being 

the dominant subcanopy species. The presented counting and species showed that riparian areas in 

Japan have completely different characteristics. Ohno (2008) characterised valley-bottom forests on 

the Japan Sea side of northern Honshu and compared them with Salix riparian groves and Alnus swamp 

forests. The valley-bottom forests were located in the area of Mt. Gassan in Yamagata Prefecture. The 

dominant species were Pterocarya rhoifolia, Aesculus turbinata and sparely Cercidiphyllum japonicum.  

Fraxinus platypoda and Pterocarya rhoifolia seemed to be species which occurred frequently in forests, 

Pterocarya rhoifolia grew also in the YURF study sites, together with Juglans ailantifolia. Juglans 

ailantifolia trees were not found or studied in other regions, while it was the dominant tree species in 

the YURF study sites. Furthermore, in the studies of (Masaki et al., 2008; Fukamachi et al., 2020; Sakio 

et al., 2002) a high dominance of Quercus crispula/mongolica was found. As the species also occurred 

in Slope sites in YURF, it was characterised as dominant species. Another similarity was the occurrences 

of Acer species, which were also dominant in (Sakio et al., 2002). It was pointed out by Ohno (2008) 

that all forests were significantly different in their conditions and therefore their structure, which was 

also concluded for the sites in YURF.  

Sakio et al. (2002) discussed that the coexistence of tree species in riparian forests depends on niche- 

and chance-determined causes, due to varying disturbances, which fits well to the findings of the sites 

in YURF. Tree species growing in such areas are generally well-adapted to the varying conditions in 

riparian forests. Naiman et al. (1998) explained that plant colonisation and the initial stage of tree 

growth starts in new open spaces caused by disturbances. After the free space is occupied only trees 

survive, which have a competitive advantage. In a next stage trees fertilise the soil and enable the 

growth of understory vegetations to develop finally a complex forest structure. Due to past flooding 
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events and other disturbances in YURF explained this study well the characteristics of the researched 

riparian forests. 

Masaki et al. (2008) explained the species distribution based on different soil preferences during the 

juvenile stage of the trees. Additionally, under stable microtopographic conditions, species richness 

was the highest, while only adapted trees grew well under unstable conditions. The trees which 

seemed to grow the best under unstable conditions were Pterocarya rhoifolia and Robinia 

pseudoacacia. Both trees grew in areas with the most unstable conditions, affected by regular flooding 

and poor soil conditions. Even juvenile trees of these species grew well over the observed time, other 

species did not reproduce.  

Sakio et al. (2002) further pointed out that the coexistence, reproduction strategies and the relation 

to the disturbances is not sufficiently investigated, especially riparian forests, as the mentioned studies 

showed clearly, can have many different structures and compositions. The aim should be to compare 

more riparian areas to understand those ecosystems better. To study tree species compositions and 

species diversity, discussions with a dependency on spatial scales, stand-levels and landscape-levels, 

need to be started (Masaki et al., 2008), for which larger study areas need to be considered, together 

with a fast and efficient surveying methodology.  

 

4.1.5  Conclusion 

Forest inventories are an efficient tool to assess forest composition, distribution and structure and 

allow analyses of dominances, diversity and layering. 70 tree and shrub species were identified and 

their characteristic distribution in the sites was analysed. The layering in the forest was assessed and 

presented, representing the vertical structure of the forest. Field surveys were generated and based 

on the calculated dominances mixed forests were classified. The forests were named after the main 

species with adding the subspecies to further characterise the sites, as it was found out that even 

though sites were classified into Riparian, Terrace or Slope sites, the sites had all different 

compositions. Also, the presented forest sites were classified as different to other riparian and 

mountainous forests in Japan.     
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Chapter 4.2 Tree species diversity in different kind of cold-

temperate forests calculated on image-based analysis 

4.2.1  Problem definition 

Differences in biodiversity further affect ecosystem functioning, because they influence biomass 

production, nutrient cycling and health conditions (Baeten et al., 2013). The functioning of forest 

ecosystems is important for their several ecosystem services, including the human well-being. Keeping 

forests stable in changing climatic conditions is a challenging topic nowadays.  

Species numbers differ not only on a global scale, because of climatic conditions, but also on a local 

scale, because of microclimate, disturbances, competition and local interactions between tree species 

(Ricklef & He, 2016). Species richness is an indicator for the biodiversity and therefore for the health 

and natural status of forests. It reflects characteristics of the location and the potential climate or 

anthropogenic disturbances. Species production, extinction and dispersal are influenced by physical 

conditions of the environment, which can vary significantly, as in this study riparian and slope forests 

were studied. Further adaption to the environment and reproduction strategies are critical aspects in 

species settlements. In high diverse systems, positive interactions between species results in an 

efficient use of resources, like light, nutrients or water (Jacob et al., 2009). The numbers of biotic and 

abiotic factors, which influence species compositions, are huge and need to be considered when forest 

ecosystems are studied. Ricklef and He (2016) pointed out that there are many diversity studies 

conducted on local communities with extents over a broad range of global climate conditions. At the 

same time, local communities are often undercounted, since ancient records were used. This problem 

affects the analysis of local environments significantly. Baeten et al. (2013) raised the limitation of 

diversity studies as they were conducted in small plot sizes, simplified age-structures and stand-

structures, since the works had always limitations in time and man-power. 

The analysis of forest stands in YURF introduced the comparison of four Riparian sites, three Terrace 

sites and six Slope sites under the same climatic conditions, but with different expositions and slope 

angles. Species richness could be analysed in a stable physical environment, with less varying influence 

factors. The results could be then analysed more specifically, regarding small-scale influences, species 

interaction and competition aspects. This study helped to better understand the composition of tree 

species in the different stands. Therefore, the objective for this study was to evaluate forest diversities 

with tree species composition information extracted from images: 

ii. Analyses of standard forest diversity measures using image classifications 

iii. Assessing the comparability of diversity indices for different sites 
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4.2.2  Methodology 

4.2.2.1  Data collection 

In this study images were collected for 13 different sites in four seasons from summer 2018 until winter 

2021, in total 295 times. Out of this large data base images from summer 2019 were chosen for the 

first set of tree species annotations, for each site one flight. For sites 1 and 3 the flights on the 20th of 

June 2019 were chosen, for sites 9 and 10 the 10th of July and for site 8 the 26th of July. For all other 

site’s images taken on the 14th of June were used. Data collection was performed with a DJI phantom 

4 flying in altitudes between 80 m and 205 m. 

 

4.2.2.2  Data processing 

The gathered images were first processed with Metashape, where all images per site were aligned. 

The aligned orthomosaics and DEMs, which represent the 3D surface in a 2D map, contained height 

information of the imaged area. Then, GIMP was used to do manual annotations. The orthomosaics 

were opened with the software and layers were added on top of it, one per tree species. The canopy 

each tree species was coloured black in its layer, while the rest was coloured white, therefore binary 

layers were generated. Additionally, tree tops were annotated by marking the tree tops with a black 

dot. All layers and the orthomosaic were afterwards exported as JPEG files.  

Another aim of the study was to compare different locations. Therefore, the sites were divided into 

Riparian and Slope sites. Sites 1, 4, 6, 11, 12 and 13 were grouped as Riparian sites based on the 

occurring tree species, while sites 2, 3, 5, 8, 9 and 10 were considered as Slope sites. Note that only in 

this chapter sites 11, 12 and 13 were grouped into the Riparian sites. 

 

4.2.2.3  Image analysis 

4.2.2.3.1  Census code 

The Census code is a developed code of the research team, which used the exported binary files from 

GIMP, the orthomosaic and file containing the path to the data, the name of the data files and the 

count of the files. On that basis, the code scanned tree tops and checked to which layer the tree tops 

belong. The output contained the name of the species, the counted tree tops, the percentage of the 

tree tops belonging to this species and the total number of counted tree tops. 
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4.2.2.4  Species diversity  

Species diversity is an important measure for biodiversity of different ecosystems. Species abundances 

and richness are considered to quantify diversity, which is reflected in the Shannon index. Furthermore, 

the Simpson index is considered in this thesis, as it can be used as a measure for species dominance, 

while the Shannon evenness considers the evenness of species spreads. Another measure is the Gini – 

Simpson index, which is supposed to show dominances clearer than the Simpson index according to 

Ifo et al. (2016). These values were calculated for each site and species identified on the images.  

The first step was to calculate pi for all species. Therefore, the numbers of tree counts were divided by 

the total numbers of tree counts per site. In a second step the Shannon entropy for each species and 

site was calculated with the following formula: 

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐻 =  −1 ∗ ∑(𝑙𝑛(𝑝𝑖) ∗ 𝑝𝑖)

𝑛

𝑖=1

  

The mean values for each site were calculated for all sites but also separately for all Riparian sites and 

Slope sites. The total alpha diversity was calculated by summarizing the Shannon diversity or Shannon 

entropy per site. From the sum of the alpha diversity the Hill numbers were calculated with the 

following equation: 

𝐻𝑖𝑙𝑙  1D = 𝑒𝐻 

The Simpson index was calculated by: 

𝑆𝑖𝑚𝑝𝑠𝑜𝑛 𝐷 =  ∑ 𝑝𝑖
2

𝑛

𝑖=1

 

Furthermore, the Gini – Simpson index, the Shannon evenness and the 2D Hill numbers were 

calculated: 

𝐺𝑖𝑛𝑖 𝑆𝑖𝑚𝑝𝑠𝑜𝑛 =  1 –  𝐷 

𝐸𝑣𝑒𝑛𝑛𝑒𝑠𝑠 = 𝐻/𝑙𝑛(𝑆) 

𝐻𝑖𝑙𝑙  2D =  ∑(𝑝𝑖
2)(

1
1−2

)

𝑛

𝑖=1

 

 

With S being the species richness, the occurring species per site and n the number of species.  

Furthermore, the similarity was calculated with pi previously calculated. A site-per-site comparison was 

performed, sites 1 and 4, sites 1 and 6, sites 1 and 7 etc. The sites were separated in Riparian and Slope 

sites and separately compared. The following two calculations were performed for each cell in the 

comparison table: 
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𝑋 =
𝑝𝑖(𝑠𝑖𝑡𝑒 𝑎) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑖𝑡𝑒 𝑎 + 𝑝𝑖(𝑠𝑖𝑡𝑒 𝑏) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑖𝑡𝑒 𝑏

𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑖𝑡𝑒 𝑎 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑖𝑡𝑒 𝑏
 

𝑌 =  − ln(𝑋) ∗ 𝑋 

The weight factor was 100 divided by the number of sites, which was 14.2857 for the Riparian sites 

and 16,66667 for the Slope sites. In the last calculations the alpha, beta and gamma diversities were 

calculated. 

𝐻𝑎𝑙𝑝ℎ𝑎 =
𝐻(𝑠𝑖𝑡𝑒 𝑎) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑖𝑡𝑒 𝑎 + 𝐻(𝑠𝑖𝑡𝑒 𝑏) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑖𝑡𝑒 𝑏

𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑖𝑡𝑒 𝑎 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑠𝑖𝑡𝑒 𝑏
 

𝐻𝑔𝑎𝑚𝑚𝑎 =  ∑ 𝑌

𝑛

𝑖=1

 

𝐻𝑏𝑒𝑡𝑎 =  𝐻𝑔𝑎𝑚𝑚𝑎 − 𝐻𝑎𝑙𝑝ℎ𝑎 

𝐻𝑜𝑟𝑛 =
ln(2) − 𝐻𝑏𝑒𝑡𝑎

ln(2)
 

The Horn value is a measure for the similarity and was presented by Goebel (2012a).  

 

4.2.3  Results – Diversity 

The most important terms in the concept of diversity are richness, abundance and evenness. Richness 

is the number of species in an ecosystem. Species abundance is the number of trees, which belong to 

the same species, while relative abundance means the distribution of trees in the community. The 

relative abundance is also called evenness. The combination of richness and evenness gives the true 

diversity (Hill numbers), which is needed to evaluate the diversity of an ecosystem, as forest 

ecosystems have usually heterogeneous distributions. In this study, several indices were calculated by 

checking the tree species richness, abundance and evenness, in order to provide an overview of the 

diversity. 

Image-based counting of tree species were performed (Table 8) and diversity calculated (Table 9). The 

species richness corresponds to the different tree species in each site. The highest number of tree 

species had site 3 with 24 different tree species, while site 11 had the lowest, with 12 tree species. The 

mean of all sites was 17.2 tree species per site. Shannon entropy, Simpson and Gini – Simpson indices 

gave an idea about the evenness and diversity of the sites. In case of the Simpson index, a value of 1 

means that all individuals belong to the same species (no diversity) and a value of 0 means that the 

diversity is high. The mean value for the Riparian sites, and also for the mountainous sites, is 0.21.  
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Table 8 Image-based tree counting 

Tree species Species label Site1 Site4 Site6 Site7 Site11 Site12 Site13 Site2 Site3 Site5 Site8 Site9 Site10 

Juglans ailantifolia S01 107 58 47 72 54 91 106 23 53 47 32 7 14 

Aesculus turbinata S02 24 
 

4 3 26 31 10 35 3 18 8 30 29 

Cryptomeria japonica S03 201 129 156 55 125 73 229 195 122 51 7 53 74 

Pterocarya rhoifolia S04 125 9 25 22 31 29 2 3 3 14 1 
  

Quercus mongolica  S05 9 7 3 13 
 

12 2 45 66 53 42 51 51 

Larix kaempferi S06 19 7 
  

1 1 
  

27 
    

Fagus crenata S07 
        

27 4 1 53 10 

Magnolia obovata S08 19 6 5 1 6 7 17 63 32 42 7 22 35 

Acer japonicum, Acer 
sieboldianum, Acer palmatum 

S09 145 12 10 67 36 144 60 351 605 176 241 140 167 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus 
speciosa  

S10 13 
       

3 
   

4 

Acer mono maxim, Acer 
pictum subsp. Mono, Acer 
nipponicum  

S11 15 1 5 16 16 38 21 63 75 52 38 169 88 

Salix serissaefolia S12 
 

78 8 
     

1 
    

Salix jessoensis S13 8 1 16 14 
    

2 3 1 
  

Castanea Crenata S14 4 
 

10 
     

4 1 2 
 

1 

Robinia pseudoacacia  S15 14 
 

7 14 
         

Cornus controversa S16 23 2 5 
 

9 21 22 7 17 13 14 24 16 

Phellodendron amurense S17  9 
            

Betula corylifolia S18 
  

6 
    

2 
  

13 45 13 

Alnus inokumae, Alnus hirsuta S19 
  

1 
          

Picea abies S20 
  

4 
          

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

2 
           

Albizia julibrissin S22  
   

2 
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Japanese Hydrangea, 
Schizophragma hydrangeoides 
and Smilax   

S23 13 12 9 1 5 17 26 2 14 17 15 8 5 

Morus australis S24 
 

1 
   

14 2 6 7 
 

14 6 8 

Clethra barvinervis  S25 
   

1 
         

Tilia japonica, Tilia 
maximowizciana 

S26 28 
   

2 9 1 4 7 
 

3 7 19 

Japanese 
honeysuckle/Lonicera japonica 

S27 
     

4 15 
 

2 12 2 4 1 

Kalopanax septemlobu S28 
     

3 3 
 

1 4 
  

13 

Celtic jessoensis S30 
  

2 
 

3 5 
       

Alnus fauriei  S31 
   

20 
 

4 8 
 

19 
    

Betula corylifolia S32 
 

1 
           

Zanthoxylum piperitum S34 
  

5 
          

Fraxinus lanugiosa S35 
        

3 
    

Fraxinus mandshurica var. 
japonica 

S36 
   

1 
         

Styrax obassia  S39 
     

1 1 6 4 
   

3 

Hamamelis japonica S40 
      

3 10 
 

4 33 30 30 

Acer japonica (red) S41 
        

1 
   

11 

Corylus sieboldiana  S42 5 
        

6 18 1 4 

Carpinus Cordata S43 2 
      

14 
  

16 14 
 

 
mix 

       
2 

   
53 

 

 
Sum 783 326 328 302 314 504 528 831 1098 515 508 717 596 
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When the location of the mountain sites and the Simpson indices were compared, it was evident that 

in lower elevation areas the Simpson index was higher (site 2, 3 and 8) than in areas located higher in 

the slopes (site 5, 9 and 10). There was no trend visible for the Riparian sites. Therefore, the diversity 

seems to be the highest in sites 9 and 10, with 0.13 and 0.14 respectively, and the lowest in site 3 with 

0.33. However, (expect site 9) the species richness was in these sites higher than in all other sites. The 

Simpson index alone cannot explain the diversity of the sites well.  

A high diversity is also equal to a high value for the Shannon index. The Shannon index for the studied 

sites was high with a value > 2. The index was usually higher for the mountain sites than the Riparian 

sites. The same behaviour was observed for the Gini – Simpson index. The values of the Gini – Simpson 

index were around 84 % for site 1, 7 and 12 (Riparian sites) and values between 83.3 % and 87.5 % for 

the mountain sites (5, 9 and 10). Generally, the Shannon entropy and the Gini – Simpson index values 

showed the same range. Only site 3 was different, having the lowest Gini Simpson value and the second 

lowest Shannon entropy (GS = 67.01 % and H = 1.74), while site 4 had a higher Gini – Simpson index 

with the lowest Shannon index (H = 1.73 and GS = 74.97 %). 

The evenness value for site 3 was the lowest, while it was also low for sites 2, 4, 6, 8 and 13. Comparing 

all indices revealed that site 9 had a high diversity with an even distribution of tree species, followed 

by 5 and 7, then 1, 10 and 12. Sites 2, 4, and 11 had a lower diversity with and uneven distribution of 

species. Sites 6, 8 and 13 had a high diversity but an uneven distribution, while site 3 had the highest 

number of species and was highly uneven.  

At last, the Hill numbers were calculated, which characterised the distribution of species when they 

were randomly picked. The values supported the previously mentioned distributions. The Hill numbers 

are a measure for the effective classes, which means that a randomly picked sample belongs to a 

certain number of different classes. For Hill 1D, the highest class numbers were found for sites 1, 12, 5, 

9 and 10. For site 1 it means that out of the 19 species, 10 species are minor, since a randomly picked 

species belongs to a high probability to 9.43 classes. Therefore, the Hill numbers are another measure 

for the evenness. Compared with a species richness of 18, site 9 had the highest value with 10.71 and 

was considered as well distributed. A similar behaviour was found in site 7, with a species richness of 

15 and a Hill number of 9.22. Sites 3 and 4 had the lowest Hill numbers compared with a species 

richness of 24 and 15, respectively. 

The Hill numbers can be interpretated as representation of typical species (q = 1) and dominant species 

(q = 2). Based on this relation, half of the species were typical for sites 1, 5, 7, 9, 10, 11 and 12, while 

for all other sites the numbers were lower. For Hill q = 2, the dominant species, ranged for the 
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mentioned sites from 6 to 7 species, which was more than one-third of the occurring species. For all 

other sites, the number of dominant species ranged between 3 and 4 species.   

Table 9 Calculated diversity indices for all sites 

 

 

Table 10 presents the similarities calculated with the Horn values, presented by Goebel (2012a). The 

similarity values ranged between 90.11 % and 64.51 % for the Riparian sites and between 94.17 % and 

68.23 % for the Slope sites. In case of the Riparian sites, site 11 had the highest similarity values, 

followed by sites 1, 12 and 13. The lowest similarity values had site 4, then sites 7, 1 and 11. Sites 1, 

11, 12 and 13 had more similarities, which can be related to the site’s characteristics, as these sites are 

distributed partly on the slope. Sites 4, 6 and 7 are flat sites along the river and had more similarities 

among each other than the Slope sites had. Site 1 has both characteristics, as it is located along the 

river but also partly on the slopes. When the similarity values were compared with the species 

composition, it was observed that the composition of sites 1, 11, 12 and 13 were more similar than 

others. All sites contain Aesculus turbinata, a high number of Acer trees and Cornus controversa. Site 

4 has a high number of Salix trees, which do not grow that frequent in other sites. Site 6 has a high 

number of Robinia pseudoacacia, Salix and Castanea crenata, which was a unique combination for all 

sites, and in site 7 the open spaces between the trees allowed to detect Alnus fauriei shrubs, which 

grow usually beneath the canopy layer. All Riparian sites along the river have unique tree compositions, 

which decreased their similarity values. Still, the main composition was similar, as all sites have Juglans 

ailantifolia and Pterocarya rhoifolia, the two dominant species, together with Cryptomeria japonica. 

Regarding the Slope sites, site 5 had the highest similarity values, followed by sites 10, 9, 8 and 2. The 

lowest similarity values occurred between sites 8, 9 10 and sites 2 and 3. Sites 2 and 3 are located close 

to the river and at the bottom of the mountain, while sites 5, 9 and 10 are located in higher elevations. 

As all sites were mixed, it can be said that they had some similarities and some differences. The 

similarity numbers compared with the distribution of the sites showed, that sites 2 and 3 share similar 

Site Shannon entropy Evenness  Simpson Gini Simpson Hill 1D Hill 2D Species richness

1 2.24 76.21 0.15 84.97 9.43 6.65 19.00

4 1.73 63.90 0.25 74.97 5.64 3.99 15.00

6 1.99 67.48 0.26 73.97 7.29 3.84 19.00

7 2.09 77.07 0.16 84.19 8.06 6.33 15.00

11 1.84 74.15 0.22 77.80 6.31 4.50 12.00

12 2.22 76.87 0.15 84.70 9.22 6.54 18.00

13 1.84 64.84 0.25 75.04 6.28 4.01 17.00

2 1.81 64.25 0.25 74.89 6.10 3.84 17.00

3 1.74 55.34 0.33 67.05 5.71 3.04 24.00

5 2.20 77.64 0.17 83.31 9.02 5.99 17.00

8 2.02 64.18 0.25 74.83 7.56 3.49 20.00

9 2.38 82.08 0.13 87.46 10.81 6.85 18.00

10 2.39 76.66 0.14 86.44 10.91 7.28 21.00
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distributions when Juglans ailantifolia trees, Quercus mongolica and Acer species were considered. 

Species like Fagus crenata, Corylus sieboldiana, Hamamelis japonica and Carpinus cordata occurred 

rarely. In sites 8, 9 and 10 the distribution of Juglans ailantifolia was less frequent, while Fagus crenata, 

Corylus sieboldiana and Hamamelis japonica occurred more frequent. All sites shared the occurrence 

of Cornus controversa, Magnolia obovata and climbing plants. Also, all sites had a high variety of Acer 

species, which were more frequent in sites 2 and 3, but less frequent in the other Slope sites. Even 

though Cryptomeria japonica is a planted tree, which usually frames mixed forests, they were still part 

of the orthomosaics. In sites 2 and 3, there were many Cryptomeria japonica trees, while there were 

fewer in sites 5 to site 10.   

Table 10 Calculated similarities between all sites, divided into Riparian and Slope sites (Horn index) 

Riparian 
sites 

  
Slope 
sites 

  

Site a Site b Similarity in % Site a Site b Similarity in % 

1 11 90.11 5 10 94.17 

11 13 89.49 9 10 91.02 

11 12 87.82 5 8 90.83 

1 12 86.22 2 5 89.61 

6 11 84.89 8 10 88.63 

12 13 84.81 3 5 85.89 

7 12 83.12 2 3 85.02 

1 7 82.60 5 9 81.92 

4 6 81.31 3 10 81.58 

6 13 81.27 2 8 80.59 

1 6 80.87 8 9 80.08 

1 13 80.07 3 8 77.75 

7 11 78.97 2 9 77.37 

4 13 77.02 2 10 69.41 

7 13 76.76 3 9 68.23 

6 7 75.02 
   

4 11 74.93 
   

1 4 70.57 
   

6 12 68.58 
   

4 7 64.51 
   

 

Table 11 to Table 14 show the alpha and beta diversities for the Riparian and Slope sites. Alpha 

diversities describe the diversity in one site, while beta diversity describes the differences in the 

diversity between the sites and gives insights into the relative abundance between the sites (Goepel, 

2012b). The alpha diversity of the Riparian sites shows differences for all sites, it reflected the tree 

species composition, but in general all diversity values were high (above 1.7). There are no patterns or 

structures visible in this table, which allowed a deeper analysis. The values showed that sites 4, 11 and 

13 had the lowest diversity, which influenced the comparison between the sites the most.  



132 
 

Table 11 Calculated alpha diversity for the Riparian sites 

  

Site 
1 

Site 
4 

Site 
6 

Site 
7 

Site 
11 

Site 
12 

Site 
13 

Site 1 2.24 1.99 2.12 2.17 2.04 2.23 2.04 

Site 4 1.99 1.73 1.86 1.91 1.79 1.98 1.78 

Site 6 2.12 1.86 1.99 2.04 1.91 2.10 1.91 

Site 7 2.17 1.91 2.04 2.09 1.96 2.15 1.96 

Site 11 2.04 1.79 1.91 1.96 1.84 2.03 1.84 

Site 12 2.23 1.98 2.10 2.15 2.03 2.22 2.03 

Site 13 2.04 1.78 1.91 1.96 1.84 2.03 1.84 

 

In comparison to the Riparian sites, the diversity values for the Slope sites were also high, but there 

was a structure visible (Table 12). The diversity values of all Riparian sites were lower than the ones 

for sites 9 and 10. Performed field and GIS analyses showed that, with increasing site numbers, the 

steepness of the slope and the distance to potential water sources increased. The alpha diversity must 

have a strong influence on the evenness, which was higher in sites 9 and 10 than in sites 2 and 3.  

Table 12 Calculated alpha diversity for the Slope sites 

 Site 
2 

Site 
3 

Site 
5 

Site 
8 

Site 
9 

Site 
10 

Site 2 1.81 1.78 2.00 1.92 2.09 2.10 

Site 3 1.78 1.74 1.97 1.88 2.06 2.07 

Site 5 2.00 1.97 2.20 2.11 2.29 2.29 

Site 8 1.92 1.88 2.11 2.02 2.20 2.21 

Site 9 2.09 2.06 2.29 2.20 2.38 2.39 

Site 10 2.10 2.07 2.29 2.21 2.39 2.39 

 

The beta diversity matrices elucidated the differences or similarities between sites, considering alpha 

and gamma diversities, which was the pooled entropy of all considered sites. The minimum beta 
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diversity, with a value of 0, was unity, which means that the sites were completely equal (Jost, 2006). 

The higher the beta diversity value, the higher the differences between the sites. In both tables (Table 

13 and Table 14) areas with the highest similarities in darker green colours or marked with a purple 

square. There were high similarities between the Riparian sites 11, 12 and 13, and for the Slope sites 

between sites 5 and 8 as well as between 9 and 10. The similarities, which were evaluated with the 

Horn index, can be also observed in Table 10. Comparing alpha and beta diversities can further help to 

understand the differences and similarities between sites. Site 10 had low beta values compared to 

sites 5, 8 and 9 (0.04, 0.08, 0.06), similar differences were found between site 5 and 2 (0.04), 8 and 10 

(0.08) (Table 12). For sites 5, 8, 9 and 10 low beta values occurred together with high alpha diversities, 

while site 2 had the second lowest alpha diversity with 1.81, but high beta diversities with values 

between 0.13 and 0.22. Site 4 showed in comparison to site 1, 7 and 12 that high differences between 

alpha diversities (1.73 and 2.24, 2.09, 2.22) caused also high beta diversities values of around 0.25. 

Low differences in alpha diversities, comparing sites 4, 11 and 13, showed high beta diversities (0.16 

and 0.17). Another example is site 6, where the beta value was 0.13 when compared to sites 1 or 4, 

whereby the alpha diversity of site 1 was 2.24 and 1.73 for site 4. Therefore, the calculated gamma 

diversities had an influence on the beta diversity. The gamma diversity calculated the sum of all species 

for the considered sites, which means that the number of occurring species influenced the beta 

diversity.   

Table 13 Calculated beta diversity for the Riparian sites 

 Site 
1 

Site 
4 

Site 
6 

Site 
7 

Site 
11 

Site 
12 

Site 
13 

Site 1 0.00 0.20 0.13 0.12 0.07 0.10 0.14 

Site 4 0.20 0.00 0.13 0.25 0.17 0.25 0.16 

Site 6 0.13 0.13 0.00 0.17 0.10 0.22 0.13 

Site 7 0.12 0.25 0.17 0.00 0.15 0.12 0.16 

Site 11 0.07 0.17 0.10 0.15 0.00 0.08 0.07 

Site 12 0.10 0.25 0.22 0.12 0.08 0.00 0.11 

Site 13 0.14 0.16 0.13 0.16 0.07 0.11 0.00 
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Table 14 Calculated beta diversity for the Slope sites 

 Site 
2 

Site 
3 

Site 
5 

Site 
8 

Site 
9 

Site 
10 

Site 2 0.00 0.10 0.07 0.13 0.16 0.21 

Site 3 0.10 0.00 0.10 0.15 0.22 0.13 

Site 5 0.07 0.10 0.00 0.06 0.13 0.04 

Site 8 0.13 0.15 0.06 0.00 0.14 0.08 

Site 9 0.16 0.22 0.13 0.14 0.00 0.06 

Site 10 0.21 0.13 0.04 0.08 0.06 0.00 

 

Figure 39 presents the species abundance distribution. There were usually three or four species in the 

Riparian sites (1, 4, 6 and 7), which were the most frequent ones, while all other species occurred with 

only a couple of individuals. The most frequent species were Cryptomeria japonica, Juglans ailantifolia, 

Pterocarya, Salix and Acer species. In comparison to sites 1 and 4, sites 6 and 7 had a more 

homogeneous distribution, reflected by the high evenness value for site 7, but not for site 6.  Site 13 

showed a distribution similar to sites 1 and 4, with a high number of Cryptomeria and Juglans trees. 

Species abundances in sites 11 and 12 decreased exponential towards the minor species. Sites 3 and 

10 showed the same characteristics as 11 and 12, but with a higher number of species. The distribution 

of sites 5, 8 and 9 was similar, as it could be separated into three parts with a high number of Acer 

species (S09 and S11), a high number of four to five dominant species and a several minor species. Site 

3 had a distribution pattern between the Riparian sites and the sites 5, 8 and 9. It should be noted that 

the numbers of individuals per species varied among all sites. 
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Figure 39 Species abundance for all 13 sites 

 

Furthermore, the relation between the site areas and the species richness was evaluated. Figure 40 

showed a relation with r² = 0.1288, which means that there was no significant relationship between 

the area and the species richness. The varying area had no influence on the number of species, as most 

sites had a similar size of around 2 ha, while the richness varied between 12 and 20 species.  

 

 

Figure 40 Relationship between the species richness and the area in hectare  
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4.2.4  Discussion 

Assessing the biodiversity with species compositions and species richness is a common methodology 

and needed for management practices (Tenzin and Hasenauer, 2016). The calculated indices indicated 

that the considered forests are diverse ecosystems, which will be evaluated in the following discussion.  

 

4.2.4.1  Species distribution and abundances  

Riparian forests are known for their high biodiversity, as several disturbances open niches and offer 

space for new species or the distribution of well adapted species. Generally, the sites were composed 

of a couple of dominant species, which were well adapted to the challenging environment of riparian 

forests. These species are Juglans ailantifolia, Pterocarya rhoifolia and the planted tree Cryptomeria 

japonica.  

Even though riparian forests are known for their species diversity, slope forests contained as many 

tree species as the Riparian sites, or even more. High ground forests in Japan are usually beech forests, 

while forests located in lower elevations are oak forests. The species in the Slope sites were 

characteristic for oak forests but they still contained a high number of riparian species. The mixture of 

riparian and oak forest species is the reason for the high species diversity in the Slope sites. They can 

be regarded as a transition zone between riparian and oak forests. This can also be seen in the species 

abundance diagrams, where sites 11 and 12 showed an exponential decrease of abundance towards 

minor species. Dominant species of the riparian forest still occurred, but with a smaller number of 

species, while species like Quercus mongolica, Acer mono maxim and Magnolia obovata occur became 

more frequent. Hence, it was the distribution of a transition zone between riparian and oak forests.  

The distribution diagrams did not show any structure in similar mixed forests, but it showed that the 

distribution and structure of each forest site varied. The occurrence of different kinds of species with 

their number of individuals showed that there must be an underlaying characteristic which allows 

distributions of specific species in specific areas.  

In site 1 one part of the image was located on the slope, where a high number of Acer, Cornus 

controversa, Aesculus turbinata, Magnolia obovata and Quercus mongolica trees were found. Site 4 

contained an area where young Salix serissaefolia trees are growing, which increased the number of 

this species significantly. In general, site 4 contained a high number of Juglans ailantifolia trees and a 

high number of young trees, which could not be identified from the orthomosaic.  

Site 6 was one of the sites with a high species richness, but comparably low evenness. The species 

abundance distribution showed that there were three dominant species (Cryptomeria japonica, 
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Juglans ailantifolia and Pterocarya rhoifolia) together with a high number of minor species. Suzuki et 

al. (2002) explained that infrequent species occur in low densities because of the unstable 

environmental conditions and the strong competition within riparian forests. The results, which Suzuki 

et al. (2002) gathered, were the same that were observed in this study. Site 6, but also sites 4 and 7 

contained a couple of species with only one individual tree. In sites 4 and 7 the canopy density of 

Pterocarya rhoifolia and Juglans ailantifolia was high, hence rarely infrequent species occurred close 

to these trees. Sites 6 and 7 contained many species, low abundance and also a high number of young 

trees, which means that there were many disturbances, like gaps in which other species grew. Also, 

those sites contained a high number of Robinia pseudoacacia trees, which is an invasive species in the 

natural mixed forest. The tree species can adapt well to the environment but needs open spaces to 

grow. 

The sites had all a similar species composition with regards to the main species, but in general all sites 

had a specific species composition. This means that mixed forests seem to have a similar basis of tree 

species, depending on site characteristics like slope angle, aspect or distance to the water. Suzuki et al. 

(2002) pointed out that site conditions, especially topographic variations and occurring disturbances, 

have the strongest influence on tree species composition. In this study it was discussed that tree 

species develop a specific guild structure based on the various types of forests and forest conditions, 

like a varying physical environment. In riparian forests, flooding and channel migration, changing 

properties of the forest with high groundwater, unstable soil textures and shallow organic soils 

characterise the species composition the most (Suzuki et al. 2002).    

 

4.2.4.2  Diversity indices 

Diversity indices are useful tools, which are already used for decades. Measuring similarities with alpha 

and beta diversities to quantify differences in species compositions was discussed and approved as 

useful tool as well (Jost, 2007). In this study, several diversity indices were used to evaluate the 

different sites and especially their composition. Each index provided useful information about the 

sites; all indices together can complete the overview of the sites and allows interpretations of the 

differences. A good example provided site 3, which had the highest species richness with 24 species, 

which indicated a high diversity of the site, but when the Shannon index was considered, the diversity 

was the second lowest of all sites. Since the evenness was the lowest in site 3, the species, which 

occurred, had completely different numbers of individuals and the highest number of Acer species 

(605) of all sites. If only one index would have been considered, the site would have been 

misinterpreted. Similar indices and abundance distributions showed site 10. Median evenness and high 
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species richness, but high Shannon index for site 3 and 10, but beta diversity values were comparably 

low. The individuals of the species differed between the sites. The three dominant species were Acer, 

Cryptomeria japonica and Acer mono maxim, in different orders.   

Site 9 had a low number of species occurring in the site, while the diversity and the evenness values 

were one of the highest among all sites. The shape of the species abundance distribution was identified 

to be similar with sites 5 and 8. Furthermore, the beta diversity index of site 5 was closer to site 9 than 

to site 8. When the order of the species in the abundance diagram for site 5 was analysed, Acer species, 

Quercus mongolica, Acer mono maxim, Cryptomeria japonica and Juglans ailantifolia were the most 

occurring species, which was exactly the same for site 8, except that Hamamelis japonica grew instead 

of Cryptomeria japonica. The species had a different abundance order.    

Site 4 had the lowest diversity indices, for evenness, Shannon entropy and species richness. 

Furthermore, the site seemed to have several differences with the other sites. A deeper analysis of the 

species composition explained these results. Salix trees and Juglans ailantifolia trees made about 70 % 

of the species (without Cryptomeria japonica). No other site had such a dominant species composition. 

However, species abundance distribution of site 13 was alike, as well as the Shannon index (1.84), the 

evenness (64.84 %) and the species richness (17). On the other hand, the similarity between the sites 

was low with 77.02 % and a high beta diversity of 0.16. The order of species abundance was different 

for both sites with Cryptomeria japonica, Salix, Juglans ailantifolia and Acer species in site 4 and 

Cryptomeria japonica, Juglans ailantifolia, Acer species and climbing plants in site 13.  

When all the previously mentioned values were compared, Gini – Simpson indices and Shannon 

entropy values were the highest for site 1 and 10, with the highest species richness and the lowest 

Simpson values, which means that these sites had the highest diversity with a more even species 

abundance distribution. Sites 2, 4 and 11 had the lowest values for Shannon entropy, Gini – Simpson 

index and species richness, together with higher Simpson indices, which means that these sites had a 

lower diversity and a moderate uneven species abundance distribution. The high species richness in 

site 3, but also in sites 6 and 8, seems to indicate a high diversity, but together with a higher Simpson 

index as well as lower values for Shannon entropy and Gini – Simpson, the evenness in those sites had 

a strong influence on the indices. In those cases, the species abundance distribution tended to be 

highly uneven in comparison to all other sites. Therefore, the evenness was calculated and analysed, 

as it is a measure for the distribution of the individuals in the population. Also, there was a relation 

between low and high alpha diversities; both resulted in high beta diversities, especially between sites 

2 and 3 or 8, 9 and 10. In the Riparian sites, the beta diversity was higher than in the Slope sites. There 

was no clear relationship between the alpha diversity and the beta diversity in the Riparian sites. 
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The different diversity indices helped to analyse the species composition, abundance and diversity. 

The comparison of the indices showed that they cannot be used as a standalone tool to give accurate 

information about the sites. Still, diversity indices can give a simple value for different sites and allow 

a discussion about differences and similarities. Jost (2007) discussed that the use of diversity indices 

only considers species frequencies and the weights of each species is considered as equal. Robinia 

pseudoacacia, which is invasive, should not be treated equal to other native species in a natural mixed 

forest and it can be discussed to adjust the weight for the diversity measurements.  

 

4.2.5  Conclusion 

Diversity indices are an effective measure to characterise forests. In this chapter, automatic counting 

of manual annotated tree tops in images were used to calculate the diversity indices for all sites. Fast 

tree counting was possible through image analyses and the possibility to perform counting for all sites 

enabled the fast comparison between sites with simple calculations. The reduced numbers of tree 

species, which were visible from above, enhanced the handling of the data for diversity measurements. 

The combination of species richness, Shannon entropy and Evenness, as well as Hill numbers and Horn 

index allowed a comparison of site characteristics and similarities. Diversity calculations provided 

values for the species composition with high values, when the species number was high and evenly 

distributed. The benefit of the calculated values was that site diversities, similarities and differences 

were assigned a value, which was easy to compare. But the value did not provide detailed information 

about how tree species were calculated or where and why the sites were similar or different. In the 

end, the value is a simple measurement which needs further details for providing essential information 

about forests. High diversities did not necessarily correspond to high diversities, but the number per 

species and evenness influenced diversities, which were highest for the Slope sites 9 and 10. Riparian 

sites had lower diversities and were also less even. 
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Chapter 4.3 Assessment of Forest composition and distribution 

with image analysis 

4.3.1  Problem definition 

Forests are influenced by climate, topography and hydrology, which significantly affect structure, 

composition and plant distribution. Structures refer to patterns and relationships in forest ecosystems 

(Gadow et al., 2012), which determine their properties, like biomass production, biodiversity or several 

ecosystem services. Quantifying spatial stand structures is one of the important aspects to identify 

horizontal and vertical forest structures, their heterogeneity and changes along with different type of 

forests. Zoning in forests is prominent from low to high elevations and from the river to the slopes or 

the layering of the forest from shrubs to the canopy layer. Pommerening (2002) explained the forest 

structure as a combination of spatial distribution, species diversity and variation in three dimensions. 

Smith (2002) included measurements of the species composition, diversity, stem height, basal area, 

tree density and spatial distribution. Analysing forest structures is challenging, as it is dynamic. 

Therefore, spatial distributions of trees as well as their attributes are important aspects. The main part 

is the distribution of trees in the ecosystem, which is a process of seed distribution, seedling 

establishment and survival in the competition between tree species; all influence population dynamics 

(Gadow et al., 2012). Disturbances, resource competition, tree growth and mortality intensively 

influence forest structures. These complex ecosystems, which vary in temporal and spatial dimensions, 

as well as the many interactions between plants and human influences, have to be analysed to properly 

understand forest ecosystems and their function.  

The first step in analysing forest structure was to measure tree species compositions and distributions, 

which are the results of long-term developments under varying environmental factors. Soil texture, 

soil moisture and nutrient availability determine the composition of tree species, while characteristics 

of the species and the competition with neighbouring species further influence the distribution. The 

information on tree species occurrences and their distribution are usually content of field inventories, 

where tree species are determined and trees are counted in field plots.  

In this study, orthomosaics were used to provide information about canopy areas and tree counting 

based on manual annotations. The objective for this part of the thesis was: 

iv. Evaluate the composition and distribution of mixed natural forests in Shonai area based 

on image analysis. 

Density, frequency, dominance and abundance measurements were used on the basis of the 

calculated tree species areas and performed counts. In a first step, the sites were characterised to 

provide an overview of the considered forest areas (Riparian, Terrace and Slope). In the next steps, 



142 
 

forest areas, compositions and distributions were analysed to finally classify the forests and their 

structure.   

 

4.3.2  Methodology 

In order to identify tree species several methods were applied to provide an overview of the 

composition, distribution and structure of the study area. The first part of the methodology focussed 

on the gathered field data, the second part on the image analysis with GIS systems and the last part 

on the automatic segmentation and classification of tree species. 

 

4.3.2.1  Image surveys and data preparation  

The data basis for this chapter is the same as for chapter 4.2, therefore only a short description is 

presented here (for more details see chapter 4.2). Images were collected in the summer season 2019 

for all 13 sites. For these 13 sites, GIMP was used to do tree tops and tree species annotations, which 

were then run with the Census code (see chapter 4.2 for details). The code output the counts per tree 

species, which are presented in Table 8.  

In another step, those layers were uploaded in ArcGIS Pro and georeferenced. The JPEG files were then 

converted from a raster into a polygon shapefile using the tool raster to polygon.  

 

4.3.2.2  Pixel counting code 

The pixel counting code used all annotated layers and counted the total number of pixels, the number 

of white pixels and then calculated the number of black pixels in the image (Note: python does not 

have a function to directly count black pixels). 

 

4.3.2.3  GIS analysis 

The images gathered from the forest can be used for different image analysis. ArcGIS provides a good 

base to perform several image analyses and the possibility to visualise the results in the real 

environment. The following analysis were preformed to access the site characteristics stored in the 

images. 

The DEM generated as geoTIFF by Metashape, can be directly processed by ArcGIS. In this work, winter 

DEMs were used to calculate the slope and aspect of the studied sites. The DEM file was first pre-
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processed by applying the tools Filter and Focal Statistics to smoothen the surface. Winter images still 

contain the deciduous trees, which are represented by the stem and the branches, as well as the 

evergreen trees, influencing the structure and values in the DEM. The applied tools help to focus the 

analysis on the earth surface. In a second step the tools slope and aspect were applied on the output 

of the Focal Statistics tool.   

 

4.3.2.4  Data analysis 

There are several species, which occurred infrequent, with one or two individuals per site. Those tree 

species contribute to the diversity and the structure of the forest, but they also hamper the analyses 

of main species, which contribute the most to the conditions in the forest. Therefore, infrequent 

species were identified and some analyses were only performed for the most frequent ones (as all 

analyses would be out of the scope of this thesis), and to reduce the influence of extremely rare tree 

species. The analyses for canopy areas, tree counts and density measurements were performed for all 

species, while frequencies, abundances, dominances and the important value index were only 

calculated for the most frequent species. As frequent species the following were identified: Juglans 

ailantifolia, Magnolia obovata, Pterocarya rhoifolia, Robinia pseudoacacia, Salix species, Tilia species, 

Acer mono maxim, small-leaved Acer species, Aesculus turbinata, Cornus controversa, Quercus 

mongolica and Larix kaempferi.  

The canopy area was obtained by the manual annotations. The annotated layers and the orthomosaics 

had the same pixel size; therefore, pixels could be transformed into square meters. Furthermore, the 

area was calculated in the same way and the canopy area for each species could be presented in 

percent. Tree counting was performed together with the manual colouring of the trees, whereby each 

identified tree was marked with a black dot. Those dots were counted with the Census code.  

For the important tree species, frequencies, abundances, dominances and important values were 

calculated.  The species counts performed per site were summarised in one point layer using ArcGIS; 

in a second step the single species were extracted from the point layer and stored in a species-specific 

point layer. The sites in the north (sites 6, 7, 8, 9, 10, 11, 12 and 13) and south (sites 1, 2, 3, 4 and 5) 

were combined, based on their geographic location, and a fishnet grid was overlaid. The tool 

summarise within was used to count first all trees in each cell of the fishnet, then for the single tree 

species separately. The result showed only fishnet cells in which the analysed tree species were 

contained, therefore the total number of cells could be checked in the attribute table. The cells 

represented the quadrants in which the species occurred. As two layers were considered, one 

containing all trees and one per tree species, the number of total quadrants and the ones in which the 
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species occurred could be read out of the attribute tables. With these numbers the following equations 

could be solved. 

The density is a measure of total individuals in all sampled plots divided by the total number of sample 

plots and is calculated as follows: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑝𝑙𝑜𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑙𝑜𝑡𝑠
 

The relative density gives the total number of individuals divided by the total number of all species and 

can be calculated as follows: 

𝑟𝑒𝑙. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑜. 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ∗ 100

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠
 

As mentioned before, for the frequent species, considering all sites, frequency, relative frequency, 

relative dominance (also for all sites and species calculated) and species abundance were calculated:  

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑁𝑜. 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟 ∗ 100

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠 𝑠𝑡𝑢𝑑𝑖𝑒𝑑
 

𝑟𝑒𝑙. 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ∗ 100

𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒
 

𝑟𝑒𝑙. 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑛𝑜𝑝𝑦 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ∗ 100

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑛𝑜𝑝𝑦 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠
 

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑝𝑙𝑜𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑝𝑙𝑜𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟
 

 

Species contributions to their community can be calculated with the importance value index (IVI), 

whereby the relative canopy area, relative density and the relative frequency are the metrics, which 

account for the importance of species. The calculation is performed as follows:  

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛𝑑𝑒𝑥 = 𝑟𝑒𝑙. 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 + 𝑟𝑒𝑙. 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝑟𝑒𝑙. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 
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4.3.2  Results 

4.3.2.1  Site characteristics 

This chapter describes the site characteristics, based on the gathered information from the images. 

DEMs and orthomosaics were used and analysed with ArcGIS to provide the following information. The 

DEMs, slope and aspect maps are included in Appendix H for all sites, while examples of site 2 were 

provided, here (Figure 41 to Figure 43).  

The Riparian forests are mainly flat, while the slopes are usually east/southeast and west/northwest 

facing, which is the result of the mountains which are left and right of the river and captured in the 

images. The Terrace sites were all located on the western side of the river and had therefore similar 

aspects. Site 11 included a slope which faced to the north, as site does 12, but a second slope faced to 

the west/southwest, while the slopes in site 13 faced southwest, west and northwest. 

The Slope sites were located close to the Wasada river, on the western and eastern sides. The south 

facing slope of site 5 was in contrast to the aspects of slopes for the sites 8, 9 and 10, which were 

east/southeast facing. Sites 2 and 3 were characteristic as the sites were divided by a ridge, which 

caused north and east/southeast facing slopes in site 2 and north, south and southwest facing slopes.  

The sites, where mainly Cryptomeria japonica grew in the slopes, were mainly the Riparian sites. There, 

the Cryptomeria japonica trees distorted the values calculated for the slope angles. For site 1 the slope 

angles ranged between 30 and 45°, the slope map provided fewer details of the surface structure, as 

the canopy in the winter DEMs was too dense and disturbed the slope generation. The ROI of site 4 

included slope angles of mainly less than 10°, like in sites 6 and 7. A characteristic depression can be 

found in the south of the imaged site 4, also in site 6, where a characteristic depression was close to 

the road, which lies almost on the river level. Also, in the slope map of site 7 a riverlike structure in a 

depression was visible.   

For the sites 2 and 3 the slope angles were 20 to 30°, whereby the slope maps provided a detailed 

structure of the slope and river systems, which flow through the sites. Site 5 had the steepest slopes, 

which ranged between 31 and 45°, having no visible river structures, depressions or hills. Sites 8, 9 and 

10 had slopes, which ranged between 20 and 30°, rarely 45°. The slope maps of these sites provided 

insights in the location of the periodically watered river systems. As the area is known for the intensive 

rain events in summer and the snowmelt in early spring, all slopes have channels, which are dry most 

of the time of the year.  
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The slope maps provided useful insights into the structure of the areas, which can help to interpret 

species distributions and forest structures. Also slope directions have an influence on species 

compositions and needed to be analysed. 

 

Figure 41 Filtered DEM of site 2, which was processed in ArcGIS Pro 
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Figure 42 Aspect of site 2 generated with ArcGIS pro based on the DEM, which was filtered and smoothened before 



148 
 

 

Figure 43 Slope map of site 2 generated by ArcGIS pro on the basis of the filtered and smoothened DEM 

Forests are located along the rivers and along the slopes, which influenced their tree species 

compositions and distributions. The identification of site characteristics regarding relief, slope and 

aspect properties is a first step to indicate differences, which may influence forests.  
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Figure 44 Sketch of the surface types in riparian areas. The abbreviations used are: LFC = low-flow channel, AC = active channel, 
FP = floodplain, SC = secondary channel, T = terrace, VW = valley wall and AF = active/inactive alluvial fan (Grant et al.) 

Riparian forests in valleys are composed of active channels, flood plains, terraces and valley walls 

(Figure 44). The riparian forests of sites 1, 4, 6 and 7 were located along the river, on active channels 

and terraces. The sites 11, 12 and 13 were considered as upper Terrace sites and the Slope sites (2, 3, 

5, 8, 9 and 10) were located on the valley walls. Active channels were 0.5 m above the river level and 

characterised by regularly occurring flooding. The soil was usually composed of coarse gravel and high 

water contents (Grant et al., 1995). Typical vegetation patterns were willows and alders. Floodplains 

were located up to 3 m above the river level, with a finer soil texture. The terrace areas were located 

from 3 m, up to 10 m above the river level, with soils composed of alluvial deposits (Grant et al., 1995).  

 

4.3.2.2  Forest area distribution  

The 13 sites were selected by tree species composition and their specific location in the forests. All 

sites together should provide enough information to characterise the forests and to apply DL for 

species classification. Therefore, the sites had different sizes, ranging between 3 ha and 8.1 ha. The 

site conditions, like the location on the slopes or the study area surrounded by Japanese cedar trees, 

determined the region of interest (ROI), which was usually smaller than the imaged area. Especially 

the orthomosaics of sites located in slopes had blurred borders, where species classifications were 

barely possible; those areas were excluded from the analysis. ROIs were also selected in order to 
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minimise overlaps, only between site 11 and 12 the ROIs had small overlaps. The largest considered 

areas were in sites 1, 2 and 3, with 4.29, 4.01 and 3.49 ha. The smallest ROI areas had sites 7, 8 and 9, 

with 1.65 to 1.76 ha. It needs to be considered that the areas were calculated with ArcGIS, based on 

the orthomosaics, which was a 2D plane area, while the area in the slopes is larger, when the slope 

angle would have been considered.  

Figure 45 gives an example for the area distribution, based on image classifications for sites 4 and 11. 

The diagrams for all other sites can be found in Appendix G. Only site 1 is missing, as there were no 

annotations performed for river, ground and riverbed, and therefore no information on the understory 

vegetation could be provided. In both sites a ROI of 38 % was selected, of which 52 % of the area in 

site 4 belonged to trees and 58 % in site 11. While the ROI of site 11 did not contain river, but 1 % 

riverbed and 3 % ground, site 4 contained 1 % river, 4 % riverbed and 8 % ground.  For all Riparian sites 

the ROI area ranged around 40 % (with maximum 51 % for site 1), while it was varying for the Terrace 

sites, with values between 33 % and 46 %. It varied strongly for the Slope sites, whereby site 2 had, 

with 74 %, the most pixels contained in the ROI and site 9 the lowest, with 17 %. The strong variations 

in the Slope sites occurred, because of the steep slope angle. Also, the ROI of the Slope sites did not 

contain river or riverbed areas. Ground areas where not separately annotated for the Slope sites, as 

the sites did only contain a small number of pixels belonging to this category. The goal of the area 

distribution was to gain some insights into the different site structures, whereby small numbers of 

pixels, which are categorised wrongly, did change the overall result, but it had to be mentioned and 

noted. The Riparian sites had around 35 % understory vegetation and 45 to 73 % trees. While sites 4, 

6 and 7 contained 45 to 54 % tree pixels, site 1 had 73 %, which can be related to the imaged slope, 

where the tree density was higher than along the river. The same distribution can be observed in the 

Terrace sites (11, 12, 13), where the tree canopy area corresponded to 58 to 79 %, whereby site 11 

had the lowest pixel number, as some flat areas along the river and road were imaged. Except site 13, 

where only 21 % understory vegetation were visible, 35 % and 38 % of the pixels belonged to the 

understory vegetation. In the Slope sites 63 % to 83 % of the pixels belonged to trees, which resulted 

in high tree densities, regarding the canopy area.  

The canopy area per site was calculated and is presented in Table 15. The highest canopy areas were 

observed in sites 9 and 10, with 8291.9 m²/ha and 8034.82 m²/ha, respectively. The smallest canopy 

area was found in site 7, with 4519.27 m²/ha. Similar canopy areas were found in sites 1, 3 and 13 

(7400 to 7900 m²/ha). Sites 8, 12, 6 and 2, with values between 6300 m²/ha and 6600 m²/ha, and the 

sites 11, 5 and 4, ranging between 5200 m²/ha and 5800 m²/ha, represented the average tree canopy 

area. 
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Figure 45 Area distributions for all counted pixel (without the ROI) and the ones belonging to the ROI in the left figures and 
the distributions of trees, understory vegetation, ground, river and riverbed within the ROI shown in the right figures 

There seemed to be a relation between a greater canopy area and increasing species richness, as lower 

canopy areas had usually 12 to 15 different species and higher canopy areas about 20 different tree 

species.  

Tree stem densities in the different areas varied between 87.18 and 446.94, whereby site 5 had the 

highest and site 7 the lowest density. In general, the sites located along the river had lower densities, 

with values between 100 and 150 trees/ha, than the Slope sites, with around 250 trees/ha. The species, 

which occurred, seemed to have no direct connection to the considered area, as site 3 had the highest 

species richness, with 24 different species but only the third highest ROI area, while site 2, which had 

a greater ROI, only contained 15 different species.  
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Table 15 Site characteristics with area calculations, stem densities and species richness for the study sites 

 
Tree counts Area 

orthomosaic 
Area ROI in 
ha 

Canopy 
area/ha 

Tree stem 
density 

Species 
richness 

Site1 590 6 4.29 7386.18 137.59 19 

Site2 609 8.1 4.01 6298.35 151.84 15 

Site3 903 5.1 3.49 7553.39 258.67 24 

Site4 261 3 1.76 5208.42 147.94 15 

Site5 893 3.4 2.00 5550.03 446.94 17 

Site6 234 4.1 2.16 6435.75 108.45 19 

Site7 192 5.1 2.20 4519.27 87.18 15 

Site8 372 4.3 1.65 6625.69 226.06 18 

Site9 428 6.1 1.75 8034.82 243.91 15 

Site10 626 5.4 2.18 8291.90 286.58 20 

Site11 353 3.5 1.83 5795.59 193.02 12 

Site12 434 3 1.93 6506.09 224.83 18 

Site13 546 4.8 2.23 7856.55 245.18 17 

 

4.3.2.3  Forest composition and distribution 

In total, 41 species classes were identified from the images, presented in detail in Table 16. Two classes 

contained climbing plants (S23 and S27), combining different species based on their leaf colours and 

structures. S23 contained climbing plants like Japanese Hydrangea/Schizophragma hydrangeoides and 

Smilax, which usually showed a light green colour and climbed up trees like Japanese walnuts, 

wingnuts and cedars. For S27 species like Japanese honeysuckle and Lonicera japonica were identified. 

All other classes mainly contained only one tree species, except the groups S09, S10, S11, S19 and S26. 

S09 and S11 contained different kind of maples, with S09 being maples with smaller leaves: Acer 

japonicum, sieboldianum and palmatum, and S11 with bigger leaves: Acer mono maxim, pictum subsp. 

Mono and nipponicum. S10 included several identified cherries: Prunus salicina Lindley, Prunus 

serrulata/grayana and Prunus speciosa. S19 and S26 contained two species each, Alnus inokumae and 

Alnus hirsuta, and Tilia japonica mixed with Tilia maximowizciana. In total, 52 species were identified, 

which belonged to 22 families and 33 genera (there were no families and genera provided for the 

climbing plants).  

 

Table 16 Identified tree species, families and genera 

Short Common name Scientific name Family Genus 

S01 Japanese Walnut Juglans ailantifolia Juglandaceae Juglans 

S02 Japanese horse-chestnut Aesculus turbinata Hippocastanaceae Aesculus 

S03 Japanese Cedar Cryptomeria japonica Cupressaceae Cryptomeria 

S04 Japanese Wingnut Pterocarya rhoifolia Juglandaceae Pterocarya 

S05 Mongolian Oak Quercus mongolica  Fagaceae  Quercus 
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S06 Japanese Larch Larix kaempferi Pinaceae Larix 

S07 Japanese Beech Fagus crenata Fagaceae  Fagus 

S08 Japanese bigleaf 

magnolia 

Magnolia obovata Magnoliaceae Magnolia 

S09 Maple species Acer japonicum, 

sieboldianum, palmatum 

Sapindaceae Acer 

S10 Cherry Prunus salicina Lindley, 

Prunus serrulata/grayana, 

Prunus speciosa  

Rosaceae Prunus 

S11 Painted maple  Acer mono maxim, Acer 

pictum subsp. Mono, Acer 

nipponicum  

Sapindaceae Acer 

S12 Kimura Salix serissaefolia Salicaceae Salix 

S13 Willow1 Salix jessoensis Salicaceae Salix 

S14 Japanese chestnut Castanea Crenata Fagaceae Castanea 

S15 Black locust Robinia pseudoacacia  Fabaceae Robinia 

S16 Wedding cake tree Cornus controversa Cornaceae Cornus 

S17 Amur cork tree Phellodendron amurense Rutaceae Phellodendron 

S18 Hazel-leaved birch Betula corylifolia Betulaceae Betula 

S19 Alder species Alnus inokumae / Alnus 

hirsuta 

Betulaceae Alnus 

S20 European spruce Picea abies Pinaceae Picea 

S21 Caramel tree Cercidiphyllum japonicum  Cercidiphyllaceae  Cercidiphyllum 

S22  Persian silk tree Albizia julibrissin Fabaceae Albizia 

S23 Climbing plant Japanese Hydrangea, 

Schizophragma 

hydrangeoides and Smilax   

/ / 

S24 Korean berry Morus australis Moraceae Morus 

S25 Japanese clethra Clethra barvinervis Sieb. et 

Zucc. 

Clethraceae Clethra 

S26 Japanese lime, Japanese 

linden 

Tilia japonica, Tilia 

maximowizciana 

Malvaceae Tilia 

S27 Climbing plant 2 Japanese 

honeysuckle/Lonicera 

japonica 

/ / 

S28 Castor aralia Kalopanax septemlobu Araliaceae Kalopanax 

S29 Nippon maple Acer nipponicum Sapindaceae Acer 

S30 Japanese hackberry Celtis jessoensis Cannabaceae Celtis 

S31 Miyama alder Alnus fauriei  Betulaceae Alnus 

S33 Japanese angelica tree Aralia elata Araliaceae Aralia 

S34 Japanese pepper Zanthoxylum piperitum, Rutaceae Zanthoxylum 

S35 Japanese ash Fraxinus lanugiosa Oleaceae Fraxinus 

S36 Manchurian ash  Fraxinus mandshurica  Oleaceae Fraxinus 

S38 Ginkgo Ginkgo biloba Ginkgoaceae Ginkgo 

S39 Fragrant Snowbell Styrax obassia Styracaceae Styrax 

S40 Japanese witch-hazel Hamamelis japonica Hamamelidaceae Hamamelis 

S41 Full moon maple Acer japonicum Sapindaceae Acer 

S42 Japanese Hazel Corylus sieboldiana  Betulaceae Corylus 

S43 Bigleaf Hornbeam Carpinus Cordata Betulaceae Carpinus 
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4.3.2.4  Tree counts and distribution 

The Census code gave a first number of trees belonging to each species, by counting manual annotated 

tree tops. This analysis provided a first overview of the number of species occurring in the sites and 

which were the frequent and less frequent species.  

In total, 7431 trees were manually annotated in the 13 orthomosaics. The Riparian and Terrace sites 

counted 3085 trees and the Slope sites 4346. In the Slope sites as well as in the Riparian sites 27 

different species were identified from the images, while 18 different species were found in the Terrace 

sites. Figure 46 shows the distribution of trees in the four forest parts: Top, Slope, Terrace and Riparian. 

Most of the dominant species differed for the considered parts of this study. While the top part was 

mainly composed of Quercus, Larix and Fagus (S05-S07), the Slope sites were dominated by different 

Acer species, Quercus and Magnolia trees (S09, S11, S05 and S08), the Terrace sites by Juglans 

ailantifolia and Acer species (S01, S09) and the Riparian sites by Juglans and Pterocarya rhoifolia trees 

(S01 and S04). Cryptomeria japonica (S03) was found in all sites, but not further considered, since the 

tree was a planted species. Furthermore, there were several minor species which occurred in the 

different sites.  

Figure 47 provides a detailed overview of the different sites. It further illustrates that the Riparian site 

was mainly composed of Juglans and Pterocarya trees. Sites 1 and 7 had a high number of Acer species, 

while site 4 had a high number of Salix trees, which occurred in a small area as monoculture of young 

trees. Furthermore, 19 different species occurred in site 1, of which Tilia japonica, Corylus sieboldiana, 

Magnolia and Carpinus cordata usually occurred in higher elevated regions. The species distribution 

varied between the different sites, especially when the minor species were considered. In comparison 

to the Riparian sites, the Terrace sites contained less tree species. Acer, especially the Acer mono 

maxim, as well as Aesculus turbinata, Cornus controversa and Morus australis, occurred more frequent. 

Furthermore, those sites had a higher number of Juglans trees. The Slope sites showed a different 

distribution. The main species were Acer, whereby the numbers of Acer mono maxim were higher than 

in the Terrace sites. Quercus, Fagus and Magnolia trees were found frequently. Additionally, the Betula 

corylifolia, Morus australis, Tilia japonica and the Hamamelis japonica occurred more frequent.  

 

4.3.2.5  Canopy area, densities and relative dominance of tree species 

The total canopy area of all trees in the 13 sites accounted 211,167.39 m² (Table 18). Note that Acer 

nipponicum, Aralia elata and Ginkgo biloba had no area, as these trees were identified in the 

orthomosaics, but were located outside of the ROI. The largest canopy area had Juglans trees, which 

were distributed in all sites, followed by Cryptomeria japonica, occurred along the borders of the 
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orthomosaics. Pterocarya rhoifolia, Magnolia obovata and the both Acer species classes had canopy 

areas of 7 to 9 %. While Quercus mongolica and Aesculus turbinata made about 5 % of the canopy area, 

all other species occurred with 2 % or less in the sites. Interesting were the tree counts compared with 

the canopy area and the density. The density was calculated based on the stem occurrences and the 

canopy area. The highest tree counts were for small-leaved Acer species, followed by Cryptomeria 

japonica and Juglans ailantifolia. The relative densities mirrored this observation when (TC) and (BA) 

were compared. With a comparably low TC relative density of 8.56 % and the BA relative density of 

26.14 % for Juglans ailantifolia, the values varied strongly. The BA density of the Acer species was lower, 

with 8.78 %, while the TC density showed values of 33.54 %. Magnolia obovata, Aesculus turbinata 

and Pterocarya rhoifolia had lower TC density values and higher BA density values. Quercus mongolica, 

Larix kaempferi, Prunus species, Cornus controversa, Morus australis and Tilia japonica showed all 

similar relative density values.   

Figure 48, which contains the tree densities, shows how the tree species were distributed in the 

different sites. The figure clearly states that Juglans ailantifolia, Pterocarya rhoifolia and Salix species 

were dominant in the Riparian sites and also in the Terrace sites (except for the Salix trees). From site 

11 to site 13 the amount of Pterocarya rhoifolia trees decreased, while the number of Cornus 

controversa and Magnolia obovata increased. All sites, which had a slope imaged in the orthomosaic, 

showed a higher number of Acer species, Slope sites had a high number of big-leaved Acer species 

(mainly Acer mono maxim). The figure furthermore shows that there were only a couple of Larix 

kaempferi trees found, mainly in sites 3, 5, 8, 9 and 10, which were Slope sites. Further it was observed 

that there were several species, which occurred in all sites, but with different densities: Acer mono 

maxim, small-leaved Acer species, Cornus controversa, Juglans ailantifolia, Aesculus turbinata and 

Quercus mongolica. Forests, which were located in the slopes contained species like Hamamelis 

japonica, Morus australis Carpinus cordata and Corylus sieboldiana.  

The relative dominance was calculated for each site and species, provided in Table 17 and Appendix D. 

For the Riparian sites, the relative dominance was the highest for Juglans ailantifolia with 36.53 %, 

Cryptomeria japonica with 21.47 % and Pterocarya rhoifolia with 16.67 %. Species like Magnolia, small 

leaved Acer species, Aesculus turbinata and Salix species made up between 2 % and 3 % of the species 

dominance, all other species had values below 2 %. There were differences between the four Riparian 

sites, which should be addressed. Relative dominance values ranged between 23.92 % and 54.95 % for 

Juglans ailantifolia, while sites 4 and 7 had higher values. In comparison, site 4 had the lowest values 

for Pterocarya rhoifolia with 5.15 % but high values for willow trees (S12), with 8.49 %.  
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Figure 46 Counts per species for the different sites, which are considered: Top, Slope, Terrace and Riparian sites 
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Figure 47 Detailed counts for the considered sites separated: Riparian, Terrace and Slope sites. In each diagram, the counts per site are shown 
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Figure 48 Information about the tree densities 18 tree species classes. Note that the two occurring Salix species were grouped together in this graphic, as well as the small-leaved Acer species 
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Table 17 Relative dominance for the Riparian, Terrace and Slope sites, as well as the total in % 

rel. Dominance 
in % 

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 

Riparian sites 36.53 2.24 21.47 16.67 1.57 1.29 0.00 2.32 2.34 0.92 1.35 1.68 

Terrace sites 44.43 6.26 19.60 8.45 0.75 0.08 0.00 2.96 4.76 0.00 4.23 0.00 

Slope sites  13.37 4.85 12.41 1.05 9.03 1.15 3.03 12.96 13.95 0.29 12.69 0.02 

Total  26.14 4.36 16.45 7.05 5.25 0.99 1.56 7.91 8.78 0.42 7.73 0.50 
             

rel. Dominance 
in % 

S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 

Riparian sites 2.76 0.82 1.10 1.15 0.83 0.00 0.14 0.48 0.18 0.07 1.13 0.04 

Terrace sites 0.00 0.00 0.00 2.66 0.00 0.00 0.00 0.00 0.00 0.00 1.93 0.94 

Slope sites  0.45 0.26 0.00 2.37 0.00 1.66 0.00 0.00 0.00 0.00 1.37 1.04 

Total  1.04 0.37 0.32 2.07 0.24 0.85 0.04 0.14 0.05 0.02 1.41 0.73 
             

rel. Dominance 
in % 

S25 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 

Riparian sites 0.07 1.76 0.00 0.00 0.00 0.00 0.27 0.14 0.00 0.07 0.00 0.13 

Terrace sites 0.00 0.77 0.83 0.25 0.00 0.18 0.44 0.00 0.00 0.00 0.00 0.00 

Slope sites  0.00 1.61 0.44 0.28 0.00 0.00 0.15 0.00 0.00 0.00 0.16 0.00 

Total  0.02 1.49 0.39 0.19 0.00 0.04 0.24 0.04 0.00 0.02 0.08 0.04 
             

rel. Dominance 
in % 

S37 S38 S39 S40 S41 S42 S43 mix 
    

Riparian sites 0.09 0.00 0.07 0.00 0.00 0.26 0.05 0.00 
    

Terrace sites 0.21 0.00 0.12 0.12 0.00 0.00 0.00 0.00 
    

Slope sites  0.00 0.00 0.38 2.67 0.08 0.74 1.15 0.40 
    

Total  0.07 0.00 0.24 1.40 0.04 0.46 0.60 0.21 
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The highest percentage of Pterocarya rhoifolia and Aesculus trees occurred in site 1, with 22.88 % and 

3.90 %, respectively. The highest relative dominance of small-leaved Acer was found in sites 1 and 7, 

with around 3 %. With relative dominance values of 3.44 % Tilia japonica occurred only in site 1 and 

2.95 % Picea abies only in site 6. 

The Terrace sites showed a slightly different distribution, as the relative dominance of Juglans 

ailantifolia increased to 44.43 % and the amount of Pterocarya rhoifolia trees decreased to a value of 

8.45 %. The order of the three dominant species was still the same with Juglans ailantifolia, 

Cryptomeria japonica and Pterocarya rhoifolia. Significant were the differences between the sites 

regarding the occurrence of Pterocarya rhoifolia trees. With 17.68 % relative dominance in site 11, the 

number was higher than in most of the Riparian sites, while site 13 had reached values of only 0.24 %. 

The occurrence of Aesculus turbinata, big-leaved and small-leaved Acer species and Cornus 

controversa increased to values of (6.26 %, 4.76 %, 4.24 % and 2.66 %). The relative dominance of 

Magnolia obovata increased slightly to 2.96 %. Generally, the species distribution shifted a bit towards 

Acer species and Aesculus turbinata, also the dominance of Juglans ailantifolia trees increased, 

compared to the other two main species. The highest number of Acer species can be found with 

relative dominance values of 6.52 % and 5.43 % in site 12, together with around 2 % relative 

dominance of Quercus mongolica, Morus australis and Tilia japonica. 

The Slope sites had less dominated species occurrences, as the relative dominance was split among 

five species, accounting more than 10 % each. The highest relative dominance values belonged to 

small-leaved Acer species, Juglans ailantifolia, Magnolia obovata and Cryptomeria japonica. With 

9.03 % the relative dominance of Quercus mongolica was also high, followed by Aesculus turbinata 

(4.85 %), Fagus crenata (3.03 %) and Hamamelis japonica (2.67 %). When all Slope sites are considered, 

the strongly varying dominance becomes distinct. Juglans ailantifolia accounted 22.05 % to 24.44 % in 

sites 3, 5 and 8, while the lowest dominance was found in site 9 (1.71 %). A similar behaviour was 

observed for Magnolia obovata, with high dominances in sites 2 and 5 (19.60 % and 23.18 %), small-

leaved Acer species for sites 2, 3 and 8 (19.60 %, 17.92 % and 17.70 %), Cryptomeria japonica for sites 

2, 10 and 3 (23.47 %, 12.37 %, and 11.97 %) and big-leaved Acer species for sites 9, 10 and 5 (28.39 %, 

15.72 % and 12.28 %). Carpinus cordata had in sites 2, 8 and 9 relative dominance values of 2.40 %, 

3.33 % and 1.90%, and Tilia japonica was more frequent in sites 3, 8, 9 and 10 (1.81 %, 1.19 %, 2.02 % 

and 3.99 %). The three dominant species for the different sites are provided in Table 19. It was 

observed that the occurrence order of the five main species was in all sites different. 
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Table 18 Species identified from images with the following parameters: Canopy area (CA), tree counts (TC), relative Density, 
Density and Density per ha 

Species Canopy area in 

m² 

Canopy 

area in % 

Tree counts relative 

Density (TC) 

relative 

Density (CA) 

Stem density 

pro ha 

S01 55208.69 26.14 453 8.56 26.14 14.39 

S02 9198.51 4.36 124 2.34 4.36 3.94 

S03 34738.63 16.45 990 18.72 16.45 31.45 

S04 14890.64 7.05 202 3.82 7.05 6.42 

S05 11087.50 5.25 289 5.46 5.25 9.18 

S06 2088.29 0.99 53 1.00 0.99 1.68 

S07 3288.59 1.56 42 0.79 1.56 1.33 

S08 16711.67 7.91 210 3.97 7.91 6.67 

S09 18534.28 8.78 1774 33.54 8.78 56.35 

S10 883.08 0.42 20 0.38 0.42 0.64 

S11 16330.68 7.73 353 6.67 7.73 11.21 

S12 1059.26 0.50 87 1.64 0.50 2.76 

S13 2192.87 1.04 45 0.85 1.04 1.43 

S14 782.92 0.37 22 0.42 0.37 0.70 

S15 682.12 0.32 35 0.66 0.32 1.11 

S16 4364.24 2.07 97 1.83 2.07 3.08 

S17 512.97 0.24 9 0.17 0.24 0.29 

S18 1805.13 0.85 34 0.64 0.85 1.08 

S19 88.16 0.04 1 0.02 0.04 0.03 

S20 294.20 0.14 4 0.08 0.14 0.13 

S21 112.77 0.05 2 0.04 0.05 0.06 

S22 44.04 0.02 2 0.04 0.02 0.06 

S23 2974.49 1.41 88 1.66 1.41 2.80 

S24 1540.99 0.73 36 0.68 0.73 1.14 

S25 43.57 0.02 1 0.02 0.02 0.03 

S26 3149.99 1.49 61 1.15 1.49 1.94 

S27 821.90 0.39 17 0.32 0.39 0.54 

S28 407.04 0.19 18 0.34 0.19 0.57 

S29 0.00 0.00 0 0.00 0.00 0.00 

S30 74.50 0.04 0 0.00 0.04 0.00 

S31 510.78 0.24 39 0.74 0.24 1.24 

S32 85.24 0.04 1 0.02 0.04 0.03 

S33 0.00 0.00 0 0.00 0.00 0.00 

S34 43.42 0.02 5 0.09 0.02 0.16 
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S35 168.80 0.08 3 0.06 0.08 0.10 

S36 82.38 0.04 1 0.02 0.04 0.03 

S37 144.48 0.07 2 0.04 0.07 0.06 

S38 0.00 0.00 0 0.00 0.00 0.00 

S39 505.67 0.24 13 0.25 0.24 0.41 

S40 2952.27 1.40 77 1.46 1.40 2.45 

S41 92.10 0.04 12 0.23 0.04 0.38 

S42 963.61 0.46 33 0.62 0.46 1.05 

S43 1271.55 0.60 32 0.61 0.60 1.02 

mix 435.41 0.21 2 0.04 0.21 0.06 

Sum 211167.39 
 

5289 100.00 100.00 
 

 

Table 19 Dominant species for the Slope sites, whereby the first row contains the most frequent ones, the second frequent 
ones in the second row and the third frequent in the third row. When the values of the relative dominance were less than 1% 
different between two species, they were both counted 

Site 2 Site 3 Site 5 Site 8 Site 9 Site 10 

Cryptomeria 

japonica 

Juglans 

ailantifolia 

Juglans 

ailantifolia  

Juglans 

ailantifolia 

Big-leaved Acer Big-leaved Acer 

Small-leaved 

Acer 

Small-leaved 

Acer 

Magnolia 

obovata 

Small-leaved 

Acer 

Cryptomeria 

japonica 

Magnolia 

obovata/ 

Cryptomeria 

japonica 

Magnolia 

obovata 

Cryptomeria 

japonica/ 

Quercus 

mongolica 

Big-leaved 

Acer 

Quercus 

mongolica 

Quercus 

mongolica/ 

Magnolia 

obovata 

Quercus 

mongolica/ 

Aesculus 

turbinata 

 

4.3.2.6  Tree species frequencies and abundances 

The presented analyses used the tree counts of the orthomosaics for the most frequent species. As a 

study with 41 identified species was complex, the reduction to the above-mentioned species was 

necessary.  

Figure 49 presents the frequency of the considered tree species. The highest frequency had Juglans 

ailantifolia trees, with a value of 40.89, when all 13 sites were taken into account. Small-leaved Acer 

species had a frequency of 37.50. Acer mono maxim, Magnolia obovata, Quercus mongolica, Aesculus 

turbinata and Cornus controversa occurred also frequent. All other species were less frequent, even 

though they still belonged to the main species.  
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Figure 49 Frequency of main species of all sites 

 

Juglans ailantifolia trees had the highest relative frequency with 19.6 (Table 20), followed by the small-

leaved and big-leaved Acer species (17.97 and 10.82), and Quercus mongolica with 10.4. The order 

slightly changed, when the relative density, relative dominance and important value index were 

considered, but the top four tree species were still the same. Only the relative dominance of Magnolia 

obovata became higher (10.92) than its relative frequency and important value index. It was further 

observed that the important value index for Juglans ailantifolia and small-leaved Acer species was the 

highest (67.51 and 76.46), while the abundance for both species was low (1.09 and 4.95). Generally, 

the abundances of Salix species, Larix kaempferi and Fagus crenata were high, while their other values 

were usually low. The relative dominance values showed that the tree species, which occurred in most 

sites, still had completely different distributions and influences on the calculated values. The relative 

dominance of Juglans ailantifolia trees was three times higher than the value of small-leaved Acer 

species, and significantly higher than Robinia pseudoacacia. Quercus mongolica had an average 

relative dominance of 7.24, but the importance value of 25.20 was high.   
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Table 20 Main species with the following parameter: Frequency, density, abundance, dominance and importance value 

Tree species Relative 
frequency 

Abundance Relative 
density 

Relative 
dominance 

Important 
value index 

Juglans 

ailantifolia 

19.60 1.09 11.84 36.06 67.51 

Magnolia 

obovata 

7.85 1.37 5.49 10.92 24.26 

Pterocarya 

rhoifolia 

7.90 1.19 5.28 6.01 19.19 

Robinia 

pseudoacacia 

2.00 0.81 0.92 0.45 3.36 

Salix species 2.46 2.49 3.45 2.12 8.04 

Tilia species 2.55 1.24 1.59 2.06 6.21 

Big-leaved 

Acer species 

10.82 2.24 9.23 10.67 30.72 

Small-leaved 

Acer species 

17.97 4.95 46.38 12.11 76.46 

Aesculus 

turbinata 

8.45 0.85 3.24 6.01 17.70 

Cornus 

controversa 

6.50 0.86 2.54 2.85 11.89 

Fagus 

crenata 

2.46 1.79 1.10 2.15 5.71 

Quercus 

mongolica 

10.40 1.52 7.56 7.24 25.20 

Larix 

kaempferi 

1.02 2.41 1.39 1.36 3.77 

 

 

4.3.2.7  Forest main tree species areas 

For the 13 sites, the 5 % interval was calculated, as total areas for tree species below the 5 % interval 

were considered as minor tree species, and the ones above 5 % as dominant species. The 5 % border 

was calculated based on the total area of all tree species with the following result:  

Riparian sites: site 1: 1584.33 m²; site 4: 458.34 m², site 6: 555.00 m²; site 7: 497.11 m² 

Terrace sites: site 11: 530.30 m²; site 12: 627.84 m²; site 13: 879.01 m² 

Slope sites: site 2: 1262.82 m²; site 3: 1318.07m²; site 5: 695.06 m²; site 8: 546.62 m²;   

site 9: 703.05 m²; site 10: 903.82 m² 

All species with canopy areas lower than these values were not considered for the respective site. The 

values for the canopy area are provided in Appendix E (part2). The Riparian sites had the following 

dominant species, which were between three and four different ones: site 1: Juglans ailantifolia, 
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Pterocarya rhoifolia and Cryptomeria japonica; site 4: Juglans ailantifolia, Cryptomeria japonica, Salix 

serissaefolia and Pterocarya rhoifolia; site 6: Cryptomeria japonica, Juglans ailantifolia, Pterocarya 

rhoifolia and Salix jessoensis; site 7: Juglans ailantifolia, Pterocarya rhoifolia, Cryptomeria japonica and 

Salix jessoensis.  

The Terrace sites had the following dominant tree species: site 11: Juglans ailantifolia, Cryptomeria 

japonica, Pterocarya rhoifolia and Aesculus turbinate; site 12: Juglans ailantifolia, Pterocarya rhoifolia, 

Cryptomeria japonica, Aesculus turbinata, small-leaved Acer species and big-leaved Acer species; site 

13: Juglans ailantifolia and Cryptomeria japonica. While site 13 had basically only one natural tree 

species, site 12 had five.  

The Slope sites had more species, which passed the border of 5 % of the total canopy area. This 

indicates that the trees were distributed more equally among the species. The dominant species were: 

site 2: Cryptomeria japonica, small-leaved Acer species, Magnolia obovata, big-leaved Acer species, 

Quercus mongolica and Aesculus turbinata; site 3: Juglans ailantifolia, small-leaved Acer species, 

Cryptomeria japonica, Quercus mongolica, Magnolia obovata and big-leaved Acer species; site 5: 

Juglans ailantifolia, Magnolia obovata, big-leaved Acer species, Quercus mongolica, small-leaved Acer 

species; site 8: Juglans ailantifolia, small-leaved Acer species, Quercus mongolica, big-leaved Acer 

species, Hamamelis japonica; site 9: Big-leaved Acer species, Cryptomeria japonica, Quercus mongolica, 

Magnolia obovata, small-leaved Acer species, Fagus crenata, Betula corylifolia, Hamamelis japonica 

and Aesculus turbinate; site 10: Big-leaved Acer species, Magnolia obovata, Cryptomeria japonica, 

Quercus mongolica, Aesculus turbinata, small-leaved Acer species and Juglans ailantifolia.  

 

4.3.2.8  Area per tree 

‘Area per tree’ calculations were performed to evaluate the accuracy of tree detection in images based 

on the annotated canopy area. The values were supposed to provide an overview of different tree 

species canopy areas. For the analyses only tree species were evaluated in Figure 50, which were found 

in most of the sites, to be able to compare the values. The values for all sites are provided in Appendix 

F (part 3).   

The two figures show some of the characteristic tree species of Riparian and Terrace forests in A) and 

Terrace and Slope species in B). As already presented before, the tree species distributed in nearly all 

sites and changes between the sites can be observed. Juglans ailantifolia trees had large canopy areas 

in most of the sites, ranging between 54.19 m² and 111.31 m², with a mean value of 73.73 m². The 

highest values were found for sites 1, 3 and 10, while the lowest were in sites 2 and 6. There seemed 

to be no significant differences between Riparian, Terrace and Slope sites. Salix jessoensis showed a 
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similar trend of the canopy area as Juglans ailantifolia, except for site 1, where the value was 

significantly lower (46.45 m²). With 64.53 m², the mean canopy area was around 10 m² smaller than 

the one of Juglans ailantifolia. Pterocarya rhoifolia did not occur in sites 9 and 10, had values between 

20.64 m² (site 13) and 118.41 m² (site 8) and a mean value of 58.08 m². The canopy areas for the 

Riparian sites were similar, with values around 55 m², but the values for the Terrace and Slope sites 

varied strongly. Aesculus turbinata did not occur in site 4, Salix jessoensis not in sites 2, 9, 11, 12 and 

13 and Cornus controversa not in site 7. Similar variations were found for the canopy areas of Aesculus 

turbinata and Cornus controversa, the latter having lower values than Aesculus turbinata. Large canopy 

areas of Cornus controversa occurred only in sites 2 and 3 (48.25 m² and 38.1 m²). Both species did not 

show significant differences between the considered sites.  

 

Figure 50 Canopy area per tree for all sites, divided into species which mainly occur in Riparian and Terrace sites (A) and 
species that mainly occur in Terrace and Slope sites (B) 

The canopy areas of Cornus controversa and Acer mono maxim showed a similar trend along the 

different sites, with mean canopy areas of 25.69 m² and 25.26 m². The small-leaved Acer, Acer mono 

maxim, Tilia and Quercus mongolica had smaller canopy areas, with maximum values of 49.20 m² for 
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Quercus mongolica, 38.92 m² for Acer mono maxim and 14.93 m² for small-leaved Acer. Only Tilia had 

large canopy areas in site 3, with 68.35 m². Highest mean canopy area had Tilia (36.9 m²), followed by 

Quercus mongolica (30.63 m²) and Acer mono maxim (25.69 m²). Small-leaved Acer species had the 

lowest canopy areas (8.12 m²), with little variations between the sites. An exception was Magnolia 

obovata, which had a higher mean canopy area (54.16 m²), with smallest areas in sites 4 and 13 

(33.33 m² and 32.42 m²). The largest canopy areas for Magnolia were identified in the Slope sites 

(more than 60 m²) and the lowest in the Riparian sites (around 40 m²). Tilia species had also large 

canopy areas in the Slope sites, but the lowest in the Terrace sites. 

The smallest mean canopy areas of all trees belong to shrub species, like Alnus fauriei, Zanthoxylum 

piperitum, with 9.34 m² and 4.34 m². Robinia pseudoacacia, one of the larger tree species, had the 

smallest canopy area of all trees from the subcanopy layer (14.41 m²). The coniferous tree species Larix 

kaempferi and Cryptomeria japonica had also comparably small canopy areas of 23.73 m² and 23.34 m², 

while Picea abies had a large mean canopy area (73.73 m²). Tree species, like Styrax obassia, Corylus 

sieboldianum, Carpinus cordata, or Hamamelis japonica, which were located in the slope, had canopy 

areas between 12.13 m² and 22.23 m². The largest measured mean canopy area was found for Alnus 

species, with a value of 88.16 m².  

 

4.3.3  Discussion  

4.3.3.1  Species composition 

The analyses of tree densities, dominances and frequencies revealed some clear characteristics of the 

considered forests. Overall, the forest sites were all composed of more than ten different tree species. 

Those different species showed different frequencies, when all sites were considered together, but 

also the comparison of the single sites revealed significant differences, when tree densities were 

analysed. Riparian sites consist of Pterocarya rhoifolia, Juglans ailantifolia and Salix species, which are 

representative for this kind of forest. While Juglans ailantifolia trees occurred basically everywhere, 

Pterocarya rhoifolia and Salix trees grew mainly close to the river. Pterocarya seemed to be the better 

adapted species, compared with the Salix trees, as they dominated the forest parts close to the river 

or in water saturated depressions (site 6, e.g.). Other species grew rarely in between. In areas, further 

away from the river or in higher elevations, neither Pterocarya rhoifolia nor Salix species occurred. 

Only in site 3 a small number of Salix trees grew near the river. Pterocarya rhoifolia trees were also 

found in sites 11, 12, 13, 2 and 3, which were further away from the river, but still at low elevations. 

Juglans ailantifolia trees occurred in all sites, but it preferred the lower elevated regions, as the higher 

tree numbers for the Riparian and Terrace sites confirmed. Aesculus turbinata, Magnolia obovata and 
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Cornus controversa had similar frequencies and tree numbers in the different sites. The species did not 

occur directly in the riparian areas, but were located along the borders of the ROI, often at the bottom 

of the slopes. The species occurred especially in sites 11, 12 and 13, while Magnolia obovata trees 

grew additionally more frequent in sites 2, 4 and 10. Those species seemed to occur mainly in transition 

zones between river and mountains, and showed that their physiology adapts well to different 

environmental conditions. Their lower frequency indicated that their adaptability to different 

environments worked well (allrounders), but that they could not compete with species, which were 

specialists to characteristic niches, like Pterocarya rhoifolia or Salix species, which dominated the wet 

areas.  

In sites 1 and 7 a high number of Acer species occurred, which were mainly distributed along the 

bottom of slopes. The numbers of individuals were less in flat areas and also decreased towards the 

mountain ridges. Small-leaved Acer species are known for their shade-tolerance, which allows the 

species to grow in more challenging environments. Individuals grew under huge canopies of Juglans 

ailantifolia, Aesculus turbinata or Magnolia obovata trees e.g. In comparison, Acer mono maxim (or in 

general big-leaved Acer species) occurred less frequent in lower sites, but more frequent in higher 

altitude areas of Slope sites, which indicated their tolerance to lower temperatures and their survival 

abilities with low soil moisture.  

In comparison, species like Larix kaempferi or Fagus crenata occurred only in small numbers in the 

Riparian sites. While Larix kaempferi was planted in sites 1 and 4, Fagus crenata only grew in sites with 

higher elevations. This indicated that the climate in the bottom sites might be too warm for these 

species. Tree species like Carpinus cordata, Corylus sieboldiana and Hamamelis japonica seemed to 

have similar characteristics.    

Each site was unique in their species composition and also in the observed distribution. The relative 

frequencies and densities indicated that there were characteristic species for each forest type: the 

Riparian forest with Pterocarya rhoifolia, Juglans ailantifolia and Salix species; Terrace sites with 

Juglans ailantifolia and Acer species; the Slope sites with Acer species (big and small-leaved), Quercus 

mongolica and Magnolia obovata. There were several species, which occurred in all sites, but with 

different densities, which has to be related to the stand conditions (soil conditions, water availability) 

and competition with other tree species. Those factors made the forests unique. The analysed species 

compositions showed that mixed forests are a mosaic of various species, characterised by a couple 

dominant, a couple minor and infrequent ones. A mixed forest should therefore be classified more 

precisely, based on the occurrence of tree species, the dominance of tree species and the degree of 

mixture.  
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4.3.3.2  Species distribution 

The observed values elucidated the dominance, importance and density of Juglans ailantifolia and 

small-leaved Acer species for all sites, while tree species like Magnolia obovata, Aesculus turbinata and 

Pterocarya rhoifolia were relatively rare in a direct comparison. Most of the identified species occurred 

with less than 50 individuals in all sites, resulting in low stem densities. A direct comparison between 

the canopy area and the counted tree steps showed that there was a wide range of canopy structures. 

Small-leaved Acer with a large number of stems, had low canopy areas, which also means that even 

though the trees grew dense, the total area of small-leaved Acer species was small. Opposite, Juglans 

trees cover large parts of the forest floor when they grow dense.   

The combination of results of the canopy area, tree counts, the differences of occurring tree species 

and their dominance illustrated significant differences for the different sites. Juglans ailantifolia and 

Pterocarya rhoifolia trees occurred in Riparian and Terrace sites, while Salix species only occurred in 

Riparian sites. Therefore, conditions between the Riparian and Terrace sites change, but are still 

comparable. The distribution of Juglans trees also in the Slope sites indicated that they must have 

suitable conditions there. The dominance of trees like Quercus mongolica, Magnolia obovata and Acer 

species indicated that the site conditions of the Riparian and Terrace sites were different. Tree 

distributions therefore indicate changes along the sites and allow comparisons. 

Analyses of single tree species and their occurrence can improve the understanding of their 

distribution. While frequencies and relative densities take all quadrants and all species into account, 

which are based on tree counting, the dominance is calculated from the canopy areas. The observed 

patterns with stem densities and canopy areas were therefore presented in these data, as well. Trees 

like Magnolia obovata and Pterocarya rhoifolia, which occurred in different sites, showed the same 

relative frequency and density, while the relative dominance elucidated that Magnolia obovata 

dominated more parts of the forest. Similar relative dominances had Acer mono maxim, while both 

relative frequency and density were higher than the ones of Magnolia obovata. Acer mono maxim had 

therefore more tree stems, while the abundance with 2.24 indicated that the tree stems grew close 

together as they did not occur in many plots. Again, compared the abundance of Acer mono maxim 

with the one of Magnolia obovata, Magnolia obovata trees were distributed further. The important 

value index then summarised the data, considering all single calculated values. 

The dominance and importance values would be higher for Pterocarya rhoifolia, when only Riparian 

sites would have been considered. It would be similar for Quercus mongolica, Aesculus turbinata, big-

leaved Acer species and Magnolia obovata, when only higher elevated sites would have been 

considered. But also, for single sites significant differences would be found, like in sites 1, 6 and 7 of 
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the Riparian sites for Robinia pseudoacacia. The invasive species had only 35 trees, but they were all 

distributed in sites 1, 6 and 7, varying significantly in relative tree canopy area.  

All calculated values allowed therefore the interpretation of the composition and distribution in the 

forest, by comparing the values and using the knowledge from tree stem densities and area 

calculations. 

 

4.3.3.3  Tree canopy areas 

Canopy areas can be used as a measure for forest densities, stand volumes, growth and biomass 

estimations, which are needed to provide essential management services. With image analyses, where 

the forest is observed from above, it is relatively easy to first annotate, then to measure or calculate 

the canopy area.  

The data provided an overview of the canopy structures of the different tree species. It was expected 

to find significant differences, because the canopies were stronger overlapping in slopes than in 

riparian areas, because of the slope. However, there were almost no significant differences between 

Riparian, Terrace and Slope sites. Cornus controversa is a tree species, which was often partially 

covered by taller neighbouring trees, as in orthomosaics the canopy was visible at the borders of larger 

trees in a half-moon shape. In the case of Juglans ailantifolia and Pterocarya trees, the canopy areas 

seemed to be large in sites 1, 3, 8 and 10 with values around 100 m². Especially in higher elevated areas 

the possibility of miscounting trees was given due to the high density of the forest. However, patches 

with high densities of trees were also found in riparian forest sites, increasing the risk of miscounting 

and hence influencing the canopy area per tree. Trees like Aesculus turbinata and Quercus mongolica 

grow usually large, but the values calculated for this study were low, especially compared to e.g., 

Juglans trees. Both species had small as well as old-growth trees. The calculated value was a mean 

value and did therefore not represent the spectrum of trees and their ages. Especially the canopy areas 

for Quercus mongolica were small, but in lower elevated areas it could be observed that these trees 

were often partially covered by Magnolia or Juglans trees. Furthermore, the canopy areas of Acer 

mono maxim seemed to be quite large, since Acer trees usually have smaller canopy areas, confirmed 

by values of the small-leaved Acer. Acer belongs to the species, which can have multi-stems, forming 

a dense canopy, where it is hard to differentiate single tree canopies.  

Generally, the calculated canopy areas revealed differences between species and helped to evaluate 

the dominance of trees in the forest. Large canopy areas must belong to a species, which dominates 

the forest. Species, belonging to canopy layer, were, according to the calculated canopy areas: Juglans 

ailantifolia, Pterocarya rhoifolia, Picea abies, Salix jessoensis, Phellodendron amurense, Magnolia 
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obovata, and Fagus crenata. Species with canopy areas between 20 m² and 45 m² were mainly 

considered as subcanopy species. Still, further comparisons with field data would help to increase the 

accuracy of the data, as the sites had different characteristics, like slope angles, which influence the 

canopy structure. In a future analysis it would be helpful to annotate single trees, to get a distribution 

of canopy areas of the same species to provide a better overview of the tree species.  

A main point, which was identified, was that canopy areas can be annotated fast and areas can be 

calculated accurately. In comparison, tree counting was difficult in images, as tree canopy areas can 

be dense and influence annotations of tree tops. As already mentioned, small-leaved Acer species have 

multi-stems characteristics, the tree stems can be overestimated and hence canopies can be 

miscounted. In dense Juglans or Pterocarya areas, which have flat canopies, the number of trees can 

be easily underestimated, especially when the tree stems are located close to each other. Therefore, 

the use of canopy areas is a better measure, for densities, dominances, abundances and frequencies 

of tree species, as they provide more accurate results than counting. 

 

4.3.3.4  Forest classification on image-based analysis 

When the forest is observed from above, the main information about tree species is the canopy surface. 

Usually, for forest classifications tree numbers and densities were chosen, manual surveys were 

performed (Fukumachi er al., 2020; Suzuki et al. 2002). With the obtained results of this study, tree 

counting based on UAV images cannot be recommended for forest classifications in YURF. Especially 

in mixed deciduous forests, even manual tree counting on images was inaccurate, and counting with 

automatic systems failed. However, the canopy area was clearly detectable on images and automatic 

classifications worked well for several tree species already. Therefore, it is recommended to use 

canopy areas to classify forests. 

Cryptomeria japonica trees were excluded from the naming of the forests. They were part of most of 

the sites; however, they were planted around the study sites and did therefore not occur naturally in 

the sites. Since the research focussed on the naturally grown forests, Cryptomeria japonica patches 

were not surveyed and therefore also not included in the naming. The naming was performed using 

the main species and the subspecies.  

All riparian forests were Juglans ailantifolia forests mixed with Pterocarya rhoifolia and Salix species. 

As in site 1 Juglans ailantifolia and Pterocarya rhoifolia trees had a similar percentage, the site was 

called a ‘Mixed Japanese walnut and wingnut forest’. Sites 4, 6 and 7 were ‘Japanese walnut forests 

with the subspecies Japanese wingnut and willows’. As the species Pterocarya rhoifolia was less than 

half of the Juglans ailantifolia canopy area, it was only considered as subspecies.  
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The Terrace sites were also classified as Juglans ailantifolia forests, as the species had the largest 

canopy area of all considered sites. In site 13 it was the major species by far, the site was therefore 

named a ‘Japanese walnut mixed forest’. Site 11 is a ‘Japanese walnut mixed forest with the subspecies 

Japanese wingnut and horse-chestnut’. While site 12 had five different species, it was classified as 

‘Japanese walnut forest with the subspecies Japanese wingnut and horse-chestnut and a subdominant 

layer of Maple species’.  

The Slope sites contained more species, whereby a dominance of a single species, like in the Riparian 

and Terrace sites, was usually not found. In site 2, small- and big-leaved Acer were frequent, together 

with Magnolia obovata. Therefore, the forest was called ‘Maple-Magnolia mixed forest with the 

subspecies Oak and Japanese horst-chestnuts’. Site 3 had a clear dominance of Acer species and 

Juglans ailantifolia trees, therefore the forest was called ‘Japanese walnut and Maple mixed forest 

with Oak and Japanese horse-chestnuts’. Site 5 was a ‘Japanese walnut – Magnolia mixed forest with 

the subspecies Maple and Oak’. Site 8 was named as ‘Japanese walnut – Maple mixed forest with Oak 

and Japanese witch-hazels as subspecies’. Site 9 is a ‘Painted maple forest with the subspecies Oak, 

Magnolia, Beech, Hazel-leaved birch, Japanese witch-hazels and horst-chestnuts’. Site 10 had again 

two main species, Acer mono maxim (mainly) and Magnolia obovata. It was therefore called ‘Maple – 

Magnolia forest with the subspecies Oak, Japanese horse-chestnuts and walnuts’.  

For an easier understanding use this study suggests the use of common names for tree species, while 

Latin tree species names should be provided for the analyses. In general, a naming of the forests of the 

main/dominant species should already help to classify mixed forests better, improving the system 

provided by Makimoto (2019), where mixed forests were only specified when they were composed of 

beech or oak trees. As it can be seen for the riparian and Terrace sites, which were all ‘Japanese walnut 

mixed forests’, a further classification of the subdominant species seems to be necessary, in order to 

specify those forests.  

 

4.3.4  Conclusion 

The performed manual annotations together with simple pixel counting and Census codes allowed a 

fast and effective assessment of important forest parameters: Density, frequency, rel. dominance and 

abundance. With these calculations and measurements, area distribution was analysed and 

characteristics of the area were provided. The benefit of image annotations was that both, counts and 

canopy areas, could be evaluated. Therefore, forest sites were analysed in detail using only information 

contained in the image.  
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The several applied analyses helped to understand forest composition and distributions. Riparian, 

Terrace and Slope sites were classified based on their tree composition. It was pointed out that 

Riparian areas were mainly composed of Juglans ailantifolia, Pterocarya rhoifolia, Salix species and 

small-leaved Acer. Terrace sites mainly contain Juglans ailantifolia and small-leaved Acer, while small- 

and big-leaved Acer were the dominant species in Slope sites. Furthermore, with increasing height, the 

composition of tree species changed to greater numbers of Quercus mongolica, Fagus crenata and 

Larix kaempferi.  

Significant differences between tree counting and tree canopy areas enhanced the use of canopy areas 

for forest classifications. Therefore, forests were classified based on the dominant species, while 

subcanopy species needed to be added, in order to accurately name forests. Especially, because the 

sites all showed different characteristics.  

At last, tree compositions could be accurately provided with several calculations, and diversities 

between the sites could be compared, while excessive analyses of the tree species distribution within 

one site could not be evaluated. Also, the overall forest structure could not be characterised in detailed. 
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Chapter 4.4: Analysis of Forest composition, diversity and 

structure with GIS applications 

4.4.1  Problem definition 

The new technologies opened the field of forestry for the collection of high-resolution data in short 

time. The availability of data increased the need of appropriate tools to analyse them. Image analysis 

and GIS software are able to deal with large datasets, can process and visualise them. Transformation 

of the data into diverse and multivariate forms turn the data into usable states (Wulder and Franklin, 

2003).  

Nowadays, field inventories can be replaced by remote sensing measurements, specifically image 

analyses, as they are well developed and able to deliver information, like counting or classifying trees. 

Plot based approaches struggle, when large-scale information are required, which can be provided by 

remote sensing applications. Also, there are characteristics of the forest, which are difficult to assess 

from field inventories, like measuring the canopy area. Hall (2003) indicated that image analysis can 

be a precise measure for species compositions, tree height, stand volumes or densities with the result 

of a detailed mapped area. Therefore, canopy structures can be still presented as discrete points, but 

also as two-dimensional thematic map (Fournier et al., 2003). Wulder and Franklin (2003) and Culvenor 

(2003) pointed out that forest management regimes became more flexible and the integration of new 

tools to develop forest management is increasing. The need of detailed and high-resolution data comes 

together with advancing technologies, enabling the gathering of the needed data. The understanding 

of forest increases with the analyses on different scales of forests and allows acquiring new insights 

into the forest environment. Fournier et al. (2003) further supported image analysis approaches, as he 

pointed out that structural variables (densities, frequencies, etc.) can be collected at each scale and 

horizontal and vertical structures of the forest could be assessed.  

Image analyses are mainly performed to simplify the gathered data, analyse them in a concrete context 

and visualise them in a way that the necessary information can be accessed easily. Forests can be 

characterised on small or large scales, while they are not necessarily homogenous patches (Fournier 

et al., 2003). The gathering of large-scale data allows to see competition, dispersion and aggregation 

of tree species on a different level. Furthermore, temporal features can be easily applied in image 

processing software like ArcGIS or QGIS, and forest developments can be assessed and analysed. 

Benefits of environmental GIS data are their ability to show geomorphological or hydrological 

characteristics of the forest area, which can help to interpret data (Fourier et al., 2003).   

Image analysis and GIS were mainly used to perform vegetation indices calculations (Asner et al., 2003; 

Franklin et al. 2010; Möttus and Takala, 2014). The benefits of large-scale vegetation reflectance are 
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adumbrated by intensive sensor calibration and atmospheric corrections. The influence of atmospheric 

conditions, solar geometry and changes in time affect vegetation indices significantly, which makes 

them less usable for fast and efficient image analysis (Asner et al., 2003). However, the analyses of 

RGB images have a good potential, since they have already been used by Wijaya et al. (2009) for 

mapping and modelling of forest biomass with GIS. Still, the potential of GIS applications for image 

analysis is not fully evaluated for forestry. Therefore, this study evaluated image analysis with the use 

of ArcGIS for forestry inventories, as they are classified as powerful, low cost and fast helpers for 

foresters (Culvenor, 2003). The assessment of forests characteristics on different scales was analysed 

and evaluated to check how such a comparison provides deeper insights into the forest.  

The objectives, which were dealt with, were: 

v. Evaluation of the composition, distribution and structure of mixed forests and main tree 

species. 

vi. Characterization of the mixed forest with the state of art GIS techniques by using low cost 

and low time demanding methodologies. 

In order to characterise the mixed forest, several GIS tools were applied on UAV-gathered data, which 

were manually annotated. The analysis focussed on the forest composition, distribution and structure, 

using different scales (Figure 51).   

 

Figure 51 Overview of study  
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4.4.2  Methodology 

Previous chapters focussed on assessing images by using counting techniques, like pixel counting for 

area measurements or tree top counting for composition and distribution measurements. In this 

chapter the idea was to provide maps supported by image analyses, which include spatial aspects of 

compositions, distributions and structures of the forests. ArcGIS was an efficient software for this 

application and was used in for the analysis of this chapter.  

 

4.4.2.1  Data collection and processing 

Images were collected with a DJI phantom 4 UAV, which is a small and user-friendly quadcopter, to 

perform automatic and standardised flight protocols for all sites. The flight altitude ranged between 

80 and 205 m, depending on the imaged site, with the UAV flying a speed of maximal 3.7 m/s. Front 

and side overlaps between 90 and 97 % were chosen.  

For this analysis images from summer 2019 were chosen and tree species were annotated, for each 

site one flight. For site 1 and 3 the flights from the 20th of June 2019 were chosen, for site 9 and 10 the 

10th of July and for site 8 the 26th of July. For all other sites images taken on the 14th of June were used. 

The total imaged area was 61.9 ha, with 31.48 ha located in the analysed ROI. Images from the manual 

flights in the summer 2020 were additionally used, which were closer to the canopy (approximately 

15 m above the canopy) to gather super high-resolution images. These images were used as validation 

of the manual annotations, as the resolution with around 1.3 cm/pixel was higher than the resolution 

of 2.73 cm/pixel for the automatic flights. The images from 2020 were not used for annotation because 

the UAV had a problem with the camera white-balance, so that the colours were incorrect. Another 

problem was that the alignment of the manual flights did not always work well, as the overlap of the 

images was not uniform.  

Images from the winter season 2018, 2019 and 2020 were used to generate winter orthomosaics and 

DEMs. Site 1 was imaged on the 16th of April and site 4 and 6 on the 9th of April. Site 7, 11, 12 and 13 

were imaged on the 19th and 20th of February 2019 and site 5, 8, 9 and 10 on March 8.  

All data were processed with Metashape (Agisoft) to create orthomosaics and DEMs, which were 

exported with the fixed image resolution (2.73 cm/pixel) for the flight of 2019 and without a fixed 

resolution for the images of 2020.  
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4.4.2.2  Manual annotations 

The first annotations were done using the GIMP software, creating layers for each tree species and the 

tree tops per site.  The layers were exported as JPEG files for further processing.  

The initially faced problem was that manual annotations were time consuming and to perform them 

for the same sites several times was not effective. Therefore, the initial annotations were uploaded in 

ArcGIS. As the annotation layers were JPEG files, they did not contain geocoordinates. The files needed 

to be georeferenced as a first step. For the georeferencing the original TIFF file orthomosaic of each 

site was used and uploaded into ArcGIS. Then, the JPEG file of the orthomosaic was uploaded and 

georeferenced using the coordinates stored for each site. Four control points were set, one for each 

corner of the orthomosaic. These four points were saved and imported for the next images of each 

site, and then the georeferencing automatically applied and saved. As a next step, every layer was 

converted with the tool raster to polygon. The generated shapefiles contained several polygons, based 

on the pixel values of the raster file. In the attribute table the single polygons were saved with their 

gridcode. The gridcode reflects the original pixel value. Usually, values between 0 and 255 were found 

in the gridcode column, because the exported layer contained some fragments of grey pixels. As the 

pixel value of interest was 0, which represented the black pixels in annotations, all other values were 

erased. In the end, all annotation layers were stored as separate polygon shapefiles. In a post-

processing step, holes in the polygons were closed. Furthermore, a treetop point shapefile and the ROI 

were added into the ArcGIS project for each site.   

 

Figure 52 Generated point shapefiles and maps, an overview 

 

4.4.2.3  Point shapefiles  

The tree top layers were used for the Slope sites (treetops), while for all other sites tree top layers 

were corrected with the winter images, so that all tree tops were annotated for the further processes 

(hereafter called winter tree tops). Another set of tree top layers was annotated for the Slope sites, 



179 
 

only using winter images. Here, assigning labels to the stems could not be performed with a high 

accuracy; hence these maps were only used for further image analysis, not for survey maps. Note that 

no shrubs were annotated as they were not visible in winter images (Figure 52). 

Every layer contained an attribute table, where the species name was assigned to each tree top. With 

the raster calculator the tree tops with the same name could be selected. The selected points were 

copied into a separate point shape file containing only the points of the same species. Tree species of 

sites 1, 2, 3, 4 and 5 were summarised together in the shapefile ‘South point’ for each tree species, 

and the other sites (6 to 13) in a shapefile named ‘North point’. For the south a grid raster of 18 x 24 

m per cell with a total of 1600 cells were used and for the north a 15 x 17 m raster with a total of 5000 

cells.  

A last layer set was generated, where several tree species were combined. These tree species were 

selected based on the information provided by Suzuki et al. (2002), who evaluated tree species 

distributions in riparian, terrace, colluvial slope and denuded slope and assigned indicator species for 

the mentioned kind of areas. In the riparian point shapefile, the following species were added: 

Pterocarya rhoifolia, Salix species, Morus australis, Aesculus turbinata, Cercidiphyllum japonicum, 

Alnus fauriei, Cornus controversa and Juglans ailantifolia. The terrace point shapefile contained 

Quercus mongolica, Hamamelis japonica, Acer species, Prunus species and Fagus crenata species. 

Another two layers were created, which contained species which only occur in Riparian sites (hereafter 

strict riparian): Pterocarya rhoifolia and Salix species; only in the Terrace sites (hereafter strict terrace): 

Hamamelis japonica, Quercus mongolica and Fagus crenata. The purpose here was to find the border 

between Riparian and Terrace sites and to see if the assumed border is the beginning of the slope. 

Generated maps are called hereafter: distribution maps for maps with tree canopy areas annotated, 

survey maps for tree top annotations (both corrected and not corrected), count maps for winter tree 

top annotated maps (Figure 52). 

  

4.4.2.4  Application of ArcGIS tools  

The images gathered from the forest can be used for various image analyses. ArcGIS provides a good 

base to perform several image analyses and the possibility to visualise the results in the real 

environment. The following analyses were performed to access the site characteristics caught in the 

images: 

The DEMs, generated as geoTIFF by Metashape, can be directly processed by ArcGIS. In this work, 

winter DEMs were used to calculate the slope and aspect of the studied sites. Each DEM file was first 
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pre-processed by applying the tools Filter and Focal Statistics to smoothen the surface. Winter images 

still contained the stem and the branches of deciduous trees, as well as the evergreen trees, influencing 

the structure and values in the DEM. The applied tools helped to focus the analysis on the earth surface. 

In a second step the tools slope and aspect were applied on the output of the Focal Statistics tool.   

To evaluate the distribution of tree species and structure of the forest, the tools Near and Extract value 

to points were used. The goal was to assign a distance value from the river to every tree stem and a 

height difference value to every tree, identified in the field or in the images. At first, a river line 

shapefile was generated, whereby the middle of the river was annotated. In a second step, the nearest 

distance was calculated between the river line shapefile and the point shapefiles of the tree locations. 

Therefore, each tree got a distance value assigned. In a third step, the smoothened winter DEM was 

used to extract for each tree point a height value, which was stored in the attribute table. Both tables, 

containing the distance and height values, were exported from the attribute table into separate excel 

files.   

Analysis of the density and clustering of the data were performed with the tool Kernel density, Hot 

spot analysis, Summarize within. The winter tree top layers were used for this application. In a first 

step, the tool Kernel density was run with the settings geodesic, a radius of once 8 m and once 16 m to 

find spatial clusters in the data. In another step grids were generated for each site. At first a rectangle 

polygon shapefile was generated for each site, covering all parts of the orthomosaic (ROI of the 

orthomosaic). With the tool Create Fishnet a grid was generated with a raster size of around 8 x 8 m. 

The tool Summarize within was used next, where the winter points and the grid raster (per site) were 

input. The tool counted the points, which fell into each raster. The geoanalytics version of the tool was 

used, so that only the raster cells were kept that contained a value greater than zero. Hot spot analyses 

were performed to identify randomness in the data. Each polygon was compared to its neighbours and 

it was checked if the information were significantly different to the study area. High values were 

marked as hot spots and low values as cold spots, while insignificant raster cells were white and 

marked as not significant. The parameter distance was first identified with the optimized hot spot 

analysis and then applied with the tool hot spot analysis. The analysis was performed on the winter 

tree top layer to identify hot and cold spots in the sites. The same tool combinations were used on the 

riparian/terrace point shape files and the species layer.  
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4.4.3 Results 

In this chapter only image analysis results are presented, that have been performed with ArcGIS using 

manual annotations of the data. In these parts tree species usually means the tree species classes 

selected for the image analysis. 

 

4.4.3.1  Tree species composition  

Species compositions mean the number and the kind of species that occur in and contribute to an 

ecosystem or, more specific, to the studied sites. In forest inventories species compositions are 

represented by the number of tree stems, the DBH, the basal area and the volume of the different tree 

species. For tree composition survey maps were analysed, the results for all sites can be found in 

Appendix J and K. 

At first the tree top annotations and binary layers were digitalized in ArcGIS. During this step, species 

names were assigned to the tree tops in the attribute table and coloured by species names to generate 

maps, like presented in Figure 53, which is the tree survey map of site 1. The points mark the position 

of the trees based on image analyses and corrected with winter images in the ROI, which is visualised 

with a black boundary. The survey maps further provide information about the number of species 

classes per site, which was in the Riparian sites 20 for site 1 and 6, 14 for site 4 and 7. ArcGIS further 

directly provides the function to generate histograms with data in the attribute table; two examples 

are provided in Figure 54 for site 1 and 6. This information is needed to assess the different site 

compositions. The three trees, which had the highest frequencies, were Pterocarya rhoifolia, Juglans 

ailantifolia and Salix jessoensis in site 1, while site 6 had a higher frequency of Juglans trees and small-

leaved Acer species as third most frequent species. Pterocarya trees occurred with a slightly higher 

number than Juglans trees in site 1, but were already 100 trees more than small-leaved Acer species. 

In site 6 Pterocarya rhoifolia was only half the number of trees than Juglans ailantifolia, while in site 4 

and 7 the number of Pterocarya was less than one quarter. Site 4 was the only site where the majority 

of trees belonged to Salix serissaefolia. In site 1, 11 species had between 10 and 40 trees per species, 

while site 6 had less than 10. Site 4 had a low number of trees other than Salix and Juglans, with 

maximum 14 trees belonging to one species, including five species with less than five trees. In site 6, 

16 of the 20 tree species had less than 11 trees and in site 7, five species had less than five trees per 

species and a gradually increase in tree numbers from Quercus mongolica to Pterocarya rhoifolia.  

The Terrace sites had 12, 18 and 17 different species classes, respectively, and a high number of trees, 

which could be identified on the images, but not assigned to a class label, with 149, 94 and 211 (in site 

11, 12 and 13). The main two species, which were found in these sites, were small-leaved Acer and 
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Juglans ailantifolia. In site 11 and 12 Aesculus turbinata and Pterocarya rhoifolia were the next two 

dominant species, and climbing plant of type 1 and Cornus controversa in site 13. All other species in 

site 11 had 10 or less trees, site 13 had seven species classes with less than five trees and site 12 had 

an exponential increase in trees per species from Styrax obassia to Aesculus turbinata.  

The numbers of tree species classes in the Slope sites were: 17 (site 2 and 5), 25 (site 3), 20 (site 8 and 

9) and 21 (site 10). The dominant tree species were small-leaved Acer, Cryptomeria japonica, Acer 

mono maxim and Quercus mongolica for the sites 2, 3 and 5. In site 8 Juglans ailantifolia trees were 

dominant with Quercus mongolica and small-leaved Acer, while site 9 had Acer mono maxim as tree 

species with the most trees. In site 3, 15 out of the 25 tree species had less than ten trees per species, 

while it was eight in sites 2 and 9, seven in sites 9 and 10, and only five in site 5. Site 5 had between 40 

and 55 trees of Quercus mongolica, Cryptomeria japonica, Acer mono maxim, Juglans ailantifolia and 

Magnolia obovata, which was similar to site 9, but for the species Betula corylifolia, Cryptomeria 

japonica, Fagus crenata and Quercus mongolica. Site 8 had a lot species with 10 to 20 trees per species. 

An increasing trend in trees per species was prominent in site 10.  

The histograms provided a fast overview of the existing species and their number of individuals. Also, 

the distribution of trees per species can be read out easily. Furthermore, the data were automatically 

summed up and plotted in the histograms after the attribute table was generated. Still, the histograms 

do not provide spatial information, but the survey maps and distribution maps do.  

 

4.4.3.2  Tree species distribution 

Tree species distributions are the shape of tree species composition in a forest, the area in which a 

tree species lives. There are several drivers for tree species distribution, whereby climate is the most 

important one, and all other environmental factors, biotic and abiotic, which influence the tree species 

survival and reproduction. Assessing tree distribution is more challenging compared to counting of 

trees and a visual support allows often a better understanding of the distribution.  

As already mentioned, Figure 53 contains the survey map of site 1 and a map including the canopy 

areas annotated in polygon shapefiles for each tree species. For all other sites the maps are shown in 

the Appendix I and J. The distribution maps of the Riparian sites demonstrate clearly the dominance 

of Juglans ailantifolia and Pterocarya rhoifolia. In site 1, Juglans ailantifolia was more dominant in the 

northern part of the image, while Pterocarya rhoifolia dominated the southern part. The tree survey 

map shows that there were a high number trees, which belonged to the Pterocarya, while the number 

of Juglans ailantifolia trees was lower. Also, it was observed that the composition of tree species was 

more homogeneous in the flat western part of the image than the eastern part (slope area), where a 
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higher number of different tree species occurred. Also, minor species like Robinia pseudoacacia were 

visible, with a relatively small area compared to Juglans ailantifolia. Site 7 showed similar 

characteristics, whereby Pterocarya rhoifolia trees were distributed along the river, and Juglans 

ailantifolia dominated the rest of the site. Sites 4 and 6 seemed to be less dense than 1 and 7, 

concerning the canopy area of all trees. Site 6 showed a high diversity with the high number of tree 

species, while site 4 was composed of Juglans and a large Salix patch in the south. The tree survey map 

of site 4 showed that there was a high number of tree stems below the annotated Salix polygon.  

All Terrace sites showed different distribution characteristics. Site 11 and 12 were similar to the 

Riparian sites, with a large area covered by Juglans ailantifolia and Pterocarya rhoifolia. Site 13 

contained mainly Juglans ailantifolia, which covered, together with Cryptomeria japonica, most of the 

site. There were smaller areas covered with small-leaved Acer species and Magnolia obovata, Cornus 

controversa or Tilia Japonica, which distributed along higher altitude areas in all sites, except Acer 

mono maxim, which was distributed only in site 12 and 13. The point maps of all Terrace sites showed 

that the detected but unidentified trees were mostly distributed in areas, where the canopy area of 

the Juglans trees was less dense. They grew also along the street in site 13 and in low altitude areas in 

site 11 and 12. For tree species like Tilia japonica, Acer species and Morus australis there were higher 

numbers of tree tops than expected, as when only the canopy area would be considered.  

The tree distribution in the Slope sites was more heterogeneous compared to the Riparian and Terrace 

sites. Trees grew less dense in sites 2, 3 and 8, while site 10 had the highest tree densities. In each site 

one species seemed to be dominant. In sites 2, 5 and 10 Magnolia obovata trees had a large canopy 

area in the higher elevated areas of the sites, and in site 9 Acer mono maxim dominated. Site 8 had a 

high degree of mixture of different tree species, with larger areas occupied by small-leaved Acer and 

Juglans ailantifolia. Along the ridge in site 3 Quercus mongolica trees were dominant; the slope areas 

were a mix of mainly small-leaved Acer and Magnolia obovata, and on the western slopes Juglans 

ailantifolia grew. In site 2, Magnolia trees grew along the ridge and small-leaved Acer in all directions 

of the slope around the Magnolia trees. In site 5 Magnolia obovata and Quercus mongolica distributed 

mainly in higher elevation areas (Figure 55). Acer mono maxim is a species which seemed to occur in 

all altitudes and Juglans trees at the bottom of the slope in most of the sites. In site 2 and 3 small areas 

of small-leaved Acer occur together with a high number of trees. Juglans and Magnolia tree tops 

seemed to be less compared to the area. Furthermore, all other tree species have an even distribution 

of trees in the site
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Figure 53 Count map (left), species map without orthomosaic (middle) and with orthomosaic (right) of site 1

Pterocarya rhoifolia 
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Figure 54 Species counts for site 1 and site 6, automatically generated by ArcGIS 

162 Pterocarya rhoifolia 

Pterocarya rhoifolia 
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Figure 55 Site 5 tree species map and tree species survey map 

 

Pterocarya rhoifolia 

Pterocarya rhoifolia 
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There are several tree species, which seemed to distribute only along the river and disappear with 
increasing elevation. To validate the observation, tree distributions were further analysed by their 
distance from the river and their location on the slope.  
 
Figure 56 provides six examples for the trees distributing in YURF, while the results of other species 

are provided in Appendix.  

Tree species like Salix, Robinia pseudoacacia and most Castanea crenata trees distributed along the 

same elevation, with distances of less than 100 m. Salix and Castanea had a couple of species, which 

occurred in a higher elevated regions and further away, these can be treated like outlier. Pterocarya 

rhoifolia also showed a distribution along similar elevations, with some more individuals distributing 

in higher regions. The distance to the river was found to be between 0 and 120 m. Juglans ailantifolia 

occurred mainly until a distance of 150 m to the river and grew mainly below 300 m elevation, which 

was also observed for Cornus controversa. The most trees occurred in lower elevated regions and 

closer to the river. Hamamelis japonica, Betula corylifolia, Tilia and Prunus species occurred between 

the same values than Juglans ailantifolia, but most of their trees followed a linear trend. Aesculus 

turbinata, Magnolia obovata, Acer mono maxim and Quercus mongolica occurred between height 

values of 160 to 350 m and in up to 300 m distance from the river. Carpinus cordata, Fagus crenata 

and Corylus sieboldiana were the only species, which did not grow next to the river, but further than 

approximately 25 m away. 

 

4.4.3.3  Image analysis – spatial tree species distribution  

The survey and species maps were used in a first step to evaluate the species composition and 

distribution on a visual basis, but ArcGIS offers several tools, which allowed deeper analysis. While the 

survey and species maps contained a high load of information, which were evaluated with a high level 

of subjectivity, the goal of the following analyses was to decrease the amount of information and 

specify them into objective information. 

Density measures, based on tree stems, analysed where a high and where a low number of trees 

occurred in the sites, also provided by counting and summarizing trees in a fishnet. The difference 

between the density measures and the counting were the considered neighbourhood. With the density 

measures, a radius was set: once 8 m, once 16 m. Then areas with high densities were coloured in red, 

areas with low densities in green. Counting was performed in a fixed fishnet grid and only trees inside 

the grid cells were considered. Therefore, density measures illustrated fluent/smooth changes in the 

distribution without a fixed value, where even small-scale changes were identified. The difference 
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between the chosen radiuses was interesting, when small scale changes or a generalized trend in the 

site were found.   

 

 

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

H
ei

gh
t 

[m
]

Juglans ailantifolia

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

Salix 

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

H
ei

gh
t 

[m
]

Aesculus turbinata

0

50

100

150

200

250

300

350

0 100 200 300

H
ei

gh
t 

[m
]

Fagus crenata



189 
 

 
 
Figure 56 Tree species distributions dependent on the distance to the river and the height 

 

Changes between cells with a fixed and visible value were counted (low numbers with brighter colours 

and darker colours for high numbers of individuals). Both analyses were performed and shown in 

Figure 57 and Appendix M. Hot spot analyses checked randomness in data (here tree distributions). 

The output provided information about areas that were significantly different compared with the study 

site. Here, areas with high tree numbers were considered as hot spots and areas with unusual low tree 

numbers were classified as cold spots. The results of all analysis provided similar results, as they 

pointed out high and low tree densities, with different considered details, the results were summarised 

and the maps (Appendix M) all provided for further details.  

The first observation was that in site 4, with a radius of 16 m, only a dense cluster was found in the 

Salix monoculture in the southern part of the site, which was also observed for site 1, where Pterocarya 

rhoifolia grew as monoculture. In site 6 most of the areas were marked in yellow, having four areas 

with high density. With lower radius for the density measure, the overview of the whole site creased, 

but single hot spots were clearer visible, with high densities in the centre of the map and in the 

southern part. Site 7 also showed a more even distribution, like site 6, but with lower intensities. When 

this information was compared with the counts, high density areas in site 1 had between four and 

eight trees per cell and in site 4 four to 20 trees. In sites 6 and 7 only one or two cells had high densities, 

with four to five trees in a cell. The difference between site 6 and 7 was the higher number of cells 

with 2 trees in site 6. The hot spot areas were for all sites located in the region of high densities. 

Significant cold spots were found in all sites, located in the north of sites 1 and 7, but having only a 

couple of cells in sites 4 and 6.  
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The Terrace sites 11 and 12 had higher densities in the middle of the site, only decreasing to the 

borders of the orthomosaic, while site 13 only had one high density area. The count maps provided 

that number of trees per cell was rarely one, instead there many cells included three individuals or 

more (especially in site 12). In site 13 the numbers of trees per cell were usually low with one to four 

trees. The hot spot analysis also indicated regions of higher densities as hot spots, while areas at some 

of the borders were cold spots. Density measures already indicated low tree numbers in those regions.   

The Slope sites 2 and 3 showed large area with points, but no indication for high density, while other 

parts, especially along the ridge showed high densities. Differences were observed, as in site 3 the 

highest densities occurred in higher elevated areas, and in site 2 in lower elevation areas. In sites 8, 9 

and 10 the densities of trees were high, where trees grew, however there were large areas, especially 

in sites 8 and 9 where no trees were growing (in site 10 the empty areas mainly contained Cryptomeria 

japonica trees, which were not annotated in winter images). Site 5 was the only Slope site with a 

regular density, with only two density spots, similar to site 7.  
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Figure 57 Three maps of site 1, the results of: hot spot analysis, counting in a fishnet grid and density measures (16 m) 

  

Count map site 1 
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The count map of site 5 showed that the trees were evenly distributed with two to four clusters and 

some with up to six trees. The count maps of sites 2 and 3 were compared with the density maps 

slightly different, as site 3 had many clusters with one or two trees, and site 2 had many clusters with 

2 or 3 trees per cell. Areas identified as cold spots were in site 2 the highest elevated regions, in site 3 

the lower slope regions and in site 5 the eastern part of the site. Sites 8, 9 and 10 had the highest tree 

numbers per cell ranging from six to nine trees. Site 10 had a south-west to north-east gradient, with 

decreasing trees per cell to the north-east, shown in the hot spot maps. The count maps of sites 8 and 

9 showed mixed tree numbers per cell without significant structure, while the hot spot analysis found 

two regions, one in each site along the west-east line. Even though site 9 was above site 8, there was 

no connection between the hot spot areas, but cold spots were located partly in the northern and 

southern parts of both sites.   

The image analysis significantly reduces the amount of information in the images and increase the 

visibility of areas of high and low densities. Therefore, tree distributions along the sites can be 

identified and analysed.  

 

4.4.3.4  Large scale image analysis 

Plots of 1 ha are large with regards to field investigations, but are small, when it is compared with 

image analyses, considering 3 to 8 ha forest area. The same data were collected: tree location and tree 

classification. The data were mainly collected in two regions of the YURF, one located in the North and 

one in the South. For the following analyses, the sites belonging to the North and South were 

summarised and single tree species data were extracted. The analysis for counts and hot spots were 

performed based on the summarised North and South data. These analyses helped to illustrate trees 

of the same species and in which areas they occur.  

The Figure 58 to Figure 60 provide examples of the distribution maps and the hot spot analysis maps. 

For all other species, the maps are given in Appendix N. The first sets of data were generated to provide 

information about the location of the species from a broader perspective. To support visual 

information of the maps, filtered and smoothed winter DEMs were used to show regions of high and 

low elevations (high red to white colours, low green colours).  

Tree species, like Juglans ailantifolia, Pterocarya rhoifolia, Robinia pseudoacacia and Salix were mainly 

located in flat areas, in the North and the South of YURF. Salix and Robinia pseudoacacia trees grew 

exclusively along the river, while Pterocarya rhoifolia was also located along the rivers, but single trees 

grew at higher elevations (sites 2 and 5). A high number of Pterocarya rhoifolia trees occurred in the 

slopes of sites 6, 11 and 12, where even up to nine trees were found in a raster cell. Another 
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representative species in the sites was Juglans ailantifolia trees, which dominated the flat riparian 

areas, as well as slopes that faced west, like in sites 3, 11, 12 and 13, but also in the slope of site 5, 

facing south. The highest numbers of trees were still found in riparian areas, with a decrease towards 

higher elevations. In site 4, Juglans ailantifolia had one hot spot with a 99 % confidence, being 

significantly different, while only Pterocarya rhoifolia had another hot spot with 99 %, in the south of 

site 1. All other trees of the mentioned two species, but also Salix and Robinia pseudoacacia 

distributions were identified as random, except the cluster of Salix trees in site 4, which had a 

confidence of 95 % to be significantly different to the neighbourhood. In the North, a Salix hot spot 

was found in site 6, a Juglans hot spot in site 13 and a Pterocarya hot spot in site 12.   

Cornus controversa, Tilia species and Aesculus turbinata were trees, which were distributed in the 

south, mainly along the slopes, with a couple of trees in flat riparian areas. Tilia grew mainly as single 

tree, distributed all over the sites; their distribution was random, except for site 1, where several trees 

were found. Even though in site 1 had many Tilia trees, the area was not identified as hot spot. Also, 

for Cornus controversa and Aesculus turbinata, only a couple of cells were identified as hot spots in 

sites 1, 4 and 13.  Cornus controversa and Aesculus turbinata showed similar distribution patterns, as 

they grew in different places and elevations, with only one or two trees in some raster cells and in 

others with a high number of trees. However, the two species did not grow together in one cell. 

The distribution patterns of Quercus mongolica, Acer mono maxim, small-leaved Acer and Magnolia 

obovata were similar in the southern sites, rarely growing close to the river and with high occurrences 

in higher elevations. In the southern sites, Magnolia trees occurred in lower slope sites more frequent 

than at higher elevations, while the distribution in the northern sites was less least less dense. The 

number of Quercus trees increased with elevation, which is also reflected by the distribution of Acer 

mono maxim trees. Generally, differences between the northern and southern sites were reflected by 

the small-leaved Acer distribution. While the number of trees in high elevation areas of site 2 and 3 

was high, they occurred in the sites 8, 9, 10, 11 and 13 mainly at the bottom of the slopes. Larix trees 

mainly grew along the river in the southern sites, while Fagus crenata only occurred in high elevation 

areas. Hot spots in the south were only identified for the small-leaved Acer (site 3) and Magnolia 

obovata (site 2). In the North, significantly different areas were identified in the distribution of Acer 

mono maxim, small-leaved Acer and Quercus mongolica, all located in sites 8 and 9.   

In the study of Suzuki et al. (2002) forests were classified as riparian, colluvial slope, denuded slope 

and terrace sites. They identified species in each site and evaluated their probability of occurrence in 

one of the sites. In the end they assigned riparian type species and terrace species among others. The 

study sites considered here were Riparian, Terrace and Slope sites, based on the tree species 

occurrence and relief.   



194 
 

  

Figure 58 Distribution of Pterocarya rhoifolia, Acer mono maxim and Juglans ailantifolia in the southern sites of YURF 

 

Pterocarya rhoifolia distribution Acer mono distribution Juglans ailantifolia distribution 
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Figure 59 Distribution of Aesculus turbinata, Quercus mongolica and Juglans ailantifolia in the northern sites of YURF 

Aesculus turbinata distribution Quercus mongolica distribution Juglans ailantifolia distribution 
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Figure 60 Hot spot analysis maps for three examples, Juglans ailantifolia in the southern sites, Acer mono maxim in the northern sites and the riparian – terrace hot spot map 
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Terrace sites were site 11, 12 and 13, which contained slopes, but showed characteristic tree species 

compositions of Riparian sites. With the information gathered by Suzuki et al. (2002) and the identified 

species in the YURF sites a re-evaluation of the Terrace sites was performed, also to identify the 

borders between the sites. For this approach the data set was prepared as described in the 

methodology section, and then a new field was added in the attribute table, where the ratio between 

riparian species and terrace species was calculated. This field was used as input for the hot spot 

analysis. 

The result maps show that hot spot areas belonged to areas identified as riparian areas with a high 

confidence level, and cold spots were identified as terrace areas. The maps with all riparian species 

provided a more detailed map, as there were more clusters in which the species occurred. The strict 

riparian species did not occur in high numbers, so that the clusters showed areas without raster cells. 

For all riparian species the border of the riparian area ended higher on the slope, than when only the 

strict riparian species were considered. This means that strict riparian species, concentrated the 

riparian area more on the flat river areas. In the northern part of the study area, the incorporation of 

Juglans ailantifolia trees resulted in large parts of site 11, 12 and 13 classified as riparian area. Both 

sets of results did not vary significantly and marked a border between the Riparian and Terrace sites. 

The white cells in the map show insignificant areas, which had similar numbers of trees belonging to 

the riparian and terrace species. The areas belonging to sites 8, 9 and 10 are with a 99 % confidence 

interval Terrace sites. 

The results of the large-scale analysis provided maps for the northern and southern region of YURF, 

which were analysed in this study. The coloured DEMs in the background of the map informed the 

reader about the relief of the terrain and each map provided information about tree species 

distributions, densities and hot spot analysis results.  

 

4.4.4  Discussion 

4.4.4.1  Surveying with GIS methods  

After the orthomosaics were annotated, the data were visualised as histogram, survey maps and 

distribution maps. Histogram data mainly provided tree species and the numbers of individuals per 

site. This kind of data allowed getting a fast overview about the total number of species and the exact 

number of trees in order to evaluate the forest composition. The survey maps still contained all the 

previously mentioned information, but added a location to every tree. In comparison to the histogram, 

tree numbers cannot be read out easily, but the distribution of the trees can be seen. Single dots 

increased the detection of dense patches and mixes of different species. The distribution maps 
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captured the canopy areas of major tree species. Here, no point information was provided, but 

polygons, which increased the visual understanding of the canopy distribution. Compared with the 

points, dense tree areas and the proportion of each species can be evaluated. As example, small-leaved 

Acer species had high numbers of trees, which were indicated in the histograms, a high density is 

shown by the point map, but only the distribution maps visualised that the area they covered was 

small. On the other side, Magnolia obovata had fewer trees counted in the histograms and shown in 

the point maps, while their canopy area was especially large in sites 2, 5 and 10. Furthermore, the high 

point density in most sites decreased the possibility to get an overview of species distributions in the 

sites, and single trees with a large canopy area might be overseen. The distribution maps increased the 

visibility of trees and the dominance of tree canopies in the forest. But at the same time, the 

dominance of canopies decreased the visibility of smaller trees, whose canopies was below larger trees. 

An aspect, which cannot be provided by histograms and point maps, is the forest structure. The canopy 

areas provided with their colours in the orthomosaic the basis to distinguish between species, and 

areas with higher and lower densities could be extracted easier from the images. The structure of the 

canopies, represented by polygons, was easier to analyse than with raw images. From the shape of the 

canopy, conclusions on the level of the forest can be drawn. An example was Cornus controversa, 

which usually showed a long or stretched shape always along with canopy areas of Magnolia obovata, 

Acer mono maxim and Juglans ailantifolia, which indicated that the Cornus trees were smaller and 

must belong to the subcanopy layer. The canopy size of Quercus mongolica trees in sites 2 or 5 e.g., 

was small and they were often surrounded by trees like Magnolia obovata or Cryptomeria japonica. 

Hence, the species belongs in these sites to the subcanopy layer. In most studies Quercus mongolica 

was described as a dominant tree species in forest areas, but in the studied sites the species seemed 

to be less dominant than expected.  

Even more interpretations followed when point maps and area distribution maps were combined, as 

it integrated the vertical perspective on the sites. When the maps were overlaid, points and polygons 

of the same colour showed how many trees were identified in a tree canopy area. Points and polygons 

with unlike colours indicated that the pointed tree belonged most probably to the subcanopy or 

understory layer. Note here: shrubs usually could not be identified from images and belonged to the 

ground level of the forest, so it was most likely that the points did not belong to this layer.  

Already without performing intensive image analyses, there were several forest characteristics, which 

could be extracted from the data and helped to analyse the forest, its species composition, distribution 

and the structure. The information was further used to classify mixed forests.  
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4.4.4.2  Forest structure 

Information about numbers and tree species areas were provided with the tree maps, distribution 

maps and histograms. More important was the information regarding the location of tree species, their 

expansion and the number of trees in the different areas. The numbers and colours of tree species in 

maps were therefore combined with essential spatial information about sites and species.  

Tree species like small-leaved Acer had the highest tree counts in the Slope sites and small numbers in 

the Riparian sites or Terrace sites. The species started to grow upslope, starting almost at the bottom 

of slopes, where they occurred in dense clusters. Compared with the high number of stems, the canopy 

area is small, which is a result of the multi-stem characteristic of the species and the conditions of the 

sites. The trees occurred along with Juglans, Aesculus, Quercus and Fagus trees and distributed below 

and around their canopy area, which can be explained by their shade tolerance and their occurrence 

in disturbed areas at the bottom of slopes (Suzuki, 2002).    

Pterocarya rhoifolia and Salix species occurred only along rivers and in low depression areas. Both 

species usually did not occur next to each other. In site 6 Salix species were found in a depression, 

while Pterocarya trees grew along the river and in site 7 Salix trees occurred mixed with Juglans trees, 

also in a depression. In Terrace sites only Pterocarya rhoifolia trees grew, where some of them were 

even located in the slope. In site 12, most of the trees were again located next to the river, as the 

species distributed mainly because water spreads their seeds. Also, the river area might be flood areas 

in the melting and rainy season, which means that the disturbances there benefits their distribution, 

as disturbances open spaces.  

Robinia pseudoacacia, which occurred in sites 1, 6 and 7, had small areas and was distributed 

irregularly over the sites, it only occurred in Riparian sites, which can be interpreted as a result of more 

frequent disturbances increased the distribution in those areas. Furthermore, the species is invasive 

and known for its well adaption to environments and survival under strong competition, which can be 

seen in site 1, where it grew between the dense canopies of Juglans ailantifolia trees. 

Juglans ailantifolia trees were mainly distributed in Riparian and Terrace sites, while their number 

decreased with increasing elevation; there were a large number trees in sites 1, 13 and 8 and less in 

sites 9 and 10. In slopes exposed to the west in site 3 had a large number trees, while the higher areas 

and the east facing slope did not contain the species. There were no significant differences between 

the Riparian and Terrace sites observed; only the strong dominance in site 13 was different to all other 

sites. In sites 2 and 10, only a couple of Juglans trees occurred. In comparison to all other Slope sites, 

where riparian forests grew close, sites 2 and 10 had no direct connection, therefore other Juglans 

trees were in greater distance so that the seed spreading was less effective. The species usually 
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occurred in clusters and built large canopy areas, as Magnolia obovata and Pterocarya rhoifolia does. 

Magnolia obovata distributed opposed to Juglans trees, as it occurred more frequent at higher 

elevations than at lower ones. Therefore, the species barely occurred in Riparian sites, with low 

numbers in Terrace sites and with highest in Slope sites.  

Furthermore, digital maps illustrated structural differences in the sites; gradients and unique site 

characteristics could be identified. In sites 8, 9 and 10, the mixture of trees was high, with smaller tree 

clusters of the same species and few larger clusters. There was no gradient in tree species distribution. 

In the Slope sites 2, 3 and 5 the tree species followed a characteristic distribution. The trees grew in a 

pattern, which seemed to follow the increasing elevation and the proximity to the water source. The 

differences between the sites 8, 9 and 10 and 2, 3 and 5 were maybe a result of the exposure of the 

slopes or steepness of the slopes.  

Those site-scale distributions, which formed the structure of the forest, were only visible when large 

areas were surveyed, and even better visible when canopy areas were marked. Even though only a 

small number of tree species were selected and their distribution and behaviour were analysed, 

different characteristics could be observed. The species distribution, together with the image analysis 

of orthomosaics was performed with ArcGIS, where every visible species could be analysed. With the 

provided maps and locations of the species, further field investigations were performed to support the 

image analysis with ground truth data, like soil analysis. It therefore helped to understand the forest 

composition and distribution better. This underlying information, which influences behaviours of tree 

species, can be combined in ArcGIS to analyse spatial characteristics in the data.  

 

4.4.4.3  Evaluation of spatial pattern in the data 

Image analysis provided information gathered in maps characterising tree densities and distributions. 

Reducing the amount of information contained in images is the task of image analysis, so that only 

information will be presented that highlight interesting aspects of the data. Otherwise, the 

characteristics, differences and similarities between 13 sites as well as the studies number of species 

could not be assessed with human capabilities. The discussion is separated into a site-scale evaluation 

of the data and a large-scale evaluation of the data, to provide the abilities of GIS analysis. 

 

4.4.4.3.1  Site-scale analysis  

When all sites were compared, the highest densities with the highest numbers of trees per cell were 

found in the Slope sites, while there was usually only one area with higher densities in the Riparian 
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sites. In Slope sites the clusters identified as hot spot regions were larger than in the flat Riparian sites. 

The higher tree densities were most probably a result of two main points. First the degree of the slope 

increased the density of tree stems in the images. Second, the layering of the forest and the degree of 

the slope allowed the growth of more trees in a small area, because more light can infiltrate the lower 

forest layers. The competition for light is therefore not as limiting as in flat sites and the tree numbers 

can be higher. The highest densities in riparian areas occurred mainly in monocultures, those trees 

grew close to each other without competition. Areas with Juglans ailantifolia trees were usually less 

dense, which means that the species dominates large areas and is therefore a stronger opponent when 

it comes to competition between tree species. Forest sites with a high number of tree species and a 

high mixture were also denser, as it was observed in sites 6, 11 and 12. Sites 8 and 9 had a mixed tree 

species distribution, where barely large species clusters were found, also visible in the count maps, 

where tree numbers variety was high. Sites with more even clustering of the same species, like 

Magnolia obovata in sites 2, 5 and 10 or Juglans ailantifolia in site 3, trees seemed to be more 

separated. This suggests that there were clusters like in sites 8 and 9, which occurred in small areas, in 

contrast to site 5, where the clusters distributed over a large area.  

Monocultural areas were usually clearly identified as hot spot regions; however, the ones in sites 6 and 

7 were less obvious. The hot spot analysis therefore provided that there was mainly a random 

distribution of trees in the forest, but some areas did have a structure. In site 12, a larger number of 

trees occurred with the proximity to the river, and in site 11 a hot spot was found in the north-west 

facing slope, which was also visualised in the density maps, even though the counts did not clearly 

show this characteristic. Here, the benefits of analyses like density measures and hot spot analysis are 

clearly shown, as they reduce a large amount of information and focus the perspective of the analyst 

on desired regions. In site 6, the count map as well as the density map did provide easily accessible 

information, while the hot spot analyses provided areas, which were significantly different. Another 

example was site 5, where cold spot regions were located at the eastern border of the site, where the 

count map provided tree numbers of one or two trees per cell. Site 4 had high densities in the 

monoculture, the distances between the other trees was comparably low. There should be irregular 

class category values to provide information about the less dense area. In site 6 the trees were 

distributed more equally, areas with slightly higher densities were already marked as high density spots 

(same colour as in site 4) while there were significantly fewer trees than in site 4. The density measure 

worked for most of the sites, but a comparison between the sites was not possible without errors, 

because high and low values as well as colour distributions were calculated and boundaries between 

colours changed with the site characteristic. Here, the count maps helped to give the colours a more 

specific value, and only spots with at least two trees were marked in the density map. 
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4.4.4.3.2  Large-scale analysis 

Additionally, single tree species data were evaluated by summarizing and scaling them up, to identify 

large-scale pattern within the data. Single trees of Pterocarya rhoifolia were found in sites 2 and 5 at 

higher elevations, in areas, where water streams develop in the rainy season in summer and in the 

snowmelt season in spring. The trees are not well adapted to the dry conditions of the rest of the year, 

so these single trees can be seen as outliers. In sites 6, 11 and 12 the high occurrence of trees could 

only be explained by the small river crossing site 12. Additionally, in site 6 only small trees occurred in 

flat areas, where rain events usually kept the soil water content high. Interesting was the behaviour of 

Juglans ailantifolia, which did barely grow in east facing slopes. The river might be a valid reason, as 

the nuts are usually distributed by animals like squirrels, which do usually not cross the river. Sunlight 

could be a reason that the species did not distribute on east facing slopes, as the mountains shadow 

the slopes from the early afternoon. Tilia trees were infrequent, but in site 1 they occurred in a cluster. 

In the field old grown and juvenile trees were found in the same area, which might be disturbed before, 

so that the species could grow in the developing space. The distribution of small-leaved Acer was 

different in the southern and northern sites, which can be explained by the composition and steepness 

of the slopes. Sites 8, 9 and 10 had steeper slopes and the canopy cover was denser, which decreased 

the visibility of small-leaved Acer, being part of the understory layer. Therefore, the possibility is high 

that the trees were just not visible in the orthomosaics. The smaller slope angles in sites 2 and 3 were 

more suitable to identify Acer species. The diversity of tree species was low in site 2 and a high number 

of Acer covered the forest floor, which partially also happened in site 3, while in sites 8, 9 and 10 trees 

with a large canopy area occurred almost everywhere in the sites. Larix kaempferi is a tree, which 

usually occurs in high elevation areas, together with Fagus crenata, but in contrast to Fagus, Larix grew 

in Riparian sites. The reason is that Larix was planted in these areas. The only natural occurrence of 

Larix was in site 3, along the ridge.  

The hot spot analyses were performed to test whether the tree species were distributed randomly or 

if they follow a pattern. In each site found hot and cold spots were found, when all trees were 

considered. In the analysis where tree species were analysed separately, most tree species did not 

follow a pattern and grew therefore randomly in the forest. Species like Fagus crenata, Robinia 

pseudoacacia, Quercus Mongolia and Cornus controversa occurred mainly randomly in the forests, 

while Juglans ailantifolia, Acer species, Pterocarya rhoifolia and Salix species followed some kind of 

patterns. Also, there were only some cells, which were identified as significantly different. Therefore, 

mixed forest grew mainly without a pattern, so that tree species occurred randomly in the forest. At 

least as long as they occur in their natural habitat, like Salix trees always grow in riparian forests. This 

randomness in the forest is based on their frequency of occurrence. Still, it was already figured out, 
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that tree species follow a pattern, but those must be then dependent on factors like water availability, 

light availability, disturbances and soil conditions, to mention a couple here. When there were hot 

spots, like in the case of Salix trees in site 4, Pterocarya and Aesculus trees in site 12, then there must 

be an underlying source, which increased densities of the tree species in those areas. At this point, the 

advantages of image analysis for forestry research become visible. The large amount of information, 

which was gathered from the images, was merged to generate an image of the whole forest area in 

the northern and southern part of the studies areas. Then the information was analysed to provide 

only the necessary and important information, giving a fast overview of the studied areas. The analyses 

further provided points in the forest, where distribution patterns were significantly different to the 

rest of the study site. This information can be used to explicitly research the reason for the distribution 

patterns in the field. Therefore, the time-consuming aspects of assigning research plots, classifying and 

locating tree species and collecting samples (soil samples, soil water measurements, nutrient 

evaluation, etc.) for the whole study site become unnecessary. Instead, the field work can be 

performed more precise in spots, which must have underlying properties and cause a specific 

distribution of the forest species.  

Hot spot analyses reduced the amount of needed information to identify spatial pattern in the data. 

Therefore, depending on the site characteristics and the needed information, each of the measures 

can be performed, or even all of them to be able to access the data in the most efficient way. The 

benefit of this methodology is that the data basis (area shapefiles or point shapefile) only needs to be 

generated once and then all these analyses can be performed within minutes. The results and maps 

are furthermore easy to understand, underlying spatial information can be accessed and connected 

fast.  

With such kind of information, differences related to spatial scales can be evaluated. As Gong and Xu 

(2003) pointed out, different scales allow analyses of influences on the forest ecosystem. At the tree 

level, they indicated biochemical and biophysical properties as the most influencing factors on forest 

compositions, leaf colour and size of trees. At the stand level, where structures of canopies are 

influenced by forest gaps or the horizontal structure. Or even on the larger scale, where the main 

influences are driven by human disturbances and climate change.  

 

4.4.5  Conclusion 

The results of this chapter provided unique insights into the forest composition, distribution and 

structure, which were mainly provided with maps and figures. The results summarised large amount 

of data, reduced to the necessary information for the reader. It could be seen that tree compositions 
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could be presented the best with counting statistics, which allowed a fast overview of the occurring 

tree species and the number of individuals. Distribution maps showed the location of trees and their 

canopy area, so that it was easy to address the dominating tree species and their characteristics. 

Structures could also be extracted from distribution maps. Further analyses, like density calculations, 

extraction from point information and hot spot analysis, indicated patterns in distributions and allowed 

to interpret the structure of the forest. Missing aspects were the vertical forest structures, which can 

only be assessed as long as the dominant canopy area had gaps. Evaluating vertical forest structures 

needs additional information from field surveys.  

Remote sensing cannot replace field surveys and inventories, as some information cannot be gathered 

with images, especially concerning understory vegetations. Image interpretation is limited by field 

information. Information like site structures and characteristics, observations made in the field and a 

basic knowledge about the tree species or their occurrence in the forest are important, when image 

data are interpreted. Furthermore, effective and meaningful statements can only be provided with a 

good background knowledge about the forest ecosystem. Also, the settings for applications in GIS 

should have a fundamental background, so that analysis can be performed with realistic values.  

Forests are a complex system and the provided analyses showed that they cannot be treated like 

homogenous patches, as each studied site had its own characteristics. Instead, image analyses allowed 

analysing single patches of forests, up to regional levels, with high resolution information. The 

performed analyses showed the effectiveness of gathering large amount of data and the possibility to 

access several aspects of the forest in a new dimension. One of the dimensions was that tree 

behaviours like competitions and aggregations could be evaluated on the scale of several sites with 

different characteristics. This study showed the effectiveness of image analyses and provided a couple 

of applications, which can be easily used in other forests. 
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Chapter 5 Semi-automatic counting of deciduous trees in 

images of a dense natural broadleaved forest – an 

evaluation 

5.1 Introduction 

Tree counting is an essential part of forest inventories and agricultural purposes, as they are used for 

plantations and environmental managements, as well as for biodiversity monitoring (Shafri et al. 2011). 

In forestry, manual interpretations of aerial images are commonly used to evaluate forests and forest 

plantations, regarding their species composition, structure and inventory. Several studies have been 

conducted using image processing methods to automatically detect and delineate individual trees. 

Especially for precision farming, like in Osco et al. (2021) or Santoro et al. (2013) tree counting was an 

essential part of managing the field efficiently. But even in forestry research, like Fromm et al. (2019), 

where conifer seedlings were detected, high accuracies were needed to estimate the recovery of the 

forest. In those studies, it was mentioned that tree detection depended on image resolution, densities 

of forests, considered tree species, canopy shapes e.g. All these aspects need to be considered when 

trees should be detected in forests.   

As with the upcoming of remote sensing, airborne images and UAVs (Unmanned Aerial Vehicles), the 

possibilities of counting trees efficiently and al lower cost has become a suitable application in many 

studies, as it is much easier than evaluation on the ground. Culvenor (2003) extracted trees by 

identifying local maxima and minima in images and clustered pixels together. Erikson (2004) detected 

tree crowns comparing three methods: template matching and two region growth algorithms. Wolf 

and Heipke (2007) introduced the use of DSM and the extraction of tree crowns based on height 

information. Recent studies like Osco et al. (2021) used Convolutional Neural Networks (CNNs) to 

count and detect trees in plantations. They further mention that DL techniques are widely used in 

weed detection, counting of palm trees, citrus trees and tobacco plants in plantation, rice seedling 

detection and insect damages. Those study cases were all performed in open areas or plantations and 

did not consider counting in natural dense forests. 

In natural dense forests, when they are additionally located in mountainous areas, research faces 

several challenges not only for DL application but also for image analysis with GIS (geographic 

information systems) and field surveys. In studies like Diez et al. (2019), Diez et al. (2020) and Nguyen 

et al. (2021) it was pointed out, that especially in Japanese mountain forests tree top detections are 

challenging and highly dependent on the terrain, where the data were gathered. Diez et al. (2019) 

pointed out that by taking different techniques as well as different forest densities and steep slopes 

into account, still tree top detections can achieve high accuracies. In Nguyen et al. (2021) a deeper 
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analysis of tree detection was performed, summarizing, that matching averages were lower for steeper 

slopes and when the rate of mixing was higher between broadleaved and coniferous trees. It was 

pointed out, that heterogeneities of the forest in terms of tree heights, age and tree species 

distributions influenced the detectability of tree tops. Especially smaller trees close to taller trees 

remained often undetected. This effect increased when only broad-leaved trees were evaluated. As 

the focus of the study (Nguyen et al. 2021) was on coniferous trees, there is a gap in knowledge, when 

it comes to the detection of broadleaved trees in natural mixed forests.  

Additionally, the evaluation of the studies was usually done by comparing the results with manually 

labelled data. An evaluation of these ground truth annotations seemed not to be done. The question 

arose on how accurate those expert tree top annotations were. A study evaluating count methods for 

quantifying seed productions in a temperate broad-leaved forest, was presented by Tattoni et al. 

(2021) They compared two ground measurements with image counting. For seed counting they 

evaluated that using images is a reliable method.  

Therefore, the aim of this study was to evaluate manual annotations for image tree top counting by 

comparing field data with counting performed on Digital Elevation Models (DEMs), as Wolf and Heipke 

(2007) already indicated the efficiency of elevation data for single tree detection. Furthermore, in this 

study the seasonality of the forest was used, while most studies focussed on the summer season to 

evaluate forests, only a couple used spring and autumn and rarely the winter season. The benefits of 

winter images of forests are the clear differentiation between evergreen and deciduous trees, as 

pointed out by Kentsch et al. (2020), but also the leafless deciduous trees can be identified well. 

Therefore, summer and winter images were used to further evaluate the performance of tree top 

counts from UAV acquired images and those will be evaluated in this study. To the best of our 

knowledge, this is the first study considering different techniques to count trees in images and 

evaluating the detection of tree tops by comparing them with manual field data. The following 

objectives were the basis of this study:  

vii. To compare tree counting with only DEMs and with DEMs together with orthomosaics 

viii. To compare tree counting in summer and winter images.  

ix. To compare the results with the gathered field data and to evaluate the accuracy.  

 

5.1.1  Problem definition 

In summer images, the canopy structure of deciduous trees is made up by several single canopies 

building a dense and large canopy area, in which single tree identifications are almost impossible 

(Figure 62). Furthermore, the automatic tree detections pointed out the problems of detecting trees 
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in natural mixed forests. Therefore, a suitable method was needed to count deciduous trees in the 

dense mixed forest. As Shonai area has high precipitation in winter, soil in the forest is covered by 

snow from December to April/May. The benefit of winter images is that the background of the 

orthomosaic is usually white, while the branches of the deciduous trees are in contrast to it, because 

of their grey and brown colours. Therefore, tree counting is enhanced with winter images.  

 

5.2 Methodology 

5.2.1  Study sites and field data 

In the study of tree species classification, manual field surveys for the Riparian sites of YURF were 

prepared. The field surveys were conducted in autumn 2018 and summer 2019. To evaluate the 

accuracy of winter images, the four sites with the most accurate field data were chosen: site 1, 4, 6 

and 7 (Figure 61). Site 1 was divided into three areas, to evaluate the counting accuracy in different 

kinds of mixed forests. As the southern part of the orthomosaic (S1a) is a monoculture of wingnut trees, 

it has a different characteristic and density than the rest of the orthomosaic. Furthermore, the island 

in front of the main building of the forest was chosen (S1b), as it showed a high variety of tree species 

characteristic for the riparian forest, and another mixed patch in the centre of the orthomosaic (S1c). 

A last part was chosen along a steep slope (S1d), as it was possible to gather field data in the slope. 

Site 6 was also divided into two areas to analyse the detectability of trees: a flat area in the centre of 

the orthomosaic (S6a) and the slope along the river (S6b). Regarding the areas selected in site 4 (S4a) 

and site 7, the centre part of the orthomosaics were chosen, as there were no distortions in the image 

and the fieldwork was the most accurate. Additionally, the monoculture of Salix trees (S4b) and the 

area around the larch trees (S4c) were analysed.  

Finally, the centres of the sites 11 and 13 were selected to evaluate the counting possibilities in slope 

areas. The results of the fieldwork may not be complete due to the difficult access to some sites, but 

the results can be used to evaluate the counting in difficult terrain.   

 

5.2.2  Data gathering  

In order to evaluate counting possibilities in orthomosaics gathered in natural mixed forests, flights 

were performed in summer 2019 and from the beginning of the snowmelt season, which was in the 

end of February 2018 and 2019, when branches were snow-free. All images for the sites were taken a 

UAV, DJI phantom 4. An automatic flight protocol was used to perform the flights, so that all settings 

were the same for the cover area, flight height and overlap. The flight height ranged between the sites 
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from 80 to 120 m, as the elevation of the sites varied. The front and side overlap were always over 

90 %. For the flights single images ranging between 200 to 350 images were gathered. As the forest is 

dense and parts of it inaccessible, ground control points could not be used.  

 

 

Figure 61 Location of the study area YURF. The left image shows the location in Japan, the middle image shows the location 
of YURF and the right image the study sites. 

 

5.2.3  Data processing 

Images were processed with Agisoft´s Metashape, which merges single images to orthomosaics and 

DEMs (Figure 62). The resolution of the aligned images was between 2.75 cm/pix up to 3 cm/pix for 

the orthomosaics and 3.5 to 4.0 cm/pix for the DEMs. For the evaluation of the detectability of trees 

in images, two approaches were used, based on two sets of data. The basis were the same 

orthomosaics for both sets, but the area, which was selected for each approach, varied, as different 

tools were used. For the first approach one large area was selected in site 4 and for site 1 only winter 

images were analysed.  

The use of DEMs with image processing software was not possible, as those software cannot read 

geoTIFF files. Therefore, the DEM needed to be transformed into JPEG format. With ArcGIS, the DEM 

can be transformed using the Raster Calculator and the tool Copy Raster.  
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The copied file can be exported as JPEG, containing the height information stored in different grey-

values, whereby white represents high and black low values.  

 

Figure 62 Example data (example site 1). From left: the DEM, the summer orthomosaic, the winter orthomosaic and the 
summer orthomosaic with the selected parts. 

 

 

Figure 63 Workflow for this study 

 

The first approach used GIMP and a python code to count black pixels in annotations (Figure 63). The 

first step was to annotate tree tops on the basis of DEMs, whereby binary images were created, which 

show black dots as the tree tops. A second set of annotations were created, where additionally to the 
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DEMs, orthomosaics were used to identify tree tops. The two sets of annotations were created for 

every site and area as well as for the summer. A simple top counting algorithm was used to count the 

tree tops in every annotated layer.  

For the second approach, three point maps were generated: a field tree map, a summer tree top map 

and a winter tree top map (Figure 63). For the summer season only one set of annotations were 

prepared, mainly based on visual information. For the winter season, manual annotations were only 

done based on the orthomosaic, because Metashape did not produce good elevation models for 

leafless trees.  ArcGIS pro was used to generate and visualise these maps. For each map points were 

annotated for the tree tops of deciduous trees and saved in a point shape file. In the corresponding 

table each tree top was assigned a label for the tree species. Additionally, polygon shapefiles were 

generated to reflect the different sites and areas, as presented in the section study sites and field data. 

The tree tops were marked and counted with the selection tool. Furthermore, maps were generated 

and exported, as well as counting diagrams, which counted the selected tree tops per species. All 

counted trees and shrubs were evaluated for both approaches.  

 

5.2.4  Evaluation methods 

Both approaches used a simple comparison between the actual counts in the field and the 

automatically generated ones.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑢𝑛𝑡𝑠

𝑅𝑒𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠
∗ 100 

 

5.3 Results 

5.3.1  Field observations 

The considered study sites are old-growth forests, where the main species have already fully 

developed tree crowns. The crowns of different species grew usually together and built up a big canopy. 

The species occurring in the forest, like Juglans ailantifolia and Pterocarya rhoifolia, Salix species (Salix 

serissaefolia, Salix jessoensis) and black locust (Robinia pseudoacacia) reach similar heights in the 

considered areas. Between the adult trees, young trees grow, especially Juglans and Pterocarya trees. 

The juvenile trees grow mainly close to the adult trees or along the river, where the density of trees 

and shrubs is low. Sites 4, 6 and 7 have the highest number of young trees, in a range between 22 and 

48 trees. Only in site 4 young trees grow in the middle of the site, as there was a small area only covered 
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with shrub vegetation. Sites 1, 11 and 13 are at higher elevations and therefore less disturbed. Hence, 

few young trees were found.   

As the sites 1, 4, 6 and 7 are located along the river, they are characterised by a flat area, while the 

borders of the sites are already located at or on the slope. In comparison to these sites, 11 and 13 are 

located on the slope, whereby the elevation difference between the lowest and highest point is 

approximately 30 to 40 m depending on the site. These sites are characterised by terrace areas and 

steep slope parts. The density of the forest varied significantly with the steepness of the slope. The 

density of the sites 1, 4, 6 and 7 were similar and the distance between the trees was higher compared 

to the sites 11 and 13. The understory layer was in all sites dense and aggravated the preparation of 

surveys. Therefore, the forest can be described as a dense natural forest, composed of a dense canopy 

layer and a dense shrub layer. Surveys were completed for all mentioned sites, but for the counting 

evaluation only patches were chosen and trees were counted manually based on the surveys.   

Regarding the field surveys of sites 11 and 13, it has to be considered, that the sites were difficult to 

access and field data could not be gathered area-wide. The lower part site 11 could be accessed well, 

therefore all layers in the forests were classified and georeferenced. On the higher slope and top part 

of site 11, mainly Acer and tree species belonging to the canopy layer were identified and detected, as 

the accessibility did not allow to localize and to determine small trees. In site 13, as the whole site was 

difficult to access, no understory vegetation was taken into account (except Acer species), while the 

field data were gathered. The characterization of the sites is provided, as it is assumed that the site 

conditions and tree densities had a strong influence on the counting accuracies.  

 

5.3.2  Counting measures 

The first approach aimed to provide information on the counting accuracies using DEMs and 

orthomosaic image information to detect tree tops. Therefore, only the DEM was used to extract tree 

tops based on local high points in the DEM. In large tree canopy areas local maxima could be identified, 

as these were the brightest spots in the canopy. Table 21 provides the results of the manual and the 

automatic counting. It can be seen, that the automatic counts were the lowest compared with the 

counts of DEM+orthomosaic and the winter counting. In total, 89 trees were missed sin site 6a and 41 

in part b, 78 in site 7 and 148 in site 4. The percentage of found trees was therefore between 35.5 % 

(site 6) and the maximum of 44.6 % in site 7. The accuracy for finding trees was slightly lower for site 

6b. Regarding the bad results, young trees and shrubs were taken out of the counted number (Maple 

trees were still counted). Therefore, the counts decreased to 116 for site 6, 230 for site 4 and 121 for 
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site 7. The percentage of detected trees increased to 42.2% (site 6a), 47.5% (site 4) and 52.05 % (site 

7). There was no change for site 6b as no young trees and shrubs were counted in the field.  

It could be seen in the orthomosaic that large canopy areas often consisted of trees from different 

species, as the forest was mixed. The differences appeared in colour and shape of the leaves, which 

cannot be seen in DEM. In consequence, visual information gained from the orthomosaic can help to 

detect further tree tops by identifying maxima in canopies, which have the same of even lower heights 

than surrounding trees. This technique increased the accuracy of detection another 10 % for most of 

the sites, while the accuracy increased to 60.91 % in site 4. Using the counts without the young trees 

and shrubs, the accuracy of site 4 increased to 74.00 % and another 10 % for the sites 6a and 7.  

Table 21 Results for the first approach, summarizing the automatic and real counts. (Orthomosaic=Mosaic) 

Season  Site  Automatic  
counts 

Real counts Accuracy 

Summer Site6a DEM 49 138 35.51 

Summer Site6b DEM 32 73 43.84 

Summer Site6a DEM+Mosaic 70 138 50.72 

Summer Site6b DEM+Mosaic 46 73 63.01 

Summer Site4 DEM 95 243 39.09 

Summer Site4 DEM+Mosaic 148 243 60.91 

Summer Site7 DEM 63 141 44.68 

Summer Site7 DEM+Mosaic 75 141 53.19 

 

In the second approach tree top annotations were done with ArcGIS. Three maps were generated and 

tree tops were identified on these. Table 22 provides the results of the tree detection performed with 

ArcGIS.  

It can be seen, that for the monocultures in site 1a and site 4b, as well as in site 4c all trees were 

detected in winter images. For all other sites the accuracy ranged from 60 to 80 %. Interesting results 

were achieved in sites 11 and 13. The accuracy reaches almost 100 % in site 11 and exceeded the 100 % 

in site 13. As mentioned, no understory vegetation was classified in site 13 but were detected in the 

winter images. 

In winter, 109 trees were detected, which could not be identified, as they were not included in the 

field survey. Furthermore, in winter images all visible shrubs were counted at the lower and upper 

slope, while in the field, as mentioned above, no shrubs were counted in the upper slope. The 

calculated high accuracy cannot be counted as good result, as it was most probably coincidence. 
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Table 22 Results for the second approach, summarizing the counting’s in summer and winter images, as well as the 
comparison to the field counting. 

Site  Winter counts Summer 

counts 

Field counts ACC winter ACC summer 

Site 1a  72 53 72 100.00 73.61 

Site 1b 88 68 145 60.69 46.90 

Site 1c 111 170 135 82.22 125.93 

Site 1d 48 48 70 68.57 68.57 

Site 4a 89 53 117 76.07 45.30 

Site 4b 114 96 114 100.00 84.21 

Site 4c 24 20 24 100.00 83.33 

Site 6a 119 90 162 73.46 55.56 

Site 6b 37 38 57 64.91 66.67 

Site 7  106 98 142 74.65 69.01 

Site 11 315 154 316 99.68 48.73 

Site 13 273 133 195 140.00 68.21 

 

 

Figure 64 Tree top annotations for S1a. From left: Annotations based on the summer image, annotations based on the 
winter image and the field data overlayed on the summer image. 

In comparison to the accuracy achieved with counting in winter, the summer accuracies were lower, 

with 15 % to 50 % less counts, which can be also seen in Figure 64. The only exemption was site 1c, 

where the accuracy was even higher than in winter with 125.93 %. In site 1c, the lower part of the 

slope was included in the counting. Along the slope, Acer species occurred with a high frequency and 

density. The number of individual plants was difficult to assess in the field because of the high density. 

Furthermore, in summer images, the structure of acer canopies was open and misled to count more 

acer trees as there were. Site 1d was, like site 13, located at a steep slope and because of the difficult 

access only canopy layer trees were counted.  
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In a second attempt, understory vegetation and young trees were excluded from the counting, as they 

would never be visible from above, when only RGB images were used and the forest structure was 

dense. Sites 1a, 1d, 4b and 4c were excluded from the analysis since they already reached 100 % in 

winter images or because there would not have been further improvements (Table 23).  

Table 23 Counts excluding the understory vegetation and/or young trees, as well as the calculated accuracy for winter and 
summer images. 

Site  Winter counts Summer 

counts 

Field counts ACC winter ACC summer 

Site1b 88 68 88 100.00 77.27 

Site 1c 83 68 89 93.26 76.40 

Site 4a 69 53 69 100.00 76.81 

Site 6a 119 90 100 119.00 90.00 

Site 6a- y 119 90 122 97.54 73.77 

Site 7 106 98 102 103.92 96.08 

Site 11a 121 114 155 78.06 73.55 

Site 11b   121 114 119 101.68 95.80 

Site 13a 154 110 151 101.99 72.85 

 

In site 1b, 57 shrubs and young trees were identified, which were Alnus fauriei, Tilia japonica and 

Quercus mongolica (Figure 65). They had a height of around 1 m, at maximum 2 m. Hence, trees and 

shrubs were not visible on the winter images under 3 m snow cover. Therefore, with excluding them 

from the counting, an accuracy of 100% was reached, while the summer accuracy reached a maximum 

of 77.27 %. It can also be seen, that the accuracy of identified trees in summer was around 75 % for 

most sites. In winter most sites have accuracies higher than 100 %, which was caused by the young 

trees, which were taller than 2 m and detectable in winter images. Site 6a showed 119 %, when the 

understory vegetation was excluded, but the percentage was slightly less than 100 % when young trees 

where still counted. In site 1c, Acer trees were excluded as they were miscounted in summer, which 

ended in reasonable results for this patch of the forest. Without the understory vegetation (also 

without Acer species) site 11 achieved 78.06 % and 73.55 % for winter and summer, respectively. As 

from the fieldwork is known, the site contained a high number of young Japanese wingnut trees, these 

were excluded from site 11b, too, and accuracies of approx. 101 % were reached.  
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5.4 Discussion  

In this work, two approaches were studied, where tree tops were detected with different techniques 

and images. The first approach analysed the possibility of counting deciduous trees in summer images 

using first only DEMs and then additionally the visual information of the orthomosaic to identify tree 

tops. GIMP 2 and a tree top counting code were used to count the manual annotations. In the second 

approach, ArcGIS was used to create three maps: counting in winter images, in summer images and 

during a field survey. The first approach using only the DEM limited the counting possibilities because 

of the structure of deciduous trees. The tree crowns have a roundish shape generating an area of more 

than 30 m². In a dense natural forest this structure results in a dense crowded canopy area, where it is 

difficult to identify tree tops in a DEM. The even age of the forest trees and the limited number of tree 

species in the canopy resulted in a canopy area which has no significant differences in height. Therefore, 

only using the DEM was not successful to count trees in summer. Using additionally the visual 

information allowed to distinguish between species even when no significant differences in the DEM 

were visible. In comparison to coniferous trees, which have a cone shape and therefore a significant 

tree top in DEMs, the shape of deciduous trees will always be challenging in dense natural forests. The 

benefit of deciduous trees is that the seasonality can be used as they are losing their leaves in autumn. 

Furthermore, the climate of Japan with high precipitation in winter enhances the use of this season to 

count deciduous tree. 

With the second approach, especially the use of winter orthomosaics was analysed. For some of the 

sites, high accuracies counting tree stems in winter images were reached. Especially in dense even-

aged monocultures, the accuracy reached 100 %. In these areas, there was no understory vegetation 

found in the field. As in ArcGIS attribute tables give precise information about the species name of 

each point, it was possible to see where the differences between the field data and winter counting 

occurred. Furthermore, as the forest is seen from above, understory vegetations could only be 

detected when there were gaps in the canopy. The same problem occurred with young trees, as they 

are usually covered by adult trees, if they grow close together. Hence, excluding them from the analysis 

gave a better accuracy of tree counting. The accuracy reached 100% for almost all areas and did 

sometimes even exceed it (Table 23). The reason was that not all young trees grew close to adult trees 

and were therefore easy to identify in open spaces, if they have reached a height of more than 2 m. 

The high accuracies indicate that using the seasonality and changes in temperate forests can help to 

achieve reliable information about the number of trees in a forest stand. Furthermore, it can be seen, 

that the accuracy in summer images reached at least 75 % for most of the site. Therefore, it can be 

stated that it seems to be normal not to find about 25 % of the trees in these dense forest conditions.  
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Figure 65 S1b with the annotations separated into canopy layer trees, understory and young trees. 

 

5.4.1  Time and technique consideration 

In recent years the development in UAVs, image analysis and computer vision offer another way to do 

forest research. While the use of computer vision and DL is already successful for classification of tree, 

detection of trees, forest health identification and biomass estimation, species it still requires expert 

knowledge to apply those techniques (Onishi and Ise, 2021; Safonova et al, 2019; Natesan et al., 2020). 

With this work, it is shown that there is already a lot of information in images, which can be extracted 

using easy techniques to count trees. The two presented approaches used different software. The first 

one used GIMP, which is an open-source software, where annotations can be done easily as the 

software is easy to use and it can further be connected with a graphic tablet. Hence, annotations can 

be provided fast, about one hour for a 1 ha forest patch. With the data gathering (10 min per 1 ha, 

depending on the flight settings) and preparation (Metashape and GIS 2h per 1 ha) a total time of 

around 3 h was needed to extract tree tops of summer images. The counting is therefore fast, while 

field work requires days and has a high demand in man-power.  
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Using ArcGIS (commercial software) takes longer time, as the annotations cannot be created as fast as 

in GIMP. Also, three point maps need to be prepared and the data need to be labelled for winter, 

summer and the field map individually, while a simple counting of the trees from the field was enough 

in the GIMP approach. On the other hand, GIS offers the visualisation of the data in the geographic 

environment and further allows the selection in the attribute table to exclude species. Therefore, in 

this approach it was easy to delete understory vegetation and/or the young trees without a lot of effort. 

ArcGIS offered a detailed and spatial analysis of the data, which cannot be provided by GIMP. Also, 

ArcGIS offers plenty of possibilities which help to speed up some of the tasks, like labelling the trees 

with the raster calculator. In the end, the work with ArcGIS might increase the needed time around 1 h 

per map but offers more options to analyse the data.  

Both approaches showed a higher efficiency than manual field surveys. While ArcGIS offered more 

visualisation and useful tools, GIMP could provide the same results like ArcGIS in a fast a simple way 

(if only the canopy layer will be annotated and counted, which was not done in this work). Depending 

on the task and the needed information both approaches can be useful.  

 

5.4.2  Observations and difficulties 

In general, it could be realised, that counting trees in winter images can be done with a high success 

rate. The brown colour of the branches is significantly different to the white of the snow, which made 

the identification of tree stems easy. In the end of February, as the snow melting season already began, 

there were brown rings of soil around the tree stems, which increased the visibility of especially young 

trees. Difficulties occurred, when the alignment of the winter images did not work well. Then tree 

stems and branches were sometimes cut and dense areas, in this case tree stems could be hardly 

separated. Furthermore, trees were at the borders of the sites often covered by Cryptomeria japonica 

trees. The branches of Cryptomeria trees mainly cover stems and the effect of blurring at the borders 

of the orthomosaic further increased the difficulty for detection. Young trees, especially from Juglans 

and Pterocarya trees, usually grew close to the adult trees; hence big branches covered the small 

young trees. There were several conditions, when tree stems were becoming almost invisible: when 

they are covered by shadows or when the reflection of the snow was too high. On the other side, when 

the sun was shining, the shadows of tree stems could sometimes increase their visibility.  Areas, where 

a lot of snow had already melted, the brown stems and the brown soil could not be separated. The 

barren soil areas were usually close to the river, where the dark colour of the water additionally 

increased the difficulty to find tree stems. Furthermore, in those areas, as they are influenced by 

several disturbances of the river, especially young trees grow and were even harder to detect. In site 
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1, the monoculture of Pterocarya trees, as all trees could be found in the images, provided a good 

example, because only adult trees grow there. On the other hand, several young trees were growing 

in site 6, which were missed during tree stem counting. At last, slopes increased the difficulty of 

detecting trees, as trees grew closer together or below each other, which made canopies denser and 

accurate counting impossible.  

Even though there were difficulties, which could be identified, winter images provided the best 

possibilities to count trees in a deciduous mixed dense natural forest. Furthermore, young trees can 

be additionally identified as well as a high number of understory vegetation. Especially in areas, where 

the access is limited and field work cannot be done, the provided analysis offers a new way to 

efficiently count trees in forests.  

 

5.5 Conclusion 

The presented study shows two different approaches to do manual tree top annotations on forest 

images. Each technique provides benefits, which makes them useful for forest applications. While the 

GIMP approach uses freeware and annotations can be performed fast, it lacks in mapping and 

georeferencing applications. Annotations in ArcGIS need more time, therefore mapping, 

georeferencing and pre-processing of the data can be done easily.  

Regarding the tree counting, broad-leaved trees make the approach challenging because of their 

canopy shape and structure, especially, when the forest is dense and naturally mixed. Considering only 

the canopy layer, around 25% of the trees could not be detected from the images. The use of manual 

annotations from summer images produces therefore unavoidable errors. Furthermore, young trees 

could usually not be detected on summer images, as well as understory vegetation. Hence, a better 

method to accurately count trees needs to be found. This study further indicated that the use of winter 

images for tree counting of deciduous trees is the most efficient approach for Japanese mountainous 

mixed forests, especially reaching a high rate of success when only the canopy layer is considered. The 

high performance exceeded all other presented annotations, using DEMs and also additionally visual 

information from summer images. Furthermore, understory vegetation could be indicated and young 

trees with heights of more than 2 m could be counted.  

To sum it up, the annotations performed on winter images is an approach which was not used 

efficiently in previous studies but has the potential to achieve reliable tree counting for forest 

inventory purposes. The two introduced methods enhance analysis of UAV images in order to 

characterise forests and tree distribution in a time efficient and low-cost way. 
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Chapter 6: Deep learning tree species classification 

6.1: Computer vision and deep learning techniques for the 

analysis of UAV-acquired forest images, a transfer learning 

study 

6.1.1  Introduction 

Forest ecosystems play an important role in water, carbon and nutrient cycling within the soil-

vegetation-atmosphere continuum. In recent years climate change is exerting positive changes such 

as the early greening of forests in the northern hemisphere, shifting of forests to warmer environments 

northward (Chen et al., 2011) or negative ones, such as an increase of longer periods of drought 

(Esquivel‐Muelbert et al., 2019), increase in the number of forest fires or extreme climate events 

(Kherchouche et al., 2019). Recent studies have focused on the ecological functions of mixed forests, 

since they show high resistance against insect outbreaks and a stronger capacity to recover from 

disturbances (Coll et al., 2018). Detailed knowledge about mixed forest structure and composition 

(Anderegg et al., 2019) is needed in order to properly understand current status and future changes. 

Forests in Japan occupy approximately 68 % of the total territory, with most of them being natural 

deciduous broad-leaved mixed forests (Shimada, 2009). Natural forests are affected by climate change 

while man-made forest ecosystems such as coastal forests are affected by invasive species that 

diminish their functions as windbreak (Anderegg et al. 2019, Lopez et al., 2014). The distribution of 

each species within a stand, or the interactions between the different tree species (Coll et al., 2018) 

makes them ecologically complex, especially in comparison to monoculture forests (Grotti et al., 2019). 

Until very recently, forest research has been carried out using labour and time-consuming land surveys 

(Frayer and Furnival, 1999). They are costly and demand a high degree of organization training and 

expertise. Moreover, the characteristics of Japanese forests make them particularly challenging for 

land surveys as they are often located in steep mountain slopes that are difficult to access. Thus, new 

tools are needed in order to efficiently gain an overall understanding of species interaction and their 

response to climate change in order to design the proper response policy to ensure the sustainability 

of forests. 

UAVs are rapidly becoming an essential tool in forestry applications (Onishi and Ise, 2018, Natesan et 

al., 2019, Safonova et al., 2019, Fromm et al., 2019) and they represent an easy-to-use, inexpensive 

tool for remote sensing of forests as they can fly close to tree canopies, which results in high image 

resolution (with one pixel representing a few centimetres). That can be processed by computer vision 

algorithms. An example of such an application is the building of orthomosaics by aligning the images 

for visualization and coherent processing of specific forest areas encompassing several hectares. 
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Additionally, emerging technologies such as DL allow the incorporation of expert knowledge to the 

automatic processing of images, which together with the availability of larger amount of data, has the 

potential to radically change the way land surveys are done. Namely, the time-consuming (and 

sometimes dangerous), intensive field surveys will likely become unnecessary, while those tasks 

requiring expert human knowledge are expected to be greatly increased. 

The main goal of this chapter is to study the use of DL to gain information on forestry applications. By 

dividing orthomosaics built using UAV-acquired images into regular patches and using two well-known 

DL architectures (ResNet and UNet), the following objectives were proposed (Figure 66): 

x. Develop an algorithm (that uses a ResNet50) to classify patches corresponding to tree 

species (MLP algorithm). Assess (a) Quality of the results obtained with the amount of data 

available (2800 images), and (b) Degree of improvement achieved by Transfer Learning. 

xi. Develop a semantic segmentation algorithm for tree species that is precise (DICE 

coefficient) and efficient (computation time), using three separate algorithmic approaches 

and two DL networks.  

xii. Evaluate the applicability of the MLP algorithm to another practical problem: Detection of 

an invasive tree species in a coastal forest. 

For the first objective, a MLP classification algorithm was implemented using a ResNet50 architecture. 

The effects of learning rates (LR) on the output were studied: (a) Not using Transfer Learning (b) 

Transfer Learning from ImageNet (Krizhevsky et al., 2012) and (c) Transfer Learning twice, first from 

ImageNet, then from the Planet satellite image dataset (Planet). For the second objective three 

algorithms were used to obtain semantic (pixel-wise) segmentations of the deciduous vs. evergreen 

tree classes in winter orthomosaics: (1) The MLP algorithm as a standalone tool, (2) The MLP algorithm 

including a (non-DL) watershed segmentation refinement step and (3) A patch-based semantic 

segmentation algorithm using a UNet architecture. 

 

Figure 66 Overview of the contribution 
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6.1.2  Methodology 

Most of the forests considered for this study are natural (i.e., unmanaged) and located in steep 

mountainous areas that make field surveys difficult. In addition, forests deal with invasive tree species 

which have a major impact on the structures, properties and function of forest ecosystems (Richardson 

et al., 2004). The abundance of precipitation in the climate of Japan makes data gathering with drone 

missions challenging which limits the amount of data. Furthermore, the problem of unevenly 

distributed trees made image recognition and segmentation tasks more complicated (previous studies 

of forests were performed mostly in plantations or well-managed forests located in flat areas see, for 

example (Abd Mubin et al., 2019). Consequently, acquiring and annotating large datasets made up of 

millions of images such as ImageNet (Krizhevsky et al., 2012) was not feasible. The research was, thus, 

motivated by the reported capacity of DL networks to work with smaller datasets as well as it has 

benefits from Transfer Learning. 

 

6.1.2.1  Data Acquisition  

Having a sufficient amount of data is important for DL application. These study data were acquired 

using a DJI Phantom 4. For this chapter the seasonality in mixed forests was used, by collecting images 

in the winter season aiming at gaining information on the locations of the stands of evergreen and 

deciduous trees. Therefore, images were captured at three different dates in late winter 2018 

presenting differences in illumination and tree age. Seven flights in five separate study sites were 

performed (Figure 67). For site 1, three flights were done, while of the other sites only one flight were 

performed, covering areas of 3 to 8 ha. In order to improve the Ground Sampling Distance (GSD), which 

is the distance between centre points of each image of the ground expressed in cm/px, two flight plans 

where performed in steeper slope areas. GSDs between 2.79 and 4.48 (cm/pix) were achieved. The 

following abbreviations for the sites were used: orthomosaics wm3, wm4 and wm5 belong to the site 

1 while the rest are all from different sites (wM1 = site 3; wM2 = site2; wM6 = site 6; wM7 = site 4) 

 

6.1.2.2  Problem definition 

The first scenario was to classify the different parts of winter orthomosaics from mixed forests. Natural 

mixed forests are complex in ecological terms and present special challenges concerning research: The 

considered forests were located in steep mountainous areas that make field surveys difficult. 
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Figure 67 Location of the sites where data was acquired. The middle upper map shows the location of the study area in Japan, 
whereby YURF is marked as orange point. The map also contains the (orange) area of YURF. The five images at the right show 
representative orthomosaic for each site 

Trees were distributed unevenly making image recognition tasks more complicated (previous studies 

of forests were performed mostly in plantations or well-managed forests located in flat areas see, for 

example (Abd Mubin et al., 2019). The seasonality of mixed forests was used, by collecting images in 

the winter season aiming at gaining information on the locations of the stands of evergreen and 

deciduous trees. Knowing the distribution, composition or distance to water of the stands in large 

areas (such of those studied in this work) can improve the understanding of the overall composition 

of natural forests. The seasonal data provided additional information such as the number of deciduous 

tree stems. 

 

6.1.2.3  Data Processing and Annotation 

After alignment of the images with Metashape, the data were manually annotated. The annotation 

method needed 4 to 7 hours per orthomosaic and provided to be a simple, relatively fast way of 

annotating data for general applications. For the mixed forest winter orthomosaics five layers were 

annotated: River, Man-made, Uncovered, Deciduous and Evergreen (Figure 68).  

Each of the orthomosaics were divided into axis-aligned, square patches of the same side length 

(hereafter size of the patch) (Figure 68). The annotations as well as the original data were considered, 

obtaining a set of patches along with patch-wise binary masks for each annotated class. 
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Figure 68 Example of a winter orthomosaic. Examples of patches each containing a single different class 

Any algorithm used in a practical setting is heavily influenced by the characteristics of the data. In the 

studied case, the disposition of the forest prevented the use of Ground Control Points (GCP). GCPs are 

meant to be geo-localised easily distinguishable points that aid mosaicking software identify 

corresponding regions in different images during orthomosaic construction. Sites presenting dense 

and unmanaged forests prevent the placement of GCPs inside the forest making the use of GCPs 

impractical. Also derived from tree distribution, Figure 69 shows the difficulties to identify single trees. 

However, the use of winter orthomosaics (Figure 69) shows an image of the same area where stems 

are visible and their numbers can be counted. Furthermore, the orography of the forest made data 

acquisition limited in terms of the amount of data that could be gathered. All imaged sites include 

steep slopes that are common in this area, which increases the difficulty of identifying trees in this 

area.  Picture C also shows deciduous trees in different conditions and frequently mixed with other 

classes. The understory vegetation present has the same colour of the deciduous tree and often 

appears mixed with them. A similar problem happens with the ``River'' class in. Another limitation 

likely resulting from not using GCPs is that Metashape produced some image registration artefacts 

(Figure 69). This increased the difficulty of automatically processing the images.  
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Figure 69 Example images of difficulties faced with the Data. Images are examples of the mixed forest 

 

6.1.2.4  Problem Formalisation 

The automatic division of the data and mosaic-level annotations into regular patches allowed to 

formalize problems in two different ways. First, the focus was on identifying what classes where 

present in each orthomosaic patch, which is known as multi-label classification. As a second 

formalisation the focus was on classifying each pixel in each orthomosaic patch. This problem is known 

as semantic segmentation (Guo et al., 2018). The aforementioned patch multi-label classification 

algorithm already gave an initial ``coarse'' approximation to this semantic segmentation. In order to 

refine it the classical watershed (Beucher and Meyer, 1993) image segmentation method was used. 

The UNet DL architecture (UNET) was also considered. A full pipeline of the work is provided in Figure 

70, while Figure 71 (left) shows a patch of one of the winter orthomosaics. The central part of Figure 

71 shows the manual annotation for this patch. Blue pixels are classified as the ``Evergreen'' class, 

yellow pixels to the ``Uncovered'' class and green pixels as the ``River'' class. 
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Figure 70 Algorithm Pipeline 

 

   

Figure 71 A small section (patch) of a winter orthomosaic. Patch of an RGB Image as captured by the UAV (left). Mask with 
the annotations showing the class of each pixel (middle), in this case blue pixels belong to the ``Evergreen'' class, yellow 
pixels to the `` void'' class. This mask serves as the ground truth for the semantic segmentation formalisation. Superposition 
of the two previous images (right). Consequently, the ground truth for this patch was the list [river, uncovered, evergreen] 
for the multi-label classification formalisation. 

 

6.1.2.5  Multi-label Patch Classification Using ResNet 

Previous studies have shown the efficiency of DL networks to classify forestry images, specifically 

(Onishi and Ise, 2018; Natesan et al., 2019), because they relied on the ResNet architecture (He et al., 

2016). 
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A ResNet variant with 50 layers was chosen, known as ResNet50. Although the aforementioned 

approaches used a tree crown segmentation step based on DEMs produced by the UAV. The data and 

annotations were used in form of patches, where each patch was assigned a class. For example, the 

list could contain the labels river, uncovered and evergreen. Thus, patches may belong to more than 

one class each, with a probability value for each patch. Given high enough probabilities in more than 

one class, the patch would be labelled repeatedly. Thus, this algorithm is referred to as the MLP based 

classifier. The ResNet50 network was trained to classify the created patches. A subset of the data was 

used for training, and the remaining data was used to validate the quality of the trained model at 

predicting the correct classes. 80 % of the dataset was randomly chosen for training and the remaining 

20 % was used for testing.   

DL architectures need less data than previous approaches, however, having sufficient data to produce 

results of satisfactory quality is still a problem in research areas such as forestry, where data acquisition 

is often problematic. Transfer Learning represents a way to improve the quality by initializing the 

weights of the matrices conforming the DL network to those obtained in the solution of a similar 

problem. In this study Transfer Learning is used as followed: (1) a general-purpose object classification 

problem codified in the ImageNet database (Kizhevsky et al., 2012) and (2) the closer problem of multi-

label classification in satellite images of the amazon forests codified in the Planet dataset (Planet). 

 

6.1.2.6  Segmentation Refinement using watersheds 

The MLP classification algorithm generated an initial coarse segmentation. All pixels in any patch 

containing a class were considered to belong to that class. This patch-wise masks for all classes 

constitute a segmentation of the orthomosaic. The coarse nature of this segmentation produces two 

problems. First, over-segmentation: by assigning all the pixels in the patch to all the classes present, 

would also assign pixels to classes they did not belong to. These extra pixels make the masks of classes 

larger. Second, the coarse class masks therefore generated intersect. This is undesirable in the 

semantic segmentation problem as each pixel should be classified into one single class. In order to 

improve the initial segmentation a refinement step based on the watershed image segmentation 

algorithm (Beucher and Meyer, 1993) was implemented. This algorithm uses binary images 

representing initial masks consisting of doubtless labelled pixels. Parts of the image that could 

confidently assigned to the background were also determined. Any pixel not falling into any of these 

two cases were labelled as “unknown”. Labelled regions were visualised as ridges and unknown areas 

as basins. Then, water was pictured as expanding from the ridges into the basins until two of the 

growing ridges meet and watershed lines were determined. These lines defined the segmentation. 
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The starting point was the coarse segmentation of the “River” class. A binary image was generated by 

painting all pixel black that belonged to all patches where the river class had been predicted. All pixels 

out of these patches were marked as background. Then, this coarse mask was shrunk using a distance 

transform and pixels that had been deleted by this process were labelled as unknown. Further, all the 

connected components of the mask were computed and stored in a dictionary with their position and 

an identifier, along with the information that they belonged to the “River” class. Then, the second class, 

the ̀ `Deciduous'' class, was considered. The previous process was repeated but storing the results from 

the previous step. Regions that previously formed the background were overwritten, regions that were 

unknown before or where two labels were assigned were labelled as unknown. The process was 

repeated for all classes and the images were partitioned into (1) Background (2) unknown and (3) initial 

regions. Each initial region had the information attached as to what class it belonged to. The watershed 

algorithm was subsequently run to create a finer segmentation without intersection between the 

different classes. 

 

6.1.2.7  Forest Orthomosaic Segmentation Using UNet 

The UNet DL architecture (Ronnenberger et al., 2015) was originally developed for medical image 

segmentation (Funke et al., 2019) but has since then been used in a variety of applications. The UNet 

architecture is composed of two parts known as paths: the encoder and the decoder path. The encoder 

path extracts features using convolutional layers and reduces the size of the images using max pooling 

layers. At the end of the encoder path the images are greatly reduced in size and the transformations 

they were subjected to are stored in the weights of the matrices along the path. The decoder path, 

moves back to full size ones by replacing pooling operators with upsampling operators. High resolution 

features from the encoder path were combined with the upscaled output in order to localise them. 

Successive convolution layers learn to re-assemble the output more precisely based on this 

information. An algorithm was implemented using the UNet architecture to perform semantic 

segmentation of the winter orthomosaics. The data and pixel-wise-annotation patches described in 

Section Problem definition were considered and used to train a UNet network. Whenever a new 

orthomosaic needed processing, (1) it was divided in patches, (2) predicted the semantic segmentation 

of each patch using the trained UNet model and (3) joined all patch segmentations together to obtain 

a semantic segmentation for the whole orthomosaic. 
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6.1.2.8  Experiments 

In the first experiment all seven winter orthomosaics were run with the Patch-Annotator. Randomly, 

80 % of the patches were used for the training, the remaining 20 % for testing. The classifier was 

learning with the 80 % of patches and checking its own results with the .csv file, containing the correct 

labels of the patches outputting the mentioned values above. The results were evaluated on the 

remaining 20 % of the test images. The report of this approach focused on the patches. The 

classification accuracy of each patch was reported, as well as the misclassification.  

For the second experiment six orthomosaics were processed by the Patch-Annotator and again the 

patches were divided into 80 % for training and 20 % for testing. In this case the last orthomosaic were 

taken and ran it on the Patch-Annotator. Those patches were used, after the training of the model, to 

run the Classifier again. The classification results were evaluated on the output of the model from the 

last orthomosaic. 

 

6.1.2.9  Evaluation Methods 

Several metrics were used to evaluate different aspects of the algorithm’s performance. First, the 

capacity of the MLP algorithm to correctly predict the labels in every patch was evaluated:  

• Full Agreement (FA) 

• Full Agreement with False Positives (FAFP) 

• Partial Agreements (PA) 

• No Agreement (NA) 

In order to target the predictive capacities of the algorithms patch labels for the MLP algorithm were 

considered and pixel labels for the semantic segmentation algorithm. For all of them the relation 

between predicted values and real values was considered with TP, FP, TN and FN. Furthermore, 

classification measures were computed on them:  

𝑆𝑒𝑛𝑠 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 

𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝐷𝐼𝐶𝐸 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
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6.1.3  Results 

In this section, experiments were presented using real data corresponding to seven winter 

orthomosaics and one summer orthomosaic from the coastal forest covering a total area of 38.5 ha. 

Of the five winter orthomosaics from YURF, three corresponded to the same site on different days and 

under different lighting conditions. All the algorithms described throughout the paper were 

implemented using the python programming language. The ResNet and UNet DL architectures were 

implemented using the Fastai (Howard et al.) library. The watershed algorithm was implemented using 

the opencv computer vision library (OpenCV). All experiments were run in workstation using a Linux 

Ubuntu operating system with 10 dual-core 3GHz processors and an NVIDIA GTX 1080 graphics board. 

{For experiments 1 and 3 the data were randomly divided into (80 %, 20 %) training and 

validation/testing. For experiment 2 a leave-one-out approach was done with each of the seven winter 

orthomosaics using one for validation/testing and the other six for training.  

 

6.1.3.1  Experiment 1: Transfer learning and multi-label patch classification 

The data were randomly divided into (80 %, 20 %) training and validation/testing. The patch size was 

chosen to be 150, see Section Semantic segmentation for the effect of this parameter. With this 

parameter, the annotated patches contained the deciduous label in 52.26 % of the cases, the 

evergreen class in 39.33 %, uncovered in 28.29 %, river in 12.84 % and man-made in 1.26 %. Notice 

that, as patches often belong to more than one class, these percentages add to more than 100 %. 

In order to assess the impact of Transfer Learning several "starting models" were built and trained 

using forest images. Each model was considered in two forms, frozen and unfrozen. When a frozen 

model was re-trained only the final layers of the model were changed. When an unfrozen model was 

re-trained, all of the layers were modified. The starting models that we considered were: 

• Random: In order to test whether Transfer Learning was necessary, a model initialised with 

random weights were included. Only results of the unfrozen random model were presented 

as the frozen random model had poor results. 

• RN50F, RN50UNF: We also considered a ResNet50 with preloaded ImageNet (Krizhevsky et al., 

2012) weights. The inclusion of this model allowed us to study whether or not a general-

purpose classification model could be fit to solve the problem using a relatively low number of 

images. This model was re-trained frozen (RN50F) and unfrozen (RN50UNF).  

• RN50 + PLANET-UNFF, RN50 + PLANET-UNFUNF, RN50 + PLANET-FF, RN50 + PLANET-FUNF: 

The ResNet model was considered again and re-trained it using the PLANET dataset of satellite 

images of the Amazon rainforest (Planet). In order to assess whether better results could be 
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obtained when training from a problem (classification of satellite images of tropical 

vegetation) being more similar to the data. The ResNet model was considered frozen and 

unfrozen as before, RN50 + PLANET-F, RN50 + PLANET-UNF. These two models were 

subsequently retrained with images each considered frozen and unfrozen producing 4 models: 

RN50 + PLANET-UNFF, RN50 + PLANET-UNFUNF, RN50 + PLANET-FF, RN50 + PLANET-FUNF. 

The learning rate of a DL model is a parameter that controls the step size of the optimizer that changes 

the weights in each iteration of the training phase. Various LR values were tested in all the different 

Transfer Learning approaches. In order to present a comprehensive picture, among all values tested 

Figure 72 was presented from 1x10-5 to 0.9 with 10 sampling points at each exponent value (1x10-5, 

2x10-5...9 x10-5,1x10-4,2x10-4...).   

Agreement: Agreement results (TA, TAFP, PA) provided us with a general picture of the capacity to all 

the trained models to classify patches with all the possible labels (River, Deciduous, Uncovered, 

Evergreen and Man-made). The best TA results were obtained by the RN50+PLANET-UNFUNF model 

with a value of 81.58 at a learning rate of 4x10-3. The first trend that could be observed in plots A, B, C 

in Figure 72 is that the learning rate that provides better result for a model is determined by whether 

the model was frozen or not. Specifically, the three unfrozen models obtained best results with smaller 

learning rates of around 1x10-4 while frozen models achieve their best results with learning rates of 

0.04. This is consistent with previous results reported in (Onishi and Ise, 2018) where the best learning 

rate for a frozen model trained using ImageNet weights was 0.01. 

The importance of Transfer Learning was indicated in the TA peaks of the different approaches. The 

model initialised with random weights peaked at 72.53 TA, a lower value than the other models. Frozen 

models achieved good results with models RN50F, RN50+PLANET-FF and RN50+PLANET-UNFF peaking 

at 79.51, 79.42 and 79.62 TA, respectively. This represented an improvement of 9.78% over the model 

with random weights. Similar trends could be observed for the accumulated TAFP and PA plots with 

peaks of 87.76 TAFP and 98.12 PA for the RN50+PLANET-UNFF model. Likewise, similar results could 

be observed with unfrozen models. Best results of RN50UNF, RN50+PLANET-FUNF and RN50+PLANET-

UNFUNF peaked at 80.39, 80.98 and 81.58 TA. This was an improvement of 10.83 %, 11.66 % and 

12.48 % over the random weights model. Best overall results were obtained from the model that was 

built using first an unfrozen version of the ImageNet model to train the Planet dataset and then leaving 

the resulting model unfrozen to train with the images. The general tendencies observed here were 

confirmed using difference of means hypothesis tests (t-tests as data size was > 25). Even models 

presenting smaller differences in the TA peak (like the difference between the performance of the 

RN50UNF and RN50+PLANET-UNFF) were found to present statistically significantly different means 

with significance level 0.05. 
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Figure 72 (A) Total Agreement (TA), (B) Accumulated value of Total Agreement with False Positives (TAFP), (C) Partial 
Agreement (PA), (D) Accuracy (ACC), (E) Sensitivity (SENS), and (F) Specificity (SPEC) for winter orthomosaic data. Patch Size 
is 150. Frozen models end with an F, unfrozen models with UNF 

 

Classification of deciduous and evergreen classes: The best TA was obtained with the 

RN50+PLANET-UNFUNF and a value of 81.58 %. Patches without Total Agreement presented errors 

when classifying the three classes that were not of direct practical interest (river, uncovered, man-

made). The number of patches containing them was low compared to patches presenting the other 

two classes (deciduous and evergreen. However, the results of the two classes of interest had high 
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sensitivity, specificity and accuracy values (plots D, E, F in Figure 72, average values for the two classes) 

when no data balancing was performed. Best average accuracy results between the two classes 

(94.80%) were obtained by the RN50+PLANET-UNFUNF model (that also obtained the top TA value). 

The clearly defined boundaries of evergreen trees resulted in an accuracy of 97.24 %, while the 

deciduous tree class presented less defined edges and obtained 92.36 %. Sensitivity and specificity 

values of the same model were also high with an average of 94.38 % (94.75 % Ev, 94.01 % Dec) and 

94.50 % (98.7 3% Ev, 90.27 % Dec). The larger difference appeared in specificity, where an 8 % 

difference was observed. This can be explained by misclassifications of the deciduous class into mainly 

the uncovered class. Still, the classification results were high with values of up to 97 %. This indicated 

that patch-dividing and classification approach using a multi-label ResNet DL classifier was successful 

with the amount of data available. 

 

6.1.3.2  Experiment 2: Semantic segmentation 

Results from three approaches were presented, the patch based coarse segmentation produced by 

the algorithm in Section Experiment 1, the refinement of that segmentation using watershed 

segmentation and the patch-based UNet algorithm. The first goal of this experiment was to test the 

performance of the algorithms in real-life conditions. The models were trained with data from six 

orthomosaics and validated (tested) with the one that had been left out. This approach relates to the 

use case where an already trained system receives a new orthomosaic for automatic classification. Of 

the seven orthomosaics three belonged to the same site. Consequently, in most cases (4/7), test 

images were of trees that the trained system had never seen before. In some other (3/7) images of 

trees previously seen under different conditions were used for testing. These two sets of results 

allowed us to discuss about the generalization power of the algorithm and the possibility of over-fitting. 

As a second major goal, the effect of choosing one problem formalisation or DL architecture over 

another were studied and insights were gained from the data. 

Patch size and learning rate: The proximity of the multi-label patch classifier (seen as a coarse 

segmentation) output to the manual annotations depended on two factors: First, the accuracy of the 

classification model, where wrongly classified patches would result either in False Positive or False 

Negative regions in the coarse mask and second the size of the patches, which produced an 

approximation error that grew with the size of the patches. At the same time, smaller patches took 

longer to compute. Patch sizes from 500 to 25 for both ResNet Patch based classification (known as 

``coarse'' segmentation) and the version with Watershed refinement (noted ``Refined'') were 

considered. The learning rate presented was the highest among all learning rates studied in Section 
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Experiment 1 for each patch size. The training time needed for the Resnet varied from under 10 

minutes for patch size 500 to two hours fifty minutes for patch size 100 up to over 40 hours for patch 

size 25. Concerning the UNet, several patch sizes and learning rates were tested where the patch size 

of 500 led to better results. In this study only five illustrative examples of learning rates were presented. 

Fehler! Verweisquelle konnte nicht gefunden werden. and  

DICE coefficient:  Concerning semantic segmentation for all sites, the best results for the UNet were 

(0.709, 0.893) DICE for (deciduous, evergreen) for LR=0.0005. The ResNet50 coarse segmentation 

obtained (0.790, 0.883) for patch size 25 with the refined version (watershed post-processing) reaching 

(0.733, 0.855). On the other hand, the UNet semantic segmentation achieved and average value of 

0.893 for the "Deciduous" class, showing how its pixel wise approach adapts better to this class that 

presents less well-defined borders. The learning rates presented for the UNet show some 

representative examples of all the learning rates considered.  

The refined ResNet algorithms, watershed post-processing helped to improve the coarse segmentation 

up to a certain patch size. For these models, the training time was the fastest among the three models 

and the results obtained were not far from the best obtained. This represents an example of 

specialized computer vision algorithms that can complement the knowledge gained by using DL. These 

algorithms, however, cannot easily be used by non-experts and require careful fine-tuning as 

exemplified by the failure of the watershed refinement to produce satisfactory results for small patch 

size. This was most likely due to small misclassified regions growing into larger regions due to poor 

parameter choice than actual limitations of the proposed approach. However, running the watershed 

refinement took less than a minute for any of the tested orthomosaics. Training time of the UNet 

network or any of the networks with smaller patch sizes was much larger than that.  

The difference of the average DICE coefficient among sites were small. Orthomosaics 3, 4 and 5, 

representing site 1, show differences of 6% for the with UNet network defined “Deciduous'' class. An 

improvement of 1% for the same orthomosaics and classes with the refined ResNet algorithm was 

attained. 

Table 25 present the DICE coefficient for all the algorithm variants. The average training time of the 

UNet was of over 11 hours. 

Table 24 Comparison of semantic segmentation approaches for the ``Deciduous'' class in winter orthomosaics (wM*). The 
first half of the table contains the results for the UNet model, the second half contains results from the patch based multi-
label ResNet classifier. The first column contains the size of the patches used. Rows marked "Coarse" use only the ResNet 
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classifier while rows marked ``Refined'' also use watershed refinement. Last two columns are the average values (AVG) 
between all orthomosaics and between orthomosaics of site 1. 

 

DICE coefficient:  Concerning semantic segmentation for all sites, the best results for the UNet were 

(0.709, 0.893) DICE for (deciduous, evergreen) for LR=0.0005. The ResNet50 coarse segmentation 

obtained (0.790, 0.883) for patch size 25 with the refined version (watershed post-processing) reaching 

(0.733, 0.855). On the other hand, the UNet semantic segmentation achieved and average value of 

0.893 for the "Deciduous" class, showing how its pixel wise approach adapts better to this class that 

presents less well-defined borders. The learning rates presented for the UNet show some 

representative examples of all the learning rates considered.  

The refined ResNet algorithms, watershed post-processing helped to improve the coarse segmentation 

up to a certain patch size. For these models, the training time was the fastest among the three models 

and the results obtained were not far from the best obtained. This represents an example of 

specialized computer vision algorithms that can complement the knowledge gained by using DL. These 

algorithms, however, cannot easily be used by non-experts and require careful fine-tuning as 

exemplified by the failure of the watershed refinement to produce satisfactory results for small patch 

size. This was most likely due to small misclassified regions growing into larger regions due to poor 

parameter choice than actual limitations of the proposed approach. However, running the watershed 

refinement took less than a minute for any of the tested orthomosaics. Training time of the UNet 

network or any of the networks with smaller patch sizes was much larger than that.  

The difference of the average DICE coefficient among sites were small. Orthomosaics 3, 4 and 5, 

representing site 1, show differences of 6% for the with UNet network defined “Deciduous'' class. An 
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improvement of 1% for the same orthomosaics and classes with the refined ResNet algorithm was 

attained. 

Table 25 Comparison of semantic segmentation approaches for the ``Evergreen'' class in winter orthomosaics (wM*). The 
first half of the table contains the results for the UNet model, the second half contains results from the patch based multi-
label ResNet classifier. The first column contains the size of the patches used. Rows marked ``Coarse'' use only the ResNet 
classifier while rows marked "Refined" also use watershed refinement. Last two columns are the average values (AVG) 
between all orthomosaics and between orthomosaics of site 1. 

 

 

6.1.4  Discussion 

In the first experiment, the effects of DL were quantified concerning the problem of multi-label patch 

classification of winter orthomosaics. The available seven orthomosaics were an insufficient amount 

of data to reach high accuracies for tree species classification when training a ResNet network from 

scratch. Precisely, starting from random weights led to a TA value of 72.53. The experiments showed 

that Transfer Learning from ImageNet (a general-purpose dataset) was essential to obtain high quality 

results with a 9.78 % improvement in Total Agreement (up to 79.63 TA). Ref. (Fromm et al., 2019) 

reported a similar increase in conifer seedling detection metrics ranging between 3 % and 10 %. 

Additionally, a further 2.7 % improvement in Total Agreement (reaching 81.58 TA) was observed when 

Transfer Learning from the Planet dataset, which is more closely related to the images (Figure 72). 

Thus, Transfer Learning is necessary to obtain reliable results for the winter orthomosaics problem. 

Furthermore, the smaller improvement when Transfer Learning from the Planet dataset was 

performed (2.7 % over 9.78 %) suggests that dedicating too many resources to find closely related 

problems may not be cost-effective. Furthermore, these results indicated that making data and 

annotations from forestry-related DL research publicly available could speed up the development of 

this research area by decreasing the amount of data needed by future contributions.  
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In the last step of experiment 1 the focus was on the results of only evergreen and deciduous trees 

since tree species classification was the aim of this study. High accuracy, sensitivity and specificity 

values were achieved. Specifically, regarding sensitivity, evergreen trees reached values of 94.75 % and 

deciduous trees reached 94.01 %. Comparing these results to previous work is difficult as previous 

studies have used single-label (rather than) multi-label classification. Also, they have used different DL 

networks, applied in problems with different levels of complexity (Onishi and Ise, 2018, Natesan et al. 

2019, Safonova et al., 2019).  

Nevertheless, and for the sake of context, the obtained sensitivity values were presented with these 

previous works in Table 26. Specifically, Onishi and Ise (2018) and Natesan et al. (2019) reached 

average sensitivities of 89 % and 81 %, which were lower than the ones achieved in the experiment. 

Safonova et al. (2019) reached an average value of 91.84 %, which was close to the results but the 

single classes showed a high variability from 81.25 % to 100 %. 

Table 26 Comparison with State-of-the-Art methods 

 

The second experiment focused on segmentation approaches of the ``Deciduous'' and ``Evergreen'' 

classes. Best DICE values for these two classes with UNet were (0.709, 0.893) and with ResNet (0.790, 

0.883). These numbers showed that the best results were obtained by UNet for the ``Evergreen'' class 

while the "Deciduous" class was better detected by the MLP ResNet approach. The less-defined 

borders and the overlap between colours of the deciduous trees and the ``Uncovered'' class makes it 

difficult to properly segment the trees with the pixel-oriented UNet. In this sense, formalising the 

problem as a patch labelling problem allowed the gain some flexibility in the definition of the classes 

and identify the pixels belonging to this class more precisely. On the other hand, formalising the 

problem as a semantic segmentation problem allowed the use the internal coherence of the 

``Evergreen'' class. In addition, the comparison between the DICE coefficients of all orthomosaics 

suggests that the algorithms were able to segment totally new orthomosaics as well as those that they 

had already seen under other lighting conditions. Overfitting, then, seems not to be present in the 

results and it could be confirmed that the algorithms can segment deciduous and evergreen trees in 

Japanese mixed forest with reasonably good results. Furthermore, the watershed-based refining step 
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provided a fast compromise between the two pure-DL formalisations. Consequently, using larger patch 

size with watershed refinement might be a solution in situations where training time is a limiting factor. 

This problem-specific computer vision algorithm illustrates the effect that a more sophisticated use of 

DL and computer vision techniques can have on forestry research. 

 

6.1.5  Conclusion 

In this work, the current role and development possibilities of DL were analysed to solve practical 

problems in forestry research. The study provided a simple pipeline based on drone-acquired images 

for classifying tree species. The experiments showed that Transfer Learning was essential to obtain 

good results for patch classification. Better results were obtained when a more closely related dataset 

was used. 

The study obtained semantic segmentations for winter orthomosaics that reached high DICE values 

when compared to the ground truth. The effect of the DL model was made apparent by the fact that 

best results for the "Evergreen" class were obtained by UNet and for the “Deciduous” class by ResNet. 

Watershed post-processing could be used to reduce the computation time of the most cost-intensive 

algorithms. 

Finally, the presented experiments also showed that DL provided valuable information about complex 

classification problems when used as a “black box”. The patch-based classifier provided reasonably 

good results to find patches containing black locust trees in the black pine coastal forest orthomosaic. 

The methodology studied in this paper can, thus, be used to gain insight in other forestry applications. 
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6.2 Automatic tree species classification  

6.2.1  Problem definition  

Mixed forests were mainly classified using field plots and field surveys, to assess tree composition and 

tree distribution (Sakio, 2002; Fukumachi et al. 2020, Hedwall et al., 2018; Pyttel et al., 2013). The field 

plots were usually small (1 ha) or studies focussed on single tree species, while the relations of the 

sites to the whole forest were not considered. Field plots are time-consuming and demand high man-

power. Image analyses are more convenient, as gathering in the field is fast and classifications or tree 

locations performed with the images are. While field data can be directly processed to maps, image 

data needs to be annotated first, where areas of different tree species will be marked. This step is 

usually done manually and can be as time-consuming as field inventories, when the forest has a high 

degree of mixture and density. Therefore, the need of faster annotations is high, which can be met 

using computers, which perform automatic classification. Recent developments in computer vision, as 

well as the increasing use of DL in forestry research, made automatic classifications attractive. First 

studies focussed on detecting trees in images (Mohan et al., 2017; Kattenborn et al., 2014; Malek et 

al., 2014) for counting purposes in plantations. Then, tree species classification gained more attention 

(Fujimoto et al., 2017; Morales et al., 2018; Kattenborn et al., 2020), where forests were composed of 

a small number of tree species or considered classes for tree species classification. Mixed forests can 

be composed of two tree species, but usually, there is a higher number of tree species, which occurs 

in the forest. Until now, a reliable methodology is needed to precisely classify several tree species, in 

natural mixed forests, on small scales, but also on large-scales. In Japan, two studies were conducted 

in an artificial coniferous forest (Fujimoto et al., 2017) and a managed forest composed of planted 

coniferous and naturally grown broad-leaved trees (Onishi and Ise, 2021). Both studies presented high 

accuracies using different versions of ResNet, but present methodological problems (Diez et al., 2021). 

Furthermore, they mainly classified coniferous trees, which were easier to identify because of their 

characteristic tree crown shape. The study of Schiefer et al. (2019) analysed 14 classes composed of 

nine different tree species, three genus-level classes and two other classes, being the only study with 

such a broad classification approach for tree species. The authors used semantic segmentation and 

considered trees as objects instead of assigning each pixel in the image to a category, reaching high 

classification results. 

Detectability of trees, the use of the seasonality for image classification and image-resolutions were 

topics discussed in the previous mentioned studies. However, high class numbers and unbalanced 

classes are the most challenging aspects of tree species classification, which were identified when the 

accuracies were compared with single tree species results in Schiefer et al. (2019) and Onishi and Ise 

(2018). In natural mixed forests, the imbalance in tree species numbers and the occurrence of more 
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than two species is most likely, especially in Japanese mountainous forests. Achieving high accuracies 

for a high number of tree species is the basis for studying species interactions, like niche differentiation, 

facilitation and competition, which can help to understand forest interactions, provide management 

possibilities and even predict forest behaviours during changing climate.  

Therefore, this study classifies tree species of a forest with a high degree of mixture, which helps to 

assess forest compositions and distributions on different scales. Therefore, the orthomosaics of the 13 

study sites and the identified 41 species classes were used, first to fuse classes and then to:  

xiii. Automatically classify tree species in natural mixed forests of YURF using deep learning  

xiv. Perform semantic segmentation with the UNet architecture.  

xv. Assess the first results and evaluate the performance of the architecture based on 

experiences of manual annotation and faced challenges. 

 

6.2.2  Methodology 

Previous chapters focussed on assessing the forest with field work and images to evaluate tree species 

composition and distribution. It was expected that image analyses provided similar results to field 

investigations. Regarding the image analysis, the most time-consuming step was to prepare the 

manual annotation. Identifying every tree in all 13 sites needed time and precise colouring of the tree 

species. To avoid this time-consuming step, automatic classification was considered for this study.  

 

6.2.2.1  Data collection and processing 

Images were collected with the DJI phantom 4 UAV. The flight altitude ranged between 80 and 205 m 

depending on the imaged site, with the UAV flying a speed of maximal 3.7 m/s. Front and side overlaps 

between 90 and 97 % were chosen. Approximately 200 to 550 images were gathered per flight 

(Appendix A), which were processed for each site with Metashape, generating orthomosaics and DEMs. 

The pixel resolution ranged between 2.73 cm/pix and 4.5 cm/pix, while a standardized pixel size was 

set for each orthomosaic of 2,73 cm/pix. Images from summer 2019 were chosen and tree species 

were annotated, for each site one flight. In sites 1 and 3 flights were performed on the 20th of June 

2019, in sites 9 and 10 the 10th of July and site 8 the 26th of July. For all other sites images from the 14th 

of June were used. The total imaged area was 61.9 ha with 31.48 ha located in the ROI.  
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6.2.2.2  Manual annotations 

Manual annotations were done with GIMP, where each tree species was coloured black in separate 

layers. Furthermore, a tree top layer was generated and all layers were exported as JPEG files. In total 

41 species layers were generated for 13 sites. Each tree species was assigned a species code starting 

from S01 and ending with S43 and a mixed class (note: there were species which were labelled with 

different codes, so that after the correction S29, S33 and S38 were empty classes). Species names and 

the assigned species codes can be found in Appendix C. After the evaluation of species with the Census 

code and a first test of the DL model, the classes were grouped together. Species with less counts and 

a small canopy area were grouped into a class ‘Others’. After that step, the classes were only S01 to 

S09, S11 and Others, and the classification classes were named fused classes.   

 

6.2.2.3  Semantic segmentation with UNet 

In the previous chapters the main focus was on labelling regions with one or more labels, where usually 

bounding boxes or patches were used to identify single or multiple objects (Figure 73). Here, UNet 

performs semantic segmentation, it assigns each pixel in an orthomosaic a label with a given 

probability, which means that just pixels are considered, the object itself does not matter. The purpose 

is to create finer regions than the results gained, when ResNet is used. Compared to other approaches 

of automatic classification, UNet can be directly used, as identifying the object first is not necessary. 

However, tree counting cannot be performed with such kind of algorithm.  

The approach used in this study was a multi-class segmentation, where more than two labels were 

assigned. The architecture used was UNet, which contained a feature extractor followed by a 

prediction block. Here, the prediction block was composed of convolutional blocks to provide and end-

to-end prediction. The feature extractor followed a structure that was composed of an encoder and a 

decoder. First spatial information were compressed by the encoder into a low dimensional feature 

space, the gained feature was upsampled with the decoder and the output for the final segmentation 

was generated (Diez et al., 2021).   

 

6.2.2.4  Evaluation 

The evaluation was performed comparing the predicted values/pixels and real values/pixels provided 

with the ground truth. Each pixel was sorted into TP, FP, TN, FN. Based on this sorting, accuracy, 

precision and recall were calculated using the three calculations:  
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𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The accuracy assessed how many pixels were classified correctly out of all data. The precision 

represents a value for the correctly classified positives out of the predicted positives and the recall 

describes the correct classified pixels out of the actual positives.  

 

Figure 73 Examples of the different types of problems solved with DL (Diez et al., 2021) 

 

6.2.3  Results 

As pointed out before, DL classifications were performed with a small number of classes, while in the 

forest orthomosaics of this study 41 species classes were identified. In the previous chapters (field and 

image analyses) it was discussed that the data were imbalanced, with species dominating the areas 

and others with only a couple of individuals. This aspect challenged the automatic classification with 

DL. Preliminary, lower class numbers were considered based on the area calculation based on pixel 

counting. General analyses were performed to evaluate the area per species and their distribution 

along the sites. Note that the input for the DL classification was composed of two datasets: The one 

presented in this study with the sites 1 to 13 (S1 – S13) (hereafter set 1) and the ones on the top of the 



242 
 

mountain sites 14 to 17 (S14 – S17) (hereafter set 2). There were experiments separating the two 

datasets, but also experiments with a mix of all sites.  

 

6.2.3.1  Initial experiments  

The first approach was to understand the structure of the data in terms of pixels in the ROI, as the data 

distribution influences the results of a DL network. The class numbers were changed with the smaller 

class numbers as follows: Background: Sp00, S11 (Acer mono maxim): Sp10, S41 (Acer japonica, red): 

Sp11 and S01 – S09 (Table 27): Sp01 – Sp09. All other species classes were named Other with the label 

Sp12. 

Table 27 Species labelling and area calculations of site ROIs 

Species Species lat. name Area in ROI [%] Area (S1-S13 only) [%] 

Sp00 Background 32,59 30.17 

Sp01 Juglans ailantifolia 16,84 16.14 

Sp02 Aesculus turbinata 2,82 2.07 

Sp03 Cryptomeria japonica 10,63 9.84 

Sp04 Pterocarya rhoifolia 4,56 3.67 

Sp05 Quercus mongolica 4,31 1.45 

Sp06 Larix kaempferi  2,10 0.15 

Sp07 Fagus crenata 2,00 0.15 

Sp08 Magnolia obovata 5,20 4.28 

Sp09 Small-leaved Acer 5,77 3.52 

Sp10 Acer mono maxim 4,26 4.26 

Sp11 Acer japonica (red) 0,06 0.06 

Sp12 Other 8,89 8.12 

 

The data indicated an unbalance towards the classes Background, Juglans ailantifolia and Cryptomeria 

japonica, while all other classes showed values lower than 10 % (Table 27). Furthermore, the 

orthomosaics 1 to 13 contained the main proportion for most classes, except Sp05 (Quercus 

mongolica), Sp06 (Larix kaempferi) and Sp07 (Fagus crenata). 

It was further evaluated in which sites the species were concentrated, as there were sites with higher 

mixtures than others. Also, the differences between Riparian, Terrace and Slope sites were found to 

be different (chapter 4.1 – 4.4 field and image analysis). The results presented important insights, like 
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a leave-one-orthomosaic-out approach for the training influences the results significantly. The 

calculated values confirmed that the classes had varying proportions in the different sites. Species 

classes Sp04 (Pterocarya rhoifolia) and Sp11 (Acer japonica, red coloured) had significant imbalances, 

as 50 % of the canopy area of Sp04 was in site 1 and even 94 % of Sp11 in site 10. It is most likely, that 

a training of the network without site 10 would not allow automatic classifications of Sp11, as the 

number of training examples would be too low. Higher imbalances between the sites were observed 

for site 2, where Sp08 (Magnolia obovata) and Sp09 (small-leaved Acer species) had higher amounts, 

with 29 % and 28 %. In site 3, Sp05 (Quercus mongolica), Sp07 (Fagus crenata) and Sp09 (small-leaved 

Acer) inhabited more than 20 % of each species. Site 9 contained, with 29 %, a large area of Sp09, while 

in sites 14 and 15 large areas of Sp06 and Sp07 were accumulated. When the composition of the 

species was checked, sites 4, 6 and 13 were found to be mainly composed of the background, Sp01 

and Sp03, while all other species classes had low percentages. Site 1 and 11 were similar, with high 

amounts of the background, Sp01, Sp03 and Sp04. Generally, the Slope sites had high proportions of 

Sp08, Sp09, Sp10 (Acer mono maxim) and Sp12 (Other), and also the mix of the species was higher 

than in the Riparian sites. The results showed that, even though classes were already fused, the 

imbalance was still high. The background and the species Sp01, Sp03, Sp08 and Sp09 were dominant 

species. The sites 14 to 17 were composed of Sp05, Sp06 and Sp07, which were minor species in sites 

1 to 13.  

 

  

Figure 74 A) The following plot represents the distribution of the species per mosaic. Therefore, all columns should sum up to 
100% B) The following plot represents the distribution of the species of a given mosaic (all lines should sum up to 100%) 

 

 



244 
 

6.2.3.2  Experiment with 13 classes 

There were two experiments performed, one used all orthomosaics for training and testing, one where 

training was performed separately for the sites 1 to 13 and 14 to 17. For both experiments a leave-

one-orthomosaic-out strategy was performed, so that the trees in the training and testing set were 

never the same and did therefore not belong to the same site.  

  

Figure 75 Precision Matrix A) all sites (left) B) specific sites (right) 

The matrices (Figure 75) show that the precision was generally higher for the background, Sp01 and 

Sp03, when the training was performed only with the set 1 with a high recall value. When all sites were 

used, the recall (Figure 76) of Sp00 increased and the precision decreased, in comparison to the run 

where only 13 sites were used. Sp01 had no significant differences between both runs; therefore, the 

classification accuracy was not influenced by the number of sites used for training. The precisions were 

lower for species Sp02 and Sp04 and had higher recall values, when trained with set 1 only. The 

precision was low for the species Sp05, Sp06 and Sp07 when only trained with set 1. For all other 

species had high values when trained with all orthomosaics, and lower when training was performed 

with set 1 only. For species Sp08, Sp09 and Sp10 the values for precision and recall were relatively high, 

but it was observed that for sites with a high precision when trained with all sites, the precision was 

lower when trained with set 1 only and opposite.  

Generally, low recall values occurred together with high precisions and recalls with low precisions for 

most of the species, while this phenomenon also occurred within a species row, when different sites 

were considered UNet provided results of the pixel classifications, which means that each class had a 

high number of pixels assigned to it. For a better readability, the number of pixels was divided by the 

total sum of pixels on the ground truth for each class. The values were therefore between 0 and 100 %.  
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Figure 76 Recall matrix A) all sites (left) B) specific (right) 

 

  

Figure 77 Confusion matrices only site 1 to 13 A) all sites (left) B) specific (right) 

The confusion matrices show that the algorithm could predict the background, Sp01 and Sp03 with 

higher accuracies (Figure 77). Around 50 % of the species Sp08 and Sp09 could be detected. 

Furthermore, the matrices show that using all sites lead to better classifications for Sp03, Sp08 and 

Sp09, while the training with set 1 increased the classification percentage of the background and Sp01. 

Furthermore, the matrices show that most classes were confused with the background and Sp12. 

Species Sp11 could not be detected by the network and Sp06 and Sp07 were constantly misclassified 

with all other classes. 
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Table 28 Accuracies reached for the experiments 

 
13 classes 13 classes 6 classes 

 
Accuracy all Accuracy (set 1) Accuracy (set 1) 

S1 55.23 59.28 66.27 

S2 54.74 49.7 54.62 

S3 47.57 42.75 57.26 

S4 73.24 75.02 74.6 

S5 47.59 58.07 58.75 

S6 73.22 71.95 76.46 

S7 75.63 80.15 81.51 

S8 44.51 45.13 56.74 

S9 36.2 36.66 72.48 

S10 44.62 40.08 53.83 

S11 69.91 70.24 76.91 

S12 70.23 70.07 80.57 

S13 75.47 82.18 82.17 

The network achieved varying accuracies for the classification (Table 28). The highest accuracies were 

reached for sites 7 and 13 with 80.15 % and 82.18 %, when trained with set 1 only. The lowest 

accuracies were found for site 9, where the two training approaches did not influence the performance 

of the network. The overall accuracies were higher for sites 2, 3, 6 and 10, while all others achieved 

lower accuracies, but similar to each other. In site 5, the training with set 1 only provided the highest 

increase (10.48 %) of accuracy, the smallest was found for site 11 (0.33 %). Sites 1, 7 and 13 also 

benefited from the training with set 1 only, while sites 2, 3 and 10 showed a decrease in accuracy of 

around 5 %.  

 

6.2.3.3  Level 1 Segmentation  

This segmentation is still running, so the results, which were provided from the network until the date 

of the submission, are presented here. The first results showed that, even with the 13 classes, the data 

were unbalanced and influenced the classification significantly. Therefore, the dataset was fused by 

keeping the largest and fusing the rest: 

Sp00 = background; Sp01 = S01 (Juglans ailantifolia); Sp02 = S03 (Cryptomeria japonica); Sp03 = S08 

(Magnolia obovata); Sp04 (small-leaved Acer) and Sp05 (Other) 

After fusing higher values of the Other class were found in sites 1, 3 and 10, while sites 17, 4 and 7 had 

low values for the Other class. The area of the Other class was more equally distributed over all sites.  
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Figure 78 Confusion matrices A) training with 13 orthomosaics and 5 classes (top) B) training with all orthomosaics and 5 
classes (middle) C) training with all orthomosaics and 11 classes (bottom) 
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In relation to all other species occurring in the different sites, the Other class occupied between 12 % 

and 56 % (highest in site 9), with lowest values in sites 4,13 and 7 (12 % to 14 %), medium values 

between 20 % and 30 % in sites 2, 6, 11, 12, 3 and 5 (increasing order) and highest for site 1,33 % and 

site 10, 37 %. The achieved accuracies ranged between 53.83 % (site 10) and 82.17 % (site 13), with 

less than 60 % accuracy for sites 2, 3, 5, 8 and 10, less than 70 % for site 1 and less than 80 % for sites 

4, 6, 9 and 11. The lowest increases were observed in sites 5 and 7, with 0.68 % and 1.36 %. Best 

accuracies were reached for sites 13, 7 and 12 (82.17 %, 81.51 % and 80.57 %) (Table 28). The lowest 

accuracy was observed in site 10, with 53.83 %, while sites 2, 3, 5 and 8 reached slightly better 

accuracies. Compared with the 13 class experiments, the accuracies increased except for site 4 and 13, 

where the accuracy decreased slightly (by 0.42% and 0.01%), when trained with set 1. The highest 

increase of the values was observed for sites 9, 3, 10 and 8 with 35.82 %, 13.75 %, 12.23 % and 11.16 % 

increase.  

The confusion matrices presented the results of three different training approaches: training with set 1 

and five classes (A); training with all sites and five classes (B), and training with all sites and 11 classes 

(C) (note: Sp11 was left out, as the species was too small to be considered separately). The overall best 

classifications were reached using all sites for training; however, using five classes increased the 

accuracy of Sp01, Sp03 and Sp05 and training with 11 classes increased the results for Sp00, Sp02 and 

Sp04. Applying training (C) lead to the least misclassification of Sp03 and Sp04 with Sp05. When 

training method (A) was applied the confusions between Sp01/Sp03 with the background occurred 

less, while for all other classes training (B) lead to less misclassification.  

 

6.2.3.4  Semantic segmentation  

The network performs semantic segmentation, which means that each pixel was assigned a label. The 

results for site 13 can be seen in Figure 79. The classification of Juglans trees (red), as well as the one 

for Cryptomeria trees (blue) show already good results. Acer trees (green-brown) and the Others class 

provide less good classifications and is often mixed with the background (white). Note that the ground 

truth is only provided for the ROI, while the network provided a classification of all pixels in the image.  

 

6.2.4  Discussion 

The imbalance in the data influenced the classification, so that larger classes were predicted well, while 

small classes, which were not representative, had worse results. Therefore, the network was not able 

to classify Acer japonica, while Juglans ailantifolia and Cryptomeria japonica reached the highest  
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Figure 79 Ground truth (left) and segmentation result of the network (right) 

 

values. The training, only using set 1, increased the accuracies for Juglans ailantifolia and Pterocarya 

rhoifolia, while for most classes the training did not seem to change the values significantly. There was 

an insignificant benefit for the species Quercus mongolica, Larix kaempferi and Fagus crenata. When 

the level 1 experiment was observed, the performance of the network increased for the smaller 

number of classes, which might be a result of less unbalanced data, as presented with the 13 classes. 

The accuracy was compared with the distribution and composition of classes in the sites and evaluated 

relationships between classes. The highest accuracies occurred with high pixel numbers belonging to 

the background, Juglans ailantifolia and Cryptomeria japonica. The highest occurrences were found in 

sites 13, 7 and 4, with site 13 having high numbers for all three classes, while site 7 and 4 had a high 

number of background pixel values, but Juglans ailantifolia had half the number of the background, 

and Cryptomeria japonica had even less pixels. Lowest accuracies were found when the distribution of 

the classes was homogenous, Juglans ailantifolia pixel number was low and/or the main pixels were 

distributed in class Other. In the sites 2, 3, 5, 8 and 9 the number of Magnolia obovata, small-leaved 

Acer and Acer mono maxim were high, which were less frequent compared to Juglans ailantifolia and 

Cryptomeria japonica. Sites with high pixels numbers of background, Juglans ailantifolia or 



250 
 

Cryptomeria japonica reached generally the highest accuracies, while all other classes were infrequent. 

The accuracies in site 1 achieved medium accuracies, which can be explained by the homogenous 

distribution of the classes Sp00 to Sp04.  

For the experiment level 1 segmentation, the following patterns were found. Highest accuracies 

occurred when the classes background, Juglans ailantifolia, Cryptomeria japonica and Other occurred 

frequently (sites 13, 7 and 12), while lowest accuracies occurred when the sites were mainly composed 

of classes Magnolia obovata and small-leaved Acer, which was in sites 2, 3 and 5. When mixtures 

occurred homogeneously, the accuracy values were on average. Another observed pattern was that 

when the distribution between the frequent classes was homogenous, the accuracy was also higher, 

as it was observed in site 13. Lower accuracies were found in site 7, where Cryptomeria japonica had 

low pixel numbers and site 12, where the background and Juglans ailantifolia had high numbers of 

pixels and the class other. The lower the distribution in classes 00, 01 and 02 the lower the accuracy. 

Homogenous distributions in all classes, except Juglans ailantifolia like in site 2 lead to low accuracies. 

High pixel values in the background and Other class caused the lowest accuracies. 

The distribution and composition of the sites influenced strongly the achieved accuracy. When a site 

was composed of many small classes the overall accuracy was lower than in sites being mainly 

composed of large classes. Therefore, the imbalance in data hampered the classification ability of the 

network and needs to be overcome for increasing the performance of the network.  

 

6.2.4.1  Misclassification 

In this section, confusion matrices are evaluated to identify misclassified classes. The level 1 

segmentation caused less misclassification of the single tree species, but there were misclassifications 

found between the single tree species and Other, as well as with background. The background class 

contained a mixture of understory vegetations, which had a high number of pixels and several different 

structures. The Other class contained a high number of pixels belonging to 37 tree species, which can 

have features similar to the four tree species Sp01 to Sp04. Acer mono maxim for example sometimes 

looked like small-leaved Acer, when the resolution was low. The training with all orthomosaics and the 

five classes provided the best accuracies for the Other class, while the one using 11 classes had 

significant lower values. The reason might be that there were confusions between the different species, 

when trained with 11 classes.  

The confusion matrices of the training with 13 classes showed significantly different results. In general, 

the classification was found to be worse and some classes failed to be classified, while others had low 

accuracies. For all sites, tree species classes were mixed with the background and the Other class. 
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Compared with the level 1 experiment, tree classes were also mixed. Aesculus turbinata was mixed 

with Pterocarya rhoifolia, Quercus mongolica and Juglans ailantifolia. It is a tree species, which 

occurred with dark leaf colours but with a significant structure, which was different to most of the 

species it was mixed with. Juglans ailantifolia had a lighter green leaf colour, but with bad resolutions, 

the species had similar crown characteristics to Aesculus turbinata. Pterocarya rhoifolia was found to 

be mixed with Juglans ailantifolia, which was a result of similar leaf and canopy structures. Acer mono 

maxim was misclassified as Pterocarya rhoifolia, Quercus mongolica and small-leaved Acer. The similar 

colour might be a reason for the mixture with Quercus mongolica. Fagus crenata was wrongly classified 

as Cryptomeria japonica, Larix kaempferi and Quercus mongolica. Even though the leave colour of 

Fagus and Quercus trees was different, the structure of the canopy was similar. The reason why Fagus 

or even Quercus trees were found mixed with Cryptomeria and Larix trees cannot be explained, as the 

canopy structure and leave colour look different. Acer japonica (red) could not be classified and was 

classified as Cryptomeria japonica, small-leaved Acer or Acer mono maxim. The reason might be that 

Cryptomeria japonica had a reddish needle colour, easy to mix up with the red colour of Acer japonica. 

The confusion with the two Acer species can be explained by the similar canopy structure.  

Most of the misclassifications can be explained with the phenological occurrences of the trees, varying 

image resolutions and the low number of example trees per species. Schiefer et al. (2020) discussed 

species abundances and errors in classifications. Species with similar features can cause problems, as 

less frequent species and abundant species are classified together from the DL network. Those 

misclassifications, but also no shared similarities can lead to poor classifications of less frequent classes. 

Sufficient amounts of data for rare species are therefore crucial (Schiefer et al., 2020) and for future 

training the data needs to be increased, which can be done with data augmentation, additional data 

or GANs. Schiefer et al. (2020) further pointed out that updating databases are an important aspect to 

accurately map species, especially when species are rare. 

 

6.2.4.2  Over- and Underpredictions  

Low recall values in combination with high precision values are an indicator for underestimation of 

trees, as it could be found for species Quercus mongolica and Larix kaempferi. Especially when all sites 

were used for training, the recall value decreased, indicating a large number of trees of each species 

which were not found by the algorithm. If a tree was found it was most likely classified correctly, as 

the precision value indicated. However, since the recall value was higher when only set 1 was regarded, 

the classifier worked better.  
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In contrast, Aesculus turbinata and Pterocarya rhoifolia had high recall values but low precision values, 

when trained with set 1. The low precision indicated that a large number of trees were classified wrong. 

The algorithm predicted species Aesculus turbinata or Pterocarya rhoifolia, even though it was a 

different species, explaining the high recall (low FN). In contrast, the precision value was low, indicating 

a high number of FP. This scenario is called overprediction of a class. While species Aesculus turbinata 

and Pterocarya rhoifolia seemed to be overpredicted, when trained with set 1, Aesculus turbinata was 

underpredicted in most of the sites, when trained with all sites. The high precision value indicated a 

low number of FP but the recall decreased dramatically, explained by a high number of FN.  

The low precision and recall values for Quercus mongolica indicated that the algorithm can identify the 

species, but there was a lot of mixture. Only the background and species Juglans ailantifolia and 

Cryptomeria japonica were predicted with high recall and precision values, indicating that the 

algorithm could classify these species with high accuracies. For Magnolia obovata, small-leaved Acer 

and Acer mono maxim the over- and underprediction varied among sites, indicating that the algorithm 

was able to classify the species, when trained with different datasets. 

Generally, the algorithm produced high numbers of FN and FP for the species which were less frequent, 

while only for the background, Juglans ailantifolia and Cryptomeria japonica high precision and recall 

values were found, with low numbers of FN and FP. In these classes, overprediction occurred more 

often, when the sites were mainly composed of Juglans ailantifolia or Cryptomeria japonica, which was 

in sites 1, 12 and 13 for Juglans ailantifolia and 4, 6 and 13 for Cryptomeria japonica. Furthermore, 

there seemed to be a trend that overprediction occurred more frequently, when the species was rare 

in the sites. 

Overall, the algorithm was producing high FP and TP, especially when minor species were observed, 

indicating that the training examples were not enough to train the network to classify all classes with 

high accuracies.  

 

6.2.5  Conclusion 

The first sets of results gave useful insights into the tree species classification approach. The first results 

struggled to classify the tree species classes due to the imbalance in the data. The results of the 6 

classes approach reached significant higher accuracies than the one with 13 classes, which indicated 

that reducing the classes and focusing on the large classes helped to overcome data imbalances. While 

these results indicated that the automatic classification is possible, the data need to be balanced for 

sufficient network behaviour. Less frequent classes, which showed similar characteristics to other 

classes, need to be overcome.  



253 
 

Chapter 7 Invasive species - Two application examples of 

image analysis and deep learning 

7.1 Introduction invasive species 

Recent changes in global climate conditions influence species composition and increase the impact of 

invasive plant species on natural environments. Invasive species are known to spread rapidly outside 

their native range and with a rapid and effective adaptation to new environments (Prentis et al., 2008). 

In Europe more than 11,000 alien species occur, while more than 50 % are terrestrial plants (Rabitsch 

and Genovesi, 2012). The spread of invasive species does often benefit from ecosystem changes and 

habitat disturbances, weakening the natural species and opening ecological niches for the invaders. 

Hence invasive species can have an influence the biodiversity by vanishing some species due to the 

higher occurrence of invasive species, and this could lead to ecosystem degradation (Pyšek and 

Richardson, 2010). Didham et al. (2005) pointed out that not only invasive species have an impact on 

native plants, but there are often several factors interacting with the environment, which need to be 

considered and studied, influencing species distributions. Still, it is known that invasive species 

influence nutrients, water resources and fluxes in natural environments, changing the ecosystem’s life-

cycle (Nentwig et al., 2018). In recent years, the need to precisely understand the ecological impact of 

invasive species in ecosystems has become a key requirement when designing and prioritizing natural 

resource management approaches (Pyšek and Richardson, 2010). Especially, since one of the 

challenges of invasive species is that their distribution and spread increase over the time, which 

requests a rapid eradication (Keller et al., 2011). Pimentel et al. (2005) claimed that 42 % of threatened 

or endangered species in America are in danger because of invasive species. In Europe, 11 % of the 

12000 identified species cause damage to the economy, society and the environment (Caffrey et al., 

2014). In the work of (Rabitsch and Genovesi, 2012) it is stated that hundreds of invasive species find 

their pathways to natural environments and the linear increasing trend of invasive species numbers 

(from 1970 to 2007) indicates higher impacts of invasive species in the future. Furthermore, there is a 

high number of invasive species finding their pathways into natural environments through horticulture, 

agriculture, transport etc.   

Discussions about invasive species include often the impact and abundance, the awareness and the 

costs of them. The fast adaption to multiple stress factors of environments could also lead to a 

replacement of native species and can increase economic costs due to losses in agriculture and forestry 

(Pimentel et al., 2005). In Europe, costs caused by the damage and the control of invasive species 

exceed 12 billion Euros (Rabitsch and Genovesi, 2012). They provided a detailed analysis of the budgets 

spent, dealing with invasive species, showing an increase from 5 million (1995-1997) to 40 million 

(2004-2006), indicating a further increase in the future. Especially, since from 1990 the number of 
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established terrestrial invasive species increased constantly to 4,000.  These numbers are one of the 

reasons for an increasing the demand of a management strategies because without an effort to control 

those species their numbers will continue to grow (Keller et al., 2011). Land use and nature 

conservation management approaches need to be dealt with low costs and high efficiency for the 

prevention, early detection and reduction of invasive species. However, existing studies are limited in 

time and area due to the use of costly and labour-intensive field surveys (Pyšek and Richardson, 2010). 

Even though many studies have been conducted, the quality of published data is highly variable 

because quantitative and experimental data are in some cases impossible to gather (Gurevitch and 

Padilla, 2004). Therefore, a second challenge is often to deal with the missing information to control 

invasive species, which increases the difficulties for management approaches (Keller et al., 2011). 

Gathering information about which conditions lead to invasions and the long-time lag between an 

introduction of a terrestrial invasive species and their wide spread, further arises difficulties when 

working on invasive species (Keller et al., 2011).  

Therefore, the examination to find a method to control invasive species is a complex problem 

(Allendorf and Lundquist, 2003), since the behaviour and consequences of invasive species is still not 

studied (Pimentel et al., 2005; Rabitsch and Genovesi, 2012).  The need of an updated methodology is 

discussed (Rabitsch and Genovesi, 2012) and aims at managing and preventing the introduction and 

spread of invasive species (Caffrey et al., 2014). Further, an appropriate monitoring is necessary to 

prevent new invasions, decrease spreads and to analyse the impact of invasive species (Caffrey et al., 

2014). The developed methodology for tree species classification and detection in this study was found 

to be a useful technique to apply it to invasive species examples. Therefore, the objective was: 

xvi. Assess the use of deep learning techniques to detect invasive species in natural 

environments  

 

7.2 State-of-the-Art 

In recent years remote sensing studies were applied to various natural environments. Their purpose 

was to reduce in-situ measurements by increasing studies using remote sensing methods (Mahdavi et 

al., 2018). This method already proved its efficiency to cover large areas and the acquired data can be 

directly used and processed within GIS (Mahdavi et al., 2018). Joshi et al. (2004) proposed the potential 

of GIS as a synthesising tool in invasive species management approaches. In addition, studies 

presented by Wu (2018) and Twumasi and Merem (2006) pointed out the benefits of GIS applications 

for environmental studies. Two application studies using GIS and remote sensing data are Rebelo et al. 

(2008) and Meera Gandhi et al. (2015). Rebelo et al. (2008) used the Maximum Likelihood Algorithm, 
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mapping and spatial analyses, they finally refined and confirmed with ground data. Their approach 

provided detailed analysis and reached 86 % accuracy. GIS in combination with remote sensing data 

was found to be an effective methodology to investigate wetlands. Meera Gandhi et al. (2015) 

detected changes in the vegetation by image interpretations, based on NDVI, carried out using ERGDAS 

IMAGINE software. The study provided information about the lowest decrease in the forest area by 

6 %, while agriculture land increased the most by 19 %.  

In comparison to satellite images, which were used in (Rebelo et al., 2008; Meera Gandhi et al., 2015), 

UAV images provide a higher resolution. Higher resolution images acquired by UAVs allow higher 

accuracies of image interpretations and feature extractions (Dronova, 2015). Therefore, they appear 

to be more suitable for wetland investigations, especially with focus on invasive species. This can be 

concluded from the variety of studies in agriculture (Grenzdörffer et al., 2008; Raparelli and Bajocco 

et al., 2019) and forestry (Natesan et al., 2019; Kentsch et al., 2020; Gambella et al., 2016). Several 

studies using UAVs in wetlands have already been carried out (Wan et al., 2014; Boon et al., 2016, 

Dvořák et al., 2015). Dvořák et al. (2015) developed a method to detect and map invasive species with 

UAVs. The authors acknowledged UAVs as suitable to monitor eradication efforts in wetlands. Boon et 

al. (2016) realised the higher efficiency in gathering valuable and accurate information in comparison 

to field studies, when using UAVs and computer vision techniques to enhance classifications and health 

assessments in wetlands. Wan et al. (2014) and Mafanya et al. (2018) used UAV gathered images to 

classify invasive species. Wan et al. (2014) analysed the spread of Spartina alterniflora in Beihai in the 

years 2009 and 2011, using high resolution images acquired by UAVs. A total accuracy of 94.0 % could 

be achieved and hence provided information about an increasing spread of 19.07 % from 2009 to 2011. 

Moreover, the image analysis provided the opportunity to identify areas with different levels of 

densities. Therefore, drones were considered as sufficient tool for this study.  

Capturing large areas and the demand of precise classification results smoothened the way for DL 

applications in natural environment studies. The use of DL and segmentation to process large data sets 

is common use. Sun et al. (2017) used images taken with a mobile phone to identify ornamental plant 

species. Their database consists of 10,000 images from 100 different species. ResNet networks were 

compared and used to classify the 100 plant species. The best recognition rate was archived by 

ResNet26 with 91.78 %. A recent study of Rezaee et al. (2018) used a fully trained and fine-tuned CNN 

with a limited amount of data to classify wetlands. A comparison of the CNN with Random Forest was 

performed to evaluate the capacity and classification accuracies of CNNs. The CNN outperformed 

Random Forest and an overall accuracy of 94.82 % was achieved, varying between 76.65 % and 98.74 %. 

Deep Convolutional Neural Networks were developed by Liu and Abd-Elrahman (2018) to classify 

wetlands from UAV imagery. Image segmentation was done with Trimble´s eCognition by first 
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segmenting objects, then extracting features and finally train and implement a classifier. The results 

of the study showed the advantages of deep CNN reaching accuracies of 82.02 %, when multi-view 

images were used, and with lower accuracies when orthomosaics were used (71.69 %). A similar 

approach was done by Ashqar and Abu-Naser (2019), who used a dataset containing 3,800 images of 

the Brazilian National Forest (Kaggle dataset). The authors used data augmentation and three models: 

VGGNet, DenseNet and Inception, which were pre-trained with ImageNet. Accuracies of 97.6 % were 

reached. 

 

7.3 Coastal Forests 

Coastal forests cover shore lines all over the world and are often used for disaster prevention, 

especially in Japan, where coastal forest extends approximately 30,000 km long covering a 100,000 ha 

area (Kudoh, 1985). Most of them are plantations that started in the 17th century (Ohta, 2013). Coastal 

forests were intentionally planted to protect the inland from Tsunamis because of their capability to 

reduce the force, depth and velocity of tsunamis and therefore their damage. Especially after the 

earthquake of 2011, coastal forests reduced significantly the mortality and damage rates (Nateghi et 

al. 2016). In general, coastal forests have the function of preserving the environment by protecting it 

from strong winds, sand movement, waves and fog (Kudoh, 1985). (Kudoh, 1985) identified coastal 

forests for Hokkaido, Honshu, Shikoku, Kyushu and Okinawa and specified the forest area in windbreak, 

tidal waves shifting, sand control and fog prevention forests. Hokkaido has the largest area of coastal 

forest with 95,984 ha, from which approximately 50 % are fog prevention forests and 40 % wind 

protection. The main island Honshu has a total of 25,777 ha coastal forest with 12,863 ha to protect 

the area from tidal waves, 9,867 ha to decrease the wind speed and a small part to protect the inland 

from moving sand. The planted black pine trees (Pinus thunbergii) were chosen because of their ability 

to grow on the soils in coastal areas with poor nutrient supply and the trapping activities of their 

needles (Ohta, 2013). Nowadays, coastal forests have additional functions for relaxation, recreation, 

conservation of biodiversity and their forest products.  

 

7.3.1 Methodology 

7.3.1.1 Study site coastal forest and problem definition 

The study site is located in the north of Yamagata prefecture at the coast of the Japan Sea (38°52’35’’N 

139°47’54’’E). The site is found south of Sakata and part of an approximately 115 ha wide coastal forest. 

The forest has a length of around 5.9 km, a minimum width of 140 m and a maximum width of 350 m. 
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The coastal forest is a black pine (Pinus thunbergii) plantation with high tolerances to acidic and 

alkaline soils as well as drought conditions (Ito et al., 2004, Lisein et al. 2015). Since the early 1990s 

this forest has been invaded by black locust trees (Robinia pseudoacacia), a fast-growing species 

growing in gaps in the black pine forest. It is known for its rapid invasion and high biomass production 

with a high impact on the structure and function of tree communities (Richardson et al., 2004). 

However, the influences on the function of the coastal forest are unknown but it is expected to weaken 

its windbreak potential. Invasive tree species have a high impact on the structures, properties and 

functions of natural ecosystems (Moran et al., 2000; Coll et al., 2018). Therefore, it is necessary to 

detect and identify black locust trees in order to provide information about their distribution and 

density to support the strategies of forest management practices.  

 

7.3.1.2 Data processing 

A UAV flight was performed in summer 2019, collecting approximately 1,000 images at a flight altitude 

of 30 m, covering an area of 2.8 ha. The raw images were processed using the software Metashape to 

generate one orthomosaic. Afterwards, a manual annotation process was done using GIMP. The 

classes were divided by objects/characteristics that were able to be identified on the images. Four 

layers were annotated for the coastal forest mosaics: "Black locust", "Soil", "Other trees" (especially 

black pine trees) and "Man-made" (Figure 80). The orthomosaic, as well as the manual annotations, 

were divided into axis-aligned, squared patches with a side length of 150 pixels.  

 

7.3.1.3 Deep learning methods  

In this approach the MLP classifier was applied, where the data and annotation patches were labelled 

for each respective class. Since one patch can contain more than one class, the problem was defined 

as multi-label classification. The network used to perform the patch classification was ResNet50. The 

network was pre-trained with ImageNet weights and considered as frozen or unfrozen.  

The network was retrained with the coastal forest dataset, whereby a subset of the data was used for 

training and the remaining data was used to validate the quality of the trained model at predicting the 

correct classes. 80 % of the dataset was randomly chosen for training and the remaining 20 % was used 

for testing. 
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Figure 80 Example of the coastal forest mosaic. Examples of patches each containing a single different class 

 

7.3.2  Results – Detection of invasive tree species in the coastal 

forest 

The MLP algorithm was trained for pine trees with green-yellowish leaves and black locust, presenting 

a light green broad-leaved. The shape of the leaves was visible on the mosaic but it was difficult to 

differentiate between the species (Figure 81). The main interest in this practical application was to 

detect the occurrence of black locust. This is a complex problem in image classification terms as the 

differences between these "Other trees" and black locust were minor. Moreover, the distribution of 

the invasive species within the forest was irregular and often made up of very small patches, 

sometimes including single trees (Figure 81). 

The results with the highest accuracy were obtained with the unfrozen model. Figure 82 shows 

representative examples of the results obtained. A 75 % rate of True Positives (TP) for black locust and 

less than 10 % False Positives (FP, 90.826 % True Negative rate) were achieved (Figure 82, right side). 

At the same time, the other trees were detected with over 95 % TP rate and about 10 % of FP. The 

results indicated that by using DL tools in a more sophisticated approach or complementing it with 

computer vision algorithms, these insights could be improved.  
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Figure 81 Example of the coastal forest.  Mosaic with marked black locust areas (left); Example of Japanese black pine trees 
(middle); Example of black locust trees (right) 

For example, a learning rate of 2*10-3, obtained a high Total Agreement (TA, 90.8 %) with only 62% 

sensitivity for the black locust class. This version of the classifier presents low FP, recognizing values 

for both classes and thus, high accuracy without considering the black locust class, which was less 

frequent (Figure 82). The TA value in this case (42.78 %) was low, but the sensitivity value of the black 

locust class was the highest during the whole experiment, reaching almost 85 %. This resulted in a high 

confusion between the black locust and other trees classes, with the specificity of the black locust class 

dropping to about 65 %.  

 

 

Figure 82 Results for the MLP classification of the Coastal Forest Mosaic for three learning rates (LR). Pie charts show, Total 
Agreement (TA), Total Agreement with False Positives (TAFP), Partial Agreement (PA). The bar charts show classification 

measure for the "black locust" and "other trees" classes: Sensitivity or True Positive rate (SENS), Specificity or True 
Negative Rate (SPEC) and Accuracy (ACC). 
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7.3.3  Discussion 

7.3.3.1  Data imbalance 

In the coastal forest experiment the performance of a simple patch-based approach was assessed for 

solving practical problems. A 75 % rate of TP was obtained for the black locust class with under 10 % 

of FP while simultaneously obtaining (95 % / 10 %) values for the other trees class. This showed that 

DL can provide valuable information about complex classification problems even when used as a "black 

box". The results of the first dataset indicated that the amount of data for black locust was not enough 

to train a DL network. Moreover, the data were imbalanced regarding the classes Others and black 

locust, which can be improved by increasing the dataset, suggesting that using techniques such as data 

re-balancing (oversampling/down-sampling) or computer vision post-processing steps could improve 

the results even further by reducing the rate of FP. Onishi and Ise (2018) already confirmed that 

statement showing an increase of their sensitivity results from an average of 83.1 % to 89 %. Safonova 

et al. (2019) showed an increase of 12.1 % in their average sensitivity data since their data were less 

unbalanced than Onishi and Ise (2018). Based on these studies, data re-balancing has the potential to 

improve the classification results for the coastal forest. In Japan, black locust trees are mixed with 

other tree species, which makes it difficult to get images from pure black locust stands. Nevertheless, 

since the invasion of the tree species is a problem in forests all over Japan (e.g. Srivastava et al., 2014; 

Tanigushi et al., 2007) images of black locust trees in mixed forests can be easily collected.  

 

7.3.3.2  Effects of coastal forests 

Coastal forests have an important purpose and it has been proven that management is important to 

preserve their capabilities. Both tree species, black pine and black locust, are well adapted to coastal 

conditions. The invasion had changed the monoculture plantation into a mixed forest, which might be 

an enhancement of forest resilience since several studies have pointed out the benefits of mixed 

forests under climate change. Tinya et al. (2019) suggested that mixed forests showed more stability 

to stress and disturbances. The study of identifying invasive species has the potential to analyse their 

influence on coastal forest functions. Those functions are known from studies like Kudoh (1985) and 

Forbes and Broadhead (2008), which focussed on the requirement of forests.  

Kudoh (1985) studied the role of the black pine coastal forests and their potential to protect the 

environment, while Forbes and Broadhead (2008) explained the functional attributes of a forest, 

especially related to tsunami protection, like forest width, tree density and age. Kudoh (1985) 

explained that sea water droplets can be trapped 25 times of the forest tree height and therefore filter 

the salt. Already 2 m high trees in two planted rows covering 11 m along the coast can capture a large 
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amount of sand, according to (Kudoh, 1985). Further, the author calculated the reduction of the 

destructive power and height of tsunami waves. Forbes and Broadhead (2008) identified the width of 

the forest as most important factor. The authors pointed out that a coastal forest with a width of 200 m 

reduces the power of a 3 m tsunami by at least 80 %. Forbes and Broadhead (2008) indicated that a 

black pine forest with a width of at least 20 m is needed to withstand a tsunami with a wave height 

between 1 and 3 m. The minimum width of the Shonai coastal forest is 140 m and it has therefore the 

potential to effectively absorb the energy of a tsunami.  

The density of the forest is another important factor and closely related to the vertical structure of the 

forest (Forbes and Broadhead, 2008). The black pine trees in coastal forests grow their first branches 

at a height of 3 m. Hence, the protection potential of a pure black pine forest is significantly lower than 

a mixture of black pine trees with deciduous trees like in the Shonai coastal forest. Kudoh (1985) 

indicated that black locust trees have a high potential to increase the mixture of the plantation even 

better and to positively influence on the forest ecosystem. The moderate density, which is generated 

by the mixture, will have the highest protection potential, according to Forbes and Broadhead (2008). 

The black locust in the Shonai coastal forest is subdominant as well as part of the understory vegetation.  

The mixture of coastal forests is not well studied; therefore, a first analysis of the mixture would 

already provide essential information to indicate the potential or the thread of black locusts in black 

pine forests. The whole classification of this mixed forest and discussion was only possible because of 

the developed image analyses. Even though black locust trees can have positive effects on the coastal 

forest, negative influences need to be discussed as well. Since black locust trees are deciduous, they 

might create wind tunnels in the winter season.  

 

7.3.3.3  Study assumptions and limitations  

The proposed methodology is a tool for forest management practices since it can provide fast and 

reliable information about forests. In particular, the coastal forests with their function as wind and 

tsunami breaker could benefit from a more automated management system. Further, the Ministry of 

Environment in Japan has called for the urgency of management of black locust (Taniguchi et al., 2007). 

Since most of the forests are unmanaged and dense, this study provides a simple tool for forestry to 

assess the spread of black locusts and to detect invasive trees. Fieldwork in this area showed that the 

amount of black locust is higher than the 10 % coverage in the orthomosaic, which can be explained 

by smaller tree height (12 - 18 m) in comparison to black pine trees (up to 40 m). The smaller black 

locusts are often covered by the black pine canopies, only visible in forest gaps and cannot be easily 

identified from above. The true distribution and number of trees is still unknown, since not all trees 
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were visible on the images. Therefore, further fieldwork needs to be conducted to evaluate the 

accuracy of the model.  

 

7.3.4  Conclusion 

The method studied with coastal forest data showed its limitation regarding the visibility of smaller 

black locust trees. Still, the methodology indicated a high potential which needs to be pursued further. 

The results show the benefit of this technique since they provided a fast overview of the study area 

and facilitated management approaches. 
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7.4 Analysis of UAV-acquired wetland orthomosaics using GIS, 

computer vision, computational topology and deep learning 

7.4.1  Wetlands  

Defining a wetland is difficult in terms of their high variability in size, location and hydrology (Mahdavi 

et al., 2018). They are often characterised as forming a transitional zone between terrestrial and 

aquatic zones, showing characteristics of both (Mahdavi et al., 2018). The water content in wetlands 

is usually changes between different seasons, creating therefore different conditions depending on 

the location. A common definition is giving by the Ramsar Convention, summarizing marsh, fen, 

peatland and water into natural or artificial wetlands. The water content can be static or flowing, it 

can be brackish or salty (Mahdavi et al., 2018).  

Wetlands have a high economic value because of several advantages for the environment. Wetlands 

are known for their purification of water and their protection against flooding and their high filtering 

potential that reduces pollutions and sediments significantly. They are habitats for plants and animals, 

including some threatened species (Kingsfor et al., 2016). Wetlands are a natural sink of carbon and 

have therefore a direct relation to climate change. Further they have a significant influence on all 

nutrient cycles (Mitsch and Gosselink, 2000).  

Mitsch and Gosselink (2000) estimated wetland areas to cover around 4 to 6 % of the terrestrial surface, 

while (Kingsford et al., 2016) estimated 5 to 10 %, whereby more than 70 % might be already destroyed. 

In the past, wetlands were often drained for agricultural land or urban space, especially in Europe and 

the USA. Also, further anthropogenic influences like air pollution, groundwater extraction and land 

irrigation affect wetlands (Mitsch and Gosselink, 2000). Changing climate conditions increased 

pressures on the natural habitats because of drought conditions and salination (Mahdavi et al., 2018). 

Natural threats are known to be diseases or invasive species, which are further causing a biodiversity 

loss (Mitsch and Gosselink, 2000).   

The loss of wetland area and the acknowledgement of their great potential increased the pressure to 

conserve wetlands. As conservation actions mitigation of threats, risk assessment and management 

possibilities are pronounced (Mitsch and Gosselink, 2000). The determination of wetland status needs 

to be done by inventory assessments. Thus, collecting information about the current status and the 

changes within a wetland requires monitoring (Mitsch and Gosselink, 2000). Therefore, primary 

threats can be identified and protection, mitigation and rehabilitation can be established for 

management practices. 
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7.4.1.1  Problem definition Blueberries 

In the past two decades an explosive spread of North American blueberry hybrids (vaccinium 

corymbosum x angustifolium) has been observed in several moors of the northern German Geest area, 

endangering the natural development of these protected raised bog areas (Hollenbach, 2014). Starting 

point of the spread were almost exclusively existing or former commercial blueberry plantations 

(Scheppker and Kowarik, 1998; Stieper, 2018), which are located in the area or in the immediate 

vicinity of bogs or former peat extraction areas due to the good soil conditions. Most of the recipient 

habitats are pine forests and bogs in various stages of de- and regeneration. Particularly in bogs, 

spontaneously growing blueberries are displacing valuable species indigenous peatland fauna such as 

Erica tetralix, Eriophorum vaginatum, Empetrum nigrum, Andromeda polifolia. Because of these 

characteristics, the American Blueberry (Vaccinium angustifolium x corymbosum) was classified as a 

potentially invasive neophyte by the Federal Agency for Nature Conservation (Nehring et al., 2013). 

This work is focused on a natural environment defined as an "ombrotrophic s for bog", i.e., a wetland 

hydrologically isolated from its environment receiving both water and nutrients only from precipitation. 

After the degradation of wetland areas due to anthropogenic activities protection programs were 

issued for the conservation and development of rare animal and plant communities in these areas 

called “Moorschutzprogramm”, established by the state government of Lower Saxony (Deilmann et al., 

1990). Furthermore, activities that threaten the goals of the protection program are prohibited, which 

increases the difficulty of corresponding field studies (Deilmann et al., 1990). However, maintenance 

and development measures are needed to rehabilitate wetland areas, especially nowadays, where the 

invasive blueberry species (Vaccinium corymbosum x angustifolium) migrates into protected, 

comparatively sensitive ecosystems. In 2011 stands of spontaneously growing blueberries were known 

from 20 counties in Lower Saxony. The tendency to spread continues: practically every cultivated area 

has experienced a spread over time if suitable biotopes occur in the immediate vicinity (Starfinger and 

Kowarik, 2011). The potential area occupied by spontaneously growing blueberries can reach several 

square kilometres within a few years (Starfinger and Kowarik, 2011). Studies from Schepker et al., 

(1997) and Schiefer (2018) used grids in the field to plot the distribution of blueberries in wetlands. 

Both studies focused on areas near blueberry cultivation, as the biggest spread was found in close 

proximity to the blueberry plantations (Scheppker and Kowarik, 1998).  

Still, it is unclear how widespread the blueberries have already become, as well as in which areas they 

occur. In order to take effective measures on these areas and to minimise disturbance of the usually 

sensitive biotopes, it is necessary to localise the individual blueberry plants as accurately and early as 

possible. In addition, the following questions arise: Does a displacement of natural species take place 

and where should what measures be taken against a continuing invasion? According to Schepker et al. 
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(1997) and Essl (2004) counter measures with little efforts can lead to good results and prevent a 

further spread, especially when blueberry bushes are identified early. Therefore, a suitable method for 

recording stock development and distribution is needed, which is associated with low human impact.  

Locating the small single blueberry bushes from the ground in large distribution areas is difficult and 

has not been done before, to the best of our knowledge. UAV-supported methods therefore offer an 

efficient possibility to discover individual young plants on a large scale and to detect propagation 

hotspots at an early stage. Driven by the urgent need to detect the blueberry species and given the 

latest developed technologies allowed to formalize the following objectives: 

xvii. To classify wetland vegetation and  

xviii. To detect invasive blueberry species with DL techniques 

xix. To quantify the classification results achieved using data augmentation and loss function 

weighting 

xx. The effect on the classification results based on the use of different DL architectures 

xxi. To map and analyse the distribution and properties of the invasive species 

The main goal was to explore the use of UAV-acquired images to analyse large parts of the sensitive 

ecosystem, studied here. The gathered high-resolution images were used together with techniques 

from different study fields (ecosystem analysis, image processing, DL and computational topology) to 

produce informative and accurate maps, which will help to manage areas affected by blueberries. 

 

7.4.2  Study area 

The chosen study area "Lichtenmoor" is in a natural environment defined as wetland and is located 

about 60 km northwest of Hanover, Germany (52°43'06.2"N 9°20'41.5"E) (Figure 83). The Lichtenmoor 

is an upland moor complex of national importance for the protection of upland moors. The 

Lichtenmoor lowland is located in the central region of Lower Saxony, northern Germany, 

predominantly in the district of Nienburg/Weser. The total extent of the wetland complex is 38 km² 

(Schneekloth and Tuexen, 1975). The central area of the studied wetland is characterised by past 

industrial peat cutting. As a subsequent use, some former peat cutting areas are rewetted with the 

aim of regenerating raised bogs. In the surrounding area parts of the Lichtenmoor were designated as 

nature reserves; at the edges and in parts of the nature reserves there are former hand peat cutting 

sites. The remaining area is dominated by agricultural areas, mostly grasslands, dry to moist moorland 

forests, scrubby heather and moorland degeneration stages, pioneer stages of moorland rewetting 

and peat extraction areas under cultivation. The case study area covers a total area of 62 ha and is 

located in the central part of the Lichtenmoor complex. In the northeast it borders on a pine plantation, 
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in the southwest current peat extraction areas are adjacent. Blueberry plantations can be found 

throughout the Lichtenmoor, especially on the outskirts of the localities Lichtenhorst, Heemsen, 

Sonnenborstel and Steimbke. 

 

Figure 83 Location of the study area in the north of Germany. In the upper right part of the figure the study sites are marked 
with different colours. The bottom right part an example orthomosaic is shown with detail of the different classes 

 

7.4.3  Description of the blueberry species 

Blueberries have been cultivated in commercial plantations in Lower Saxony since the early 1930’s 

(Schepker et al., 1997}. Since then, the area under cultivation has increased steadily. In 2005 the area 

under blueberry cultivation in Lower Saxony was about 1,400 ha (Starfinger and Kowarik, 2011). In 

nature, blueberries are mainly distributed by birds and small mammals, which spread the seeds. Once 

established, plants can spread in the vicinity by colonial growth and the high regeneration potential of 

the blueberry favours the strong spread (Stieper, 2018). Thus, blueberries are increasingly becoming 

wild in neighbouring areas. Schepker et al. (1997) and Schepker and Kowarik (1998) found a correlation 

between the density of blueberries and the distance to blueberry plantations, a maximum distance of 

1,700 m was recorded. Near the cultivated areas, the feral blueberries form dense shrub stands with 

height up to 2-3 m and ground coverage of up to > 60 %. With increasing distance, the degree of 

coverage decreases rapidly (Schepker and Kowarik, 1998; Starfinger and Kowarik, 2011, Hollenbach, 

2020). Since these studies took place already in the last millennium, a larger distribution must be 
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expected today. Stieper (2018) describes a distribution of blueberries over 4 ha in the “Krähenmoor”, 

where the maximum distance to the plantation was marked at 100 m. The species prefers acidic 

locations, such as pine forests or wetlands. Especially raised bogs in their degeneration stage provide 

ideal habitat conditions for the invasive blueberries (Schepker et al., 1997). Increasingly, shallow 

individuals, which can reach a height of 60 cm, but also tall bushes can be represented, which can 

reach a height of 3 m (Stieper, 2018). In the course of the increased growth and the dense shrub 

structures, ground vegetation is displaced, since it cannot exist under the shade of the blueberries. 

Other presumed effects of blueberry cultivation are reduced evaporation rates and an influence on 

nutrient cycles in bogs, which in turn can have an impact on existing species. Therefore, human 

interventions are necessary to protect the sensitive and rare structures and plants of wetlands (Stieper, 

2018). 

 

Figure 84 Workflow of the chapter. Gray is the data base; purple boxes show software/programs used in this study; white 
boxes with a blue outline are generated files; dark blue are processes used for the DL classification and detection; light blue 
are tools in ArcGIS 
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7.4.4  Data collection and pre-processing 

Image collection was performed by using a DJI phantom 4 UAV in autumn 2018 due to the seasonal 

red colouring of the blueberry leaves. For the sites B1 to B4 490 to 584 images were collected, while 

1,346 images were taken for B6. The flight height was 50 m and front and side overlaps of 80 % were 

chosen.  

All images were aligned with Metashape and obtained orthomosaics were annotated with GIMP. For 

three of them (B1, B2 and B3) the whole orthomosaic was annotated and each pixel was given one of 

the following 6 labels: Blueberries, trees, yellow bushes, soil, water and dead trees. The class trees 

contain pine trees (Pinus sylvestris), the class yellow bushes were defined by shrubby birches 

(predominantly Betula pubescens, secondary Betula pendula). Binary layers for each of the six classes 

were created for each of the three orthomosaics using the pixel-level labels. These annotations were 

based on colour, shape and context information contained in the orthomosaics. In the last two mosaics 

(B4 and B6) only blueberries were annotated.   

In order to train a model capable of predicting all the possible different classes, orthomosaic with all 

the possible label annotations were needed, therefore only B1 to B3 were used. The orthomosaics, as 

well as the annotated binary layers were divided into axis-parallel patches of side length (referred from 

now on as patch size = 100). Given the size of the blueberry bushes, ranging from 20 to 100 pixels in 

radius it was decided to use s = 100 pixels for all the experiments presented. Patches of 100 x 100 

pixels were used as an input for the DL network. In the first step of the network, each patch was resized 

to fit the size needed by each feature extractor. The classes present in each patch were stored in a 

separate label list. In general, patches contained more than one class and therefore the problem was 

defined as a multi-label patch classification problem. 

 

7.4.4.1  Data processing using ArcGIS 

This section deals with data processing performed with ArcGIS and python coding (Figure 84). The 

processing helped to visualise and identify parts of the mosaic containing blueberry bushes. Further 

analyses were performed to gain knowledge about the blueberry bush properties.  

In this context, points were marked manually and stored in a shapefile to identify the position of the 

invasive species within the five orthomosaics. Furthermore, analytical tools were used to extract useful 

information about the problematic species. With the tool kernel density, kernel functions were used 

to calculate the magnitude-per-unit area from the blueberry points. A smaller search radius was used 

to show a detailed density raster. The tool integrate was used to group blueberry bushes which fell 
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into a specified distance. These specified distances were 3 and 6 m, respectively. With the tool collect 

events, the points, which were integrated before, were summarised in a new layer. These steps were 

necessary to perform an optimized hot spot analysis with the blueberry point shapefile. The hot spot 

analysis identified significant differences between the proximity of a feature in comparison to the 

extent of the respective study area. Is the value of a feature significantly higher, then it is considered 

as a hot spot and the tool outputs a feature map with three levels of confidence (90 %, 95 % and 99 %). 

The input file was the result of the collect events and as analysis field counts were chosen. Furthermore, 

it also indicates the significant lower features. Additionally, the optimized hot spot tool was used to 

identify the hot spots, where larger blueberry bushes were located.  

On the basis of the annotations made for all orthomosaics, several simple python codes and ArcGIS 

were used to perform image analysis. Pixels were counted for all mosaics, as well as for all annotated 

layers. The numbers of black pixels in the annotated layers were specifically counted to get the 

percentage and area in square metres per class. Additionally, the overall area, presented in mosaics, 

was calculated in a hectare basis. Since the focus of this work was on the blueberry bushes, several 

statistical values were generated. The number of blueberry bushes were counted and the number of 

blueberries per ha were calculated for each mosaic. Additionally, the total area and also the area per 

blueberry bush were computed in square metres. Furthermore, the proportion of blueberries in 

relation to the vegetation was calculated in percent. Finally, height values were computed on the basis 

of DEMs, annotations of the blueberries and annotations of floor points per site. Floor points were 

annotated close to blueberry bushes to increase the accuracy of the computed height. Maximum 

height values were estimated in a first analysis and the median height in a second. 

Finally, persistent homologies were computed on the annotations of the blueberry bushes. Persistent 

homology is an algebraic method to identify topological features of data (Carlson, 2020).  The tool 

connects nearby points to get a trivial topology behind discrete points. In this study the idea behind 

this complex mathematical idea is used to observe changes in the data using an increasing threshold. 

0d persistent homology was used, which can be explained by circles growing around points, 

simultaneously (Koplik, 2019). The aim was to connect all points by increasing the radius of the growing 

circles. When two circles intersected each other, the points were connected into the new component, 

so they were fused. When points were fused, they created a point in the persistent homology diagram. 

The growing of the circles continued until all points were connected. Points, which were close to each 

other connected quickly, while further ones needed a larger radius and therefore more time to be 

connected (Kolpik, 2019). Persistent homology computes numbers, which describe the clustering and 

separation of data. The original output was used to generate the radius needed to fuse 1, 10, 50 and 

90% of the points contained in the orthomosaics.  
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7.4.5  Deep learning techniques 

DL is a trending field of machine learning that focuses on fitting large models with millions of 

parameters for a variety of tasks, such as image classification and segmentation. These approaches 

have been rapidly gaining attention in computer vision tasks due to their increased accuracy.  

DL models commonly learn from examples in a supervised manner: First, architecture or a graph of 

connected nodes is defined. These nodes are often grouped in layers that perform a specific operation 

and the combination of a large number of layers is referred to as a DNN. The typology of the nodes, 

the number of nodes per layer and the connections between them determine the behaviour of the 

network. In general, two main types of nodes are used: linear nodes, expressed as matrix 

multiplications and nodes that introduce non-linear functions (such as the sigmoid function). The 

weights in linear nodes are usually initialised with random values following a specific distribution. 

Afterwards, the network is given samples of the data, known as training samples, that contain 

instances of the problem (i.e. image intensities) with their corresponding solutions (i.e. labels). These 

samples are iteratively run through the network to evaluate its current accuracy and the weights are 

updated following an optimization process. 

The approach was based on a patch classification model that uses the patches of 100 x 100 pixels. A 

patch of mosaic B1 and B3 covered therefore 700 x 700 cm and a patch of mosaic B2 500 x 500 cm. For 

each patch, a list containing the class labels was created from the binary maps for each class. This 

classification style is usually referred as multi-label, since each input patch might contain different 

labels (i.e. a part of the patch may contain soil, while other parts of the same patch could also contain 

bushes or blueberries). 

 

7.4.5.1  Deep learning architectures  

In this work, DNNs were used to locate and identify the six classes defined in section. DNN have two 

major components for classification: a feature extraction stage and a prediction stage. On the first 

stage, convolutional operators are trained to extract salient and meaningful features (such as texture) 

while on the second stage these features are used to predict the final labels for the given input patch 

or image. In order to train general and robust feature extractors a large pool of heterogeneous images 

with different properties (light conditions, colour, view, etc.) is needed, to capture all the possible 

image variability. During the process of the working with the blueberry data, it was recognized that the 

data were challenging to run them with a DL network, as the data were unbalanced and similar 

challenges to the Black locust data occurred. Therefore, the work was split into a DL part, which is 

presented in detail in Cabezas et al. (2020) and Kentsch et. al (2020) and in the application part 
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(Kentsch et al., 2021). In this chapter the important aspect of the study (Cabezas et al., 2020) are 

included to understand the DL part of the blueberry classification. One part of the CNN is the feature 

extraction, which was performed with the following architectures:  

1. AlexNet (Krizhevsky et al., 2012) is a widely used CNN architecture, that uses Rectified Linear 

Units (ReLU) and consist of eight layers, five convolutional layers and three full connected ones.  

2. The VGG (Simonyan and Zisserman, 2015) uses small receptive fields together with three ReLU 

units, which increased the decision function. In this work a VGG version with 19 layers (1 x 1 

convolutional layers), including batch normalization, was considered. 

3. ResNet (here used: ResNet50, ResNet152) (He et al., 2015) has an increased deepness, which 

provides higher performances of the network, with the additional use of identify shortcut 

connections and ReLU functions (Fung, 2017). 

4. The Squeezenet (squeezenet1_0) (Iandola et al. 2016) uses an architecture with 1 x 1 filters 

and 1x1 convolutional layers. The benefit of the network is the high accuracy which can be 

achieved, even with few parameters (Tsang, 2019).  

5. DenseNet (densenet161) (Huang et al., 2016) uses dense connection, few parameters and 

achieves high accuracies. The DenseNet, used in this work, contains 161 layers and is built up 

by pre-activation, batch normalization, ReLU and finally the 3x3 convolutional layers.  

6. Wide ResNets (wide_resnet101_2) (Zagoruyko and Komodakis, 2016) has modifications, which 

allows the network to be shallower than the ResNet, without losing accuracy. Wide ResNets 

allow adding more feature maps in each layer, which enables the possibility to reduce the 

depth of the network (Zaguroyko & Komodakis, 2016). 

7. ResNeXt (resnext101_32x8d) (Xie et al., 2017) is another modification of the ResNet network. 

The network uses the split-transform-merge paradigm. The cardinality, introduced with this 

network, influences the performance of the model (Fung, 2017).  

 

7.4.5.2  Data augmentation and transfer learning 

Proven by previous work (Kentsch et al., 2020, Cabezas et al., 2020), transfer learning is a useful tool 

for image analysis applications, where the training dataset is too small to properly train these feature 

extractors from scratch. So, transfer learning with ImageNet was applied to initialize the weights of the 

DL network to increase the performance of the network, as only three different orthomosaics were 

available. 

In order to obtain a higher detection rate for the blueberry class, two main approaches were used:  
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❖ Data augmentation is a commonly used strategy in DL that can increase the size of the training 

datasets without the need to collect new data. In this case, data augmentation was used to 

generate new synthetic patches of the blueberry class, which was the less frequent class. Six 

image transformations to augment the data were used, which were implemented with the 

imgaug library:  

o Rotations: the original image is rotated with a random angle, which can be compared 

with a UAV collecting the data from the same object imaging it from different 

directions and angles. 

o Flips: Flips are applied on the x- and y-axis by turning the image up or down, left or 

right. Furthermore, the image can also be mirrored.  

o Gaussian blurring: The artificial blurring is applied by a kernel moving over the image, 

simulating movements, sensor malfunctions or distance effect during the data 

acquisition or the data processing, when orthomosaics are produced. 

o Linear and small contrast changes: Data acquisition is accompanied with different 

illumination conditions and shadows in the images, which can be also applied as 

augmentation technique.  

o Localised elastic deformation: This kind of deformation can be used when there are 

intra-species differences between the single bushes imaged for this study.  

❖ Loss functions are used to compute the accuracy of the network and update their parameters. 

By giving different weights to different classes, their importance can be changed during 

training. In this study, two loss functions were used. The first function checked if a patch 

contained a blueberry bush or not, while the second one checked the fraction of blueberry 

pixels inside the patch. For this work the optimal training settings following (Cabezas et al., 

2020) was used. 

 

7.4.6  Evaluation 

In order to assess the predictive power of the algorithms, labels were used for all the patches and the 

relation between 1) Predicted values resulting from the algorithm and 2) Real values as stated in the 

manually-annotated ground truth. All patches were following broken into the usual classification 

categories TP, FP, TN, FN with TP predicting the contained Blueberry class, which is also marked in the 

ground truth as containing them. 

In order to summarise the occurrences of the four categories, the two following metrics were used 

(True Positive Rate or Sensitivity, False Positive Rate and Accuracy). 
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𝑆𝑒𝑛𝑠 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 

𝐹𝑃𝑅 = 1 − 𝑆𝑃𝐸𝐶 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑁
 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

The algorithm was finally modified to present the results in a way that was convenient for end-users. 

The 100 x 100 patches used for prediction managed to capture most of the occurrences of the 

Blueberry class. However, those rather large patches also included large areas not actually containing 

any blueberries. While expert users could easily use these results as a starting point to quickly identify 

the exact location of blueberry bushes, a refinement using smaller patches would make their work 

faster while also providing clearer information for non-expert users. Consequently, each of the 

predicted 100 x 100 patches were divided into sixteen 25 x 25 patches, re-sampled to the image size 

used by the DNN and re-classified. This resulted in a refined result made up of 25 x 25 patches. This 

process had the downside that if errors where made some of the originally correctly predicted 

Blueberry pixels might be lost, to evaluate this issue the TP, FP, TN, FP status of each pixel in each patch 

were considered and the percentage of Positive pixels covered by the predicted patches was measured. 

Further was the dice coefficient an indicator for the relative weight of Blueberry pixels inside the 

predicted patches:   

𝐷𝐼𝐶𝐸 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

7.4.7  Results 

This section is divided in two parts: The first part of the analysis focused on the manual annotations of 

the wetland vegetation and especially of the blueberry bushes. GIS, computer vision and persistent 

homology were used to describe and quantify the characteristics of the blueberry invasion in all test 

sites. In the second part results of DL techniques are presented. The goal was to assess to what extent 

these technologies can be used to automatically generate the annotations that were used in the first 

part to characterise the invasion. The general workflow can be seen in Figure 85.  
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Figure 85 Image analysis workflow. Consists of two parts, the manual approach using manual annotation, GIS and persistent 
homology and the automatic approach using DL and segmentation to analyse the blueberry invasion 

 

7.4.7.1  Quantitative analysis of the blueberry invasion 

In this part of the study the focus was on characterizing and measuring the dimension of blueberry 

invasion of the wetlands. 

The distribution of the classes in the images (blueberries, trees, yellow bushes, soil, water and dead 

trees; was analysed and the state of the invasion was assessed by gathering information about the 

areas of the sites, the numbers of blueberry bushes and the average area per bush. 

One important aspect was to calculate the area of blueberry bushes within the orthomosaics. The area 

covered by the orthomosaics varied between 10.6 and 12.5 ha, only B6 was larger with 15.5 ha (Table 

29). Together with the annotations made for B1 to B3, the area of every class was calculated (Figure 

86). The main part of the image represented soils (Figure 86). This was validated by the area 

calculations: with 76 % of the orthomosaic B2 and 89 % of B3, soil represented the highest proportion 

of all classes. The second smaller pie shows the living vegetation varying between 4.7 % in B1 and 

18.6 % in B2. Out of the living vegetation, 8.2 % (B2), 15.0 % (B3) and 21.1 % (B1) are blueberry bushes. 

In most of the orthomosaics blueberries were the least frequent class (with 1 to 1.5 %). 
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Figure 86 Distribution of annotated classes for the orthomosaics B1 to B3 
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The number of blueberry bushes varied from 235 in orthomosaic B6 to 687 in B2 (Table 29). The site 

areas of orthomosaic B1, B3 and B4 were similar, while orthomosaic B6 was the largest site containing 

the least blueberry bushes, in contrast to orthomosaic B2, which contained the highest number of 

blueberry bushes in the smallest area. The ratio could be confirmed by calculating the blueberry bushes 

per ha (Table 29). In another step annotations were used to calculate the total area covered by 

blueberry bushes. In orthomosaic B6 an area of 278.07 m² was covered with blueberry bushes, which 

represents the smallest area and resulted in an area of 1.18 m² per blueberry bush. The largest area, 

covered by blueberry bushes, was found in B2 with 1885.51 m². The average size of the bushes was 

similar for B2 and B3. In site B1 the average size of blueberry bushes was the highest with 3.55 m², 

while the covered area was third lowest with 1331.41 m².  

Table 29 Area and counting measures of blueberry bushes detected in the orthomosaics 

 
Orthomosaic  

area in ha 

Number of  

blueberry bushes 

Blueberry 

bushes per ha 

Blueberry 

bush area  

in m² 

Area per 

blueberry 

bush in m² 

B1 11.64 375.00 32.21 1331.42 3.55 

B2 10.64 687.00 64.55 1885.51 2.74 

B3 12.47 566.00 45.40 1470.24 2.60 

B4 12.44 405.00 32.54 870.33 2.15 

B6 15.14 235.00 15.53 278.07 1.18 

 

Since the covered area and the average size of the bushes could be calculated, the next point of interest 

was the area and height per blueberry bush (Figure 87). Since the percentage of blueberries decreased 

towards larger cover areas, bushes were grouped into the intervals 6 to < 10 m² and > 10 m². B1 and 

B2 had approximately 30 bushes between 6 and 10 m², which was the maximum for all sites. Mean 

areas were computed for all orthomosaics, indicating that B1 had a high number of large bushes with 

a mean area of 3.57 m². The smallest blueberry bushes could be found in orthomosaic B6 indicated 

with a mean value of 1.18 m². In general, most of the blueberry bushes showed areas up to 2 m², a 

lower amount distributed between 2 and 4 m² and the lowest numbers distributed in areas greater 

than 4 m². B1 was an exception with around 10 % per class over 4 m². The highest areas calculated 

range between 17 to 25 m², with B1 containing 4 bushes in that range and 27 with areas of more than 

10 m². The smallest areas were found to be less than 10 m² for B1/B4 and approximately 15 m² for all 

other orthomosaics.    
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Figure 87 Distribution of the area and height values of blueberry bushes. From top to bottom: area, maximum height and 
median height 
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A similar distribution can be seen in Figure 87, where the number of blueberry bushes was plotted 

against the height. Classes were chosen for every 0.5 m height, starting with 0 m up to less than 3.5 m 

and more than 3.5 m. This distribution was chosen due to the characteristics of shallow blueberry 

bushes that reached 60 cm and tall species that reached 3 m. Regarding the maximum height, no 

height was computed for 2.3 % (B1) up to 15.5 % (B6) while the numbers were higher when the median 

height was considered (11.0 % for B1 up to 35.2 % for B6). In general, the median height values were 

higher for the classes 0 m and 0.5 m in comparison to the maximum height, while the values are lower 

from 0.5 m. The lowest height values started from 0.01 m (B6), 0.03 m (B1), 0.07 m (B3/4) and 0.1 m 

(B2) for both maximum and median height. In general, the maximum and the median height 

distributions of the orthomosaics were similar. Almost all of the blueberry bushes in orthomosaic B6 

were within the class < 0.5 (83.3 %). In B1 the number of blueberry bushes in this same class was 79 % 

and 15.2 % was between 0.5 and < 1 m, which was similar to B6. Orthomosaic B2 to B4 showed a 

Poisson distribution, whereby B2 had the highest number in 1 < 1.5 m with 21.2 m, while 41.6 of the 

blueberry bushes in B4 had the highest value in < 0.5 m. Furthermore, in B2 and B3 more than 50 % of 

the blueberry bushes reached heights between 1 m and 3.5 m (57 % and 57.7 %). 

It has to be considered that the area was calculated based on the shapefiles in ArcGIS, while the 

developed python code was used to calculate the height of the blueberry bushes. Since the input for 

the code were the annotations of the blueberry bushes, stored as PNG file, bushes which were close 

together were grouped. Therefore, the height values were not always calculated for an individual bush, 

which resulted in a different number of blueberry bushes per site: 309 (B1), 519 (B2), 461 (B3), 394 

(B4) and 219 (B6). 

 

7.4.7.2  Analysis of spread patterns 

In a second step of the quantitative analysis of the blueberry invasion, the concentration, density and 

the spread patterns were examined. GIS and persistent homology were used to assess these issues. 

Characterisations of concentrations and densities can indicate the number of blueberry bushes within 

a given region of the orthomosaic, which exceeds a simple location because the distribution of the 

bushes can be analysed precisely. Clustering bushes and mapping densities further increase the 

understanding of the distribution. Together with the persistent homology and hotspot analysis the 

spread could be defined for all orthomosaics, which helped to characterise the invasion.  

The first step was to cluster blueberry bushes by using specified distances, of which 3 and 6 m were 

chosen, due to the calculated area of the blueberry bushes. The average diameter was considered to 

be 2 m for the different sites, and therefore a diameter of 3 m was found to be appropriate to 
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especially group blueberry bushes which were close to each other. The results of both distances were 

listed and compared (Table 30). When blueberry bushes were located in a range of 3 m, they were 

clustered with the following results. From orthomosaic B3 to B1 35.51 % to 39.87 % were clustered. 

The highest number of clustered bushes was 33 in B3, followed by 25 in B2 and 10 in B1. In comparison 

to B1 to B3, B4 and B6 had around 28.3 % clusters with 3 and more blueberry bushes. The highest 

number within a cluster was 9 for B4 and 13 for B6. After increasing the range to 6 m the number of 

blueberry bushes clustered in the group 3 or more bushes increased to 69.57 %, which is more than 

30 percentage points. B1, B3 and B4 had a similar increase of around 15 percentage points and reached 

56.63 % in B1, 50.43 % in B3 and 44.35 % in B6. With less than 10 percentage points, 37.68 % of the 

blueberry bushes were grouped together with more than 3 bushes.  

Table 30 Clustering results based on point shapefiles of the sites 

 
3 m clustering 

  
6 m clustering 

  

 
grouped 3 or 

more (in %) 

number of 

single bushes 

highest 

counts 

(group) 

grouped 3 or 

more (in %) 

number of 

single bushes 

highest 

counts 

(group) 

B1 39.87 89 10 56.63 18 25 

B2 36.82 87 25 69.57 23 50 

B3 35.51 98 33 50.43 36 50 

B4 28.34 92 9 44.35 39 22 

B6 28.28 51 13 37.68 28 21 

 

Based on the GIS point shapefiles of the blueberry bushes, density maps were generated to see how 

the bushes were distributed within the site. Figure 88 provides three examples of the orthomosaics B1 

to B3. Areas with a high density were marked in red and low densities in dark green. Orthomosaic B1 

has one high density spot in the north-western part of the map, while the density decreased with only 

single or paired bushes in southeast direction. Orthomosaic B2 showed four density spots. Two smaller 

ones were located in the northwest; a larger spot was in the middle of the orthomosaic, and a last one 

in the southeast. The space between the middle and southeast spot was covered with blueberry 

bushes, which was similar to the distribution of B3. In orthomosaic B4 nearly the whole area was 

dominated by green to reddish colours. There were three dense spots in the northwest, two spots in 

the middle and one in the southeast. In comparison to B2 and B3 the spots were smaller. Orthomosaic 

B6 covers a larger area than all other orthomosaics, but only three density spots could be identified in 

the middle of the orthomosaic. There were smaller groups of blueberry bushes along the borders of 

the orthomosaic, and single ones were found close to the groups of bushes. 
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Figure 88 Density map for the blueberry species for the sites B1 to B3. Areas of low densities are marked in green and high 
densities are red coloured. A gradient between green and red represents values of medium density. White points mark the 
location of the blueberry bushes 

In order to analyse the spread of the blueberry species, another analysis focused on the point analysis 

to generate a map of hotspot areas. The point analysis used the manually marked blueberry bushes to 

identify where the proximity of the bushes was significantly different (hot and cold), and to quantify 

those that were not identified as significantly different. In B1, two hotspots with 90% confidence 

interval were found in the north. 21 clusters were identified to be to 90% significantly different from 

the study area. The hotspots in B2 were concentrated in the south-easternmost part of the 

orthomosaic. 26 clusters (out of 220) were significantly different to the study area with a confidence 

interval of 99 %. These points contained all bushes located in the south-easternmost part of the 

orthomosaic. In B3 16 out of the 214 clusters fell into the 99 % confidence interval, all located in the 

south-east of the orthomosaic. The same characteristic was found in B4. 23 clusters out of 248 were 

found to be significant with a 99 % confidence and seven points with 90 % to 95 % confidence. B4 was 

the only orthomosaic containing two points considered as cold spots with 90 % confidence in the 

centre of the orthomosaic.  

Finally, the persistent homology was performed. As it can be seen in Figure 89 the radius was plotted 

against the fused region. The orthomosaics B2, B3 and B4 showed a similar trend, while B1 and B6 

followed a different trend, but similar to each other. B2 was the first orthomosaic, where 1 % of the 

blueberry bushes were fused with a radius of 386 and B1 needed the largest radius with a value of 497. 

The necessary radius to fuse up to 10 % of the blueberry bushes was similar to values between 415 

and 557. There was a small gap of approximately 150 between B3 (945), B6 (998) and B1 (824), B2 

(768), B4 (831) when 50 % of the blueberry bushes were fused. The radius needed to fuse 90 % for B1 

and B6 are 3,279 and 3,611, while for B2 to B4 it is 1,610 to 1,709.      
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Figure 89 The persistent homology is plotted by radius against the region. Four fused regions were considered: 1 %, 10 %, 50 % 
and 90 % and all sites are plotted 

 

7.4.7.3  Deep learning results  

Experiments were presented using three orthomosaics containing the invasive blueberry species. The 

algorithms were implemented using the python programming language and the pytorch Library. All 

experiments were run using a Linux Ubuntus operating system with 10 dual-core 3 GHz processors and 

an NVIDIA GTX 1080 graphics board (Cabezas et al. 2020).  

A leave-one-orthomosaic-out strategy was applied, whereby two orthomosaics were used for training, 

while the third one was used for testing. Every orthomosaic was used once for testing, but no 

orthomosaic was used for training/validation and testing at the same time.  

The three folds used for the experiments are presented in the following enumeration:  

• The first fold and testing:  Orthomosaic 1 used for testing with 6,400 patches of which 2.53 % 

contain blueberry bushes; Training: Orthomosaics 2 and 3 (22,562 patches with 2.66 % 

blueberry) 

• Second fold and testing:  Orthomosaic 2 used for testing with 14,641 patches of which 2.58 % 

are blueberry bushes; Training: Orthomosaics 1 and 3 (14,321 patches with 2.68 % blueberry) 

• Third fold, testing:  Orthomosaic 3, 7,921 patches, used for testing and contains 2.53 % 

blueberry bushes; Training: Orthomosaics 1 and 2 (21,041 patches with 2.57 % blueberry) 
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The averages for TPR, FPR and accuracies were used to present the results of the blueberry class for 

each testing. Even though the focus of the study was on the blueberry bushes, the training with all 

classes improved the network performance, especially, because tree, yellow bushes, water and dead 

trees were as infrequent as the blueberry bushes. The soil class caused that the TPR were high and 

accuracies low, because of their high frequency in the dataset (Cabezas et al. 2020).   

 

7.4.7.3.1  Experiment 1: Assessment of deep learning architectures and settings  

Data balancing and transfer learning: Imbalance in data, with only 2.5 % of the patches 

containing blueberry bushes, influence the performance of the architectures significantly. Classes, 

which are infrequent will be classified with lower accuracies, therefore an adjustment of the network 

and data need to be performed. The combination of different DL techniques will be analysed here.  

In a first step, the ResNet50 network was initialised with the ImageNet database (Krizhevsky et al., 

2012) and with frozen and unfrozen weights to assess the importance of network settings on the 

performance of the network. Two kinds of data augmentation were performed to identify the 

influence of the amount of data augmentation. The TPR and accuracies vary in the different training 

sets and provide useful insights into the network performance (Figure 90), while details on the settings 

can be found in Cabezas et al. (2020). Best TPR results were obtained with the settings unfrozen, high 

weights (value of 8) on the blueberry class and an intensive use of data augmentation, while low results 

were obtained when the network was frozen and loss function weighting was applied with a value of 

6 for the blueberry class. For the accuracy most of the network settings reached high accuracies, while 

the unfrozen networks had slightly higher results (Cabezas et al., 2020). Initialising the network with 

ImageNet weights did not increase the results significantly and the identification of the blueberry class 

was not increased (Cabezas et al. 2020). 

 

7.4.7.3.2  Experiment 2: Comparison of different networks 

In the precious studies, ResNet50 and UNet were assessed in order to classify evergreen and deciduous 

trees (Kentsch et al., 2020). A comparison with other networks (presented in section: deep learning 

architectures) is necessary to test which network provide sufficient results for the application. The 

networks were tun with limiting effects of randomness, discussed in Cabezas et al. (2020), to ensure 

that the networks run under the same conditions, with the same data distribution and the same testing 

set.  
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Figure 90 TPR (A) and accuracy(B) results of different tests for the blueberry class with F = Frozen and UNF = unfrozen network 
settings. Additionally: data augmentation or loss function weighting with FNOA and UNFNOA and with loss function weighting, 
FW and UNFW, with function weighting and intensive use of data augmentation, FHA and UNFHA (Cabezas et al. 2020) 

 

A 

B 
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Figure 91 TPR (A) and accuracy (B) results of the network comparison. Networks: AlexNet, ResNet50, ResNet152, VGG, 
Densenet, ResNeXt, wideResNet (Cabezas et al., 2020) 

Insufficient results were obtained by AlexNet´s, Squeezenet´s and VGG´s, while wideResNet performed 

only well for some LR, which might be a result of the data imbalance (Figure 91). Densenet and the 

ResNet-based networks reached high TPR and accuracies (Figure 92) with only TPRs presented here to 

provide insights of the best results, as the accuracies were varying insignificantly between 98.90 % 

(ResNeXt) and 98.98 %. (Densenet). The imbalance in data indicated that the TPR need to be higher 

than 98% to successfully identify blueberry bushes. Best results were therefore found in ResNeXt 

(TPR=93.75, Acc=98.11) ResNet50 (93.39, 98.10) and ResNet152 (92.54, 98.13) (Cabezas et al., 2020). 

A 

B 
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Figure 92 Comparison of ResNet50, ResNet152, VGG, Densenet, ResNext, wideResNet TPRs 

 

7.4.7.3.3  Experiment 3: Deep learning application 

After assessing the different architectures and settings, the best working model was applied to 

produce results for the application.  

ResNet50 was found to show the best overall performances on the giving dataset with transfer learning 

and unfrozen weights, so a training of all layers and updating weights after each learning step. The 

data imbalance was addressed by weighting blueberry patches of the soil class eight times and four 

times of all other classes. With data augmentation the 12 new samples were created for each patch to 

increase the number of training data, while 50% of the soil patches were removed from the original 

number of patches. The average results for TPR and the accuracy of the three testing stages were 

presented for each testing stage. 

When no data augmentation was applied a TPR value of 63.8 % was reached, while with data balancing 

the value increased to 93.4 %. The overall accuracy was in both cases similar, with 98.8 % and 98.1 %. 

The network used with frozen weight failed because it reached only 37.1 % without the use of data 

augmentation, but a high overall accuracy of 98.0 %. However, the use of high data augmentation with 

frozen weights resulted in the best TPR value of 88.0 %, while the overall accuracy dropped to 75.2 %. 

These results showed that transfer learning with ImageNet weights can be used, but data 

augmentation is needed to increase the accuracy in detecting blueberry bushes.  

The refinement step concentrated on the segmentation of the blueberry patches. The classification 

can be used as a coarse first segmentation, which is only able to predict large patches in which 

blueberry bushes can be found. The refinement step aimed to locate the bushes more precisely. It can 
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be seen, that the refinement step provided segmentations, which were closer to the manual 

annotations (Figure 93). Still, the refinement missed some of the blueberry bushes, which can be seen 

in Table 31. The Dice coefficient evaluated the overlap and the number of non-GT pixels contained in 

the predicted patches. The coarse mask provided low values around 0.2, while the refinement 

significantly improved the results to values of 0.5 to 0.6. The ratio of GT pixels covered is higher for the 

coarse mask with 0.88 to 0.95, than for the refinement (0.78 to 0.87).  

Table 31 Numerical evaluation of the refinement step of the DNN. The rows marked "refined" stand for the algorithm after 
refinement while the rows marked "Coarse" correspond to the algorithm without refinement for each of the three studied 
mosaics. The Dice coefficient as well as the ratio of blueberry pixels in the Ground truth covered by each of the two masks is 
presented 

 Mask type Dice GT cover 

B1 Coarse 0.187 0.953 

Refined 0.526 0.860 

B2 Coarse 0.264 0.949 

Refined 0.624 0.874 

B3 Coarse  0.223 0.884 

Refined  0.587 0.789 

 

 

Figure 93 Orthomosaic B1 is imaged with a combination of the manual annotations (black marked spots), the coarse mask 
(dark grey) and the refined mask (light grey). The red box was zoomed in to show a detailed view on the image and masks 
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7.4.8  Discussion 

The applied methodology used UAVs to gather information in a restricted access area. Techniques 

from several research fields were applied to gain knowledge about the distribution and properties of 

the bushes of the invasive blueberry species. The presented results are interpreted in this section in 

order to assess the stage of the invasion in each of the mosaics. 

 

7.4.8.1  Difficulties with data 

Blueberry plants show a characteristic red leaf colour in autumn, which makes them easily recognisable 

and identifiable in comparison to other classes of vegetation. However, partly visible soil with reddish 

tones constrained blueberry identification. This problem was especially critical for small blueberry 

bushes. In autumn the leaf colours can vary between red, red with a yellowish tone and partly black. 

This caused challenges for the annotations and for the DL algorithm, since the number of blueberry 

images was already low in comparison to the other classes and made the colour approach not usable 

for this study. Further complications were given by light conditions during image taking. When the 

blueberry bushes had brighter red colours due to sun light, it was difficult to distinguish them from the 

ground. Bushes, which were located in the shadows, especially the ones which had a predominately 

black colour were hardly recognisable. 

The analysis presented some difficulties in the calculations of the height and surface area of the 

blueberry bushes. The main problems during the determination of the bush height were occlusions 

due to nearby trees and difficulties due to dense floor covering vegetation. 

As the cluster analysis showed, the high density of blueberry bushes in some areas and their proximity 

increased the possibilities that bushes were partly covered and the whole bush area was not visible, 

as already pointed out by Stieper (2018). Furthermore, bushes were often located close to trees which 

have canopies that can cover most of a blueberry bush. The areas calculated for the blueberry bushes, 

exceeding 4 – 5 m², indicated that there has to be more than one bush, which was difficult to identify 

in the images, as well as for calculating the height. Wetland regions, imaged in the orthomosaics, are 

grassland and covered with dense hassocks. Therefore, the soil was often not visible and the ground 

annotations often represent the height of the hassocks, which resulted in values of 0 m maximum 

height and even more bushes showed a value of 0 m, when the median height was calculated for 

smaller bushes, especially in B4 and B6. Therefore, it is assumed that the hassocks can reduce the real 

height of the bushes by 30 cm. However, the calculated height values exceeded 3 m, which is unusual 

for the blueberry species studied here. There were errors produced when the annotations contained 

parts of an overlapping tree canopy, which increased the maximum height. The median height was 
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resistant to outlier values. When parts of the ground were annotated, the median generally decreased 

the height values, especially for small bushes. Annotations of the ground needed to be set carefully, 

since the wetland was uneven and depressions could increase the height values of the blueberry 

bushes. Furthermore, the differences between the maximum height and the median height can be 

influenced by the structure of the bush canopy. Due to these difficulties, a correlation between height 

and area values of blueberry bushes was not considered, but a comparison of the distribution of these 

values showed that the distribution was similar and that the bush area was larger than the height.  

Even though these values are estimations, the applied methodology gave a good overview over a large 

study area, which cannot be done otherwise by extensive field measurements due to wetland 

protection regulations. Therefore, despite the difficulties, the achieved results emphasised the 

following discussion of applications and the qualitative use of the introduced methodology.  

 

7.4.8.2  Application in landscape management 

The collection of high-resolution images and the gathered information can help to map and visualise 

the findings of this study. This information can be used to easily establish management measures 

against the further invasion of blueberry species into the wetlands as already pointed out in several 

studies (Wan et al., 2014, Mafanya et al., 2017).   

The area occupied by blueberry bushes was low in comparison to the total studied area (covering 1 to 

1.5 %), which is lower than the identified 3 to 5 % in (Essl, 2004). However, when only the living 

vegetation was considered, the number of blueberry bushes was found to increase from 8.2 up to 

21.1 %. These percentages can be considered to be very high due to the fact that the species is invasive 

and does not belong to this sensitive ecosystem. B6 has the largest area and contained the smallest 

number of blueberry bushes, with the lowest height and area values measured. The invasion seems to 

be therefore in an early stage and should be easier to manage. Nevertheless, as shown by the 

persistent homology and the high number of single bushes after clustering, bushes were widely spread, 

which increases the area where measures against the blueberry bushes need to be considered. The 

hotspot analysis and the density map of B6 indicated that there are some bushes, which are 

concentrated in a dense spot in the middle of the area and distributed from there homogeneously. 

These findings allowed the conclusion that the progress of the blueberry bushes into this site is low. 

B1 has a similar distribution, while the number of blueberry bushes per hectare is doubled in 

comparison to B6. The density map showed high densities in the northern part of the orthomosaic and 

a gradual decrease of blueberry bushes in the southern direction, which was confirmed by the hotspot 

analysis. The density of the bushes was higher than in B6, but, as indicated by the persistent homology, 
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the spread was greater. This meant that the blueberries invaded but did not reach every region of the 

site. Furthermore, the blueberry bushes in B1 had the largest bush area within all studied sites. The 

identified bushes maturity suggested that the blueberry species had invaded the area a long time ago. 

Since the density map provided the information that the blueberry bushes were mainly distributed in 

the north, there have to be conditions in the south which prevented a further spread.  

In comparison, B2, B3 and B4 showed a high spread in the southern direction, because blueberry 

bushes of various sizes were found everywhere and there were higher concentration areas and several 

spreading centres. These findings can be confirmed with the persistent homology and the density map, 

indicating a high progress of the invasion. The three orthomosaics seemed to have a homogeneous 

distribution and a gradual change to lower numbers in southern direction. However, the significant 

differences found by the hotspot analysis indicate that there are conditions which influenced the 

distribution of the blueberry bushes as in site B1. In addition, all three orthomosaics showed an area 

with a small density of bushes, which can probably be explained by the high water content in the soil 

correlated with unsuitable conditions for plant growth. The invasion of the blueberry species was 

characterised as such and far advanced for B2 to B4. Only B4 had smaller bushes covering a smaller 

area, which means that the invasion was less advanced than for B2 and B3. The spread will probably 

increase there in the following years.   

Furthermore, the distribution of the blueberry bushes can be connected to the proximity of trees, 

especially in B1 to B3, where the bushes were mainly found around pine trees and shrubby birches, 

since birds use these as rest areas and distribute seeds mainly where they rest. An exception was B4, 

where the trees were located next to depressions filled with water, which confirmed the unsuitable 

living conditions for blueberry species. In general, it seems that more blueberry bushes occurred when 

the density of the living vegetation was higher, which can be explained by better living conditions and 

a better distribution through birds.    

To sum up the results and interpretations, it was found that B6 showed an early stage of invasion. B1 

showed an advanced stage of invasion with limitations in the south, while B2 to B4 showed a critical, 

advanced stage of invasion, since blueberry bushes were found in the whole study site. The 

methodology used here helped to assess the stages of invasion.  

This study introduced a method to help to preserve a sustainable and adaptive conservation. Together 

with further expert interpretations, a deeper understanding of wetland ecosystems can be achieved 

(Dronova, 2015). The calculated properties, height and area, are indices which can be used for plant 

growth monitoring and therefore provide useful information for the practical management of 

wetlands.  
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7.4.8.3  Automatic masks generation 

DL techniques were used to assess whether DNN can be used to automatically detect the presence of 

blueberry bushes. Since the manual annotation of the blueberry bushes is the most time-consuming 

step of this workflow, this has the potential to greatly extend the range of studies. The results in section 

DL results showed that the ResNet50 network succeeded at the classification tasks associated to this 

problem and that the best results were obtained by re-training the whole network. In this respect, 

relying on pre-trained weights from ImageNet to solve the problem after minor re-training of the last 

layer is suboptimal. A dataset must be large enough to re-train the full networks. In this case, it meant 

using images taken from three mosaics covering a total of 33 ha. Still, the benefit of transfer learning 

was that it stabilized the network behaviour, as shown in smaller variances in achieved accuracies and 

statistically significantly smaller accuracies were reached according to Cabezas et al. (2020). 

 

At the same time, the results also quantified how a data unbalance may result in a network that 

classifies most patches correctly even if the blueberry bushes were mainly misclassified. This show, 

that a balanced dataset is needed, when practical problems need to be solved, as the aim was to 

identify the blueberry bushes in the images. The solution was to apply techniques like data 

augmentation and loss function weighting, which increased the amount of blueberry bush examples 

and decreased the amount of soil examples in the dataset and at the same time assign weights to each 

class depending on their importance. This helped to reduce bias of the training towards the correct 

classification of blueberry bushes. High TPR with FPR lower than 1 % needed to be achieved to be 

applicable for different use cases. 

The results of the automatic classification were used to map the invasive species, which was an 

important first step, whereby a refined segmentation was vital to effectively determine the exact 

location of plant invasions (Mafanya et al., 2017). The DL applications used classified images, and a 

refined mask provided the blueberry bush locations. The refinement step was necessary in this 

application since most of the blueberry bushes were small. Hence, the refined mask offered a more 

precise localisation of the blueberry bushes. Even though not all bushes were found and some soil 

areas were misclassified as blueberry bushes, the refined mask could significantly reduce the time of 

manual annotations and provide maps of the studied area. Increasing the amount of blueberry data 

can help to optimize the classification accuracy and the localisation of blueberry bushes. This will be 

considered in future research. The generation of automatic annotation masks, as performed here, will 

further allow large scale studies with a minimum of disturbances in the studied environment. 
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Therefore, UAVs and image analysis provide accurate and cost-effective surveys which are needed 

when studying invasive species (Wan et al., 2014). The used techniques provided more information 

than gathered by previous field surveys in wetland areas (Schepker et al., 1997, Stieper 2018}. 

 

7.4.8.4  Contribution to invasive blueberry studies in wetlands 

The studies done in Germany were mainly fieldwork approaches. To the best of my knowledge this 

was the first study applying image analysis and especially DL techniques to investigate the species. 

Studies presented by (Schepker and Kowarik, 1998, Schepker et al., 1997) discussed invasive species 

in general with a special focus on the blueberry species. They already pointed out that the spread of 

the blueberry species has to be a concern. Especially (Schepker et al., 1997) studied the invasive species 

close to 13 plantations. They estimated the distribution area by looking for the blueberry bush which 

was the furthest away and stated that its distance was the maximum spread. This approach was 

inaccurate and the differentiation between different cover areas was insufficient. The area they 

researched was 12.5 km², but the authors stated that most numbers of studied areas and areas 

covered by blueberries were estimations (Schepker et al., 1997).   

Another study focussed on the invasive blueberry species was presented by (Essl, 2004) studying an 

area of 4.7 ha, which is nine times less compared to the area studied in Lichtenmoor. Also, (Essl, 2004) 

stated that a complete detection cannot be guaranteed. The estimated coverage area was between 3 

and 5 %, which is comparable with the presented study. The identified high number of young blueberry 

bushes was identified as future source of spread but no further information was provided. With the 

results presented in this study, small bushes could be identified and future spread centres were further 

interpreted with hot spot analysis.  

A more recent study was presented by (Stieper, 2018), who already provided detailed information 

about the properties of blueberry bushes studied in a small area of the “Krähenmoor”. The author 

pointed out, that there are difficulties to estimate the distribution of blueberry bushes because of their 

different properties and their strong scrub encroachment, which were also identified on the presented 

images of this study. However, it was pointed out that most analysis were done on a subjective grading 

of blueberry bush coverage with taken images in the field. In comparison the provided objective 

grading, presented in this study, were necessary to compare invasive status in different sites. 

Furthermore, (Stieper, 2018) stated a high possibility in identification losses during the fieldwork 

because of the density of bushes in some areas and only areas were analysed close to former blueberry 

plantations. The limitations of study areas, when fieldwork need to be conducted, are high, as can be 

seen in (Stieper, 2018), where they studied the region for ten days. Using UAVs, an area of 62 ha could 
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be covered in one day. In comparison to all previous studies, the whole area can be covered with UAVs 

and all blueberry bushes can be identified. Coverage areas can be calculated in each image accurately. 

Further the methodology presented in this study allows to monitor the area and to provide maps of 

change detection. Therefore, the success or failure of measures against the invasive species can be 

directly monitored and user friendly presented with the help of ArcGIS.  

 

7.4.8.5  Deep learning studies 

Wetland classifications were performed by (Rezaee et al., 2018) and (Liu and Abd-Elrahman, 2018) 

identifying 4 and 6 classes, reaching overall accuracies of 94.82 % and 82.02 %. Transfer learning, which 

was only applied in (Rezaee et al., 2018), showed the effectiveness of these technique for natural 

environment studies, when the dataset is large enough. The best result of (Liu and Abd-Elrahman, 

2018) was observed when using multi-view images, which might be an interesting approach for future 

studies. A similar approach to detect invasive species was used by (Ashqar and Abu-Naser, 2019). Their 

approach applied DL with data augmentation and transfer learning. Their highest accuracies were 

97.6 %, which was slightly less, compared with the overall accuracies of 98.83 % and 98.10 % found for 

Lichtenmoor. It has to be considered, that in the approach of Ashqar and Abu-Naser, (2019) the dataset 

mainly contained images of the invasive species, while only 2.64 % of the generated patches of B1 to 

B3 contained the invasive species. This shows that with the application of loss functions and data 

augmentation it was possible to achieve high accuracies (Ashqar and Abu-Naser, 2019).  

 

7.4.9  Opportunities, limitation and future works 

The appearance of invasive species shows generally an increasing trend. Studies were conducted to 

increase the knowledge of impacts, abundance, threatening to biodiversity and costs caused by 

invasive species. There were no generalized methodologies to study invasive species, which increased 

the demand of a new and generalized methodology. Connections between different study areas need 

to be established and accepted to gain further knowledge and increase the possibilities to tackle the 

problem of invasions. Studies were mainly conducted when invasive species were established in a 

region. Therefore, most studies failed to study the pathways invasive species have and how they are 

introduced. Regional differences and small-scale studies increase the variables why invasive species 

choose specific pathways and why they are introduced.   

The presented work provided the methodology to analyse the invasive species from UAV images. 

Nevertheless, there were limitations regarding the data. The autumn season seemed to be a good time 
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for image taking, but the difficulties regarding the varying colour of the blueberry bushes should be 

taken into account more carefully. Image taking could be done when the weather is cloudy and not 

windy as suggested in previous studies (Zmarz 2014; Wierzbicki et al., 2015).  

The chosen flight altitude of 50 m resulted in high-resolution images, which created heavy 

orthomosaics. The resolution was reduced to 5 to 7 cm/pixel to be able to use image processing 

software. This led to difficulties of identifying blueberry bushes and their properties. For the future 

different flight settings can be tested, as presented in (Dandois et al., 2015; Falkowski et al., 2018), 

especially smaller flight areas and a reduced flight height can help to increase the resolution and the 

results of blueberry bush properties. Additionally, the accuracy of the DL algorithm can be improved 

when the blueberry bushes are larger on the images. The amount of blueberry bush data was limited, 

which caused challenges for the DL algorithm. That can be overcome by the collection of more 

blueberry bush images. Since blueberry bushes were often planted for blueberry production, those 

fields offer a good opportunity to collect images. Therefore, the detailed mapping of this study can 

further improve the results of the current status of the blueberry species invasion. A repeated data 

collection in the same area, as planned, will provide a year-to-year comparison in order to monitor and 

analyse the invasion, the development in the wetlands and the further spread. Changes will be easily 

detectable within the wetlands and the studied blueberry species without disturbances of vulnerable 

plants, animal species and habitats, as already mentioned by (Dronova, 2015, Mafanya et al., 2017). 

 

7.4.10  Conclusion 

In this paper a multi-disciplinary methodology to quantitatively evaluate the role of plant species in 

ecosystems, including invasive species were introduced. The use of UAVs makes the approach 

applicable even in restricted access areas and increases the total area that can be studied, greatly 

exceeding the range of existing field studies. This methodology was used to gather information about 

wetland vegetation. Simple and time-saving methods were applied to classify vegetation and to 

provide information about the properties of the invasive blueberry species found in the study site. The 

distribution of blueberry bushes was analysed in terms of their density, clustering and spread. The 

relative importance of blueberries in the wetland was analysed (number of bushes, bush area and bush 

height). This information was transformed into location, density and hotspot maps to provide 

advanced visualization tools. DL techniques were used to automatically detect and segment blueberry 

bushes, opening the possibility to further extend the range of similar studies. 

 




