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Chapter 8 Discussion 

8.1 Seasonal effects 

Egli and Höpke (2020) discussed weather and seasonal influenced data for image classification 

purposes. They criticised that varying weather conditions change illumination patterns, which 

influence classification accuracies. Specifically, multi- and hyperspectral images cannot handle variable 

conditions, which indicated that the use of RGB images for forestry application is the better choice. 

Additionally, Egli and Höpke (2020) indicated that most data collections were only performed for a 

specific time (a day or couple of days in the summer period, usually). However, spectral characteristics 

influenced the reflectance of tree species and therefore their classification. Data should be collected 

at different times, so that the DL network can be trained on data with varying conditions, as performed 

in this study with image collections in all four seasons, over several weeks and months, as well as during 

all daytimes.  

Other studies also pointed out the benefit of seasonal images to classify tree species (Lu et al., 2018; 

Grabska et al., 2019; Lisein et al., 2015). Leaf growth starts in spring, it is time-equal and also colour 

and shape of the young leaves are similar within the same species (Lisein et al., 2015). However, 

different species grow their leaves in different time periods, like Albizia julibrissin trees e.g., which start 

growing late in YURF (Figure 94). Colours of young leaves are often different among species, like the 

characteristic red leave colour of Aesculus turbinata. Furthermore, some tree species grow flowers 

during the spring season, which increases the possibility to identify them on images; an example is 

Magnolia obovata, which grows big white blossoms in spring. Furthermore, the canopy is less dense 

in comparison to the summer or autumn season, which improves the identification of single trees. 

Images gathered in summer show the less variation regarding colour and shape of leaves, since all 

leaves reached their maturity level. During the summer, the forest colour is a mixture of lighter and 

darker greens, often merged, and therefore increased the difficulty of separating tree species from 

each other. In autumn the leaves of various tree species changed their colour differently. Leaf colours 

from yellow over orange to red increased the possibility to identify tree species. Depending on the 

elevation, soil and water conditions, the colour change within the same species differed from site to 

site and tree to tree. Hence, the timing of the colour change was a challenging factor for identifying 

tree species. A benefit in autumn was the timing of leaf abscission, which differed a lot for different 

tree species, as Juglans ailantifolia trees lost their leave already in the beginning of September. Within 

the leave-onset season trees showed different characteristics, this can be used to identify them. The 

winter season was used as well in this study. Evergreen trees and deciduous trees were often mixed 

within the forest. Images of the winter season increased the accuracy of identifying evergreen trees, 

since deciduous trees do not have leaves during this season.  
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Figure 94 Six characteristic images from the forest. A) An image of an Aesculus turbinata tree in the spring season, B) Albizia 
julibrissin in early summer, C) Aesculus turbinata with their flower in early summer, D) Prunus species with characteristic 
colouring in autumn, E) Acer species in autumn and F) Fagus crenata in autumn 

 

Furthermore, winter images of the forest showed accurately the position of the tree stems, since the 

branches and stems were in contrast to the white snow covering the ground. This further helped to 

count trees within a specific area, especially when tree stems were close together, forming a dense 

canopy in the summer. Since images were collected during the whole year, it was possible to use the 

benefits of each season to improve the localisation and identification of tree species in the forest. 
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Additionally, changes in the forest could be detected due to the high number of images available for 

the forest. It was possible to monitor forests and tree species during the year to identify the circle of 

life of the plants. A data collection provided with this study increases the possibility to detect forest 

illnesses as well as their progress and increases management possibilities. 

 

8.2 Time consideration 

Drone-imaging: Images were gathered by using pre-programmed flights. For pre-programming flight 

settings needed to be set, which required a few minutes per site. Those flight plans were performed 

for each data acquisition. The drone flew 15 to 18 min per site, only for site 1, 2 and 3 (the sites have 

double the size compared to the other sites) the flight time was 30 to 35 min. Since the drone flew 

automatically one day in the field was enough to cover all 13 sites covering an area of 61.9 ha in total. 

Additional working time was basically only starting and landing the drone, as well as charging the 

batteries. The benefit was that the mosaics, generated from these flights, had a high overlap and high 

resolution (less than 3 cm/pix). The required time was the minimum which could be achieved with the 

used equipment.  

Manual drone-imaging: During manual flights the flight altitude could be changed during the whole 

flight, which resulted in high resolution images (less than 1.5 cm/pix). One site needed approximately 

one hour to be covered manually. A problem was that due to the flights closer to the canopy the top 

parts of high trees were not captured because the top part was often covered by only one image which 

resulted in a missing overlap for Metashape´s image alignment. Therefore, images needed to be 

processed and analysed to identify holes and blurred parts in the mosaics. Several further flights 

needed to be done to complete the mosaics into a sufficient dataset.  

Image processing: Processes in Metashape can be batched and saved, which allows running the 

processes automatically until the mosaic is generated. The computer needed three hours to process 

smaller sites and four to five hours for the larger sites. The post-processing step, to transform the DEM 

into a readable JEPG file, required another half-an-hour to be completed. In total the working time was 

less than 40 minutes, since most required time was the processing time of the computer.  

Annotations: Several annotations were done during this study and all of them needed to be 

considered separately to evaluate the required time. The time to annotate tree tops was 

approximately one hour, depending on the area and the steepness of the mountain represented in the 

orthomosaic. The annotations of the tree canopy areas needed another 12 hours, depending on image 

resolution and light conditions. With resolutions lower than 2.73 cm/pix some trees species were 
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almost impossible to identify. High resolution images decreased the needed working time drastically. 

Easier annotations for winter images were performed for five classes and required approximately three 

to four hours to finish an orthomosaic. Annotations for all other seasons strongly depended on the 

number of classes which were annotated. The data needed to be accurate to submit them to the DL 

network; therefore, the annotations were the longest working step. As soon as a sufficient number of 

training data was annotated, the tree species within the database could be identified for all forest 

areas. Therefore, annotations need to be done only once, while fieldwork needs to be conducted for 

every new forest area and purpose again.  

Fieldwork: In a first step, grids were considered to detect the position of trees. The grid of 

50 m x 60 m in site 1 needed a man-power of ten people for around two days in the field. Additional 

two hours were necessary to digitalise the data. Since this grid represented only a small part of site 1, 

which covered in total approximately 6 ha, the estimated time and required man-power to survey the 

whole site exceeded the possibilities of fieldwork. The manual surveys, together with the winter 

images, were convenient and efficient. The fieldwork needed one day and two people to be completed 

for each river and mixed site, covering around three to four ha. Since the Slope sites represented a 

difficult working environment, a minimum of two persons and two to three days were needed.  

Another four hours were needed to rework the manual map and to digitalise the maps with GIMP.  

 

8.3 Area and spatial resolution consideration  

Previous studies like Sakio (1997), Sakio et al. (2002), Fukumachi (2020) or Nakamura (1997) studied 

Japanese forests in small plots, in order to evaluate the forest composition and structure based on site 

conditions. Small forest plots are useful as they provide information about the forest area, tree species 

composition and their structure on a small scale. Those plots are easy to conduct tree census for 

several years, like Fukumachi (2020) did. The disadvantage is that small areas might be only 

representative, when monocultures or forests in high altitudes are monitored, as the main limiting 

factors for tree species occurrences are climate conditions. However, several factors influence tree 

species composition in lower elevated forests, especially natural disturbances like climate conditions, 

water availability and plant competition. Okitsu (2003) pointed out that temperate forests showed a 

high degree of species richness because of climatic and floristic histories in Japan. Studies of Sasaki 

(1970), Ohno (1991), Sakio (2002) and Suzuki (2000) additionally showed the species richness in cold-

temperate and riparian forests in Japan. The studied areas in YURF presented a high diverse ecosystem, 

changing over small distances of a couple hundred metres. Forest structures, species compositions and 

distributions differed not only between Riparian, Terrace and Slope sites, but also between sites of the 
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same class. Forest densities, tree species frequencies and abundances varied and the annotation maps 

further elucidated the different forest structures from above. Especially the comparison between the 

island part and the whole orthomosaic of site 1 demonstrated that upscaling of tree species 

compositions in such kind of mixed forest can easily produce wrong estimations. Image analyses can 

be an effective tool for classifying tree species, manually or automatically. The information about tree 

species composition and distribution can be gathered fast and efficient, while deeper analyses, like 

forest structure, can be performed afterwards. If the representativity of a forest patch is known, field 

investigation can be performed on a smaller scale and reasonable upscaling can be done.  

The area covered during the flights ranged for this study between 3 ha and 8.1 ha. The important 

information is to know the tree layer, to detect and classify trees. Accurate details in the images are 

needed to delineate trees for applications like mapping forest density, height measurements, biomass 

estimations and stand growth (Miraki et al., 2021), requiring high spatial resolution of images. The best 

resolution was found at 10 m above the canopy, sufficient resolutions can be still achieved at 58 m 

(Egli and Höpke, 2020). However, higher altitudes result in drastic decreases in image resolution. Three 

challenges needed to be dealt with: First: most forests in Japan are in mountainous areas and the use 

of automatic flights can usually only be performed with a fixed height, causing varying distances 

between camera and tree. Second: the closer the flight to the canopy area, the higher the resolution, 

but the higher the flight time and therefore the needed battery. Third: the higher the resolution, the 

heavier the images files. The UAVs and apps used in this study had no functions to follow the terrain, 

which would help to maintain a constant height difference between tree and drone. Smaller areas, like 

in site 11, could be overflown with a lower flight altitude. In comparison, site 2 was larger and steeper, 

which resulted in large differences in spatial resolutions, even though the site was split into two smaller 

flights. Site 3 had a less steep slope, but the large area and the relief conditions, increased the flight 

times to keep a constant image resolution.  

The problem of large images was faced the first time when the blueberry orthomosaics were processed. 

The large area imaged, together with a low flight altitude, resulted in an orthomosaic file with more 

than 3 GB, which could neither be processed with GIMP, nor ArcGIS, as the needed memory capacity 

was too high. The images needed to be rescaled to keep the large area, but loosing spatial information 

due to worse resolutions. Even though smaller areas with higher flight altitudes were chosen for the 

YURF sites, the high number of orthomosaics used for the classification with UNet also lead to high 

memory requirements.  

Miraki et al. (2021) studied different spatial resolutions and species classifications, which were found 

to have a strong effect on overall classification performances. Depending on the used classifier and the 

density of sites, the overall accuracy varied strongly. Dash et al. (2017) identified 1 m resolution to be 
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optimal for tree health determinations, as this was slightly lower than crown radius, which were 

suggested to be the optimal image resolution. Schiefer et al. (2020) persist on image resolutions of 

1.35 cm, so that tree species can be identified from images. Generally, too low resolutions or too high 

resolutions decrease the accuracy of machine learning algorithms. With too small resolutions, 

algorithms seem to overestimate tree areas. With too high resolutions, smaller trees can be easily 

incorporated into larger tree crowns. This was also seen in the Riparian YURF sites, where in summer 

images the canopies of Juglans ailantifolia and Pterocarya rhoifolia could not be separated from each 

other. The manual identification of borders between the canopies was easier with the image zoomed 

out, when larger structures could be identified. But at the same time, only large structures and no 

single leaf structures could be found. Still, as demonstrated by Miraki et al. (2021), the structure of the 

forest, especially the density and the relief characteristics, are often significant. Differences in height 

along slopes and various shapes of tree crowns can help to identify more trees. On the other side, 

mixed broad-leaved forests, as studied in YURF, have round and complex crowns and it was found that 

trees of the same species usually occur in clusters, which again increases the difficulty of detecting 

trees.  

 

8.4 Benefits and difficulties during flights 

Flights were mainly done automatically since pre-programmed flights offered the possibility to 

perform them several times with the same settings. Settings like the overlap were important for 

further processing, since it increased the accuracy of the orthomosaics. The drone flew with a constant 

speed and with insignificant changes in flight altitude which enhanced the resolution of the single 

images. The benefit is that the drone flies automatically the programmed route and only the start and 

landing of the drone need to be performed by the pilot. Furthermore, the drone will automatically 

adjust the flight route in case that strong wind is disturbing the flight, so that the drone will stay on 

the programmed line. During the flight the drone automatically shoots images in a constant time 

interval which can be set. Images are taken under automatic regulations of the white balance and 

shutter interval. Therefore, the images outcome will be similar even though the weather conditions 

are changing, like a change in cloud cover or sunlight intensity. A last benefit is that image collection 

can be performed for several sites while the only limitation are the drone batteries and the charging 

time.  

However, automatic flights also have some negative aspects. Each flight could be programmed with 

only a constant flight altitude in this study, which is less suitable for mountainous environments like 
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YURF. Therefore, in the Slope sites different resolutions were observed for the bottom and at the top 

of slopes, due to the proximity of the drone to the canopy of the trees.  

But also manual flights introduce several problems. The flight altitude needed to be checked and 

adjusted several times due to the uneven terrain and the mixture of tree species. Trees like the 

Japanese cedar were reaching heights up to 50 m, while the mixed forests with Japanese walnuts or 

wingnuts had maximum heights of 20 to 40 m. Speed and route could often not be kept stable, it was 

therefore difficult to maintain a constant image overlap. Since the quality of the data could not be 

checked in the field it was necessary to first process the gathered images, evaluate the quality and 

then to perform a further flight campaign to collect images where an alignment failed. In the dense 

forest it was often not possible to identify areas where images were missing since it was difficult to 

recognize those areas, since marker points were missing. Another problem was the connection 

between the drone and the remote control. In the case of YURF, high mountains decreased the 

connectivity between them, which reduced the flight distance significantly. For site 3 a manual flight 

could not be performed for the whole site because UAV and controller became disconnected. Further 

problems appeared due to the transmission between the drone and the remote control or even the 

app. Low transmission rates increased the danger to crash into trees. The number of images collected 

during manual flights was higher because more images were made in order to guarantee a sufficient 

overlap of the images. Overall, manual flights demanded mental concentration during the whole flight.  

 

8.5 Tree detection and classification of tree species using 

image and field data 

In this study, trees were detected and classified in the field, as well as on images. In this section, on 

the one hand, aspects of challenges and limitations of image analyses or field data were discussed. On 

the other hand, benefits of combining both methodologies for detecting and classification purposes 

were evaluated.  

 

8.5.1  Tree detection  

Field data and image data were mainly processed in ArcGIS, as the software provides useful 

applications for further data processing and visualisation. The collected field data were digitalised as 

point shapefiles, whereby winter orthomosaics were used to geolocate the tree stems. Trees belonging 

to the canopy and subcanopy layer could all be detected, but in some areas, where the soil was not 

snow covered, especially small trees were hard to identify. In monoculture patches, like the Salix patch 
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in site 4 or the Pterocarya rhoifolia patch in site 1, trees could be identified easily in winter images, 

while in summer images the canopies could not be separated. The benefit of mixed sites was that the 

different leaf and branch structures allowed to separate tree species from each other. The higher the 

mixture, the higher the number of trees, which could be identified in images and the better the 

annotations. However, counting of Quercus mongolica was challenging as the trees grew close 

together, so that single tree stems and branches were hard to separate. 

The trees of the understory layer, like young trees, were usually not visible in the winter images of the 

Riparian sites.  They could be placed on basis of the field data and stems of the winter images, but their 

stems were covered by snow. Only along the slopes or in parts where the snow was already melted, 

or when they exceeded a height of 2 m, stems of understory layer were detectable. In Slope sites, the 

snow cover was usually thinner. For some winter orthomosaics, small trees could therefore be 

annotated. In site 13, where the steepness of the slope did not allow intensive field work, several small 

trees could be detected in winter images, while a classification from summer images was not possible 

because of the low resolution. Those trees remained mainly unidentified. In sites 5 and 11, trees were 

partially close together, which hampered the annotations of tree points and might have led to 

miscounting.  

In site 4, young trees could be all detected on summer images; several factors seemed to influence the 

visibility of trees in images. In comparison, the young tree area in site 4 was barely accessible, as the 

vegetation was dense and made counting without losing the overview difficult. A view from above 

made counting easy and fast. However, young trees and trees of the understory layer were rarely 

detectable in summer images, because of the canopy cover, but also because of image resolution, 

which was usually low, causing blurring effects.  

There was also a high risk of miscounting Acer trees in summer images, as they grew in the slopes, with 

almost horizontal branches. This increased their canopy area, and single branches looked like single 

trees. Acer trees can be miscounted in the field as well. The trees usually grew in dense clusters of 

several trees and their multi-stems increased the difficulty of accurate counting. The trees in lower 

areas were often overseen in images, because they grew under large canopies of Juglans ailantifolia 

or Quercus mongolica. Trees like small-leaved Acer, Cornus controversa and Styrax obassia were found 

in the field along the rivers, but could not be detected in the images.  

Summer orthomosaics, winter orthomosaics and field data together were needed to provide precise 

images of all studied sites. In areas, where field work was not possible, winter images could be used to 

count trees, while summer images helped to classify tree species. Even better was the use of high-

resolution images (1.3 to 1.5 cm/pixel), as trees and sometimes even understory vegetation could be 
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identified better, because leave structures were visible. Field surveys helped to identify trees, which 

could not be identified with summer images. Therefore, the combination of image analysis and field 

work allowed to study large areas with high precision. 

 

8.5.2  Tree classification 

In the field, tree species were identified by leave and bark structures, which are characteristic for each 

species. Information about tree species can be found in several field guides with images and 

explanations about the species. However, such guides are not available for tree structures seen from 

above. From images, single leave structures are usually not visible, but leave compounds, flowers, 

fruits and different colours, which can be combined used to classify tree species from above.  

The first step, when tree species have to be identified, is the classification in the field, except if the 

study area is a monoculture. Field inventories can be helpful, especially, when tree counting needs to 

be performed. In dense forest areas, like presented in the Slope sites, finding a tree in the field and 

identifying the same in the image was almost impossible. Recognising structures or patterns in tree 

distributions was helpful for some areas, but in others the structure below the canopy was significantly 

different to the canopy. In flat areas, the structures of below and above the canopy did not vary 

significantly (except the understory and shrub vegetation) and therefore field and image surveys could 

be connected. Additionally, in the field 70 tree and shrub species were identified. Some of them 

occurred with low numbers or even only one representative tree in the forest. Therefore, the forest 

composition should be evaluated first, and then a selection of trees per species, which can be detected 

in images, should be done. This can include trees along the pathway or river, a group of the same 

species or other recognisable locations. In the images, those trees can be then identified and help to 

find the same species in other areas of the forest. UAV images can also support the identification by 

flying close to the canopy, flying a straight line between markable spots in the orthomosaic or gather 

images of the same tree from different altitudes to analyse structure changes of the canopy due to 

different resolutions (Figure 95). Images close to the canopy can be enough to see leaf structures to 

compare them with the collected field data. From images, even with high resolutions, not all features 

of a leaf can be identified, for example images of different Prunus species have small differences, which 

usually cannot be imaged.  
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Figure 95 Example images of A) Betula B) Fraxinus C) Tilia D) Salix 
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As mentioned before, image resolutions are an important aspect of identifying trees from images. The 

closer the UAV is flying to the canopy, the easier are classification of tree species. Figure 96 shows 

some examples of challenges faced during the annotations, like climbing plants in the trees or dry 

leaves, which changed the shape and occurrence of the trees. In case of Cornus controversa, dry leaves 

resemble those of Robinia pseudoacacia. Robinia pseudoacacia is furthermore a tree, which grows in 

small gaps between the canopies of other trees, so that the canopy becomes a mixture of different 

tree species. The same seems to be the case for Phellodendron amurense, Cornus controversa and 

Morus australis. Similar were climbing plants, which mainly grew in Juglans, Pterocarya and 

Cryptomeria trees and changed their optical occurrence.  

In the field, identifying Juglans ailantifolia and Pterocarya rhoifolia was sometimes challenging, as the 

leave number and the shape can vary, so that the leaves look similar, especially, when leaves could not 

be collected from the trees, because they could not be reached. In images, the differentiation between 

Juglans and Pterocarya was easier, as Juglans trees had a lighter green colour, the canopy structure 

was less dense and the leaf compound structure was significantly different to Pterocarya trees. More 

examples were Aesculus turbinata and Magnolia obovata, which had large leaves and looked from 

greater distance similar in summer and autumn. Only in spring and early summer Magnolia obovata 

trees had big white flowers, which made them recognisable. In images, Aesculus turbinata had a dark 

green colour, while Magnolia trees were lighter; furthermore, the structure and colour of Aesculus 

trees looked similar to Pterocarya rhoifolia trees, introducing confusions between Aesculus and 

Pterocarya in the images, but not between Magnolia and Aesculus. There were also two Salix species 

identified, which showed small differences in their leaf structure and colour, while they looked 

different when imaged with UAVs (Figure 97). 

Difficult was also the comparison of Fraxinus and Juglans trees, which had similar shapes in the images. 

Generally, Fraxinus occurred in Slope sites, where the lower resolution of the images did not allow a 

differentiation of these two species. Only very high-resolution images of Fraxinus showed partially 

yellow leaf-veins. In any case, the number of Fraxinus trees identified in the field was significantly 

lower than Juglans, hence misclassifications were tolerated. Also, Fagus crenata and Quercus 

mongolica could look similar, when Fagus leaves had a darker colour (Figure 96). It is likely that 

misclassifications occurred during the manual annotations, as the difference between the trees was 

not obvious and no high-resolution images could be acquired, because of the steep slopes and 

different tree heights (also the images in Figure 95 were only single captured imaged).  
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Figure 96 A) Mix of shrub and understory vegetation; B) Juglans with dry leaves; C) Magnolia with a climbing plant; D) 
Magnolia with dry leaves; E) Oak tree and G) same tree with higher resolution; F) dark leaved beech tree and H) with higher 
resolution 

A B 

C D 

E F 

G H 



306 
 

 

 

 

 

Figure 97 Salix jessoensis (A, C, E, G) and Salix serissaefolia (B, D, F, H), with leave images in the first and second row, high 
resolution images (approx. 1.3 cm/pix) in the third row and normal resolution images (approx. 2,73 cm/pix) 

Low image resolutions mainly occurred in Slope sites, where small-leaved and big-leaved Acer were 

imaged. The field data provided that big-leaved Acer were almost all Acer mono maxim, while there 

were rarely Acer pictum, Acer nipponicum and Alangium planifolium, which looked similar in the 

orthomosaics. Small-leaved Acer occurred everywhere and they further had no significant leaf 
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structures or compounds which would have helped to identify them on images. Even with higher image 

resolution, classifying those trees was in some cases impossible.  

The discussion showed that natural mixed forests with a high density and high diversities are 

challenging when trees have to be classified, while the combination of field and image data can help 

to significantly increase the identification of trees. Further, image resolution can be an important 

aspect for annotations, which might also influence automatic classification approaches. 

 

8.6 Forest structure 

Forest structures were previously discussed in the context of canopy area, tree species frequencies, 

diversity measures and others in images and in the field. Valuable insights were already provided, 

which can help to understand forest structures better. In this chapter, all the factors and results 

together are once more considered and summarised to evaluate the structure of the forests. The main 

focus here is to give a comparative statement to the site structures on basis of the image analysis and 

the field data.  

Understory vegetations, which are usually not imaged in orthomosaics, have a significant influence on 

soil properties, nutrient cycles and litter composition (Hedwall et al., 2018). Verheyen et al. (2012) 

pointed out the importance of tree species composition and canopy structures of trees in the canopy 

and subcanopy layer, as they significantly affect understory vegetation. The canopy and subcanopy 

layer are always visible on images, taken from above the forest. The composition and structure, with 

different tree species in these layers, significantly influence light conditions, temperatures, water and 

soil nutrients. Therefore, the structure of the highest forest layer must also influence understory 

vegetation and shrub compositions (Hedwall et al., 2018). Zhang et al. (2017) indicated that there is a 

positive relationship between the species richness and the understory vegetation, as different tree 

heights enable light to reach understory vegetations (e.g.). 

 

8.6.1  Forest structures along rivers 

A general trend of increasing canopy areas with increasing species richness was observed. This 

increasing trend in both, density and species richness were already discussed by Hedwall et al. (2018). 

The authors discussed that the mixtures of more tree species influence resource filtering. In Riparian 

sites, understory vegetation occurs relatively frequent, while shrubs are rare. It was discussed already, 

that the forest floor in Riparian sites is mainly covered by grasses and, bamboo, which might be the 

main reason for a low number of shrubs. In sites 4 and 7, the canopy areas were low, as well as species 
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richness, which should be the reason for a low density of understory vegetations, according to Hedwall 

et al. (2018). But both sites contained a higher number of understory vegetations, however it was 

mainly distributed along the roads and paths, where light conditions were better and competition was 

low. Within the sites, the number of understory vegetations was lower, most probably due to the lower 

species richness. Sercu et al. (2017) explained the effect of low densities of understory vegetations 

with the compact structures of the canopy and subcanopy layer, which significantly reduced light 

reaching the forest floor. In comparison, sites 1 and 6, with a higher mixture of tree species and higher 

canopy areas lead to an increase of understory vegetations, as described by Hedwall er al. (2018). The 

study of Hedwall et al. (2018) specified that different tree species can benefit the growth of understory 

vegetations and that competitions also have a significant influence, while Hart & Chen (2006) provided 

detail information on colonisation of understory vegetations by light, soil nutrients and pH values. 

A comparison between the field point data with the manual image annotation allowed to evaluate not 

only numbers of canopy areas and species richness, but also to consider species site conditions and 

structures. The images showed that tree species belonging to understory layer were found, when the 

canopy cover was less dense. Another aspect was that these species usually occurred at higher 

elevation of Riparian sites, while there were no trees in depressions with higher water contents. This 

was observed when the annotations were compared with the DEM and slope maps. The density maps 

generated on basis of the tree further indicated that understory species do not occur when the 

densities of the canopies are too high. The provided hot spot analysis supported the previously 

mentioned point, as in site 1 hot spot areas occurred with the Pterocarya rhoifolia monocultures and 

no understory vegetation, like in site 4 in the Salix monoculture. The hot spot analyses further 

indicated that there were only in sites 6 and 7 trees of the shrub and understory layer in clusters of 

individuals.   

The manual annotations, together with the ordering of tree species into the different forest layers, 

helped to illustrate differences between the canopy and subcanopy tree species. When tree species 

classifications were performed in previous studies, the forest was only observed from the ground, the 

high structures of the canopy and subcanopy layer were usually not analysed. With UAVs it was 

possible to observe canopies from above. The field data showed that there were several more trees of 

subcanopy tree species than were visible from above.  

In comparison Pterocarya rhoifolia and Juglans ailantifolia had large canopies, which did not seem to 

be covered by other trees. Their canopies seemed to be only limited by their own species. The species 

maps showed clearly their dense structure and indicated that there were large shadows on the forest 

floor. The density maps (Appendix L) and the distribution/hot spot maps (Appendix N) illustrated that 

the tree species of the canopy layer usually grew separated from each other, in order to have enough 



309 
 

space. The field data indicated the same behaviour, while only subcanopy species and understory layer 

tree species grew close to canopy layer trees. Pterocarya rhoifolia trees seemed to be the only ones, 

which grew closer together.   

 

8.6.2  Structures in Slope sites 

The Terrace and Slope sites showed different characteristics than the Riparian sites. The Terrace site 

11 had a small canopy area and less species, with a high number of understory vegetations, while sites 

12 and 13 had a larger canopy area and a higher number of tree species. In site 13 the dominant species 

was Juglans ailantifolia, which built one dense canopy area without holes so that only diffuse light 

reached the forest floor. Along the bottom of the slopes, the numbers of understory vegetations were 

high, since light, water and soil conditions were better. In site 11, understory tree species and shrubs 

grew in several open areas along the slope, which strengthen the point that light is one of the most 

important aspects for understory vegetations. Most shrubs and understory vegetation tree species in 

site 12 were located under a dense canopy cover, where a river was located. So, it seems that in this 

site water availability is the most important point for the small trees and shrubs to grow. 

Slope sites had higher species richness and the slope angle further benefited by light reaching the 

forest floor; the number of understory vegetations can reach higher numbers, as pointed out by Hart 

& Chen (2007). Furthermore, the understory species composition in slopes was a combination of 

shade-tolerant species. In Slope sites, the maps identified places with high numbers of understory tree 

species, which was most probably a result of the absence of larger trees.    

The comparison between the image analyses results and the field data in Terrace and Slope sites gave 

interesting insights. In the Riparian sites, the borders of the orthomosaics already showed slope areas, 

with high numbers of tree species belonging to the shrub or understory layer. In the mixed forest part 

in the slope of site 1, the dominance of Acer species was high, and even higher at the bottom of the 

slope in site 13. The western and eastern slope next to site 7 and the density maps showed clearly the 

dominance of understory vegetations and shrubs. Even though no point data for the Slope sites were 

provided, the species maps already displayed open spaces in sites 5, 8, and 9, where understory 

vegetations would have good light conditions. In the north corner of site 9 was additionally a large area 

with understory vegetations, which could not be classified from the images. Especially in sites 2, 3 and 

9 the main understory tree species were Acer trees, mainly found during the field surveys. The tree 

density in site 10, which was visible in the species map, corroborated the assumption that the low 

number of trees in the understory layer and shrub layer was the result of the high tree densities in the 

forest.  
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In general, the Slope sites looked on the maps denser than they were, which is the result of the 3D 

slope being processed into a 2D image, which decreased the area significantly, as example, a slope of 

100 m and with 30° becomes reduced to about 85 m. Therefore, the forest looked always denser in 

steep slopes (sites 9 and 10 e.g.) than in less steep slopes (sites 11, 12 and 13), and further affected 

the visible canopy and subcanopy structure. While in the Riparian areas the canopy layer was dominant, 

in slope areas even the canopy or subcanopy could be dominant. Tilia species dominated the eastern 

slope of site 1 and Acer mono maxim dominated large patches of sites 5 and 9. Other slope areas were 

additionally dominated by Hamamelis japonica and Styrax obassia. Also trees, like Cornus controversa 

have been identified with larger canopy areas. The overlapping of canopies was not as significant as in 

the flat sites. In sites 1, 11 and 13 Magnolia obovata and Juglans ailantifolia trees were sometimes 

surrounded by Cryptomeria trees. In this case they had smaller canopy areas, it might be that there is 

an emergent layer in the forest, between which species need to find light sources. The image analyses 

supported these observations and increased the visual information regarding the distribution of the 

species along the slopes.  

The combination of image analyses and field data allowed gaining new insights into the forest structure. 

Shrubs and understory vegetation can be studied from the forest floor, while subcanopy and canopy 

structures are challenging. Using UAVs, the situation changes, shrub and understory vegetation were 

only visible in open areas, however the structure of the canopy and subcanopy layer can be studied 

well. Still, expansions of this study are necessary to understand which factors mainly affect the forest 

composition. Another aspect was that in the future it should be studied if there are relationships 

between canopy tree species and understory tree species. Further image analyses, like density 

calculations, hot spot analyses and tree counting provide useful information, which can be easily split 

into point data, area data, species classifications and more. The study showed the effective 

performance of image analyses for forest structures, but also indicated that field studies are still 

necessary.    

 

8.7 Tree species distribution  

Tree species compositions were evaluated by assigning a number for frequency, dominance or 

abundance to trees, but it did not provide information about the location of the trees. Tree species 

distributions delivered tree name and spatial information. In this sense, forests can be evaluated, if 

there are clusters of trees or relationships between tree species and forests conditions. The performed 

analyses showed that field data and image data provided useful information about tree distributions. 

Image analyses, which can be performed on field data or image data, with count maps, hot spot maps 
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or density maps, decreased the features in the data by performing the analyses. These maps 

highlighted areas of high densities, distributions of single tree species and areas of significant clusters. 

Furthermore, adding environmental factors, like aspects of the slope, distances to rivers and elevation, 

allows comparing species occurrences in the different sites. These sets of information, together with 

species characteristics, helped to evaluate tree distributions. Based on the gathered tree distribution 

information about the three considered site classes, a profile was created, capturing the observed 

species distribution and structure of the forest focussing only on the main tree species (Figure 98). 

 

 

Figure 98 Forest profile with characteristic tree distribution 

In riparian areas, Juglans ailantifolia, Pterocarya rhoifolia and Salix species were prominent. Salix 

species always occurred close to water sources, directly at the river or, like in site 6, further away but 

in a depression (Distribution map – Appendix I). Pterocarya rhoifolia trees were identified as dominant 

and resistant disturbances, so they grew along the river, where most disturbances in riparian areas 

happen (Suzuki, 2002). One minor species is added here, as Robinia pseudoacacia is an invasive species 

and therefore the occurrence in the natural forest should be observed. Additionally, the distribution 

of the species was also mainly along the river, but its ability to adapt to several kind of environments 

and stress saturations allowed the Robinia trees to grow well in the riparian forest. Juglans ailantifolia 
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trees dominated Riparian and Terrace sites (reasons discussed in chapter: Field surveys). There was an 

overlap between Riparian and Terrace sites, which means that species from the riparian area could 

distribute in the terrace area and the other way round. Furthermore, the high number of small-leaved 

Acer species at the bottom of the slopes was also found to be characteristic (Chapter: field surveys 

and image analysis). The identified species in lower slope parts were small-leaved Acer, Juglans 

ailantifolia, Aesculus turbinata, Acer mono maxim and Magnolia obovata. Their occurrence was mainly 

clustered, which is the result of seed spreading in low distances from their adult tree. Aesculus 

turbinata occurred in medium elevations, Magnolia obovata in higher elevation areas and Acer mono 

maxim had a tendency to occur in both regions, as it is shown in Figure 98. Quercus mongolica, Fagus 

crenata and Larix kaempferi, together with small-leaved Acer occurred mainly in higher elevations, 

with increasing numbers. Larix kaempferi was also planted in riparian areas, but this was not 

considered, as the focus was on natural forest compositions. Generally, the species in the slope areas 

were mixed containing riparian and terrace species. Furthermore, the shrub vegetation was identified 

to decrease from the riparian to the higher elevated forest areas, but it had to be considered that 

shrub and understory layer of the forests could only partially be studied from the images, as well as 

the challenging terrain hampered field work and therefore contain less information about these layers. 

Field and image data together with the added image analyses revealed information about the 

occurrence, location and distribution of trees. When tree species were identified and their distribution 

characterised, additional information were needed. Studies of single tree species, as in Niiyama (1990), 

Azami (2004) or Sakio et al. (2002), can then help to understand the composition and distribution of 

species in the forest. Studying the spatial and temporal variables, especially light transmittance to the 

forest floor, enables forecasts about densities and stand structures and further about the composition 

of the understory vegetation (Sercu et al., 2017). In comparison to the study of Nakamura et al. (1997), 

who studied distances and elevation from the river and combined them with soil texture and moisture 

analysis to identify changes in tree species compositions, image data and GIS tools can assess and map 

all information faster. Therefore, a combination of both, image and field data, will help to understand 

the distribution of tree species in mixed forests. 

 

8.8 Species diversities, disturbances and coexistence in 

Japanese forests 

In this study, diversity indices were combined with field data and image data to provide measures of 

diversity for the studied mixed natural forest. This chapter discusses species diversities by comparing 
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the calculated diversities based on image and field data, then in the context of tree species 

compositions, and lastly distributions and disturbances in Japanese forests.  

There were differences between the diversity results of the field data and the image data. Generally, 

the diversity values were lower for the image data. The lowest and highest values ranged between 

2.14 and 2.76 for the field data and between 1.73 and 2.39 for the image data. The comparison of the 

evenness values showed the same trend as the diversity values. The field data provided more 

information regarding the understory vegetation with higher numbers of trees per species, but also 

more different tree species. A second calculation of diversity and evenness values was performed 

based on the field data, but excluding the understory vegetation, there the range of diversity values 

was more similar to the ones calculated with the image data. The values per site were, without the 

understory vegetation, slightly lower, because not all understory vegetations were imaged. On the 

other side, the higher diversities and evenness calculated with the field data can be explained by the 

understory vegetation and shrubs that are not visible in the images. In addition, the results of the 

Riparian sites varied significantly, as site 6 was assigned a low diversity, compared to sites 1 and 7, 

while it was the highest in all sites for the calculated field diversities. These differences must be the 

result of the influence of species richness and evenness, represented by the Shannon diversity index. 

The evenness in the image data was 20 % lower than in the field data, especially in site 4, which was 

most probably the result of the numbers of identified understory vegetation. The higher evenness 

significantly influenced the Shannon diversity. Also, site 6 reached higher diversity and evenness values 

after the exclusion of understory vegetations, except Morus australis, Celtic jessoensis, Styrax obassia 

and Tilia maximowiczina. The Slope sites were more similar, as in the field and in the images understory 

vegetation stayed unidentified, and the Terrace sites presented the most similar results, when the 

understory vegetation was not included. The question arose, if these differences were significant, and 

if image data could not be used for diversity measures. Therefore, the following paragraphs discuss 

other studies and the important aspects for species diversities. The relation between diversities, 

richness and species dominances as well as distribution was evaluated and compared with the results 

of this study, too.  

Azami et al. (2004) studied flood control on riparian plant communities by conducting field surveys, 

identifying dominant species and plant distributions. Vegetations in the study area were examined and 

compared with diversity measurements. Diversities were found to be larger downstream than close to 

the dam. They found physical changes to be an important factor in the development of riparian forests:  

changes in soil moisture, frequency and intensity of disturbances and changes in the topography. A 

stronger influence of disturbances on species richness and diversity was further found out by Takafumi 

& Hiura (2009). Conversely it was identified for understory vegetation plants. The behaviour of 
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understory plants could not be studied with the results provided by the image analysis but there were 

sites, like sites 1, 3, 6 and 10, where disturbances were more likely because of erosion and flooding, 

and the species richness was high.  

An increase in bamboo was correlated with a reduction of all other plant species, according to Nagaike 

(1998). In the Riparian sites, especially in sites 6 and 7, a high density of bamboo was found, which was 

identified to be the reason for a lower number of shrubs and understory vegetations. A significant 

correlation between the occurrence of bamboo and species richness and diversity and could not be 

identified by Nagaikes (1998), it could also not be supported by the results in YURF. Furthermore, 

Nagaike (1998) explained that species diversity is less affected by logging or other forest managements, 

but the number and frequency of different species occurrences can vary in different stands. Invasive 

species occurred rarely, as in the YURF sites 1, 4, 6 and 7, where black locust invaded the Riparian sites. 

Suzuki et al. (2002) described riparian forests as refuge; where infrequent species can live in unstable 

sites and usually only contain a small number of trees, as a result of competition. Disturbance systems 

were identified to be the main factor, higher diversities in Riparian sites than in Terrace sites or even 

upland forests. In YURF, the Riparian sites, as well as the Slope sites, had high diversities. Sites 1, 7 and 

12 had high diversities; however, the Slope sites 5, 8, 9 and 10 had even higher values. The reason 

might be that some parts of the Slope sites were in riparian areas and hence connected low and high 

elevations, where different water availabilities, topographic conditions, nutrients, competitions and 

climate conditions occurred. Furthermore, Suzuki et al. (2002) rose that there was a spatial correlation 

between higher diversities and increasing plot sizes in riparian areas. The sites were usually single 

islands along the river, which were not connected and all of them showed specific characteristics, along 

with different evenness and diversities. Also, it was more likely that Riparian sites are affected by 

disturbances, which was already identified by the occurrence of young trees close to rivers. Nagaike 

(1998) measured species diversities in beech forests in central Japan and the effects of logging. The 

authors concluded that stand structures affect diversities of forest more than logging does. 

Furthermore, a positive relation between the relative frequency of understory and shrub occurrences 

was identified, with increasing space in the forests. In YURF, sites 2 and 3 had large patches of the 

forest occupied by small-leaved Acer species. Those areas were less dominated by tall trees, as the 

conditions seemed to be not good enough for them or the competition might be high.  

The mentioned studies show that there are many factors influencing tree species richness, mainly as a 

result of disturbances and competition. Further it was evaluated, that understory vegetations vary 

significantly in different areas and with different site characteristics. Most understory vegetations 

could not be identified from images, representing a large component of the forest that could not be 

evaluated. Therefore, field data need to be collected to complete image data. Nevertheless, the 
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species richness of canopy and subcanopy species can be evaluated and they also have a significant 

influence on the diversity and evenness of the forest. Also, stand structures significantly influence both, 

canopy and understory layer of the forest, and canopy structures significantly influence understory 

vegetations. Therefore, solid interpretations can be drawn from the images. The studied sites 

presented the highest differences between image and field data, when Riparian sites were observed, 

related to the high species richness and the varying species composition along the river, influenced by 

many factors mentioned above. At last, it was observed, that the numbers of tree stems and the 

canopy area of the species can vary significantly. Therefore, the influence of the species and their 

contribution to the diversity and especially evenness would be different, when canopy areas are 

considered. It can be assumed that diversity measurements have problems identifying those forest 

characteristics, as they are calculated values based on tree numbers with no further information. 

The results of diversity and evenness measurements from image data can help to identify species 

diversities on a larger scale, when only canopy and subcanopy species are studied. For an overall view, 

field data must be gathered, as only those provide the detailed numbers and species compositions. 

Diversity and evenness values do not provide an overall view either, but they assigned simple values 

to different forests for better comparisons. In this sense, image data can be used with leading to similar 

results than field data. In the end, the purpose and the requirements decide whether image data 

provides enough information or intensive field surveys are necessary.   

 

8.9 Forest classification bases on images and field surveys 

In this work, two classifications of the study sites were performed: one based on the manual 

annotations made in images and one based on field surveys; once using the canopy area and once tree 

counting. Both results will be compared in this chapter, as it is necessary to point out similarities and 

differences to evaluate the use of both methodologies.  

Site 1 was classified as a mixed forest composed of Juglans ailantifolia and Pterocarya rhoifolia. Also, 

sites 4 and 7 were classified as ‘Japanese walnut forests’, while the image analyses indicated that 

willows belonged to the subspecies of site 4, it was a co-dominant species when the field survey was 

the basis. Furthermore, site 6 had Juglans ailantifolia as dominant tree species, determined by both 

methodologies, but the field survey indicated Pterocarya rhoifolia as co-dominant species. The 

differences were based on tree counts and canopy sizes. In sites 6 and 7, tree stems numbers of 

Pterocarya rhoifolia where higher in field surveys due to the occurrence of many young trees. The high 

stem number of Salix serissaefolia made the tree co-dominant after field surveys, but the canopy area 

of them was small, compared to Juglans ailantifolia (Appendix I). The field surveys provided in general 
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better information regarding the Acer species, as Acer palmatum, japonicum and sieboldianum could 

be distinguished. Furthermore, the stem numbers of Robinia pseudoacacia and Aesculus turbinata 

were high in sites 4 and 6, but the canopy area of the species was that low, that the species was not 

counted on images.  

The Terrace sites were all classified as ‘Japanese walnut mixed forest’, on both basis, image and field 

surveys. The mosaic of different tree species, when the 95 % boundary was calculated, was different 

between both methodologies. One main point was that there were 12, 18 and 17 different tree species 

identified in the images, but 29, 20 and 20 in the field for sites 11, 12 and 13. A large number of these 

species belong to the understory or shrub layer. Another point was that there were several small trees 

counted in the Terrace sites. Species like Juglans ailantifolia and Pterocarya rhoifolia had juvenile trees 

in the lower part of the slopes, while Acer mono maxim, Aesculus turbinata and Quercus mongolica 

had juvenile trees on the top part of the slope. Those trees were usually also not visible in summer 

images and are therefore not counted into the canopy area. 

For the Slope sites, only sites 3, 8/9 and 10 could be compared as field surveys were conducted for 

them. The difference between the inventories (image/field) was that trees classified during field work 

were gathered along paths, while the image classification considered the whole study site. In site 3, 

Acer species, Juglans ailantifolia and Quercus mongolica were dominant in the images, as well as in 

the field surveys. When the image analysis of sites 8 and 9 were combined, the dominant tree species 

were Acer mono maxim and small-leaved Acer species, with the subspecies Juglans ailantifolia, 

Quercus mongolica, Hamamelis japonica, Corylus sieboldiana and Magnolia obovata. Acer trees were 

in both classifications the most frequent ones, but the field data counted more small-leaved Acer and 

the images more big-leaved Acer. The reason is that often small-leaved Acer were covered by large 

trees, also sometimes during the field work. A large patch of Hamamelis japonica was found in the 

images, which was not identified during the field surveys. In site 10, Acer mono maxim was identified 

as dominant in the images together with Magnolia obovata, while the field data named only Acer mono 

maxim as dominant species. An interesting aspect observed here were that Quercus mongolica had 

smaller areas in the orthomosaics but higher numbers in the field, and Fagus crenata was one of the 

dominant species in the field, while it occurred less frequent in the orthomosaic. The reason might be 

that Fagus crenata often was small-sized, as the climate conditions are not ideal for the species.  

The different considered areas must have influenced the counting significantly, as already pointed out 

by Bravo-Oviedo et al. (2014). The distribution map of site 3 shows the location of small-leaved Acer 

species or Quercus mongolica. The black line illustrates the walk path through the forest (Figure 99). 

Hence, mainly these species were identified in the field. Also, in the distribution maps of sites 8 and 9 
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large areas of the forest are covered with Quercus mongolica and small-leaved Acer. The area, where 

most small-leaved Acer was found in site 8, was located in a small riverbed. 

 

Figure 99 Walk path for the field inventory in site 3 

 

The comparison showed that the dominant tree species could be captured in the Riparian and Terrace 

sites, while they differed when field and image data were compared in the Slope sites. When only 

canopy species and subcanopy species were used for the classification, the overlap between image 

and field data was better. Still, the Slope sites were difficult, because of different included areas in the 

field and image data.  
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8.10 Mixed forest classification 

In the methodology chapter, different approaches of classifying forests were introduced. The most 

interesting study was conducted by Bravo-Oviedo et al. (2014). The main concerns were that there is 

no harmonised universal definition of mixed forests or lists of important aspects to classify them. In 

their study a definition was proposed, including at least two species, quantifying the proportion of the 

species (with stem number, basal area, volume or canopy area, e.g.) and considering proportions and 

patterns of mixture. All classification approaches were mentioned its benefits and difficulties. So, 

describing the structure of a mixed stand, horizontally and vertically spatial patterns were evaluated 

as important, while composition examinations do not consider all structures. Functional properties, 

which would increase the understanding of a mixed forest with its classification, are usually hard to 

measure, as several aspects can be taken into account, like shade-tolerances, rooting, crown 

architectures and litter. Measurements of canopy area, volumes and basal areas were identified as 

insufficient because measuring techniques differ. The considered survey area further influences the 

variability of stand mixtures.  

As consequence, there is no standardised protocol to conduct field surveys or to identify tree 

compositions and forest structures. In general, compositions and structures are the easiest features of 

the forest, which can be evaluated to describe forest mixtures. The mixed forest studied in YURF 

showed that different characteristics identified in the Riparian or Slope forests within the same forest 

indicated the different developments of the sites. Especially, constantly disturbed Riparian forests 

make classification approaches challenging, because the composition changes fast. This further raised 

the need of adding a spatial scale and the need to identify patterns in the forest. The studied 

methodology can be used as the standardised classification protocol. The gathering of orthomosaics 

automatically scales to the studied area, or a scale can be set-up before image collection. In YURF, 

Riparian areas could be imaged using a cover area of approximately 3 ha, which also fit well for the 

Terrace sites. For Slope sites an area of 5 ha might be more appropriate, because of the higher variety 

of species. In the studied area, relief, climate and soil conditions enhanced the high number of species 

that can grow in all different areas. A low spatial scale seemed to be appropriate for those fast changing 

forests, to capture the needed information. Development stages and disturbance regimes can be 

characterised to understand the forest ecosystem and its changes in the future. In forests, where the 

degree of mixture or the stand conditions are homogeneous, a larger study scale will be appropriate.  

It was further found out that counting of trees is not sufficient in natural mixed mountain forests. GIS 

applications or simple pixel counting codes can be used to assess the canopy area of each tree species, 

from which dominances can be calculated, as performed in this study. The manual annotations can be 

replaced by automatic classifications, which then provide the composition of tree species, in a short 
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amount of time. The fast and easy gathering of data, performed with this study and the indication, that 

automatic tree species classification can be performed, results in an efficient methodology to acquire 

enough data to classify forests with new scales. With knowledge about forests and tree species, a 

vertical component can be added, as canopy, subcanopy and understory vegetation could be identified 

from images. Additionally, field data gathered about the age and occurring shrubs and understory 

vegetation that were not visible form above can be added afterwards, but are not needed for a simple 

and easy classification of mixed forests.  

Bravo- Oviedo et al. (2014) stated that the dimensions of the forest need to be assessed, which can be 

done with orthomosaics. The second raised point had been to assess the development stage, which is 

possible from images, as young trees and old-growth forest areas could be identified in the studied 

YURF sites. The third point was the occurrence and intensity of tree mixtures, which was analysed with 

GIS applications, as shown in the previous chapters. A temporal aspect can be added, as image taking 

can be performed once or several times, depending on the purpose. The fourth point was to identify 

and evaluate main drivers of the forest ecosystem. Drivers of species occurrences in forest ecosystems 

are species interactions, climatic and sites conditions, seedling dispersal and strategies, niche 

differentiation and competition, to mention only a couple of them. Using these drivers to assess the 

functioning of species would hamper a standardized classification strategy.    

The studied methodology allows simple and fast classifications, applicable in all areas around the world. 

Classifying forests in development stages, horizontal and vertical or even functional structures are 

interesting and add an important aspect. However, different applied methodologies and 

characterisations make standardised classification approaches for mixed forests difficult. Therefore, 

using compositional features of the forest generated from manual or automatic classifications of forest 

images, including knowledge about forests and tree species, is an easy to apply methodology to classify 

mixed forests. 

 

8.11 Automatic classification  

8.11.1  Data issues  

Minimizing errors for visual interpretations of images are on the one hand field data. Forest inventories 

provide essential information of tree species, stem locations, tree height and DBH, which can be 

partially used for checking manual annotations (Schiefer et al., 2020). In dense forests, the combination 

of field and image data is challenging and sometimes not possible. Therefore, on the other hand high 

resolution images can be used, which allow a better visual interpretation of the data, as performed in 
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this study. If parts of orthomosaics were blurred or the identification was difficult because of low 

spatial resolutions, these images could help to increase annotation performances. In this case, 

reference data for automatic classification can be produced faster and with less errors (Schiefer et al. 

2020). CNNs sometimes are even able to overcome human errors in labelling reference data (Hamdi 

et al., 2019), as it was found for the blueberry annotations, where some smaller bushes were overseen 

during annotation, but the CNN was able to detect them.  

Imbalances in data were identified in all studied natural environments. Tree species classification with 

the low overall accuracies provided the strongest influence of data imbalance, with 13 considered 

classes, while the reduction to six classes resulted in increased accuracy values. Grouping species into 

genus classes was already applied by Schiefer et al. (2020), who grouped Acer, Tilia, and Quercus, as 

they were less representative in the dataset and achieved better performances of the network. The 

total agreement of 90.8 % for the black locust class in the coastal forest was higher, however only two 

classes were considered. Highest accuracies could only be reached with low sensitivity or specificity. 

The imbalance in the blueberry data had a strong effect on the FPR and accuracy, where low FPR 

implied high accuracies. When all blueberry patches are misclassified, still the accuracy reaches 97 % 

with a low FPR, as only 2.53 % of the patches contained blueberry bushes. Therefore, setting values 

for good results is necessary to provide useful insights into the automatic classification. Good results 

in the blueberry application were indicated to have high TPR (> 90 %), while at the same time the FPR 

was low (< 2 %). Absolute numbers of FP need to be higher than TP (Cabezas et al., 2020). Presented 

results demonstrated that unfrozen networks perform better than frozen ones, as frozen ones seem 

to have a problem detecting the blueberry patches with a TPR of lower than 60 %, which makes them 

unsuitable for the desired application. 

Egli and Höpke (2020) raised an important aspect of data collection for automatic classification. When 

DL applications are used spatial patterns have to be considered, like light conditions, weather and 

seasonal aspects influencing tree characteristics. For the classification of blueberry bushes and black 

locusts, only one-time images were taken, which might have had an impact on the classification 

accuracy. When the blueberry data were gathered, it was already late afternoon and detecting 

blueberry bushes became challenging, because they were covered by long shadows. For the evergreen 

and deciduous trees (winter images) and the tree species classification, data from one season were 

used, but always from several days within one season. This increases classification accuracies, 

according to Egli and Höpke (2020). Furthermore, the authors indicated that spatial resolutions are 

another important aspect when classifying tree species. Decreasing spatial resolution causes a 

logarithmic decrease of CNNs classification accuracy, which was also stated by Fassnacht et al. (2016) 

and Schiefer et al. (2020). Schiefer et al. (2020) further suggested testing CNNs to assess the influence 
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on spatial resolutions, forest characteristics, site conditions and stand structures for tree species 

classification. The imaged forest sites in YURF provided the desired characteristics, and with the future 

progress of the study, spatial resolutions for tree species classification can increase. The naturally 

different resolutions in the dataset and additionally the collected seasonal images provide interesting 

insights for automatic tree species classification. 

 

8.11.2  Comparison of deep learning setting and architectures 

In the study of classifying evergreen and deciduous trees in winter orthomosaics, transfer learning 

significantly increased classification accuracies. Also, the study of identifying black locust trees showed 

better performances when transfer learning was applied, while the performance did not increase 

significantly in the blueberry study. Although the trained networks obtained high accuracy values, they 

did not provide sufficiently high blueberry TPR and seemed not to work well on imbalanced datasets. 

Furthermore, Shirokikh et al. (2020) explained by only training the final layer, the network cannot 

properly adapt to the domain differences between the ImageNet dataset and the used network. Other 

studies showed the better performance of transfer leaning in comparison to full-trained networks 

(Sharma & Mehra, 2018; Kim et al., 2018; Tajbakhsh et al., 2016). Approaches using ResNet-50 in 

combination with transfer learning have been successfully applied to different fields, like Rezente et. 

al (2017), who showed the efficiency of the technique in the field of malicious software by reaching 

classification accuracies of 98.62 %. ResNet-50 as base model trained with the ImageNet database can 

be used successfully and outperform hand-extracted features. Ahmad et. al (2019) showed the best 

performance of ResNet in comparison to AlexNet and GoogleNet by using transfer learning tasks. Long 

computing times, high memory resources and a high amount of data further increased the need of 

transfer learning, especially when dealing with small amounts of training datasets, which reduced 

significantly the computing time and reached high accuracies (George et al., 2017). 

In the study of Schiefer et al. (2020), data augmentation was applied to increase size and variance in 

the training dataset, which was found out to reduce spatial autocorrelation of their adjacent tiles. 

While data augmentation was used to increase the data in the blueberry study, where the approach 

was to increase the infrequent species, Schiefer et al. (2020) mainly applied it to increase the 

generalisation ability of their CNN. The generalisation power of the network is important to achieve 

high overall accuracies (Natesan et al. 2019). Furthermore, an application of data augmentation can 

overcome differences between sites, like studied in the tree species classification chapter, where the 

considered sites had different compositions. López-Jiménez (2019) applied different levels of data 

augmentation, which was comparable with the study of Cabezas et al. (2020), pointing out that 

performances of the networks increase significantly, especially for infrequent classes. But López-
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Jiménez (2019) raised that increasing the dataset with real world data might increase performances 

even more. The gathered data for the tree species classification in YURF had such data available, which 

was used for the experiments to discuss aspects of naturally enlarged datasets. Still, the identified 

imbalance in the YURF dataset with tree species, containing only a small number of trees, needs 

applications like data augmentation or loss function weighting.  

The comparison of the architectures in the blueberry application showed that UNFNOA and UNFW 

networks identified 65 % of the blueberry bushes. Further, FP was detected with only 0.2 %, so that 

blueberry bushes could be identified correctly. Otherwise, when all blueberry bushes needed to be 

detected, UNFHA network identified 93 % of them, but added 1.77 % FP (Cabezas et al., 2020). Here, 

the testing of different networks, achieving different results, can be applied for different tasks. The 

detection of an invasive species is necessary to prevent a further spread, so all bushes needed to be 

identified; hence it did not matter if there was a blueberry bush or misclassified red soil. In other 

applications, like estimating biomass for timber prices of a specific tree species, the number of 

correctly classified trees has a greater importance. Here, the estimated biomass might be smaller, 

which might result in a higher price for timber when more trees were found it the forest afterwards. 

Furthermore, comparing networks allowed to evaluate performances and study training times. Larger 

and deeper networks usually show a higher training time, which was shown in Cabezas et al. (2020). 

The presented results showed that AlexNet needed 8 minutes, but was not successful in identifying 

blueberry bushes. ResNet50, a medium size network needed 25 minutes and wideResNet more than 

3 hours. Best accuracies were reached with Densenet and ResNet50 networks, while best overall 

results were obtained by ResNeXt (TPR = 93.75, Acc = 98.11) followed by ResNet50, ResNet152, 

Densenet and wideResNet. This shows that, before applying DL networks, architectures need to be 

selected carefully with an assessment on the needed results. Comparison of networks and their 

performance was studied before, like in Diez et al. (2020), Zhao et al. (2018) and Fromm et al. (2019). 

In Diez et al. (2020) a comparison of detection algorithms was performed to evaluate tree top 

detection, in Zhao et al. (2018) a developed algorithm was compared with the state-of-the-art DL 

networks and Fromm et al. (2019) compared detection networks (Faster R-CNN, R-FCN and SSD). The 

comparison provided in chapter 6.1 between ResNet50 and UNet further showed that a comparison 

of networks is necessary to find suitable networks for the desired application.  

Aspects like transfer learning, data augmentation or loss function weighting need to be considered in 

different applications, but the meaningfulness of an application needs to be discussed. But also, the 

used networks are from main importance when automatic classification want to be performed. In the 

end, applying DL techniques in natural environment are challenging due to the versatile characteristics 

of the forest but to find the DL model, which suits the application the best. 
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Chapter 9 Conclusion 

This thesis combined the research fields of forestry, geoinformatics and computer sciences. The 

combination of forestry and DL has developed fast in recent years. Classifying tree species 

automatically is still a challenging task and studies in natural environments, especially in mixed forests, 

are rare. This study is one of the first ones using DL techniques in Japanese mixed forests. The study 

area with 13 sites is large and was imaged over different seasons to provide a complete view on the 

forest. With 70 identified tree species in the field and 41 species identified on orthomosaics, the study 

exceeds previous works focussing on usually four different tree species.  

Field inventories allowed to study the forest structure and composition well, while significant insights 

about the distribution could not be provided well. Furthermore, the demand of man-power and time 

made the analyses insufficient, but at the same time necessary, when all layers of the forest need to 

be studied. This analysis enables to assess forest vertical structures and the composition of the forest. 

Image information, based on tree top counting or area calculations, provided useful insight, by 

calculating diversity indices, densities, frequencies, abundances and dominances. The benefit of these 

studies was that forests can be characterised and compared using a simple value instead of a large 

amount of data. Image analyses used only species, which were visible from above, while field data 

contained all information of the forest and its layers. The higher amount of data of the field studies 

enhanced the difficulties of handling the data, while the image data focussed on the species, which 

dominated most of the forest area. Even though the analyses indicated significant differences between 

the sites, detailed analyses cannot be performed with those data. Also, the main aspect to evaluate 

are plant compositions with some insights into the distribution. Forest or environment structures 

cannot be extracted.  

For evaluating forests from images, it was pointed out that canopy areas should be used, as areas of 

the canopy, subcanopy and some of the understory layer can be captured on images and relatively 

easy annotated with GIS or image manipulating software. Counting in summer images in mixed broad-

leaved forests was found to be insufficient, as dense canopy areas mislead detections. Counting trees 

from winter images was found to be a sufficient method for Japanese mountain forests, enabling the 

assessment of tree numbers and densities in the forest (distribution), while the stems cannot be 

classified through winter images. Therefore, compositions cannot be evaluated, while the distribution 

and lateral structure can.   

This study provided a methodology for assessing forest ecosystems with low-cost UAVs and low time 

demanding image analyses. The provided methodology extracted information about the forest 

composition, distribution and structure and even exceeded field inventory data. With the gathered 
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data, mixed forests were classified and the forests were named, which was not done before, whereby 

field and image data provided mostly the same results. The studied Riparian and Terrace sites were 

mainly classified as Japanese walnut forests, with varying subdominant species. While Japanese 

wingnuts and willows were subdominant in the Riparian sites, Terrace sites showed a higher variation 

with mainly maple species and horse-chestnuts. In the field Slope sites were classified as maple and 

oak forests with mainly beech as subspecies, while image analyses classified most sites as mix of 

Japanese walnuts with magnolia and maple species.  

The DL part of the study should overcome time-consuming manual annotation of image data, to 

increase the study area. The study provided significant insights into the classification of plant species 

in natural environments. Even though automatic tree species classification has not been finished, the 

first results were promising and the provided examples of deciduous vs. evergreen and the study of 

invasive species indicated the practical application of the studied methodology. It was assessed that 

those automatic classifications can be applied reaching high accuracies, while significantly reducing 

the time for generating annotations. Still, the network needed a large number of training examples 

and several setting. The number of studies has to increase, data need to be publicly available and the 

methodology needs to be adapted to become a consumer application.  

All in all, the study introduced a new methodology of evaluating forest and other natural ecosystems 

with state-of-the-art GIS and DL technologies allowing to characterise compositions, distributions and 

structures. The introduced methodology, using UAV and image analyses, can further be used as a 

standardised tool for classifying mixed forests world-wide.  
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X. Appendix i – iv  

Appendix i – Machine Learning 

Machine learning is a technique to mimic human intelligence through algorithms.  Computers follow 

instruction, while humans are able to learn from their experience. But computers can learn, too, not 

from experience but from data. Typical learning algorithms known in machine learning are linear 

regressions, the Naives Bayes algorithm, decision trees, logistic regressions, clustering or support 

vector machines. All these techniques are used to separate data giving specific features, while the 

computer learns to separate them by producing the smallest error possible, using the try and error 

approach.  

In general, there are three different types of machine learning: supervised and unsupervised 

classifications as well as reinforcement learning. Supervised classifications use labelled and structured 

data as basis for the training to generate a desired output, while unsupervised classifications work with 

unlabelled datasets (George et al., 2017). Using an unlabelled dataset demands the computer looking 

for patterns in the input data and outputting those. Reinforcement learning is a dynamic environment 

for the computer, using rewards and punishments for its outputs.  

Devices like UAVs and different kind of sensors, as well as the online connectivity between humans, 

enable a fast, efficient and low-cost gathering of large amounts of data. Data storage, computer 

memory and in general computing power enable the use of large amounts of training data, which 

increase the efficiency of the learning algorithms. Recently, new machine learning techniques rose, 

which are known as neural networks and DL.     
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Appendix ii – Neural network 

There are several layers in neural networks (NN): the input layer, the output layer and several hidden 

layers (which create the depth); all are connected via channels. Every channel has a specific weight 

and bias for each node in the layer. The nodes hold numbers between 0 and 1, representing the Gray 

value of the pixel, which is called activation. The number of pixels represents the number of nodes in 

the input layer. Each node with its specific activation number causes an activation of a set of other 

nodes in the hidden layers, which again activates another set of nodes in the next layer until it finally 

results in the activation of the output.  

As it is difficult to imagine how the machine sees images and classifies them, humans imagine the 

following situation. The whole image will be divided into subcomponents and ideally every node 

contains one of these components, which will be activated to generate the output of a labelled image. 

Therefore, from going to the last hidden layer to the output layer requires the computer to learn which 

combination of subcomponents built up the image. In the input layer pixels are analysed, the next 

layers of the network identify first the edges in the image, which leads for every image to an activation 

of specific nodes. The following layers identify then patterns, build edges, which again activate nodes 

and finally lead to the predicted output.  

The channels, which connect the nodes, need to be adjusted to capture pixel patterns. This can be 

done using parameters (weights for each channel) which are multiplied with their node and summed 

up. For the network, the calculated value is used in a sigmoid function, so that the output value is in 

the range of 0 and 1. Therefore, the activation of the node in a layer is a measure of how positive the 

relevant weighted sum is. Furthermore, a bias is used to tell the node until when it is supposed to be 

inactive and only when the value is high enough the node will be activated.  In the end, every channel 

between nodes of different layers has specific weights, which can be seen as the strength of the 

connection and a bias, which causes a node to be active or inactive. To sum it up, learning of a DL 

network means to find the right weights and biases to identify an object in an image.   

The network learns first on the training data and starts doing random processes, which results in a 

chaotic output. Therefore, the computer needs to be told which parts were classified wrong and which 

correct. That is done with a cost function. The lower the output cost value, the better the network is 

able to classify objects. The network needs to adjust weights and biases to activate the right nodes to 

classify images. This will be done with the gradient decent function, which minimizes the cost function, 

by defining the relative importance of each weight and bias, so that the performance of the DL model 

increases. After training the network will get a new set of labelled data, which it has not seen before, 

to check its capability to identify objects.  
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Mathematically the NN uses the input pixel values, with mathematical functions, matrices and vectors, 

to output a value, which stands for an identified object. In reality the network does not see edges or 

patterns in the images, it sees pixels as numbers generated by weights and biases. The network finds 

local minima which leads them to a specific output, which is called a classification of a DL network.  

 

Appendix iii – Addition to segmentation methods 

Instance segmentation: One step further into an even more detailed segmentation is instance 

segmentation. The difference to semantic segmentation is the division of objects belonging to one 

class. Therefore, also objects, belonging to the same class, can have different labels (Dwivedi, P. 2019).   

 

Appendix iv - Further deep learning architectures 

As mentioned before, there are several architectures available and in these days the development of 

new architectures increased because of the higher computational power and application in several 

fields. Therefore, considering more than the state of art architectures is a useful approach to study the 

effectiveness of DL for forestry. An overview of the networks is provided in the following section.  

AlexNet (Krizhevsky et al., 2012) is a widely used CNN architecture that consist of eight layers: five 

convolutional layers and three full connected ones. Additionally, AlexNet uses Rectified Linear Units 

(ReLU), which decrease training times. Furthermore, it can use multiple GPUs, which again decreases 

training times and increases the possibility to train a bigger model. Finally, the network uses 

overlapping pooling, which reduces errors by 0.5% as well as model overfitting (Wei, 2019).  

The VGG (Simonyan and Zisserman, 2014) neutral network followed AlexNet and was able to have an 

increased depth. The network uses small receptive fields together with three ReLU units, which 

increases the decision function. Fewer parameter and 1 x 1 convolutional layers allow the network to 

have a large number of layers, increasing the performance of the model (Wei, 2019b). In this work a 

VGG version with 19 layers including batch normalization is considered. 

ResNet (here used: ResNet50, ResNet152) (He et al., 2016) was the first network, which allowed to 

have a high number of layers, like ResNet50 with 50 layers or ResNet152 with 152 layers. An increased 

deepness of the networks provides high performance results, but also has the vanishing gradient 

problem, which ResNet overcomes with including identity shortcut connections, skipping layers in the 

network. Furthermore, the network uses blocks composed of convolutions, batch normalization and 

ReLU (Fung, 2017). 
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In the Squeezenet (squeezenet1_0) (Iandola et al., 2016) architecture the usually used 3 x 3 filters are 

replaced with 1 x 1 filters. Also, the input channels are decreased using so-called squeeze layers, which 

are expanded to a combination of 1 x 1 and 3 x 3 convolutional layers. Downsampling takes place late 

in the network, resulting in large activation maps. The benefit of the network is the high accuracy which 

can be achieved using less parameters (Tsang, 2019).  

DenseNet (densenet161) (Huang et al., 2016) uses dense connection, few parameters with achieving 

high accuracies. In the DenseNet, all layers are connected, which increases the input, while also feature 

maps are distributed over the connection. Since the feature maps are distributed, the network can be 

thinner and more compact, but can have at the same time, due to a more efficient computation and 

memory, more layers, like the one used in this work with 161 layers. The network is built up by a pre-

activation, batch normalization, ReLU and finally the 3 x 3 convolutional layers.  

Wide ResNets (wide_resnet101_2) (Zagoruyko and Komodakis, 2016) are modifications of ResNet, 

shallower than the ResNet, without losing accuracies. A shallow network can be reduced in the number 

of layers and the needed trainings time. Wide ResNets allow adding more feature maps in each layer, 

which enables the possibility to reduce the depth of the network. Furthermore, the order of the layers 

is changed from convolution – batch normalization – ReLU to batch normalization – ReLU – 

convolutional layer (Zaguroyko & Komodakis, 2016). 

ResNeXt (resnext101_32x8d) (Xi et al., 2016) is another modification of the ResNet network. The 

network uses the split-transform-merge paradigm, where the outputs of paths are merged together. 

Introduced are hyper-parameter, the cardinality, which help to adjust the capacity of the network. The 

cardinality influences the outcome better than the deepness of the model and the applicability to new 

datasets and tasks can be better performed (Fung, 2017).  
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XI.  Appendix A – N  

Appendix A - Flights 

Flight no. Date  Site Coverage 
[ha] 

Flight time Altitude 
[m] 

Images 
no. 

Summer 
2018 

      

1 20.06.2018 1 1.50 14.30-15.00 40 429 

2 22.06.2018 1 1.5 13.30-14.30 60 1335 

3 22.06.2018 1 1.5 15.15-16.05 40 697 

4 26.06.2018 2 lower part 12.30-13.30 84 -100 % 

5 26.06.2018 2 higher part 15.30-16.10 120-130 % 

6 03.07.2018 1 1.41 10.00-10.30 50 280 

7 03.07.2018 1 1.41 12.00-12.20 50 264 

8 03.07.2018 1 1.41 12.20-12.35 50 275 

9 03.07.2018 2 complete 13.40-14.25 50-120 % 

10 03.07.2018 1 1.41 15.05-15.20 50 265 

11 03.07.2018 1 1.41 15.20-15.40 50 285 

12 12.07.2018 1 6 morning % % 

13 12.07.2018 1 6 13.00-13.15 80 216 

13 12.07.2018 1 6 13.25-13.36 120 270 

14 18.07.2018 1 6 8.30-8.40 120 282 

14 18.07.2018 1 
 

8.40-8.54 80 220 

15 18.07.2018 1 6 13.40-13.52 80 230 

15 18.07.2018 1 
 

13.54-13.05 120 250        

Autumn 
2018 

      

16 04.10.2018 1 6 13:05-13.20 80 202 

16 04.10.2018 1 
 

13.20-13.35 120 270 

17a 10.10.2018 1 6 9.45-10.15 80+120 510 

17b 10.10.2018 1 
 

13.00-13.30 80+120 495 

18 16.10.2018 1 6 10.50-11.00 120 510 

18 16.10.2018 1 
 

11.01-11.16 80 / 

19 16.10.2018 2 8.1 11.40-11.50 120 531 

19 16.10.2018 2 
 

12.35-12.53 
 

/ 

20 16.10.2018 1 6 13.05-13.15 120 502 

20 16.10.2018 1 
 

13.16-13.30 80 / 

21 22.10.2018 1 6 10.30-10.42 120 263 

21 22.10.2018 1 
 

10.45-10.59 80 201 

22 22.10.2018 2 8.1 11.52-12.15 205 / 

22 22.10.2018 2 
 

12.20-12.30 150 200 

23 22.10.2018 1 6 12.52-13.03 120 264 

23 22.10.2018 1 
 

13.07-13.19 80 207 

24 26.10.2018 1 6 10.17-10.35 120 583 

24 26.10.2018 1 
 

10.40-10.52 80 / 

25 26.10.2018 2 8.1 12.00-12.12 205 472 
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25 26.10.2018 2 
 

12.14-12.29 150 / 

26 26.10.2018 3 5.5 12.38-12.57 110 584 

26 26.10.2018 3 
 

13.05-13.22 145 / 

27 26.10.2018 1 6 13.35-13.47 120 273 

27 26.10.2018 1 
 

13.51-14.04 80 214 

28 06.11.2018 2 8.1 12.38-12.53 205 260 

28 06.11.2018 2 
 

12.54-13-02 150 220 

29 06.11.2018 3 5.5 13.16-13.35 312 110 

29 06.11.2018 3 
 

13.36-13.50 254 145 

30 06.11.2018 3 5.5 11.43-12.00 317 110 

30 06.11.2018 3 
 

12.02-12.17 255 145 

31 06.11.2018 2 8.1 14.51-15.06 205 458 

31 06.11.2018 2 
 

15.06-15.20 150 / 

32 08.11.2018 3 5.5 9.30-9.46 145 251 

32 08.11.2018 3 
 

9.51-10.13 110 320 

33 08.11.2018 2 8.1 10.20-10.32 205 256 

33 08.11.2018 2 
 

10.34-10.45 150 208 

34 08.11.2018 3 5.5 10.50-11.05 145 / 

34 08.11.2018 3 
 

11.08-11.20 110 322 

35 08.11.2018 2 8.1 12.34-12.47 205 260 

35 08.11.2018 2 
 

12.48-13.00 150 185        

Winter  
2018/19 

     

36 27.02.2019 1 6 15.58-16.27 80+120 274 

37 27.02.2019 2 8.1 15.28-15.55 150+205 472 

38 28.02.2019 3 5.5 11.24-11.57 110+145 556 

39 09.04.2019 1 6 11.02-11.32 80+120 503 

40 09.04.2019 4 3 14:13-14:28 80 233 

41 09.04.2019 6 4.1 15:11-15:26 80 279 

42 16.04.2019 1 6 13:07-13:33 80+120 487        

Spring 
2019 

      

43 28.04.2019 8 4.3 14:23-14:38 100 301 

44 28.04.2019 9 6.1 14:02-14:18 150 304 

45 28.04.2019 2 8.1 15:47-16:17 150+205 456 

46 04.05.2019 8 4.3 12:53-13:08 100 300 

47 04.05.2019 9 6.1 12:33-12:49 150 325 

48 04.05.2019 12 3 13:09-13:19 100 137 

49 04.05.2019 13 4.8 13:21-13:35 100 264 

50 04.05.2019 10 5.4 13:41-13:45 140 252 

51 04.05.2019 5 3.4 14.11-14:32 130+150 385 

52 04.05.2019 2 8.1 15:28-15:50 150+205 457 

53 04.05.2019 3 5.5 15:52-16:26 110+145 564 

54 12.05.2019 9 6.1 12:06-12:20 150 269 

55 12.05.2019 8 4.3 12:24-12:39 100 293 

56 12.05.2019 10 5.4 12:43-12:56 140 240 
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57 12.05.2019 2 8.1 13:40-14:07 150+205 458 

58 12.05.2019 3 5.5 14:08-14:41 110+145 582 

59 12.05.2019 1 6 14:45-15:12 80+120 486 

60 12.05.2019 5 3.4 15:46-16:04 130+150 332 

61 12.05.2019 6 4.1 16:15-16:30 80 294 

62 20.05.2019 9 6.1 9:05-9:18 150 268 

63 20.05.2019 8 4.3 9:24-9:39 100 302 

64 20.05.2019 10 5.4 9:44-9:56 140 242 

65 20.05.2019 7 5.1 10:01-10:13 90 244 

66 20.05.2019 6 4.1 10:24-10:39 80 296 

67 20.05.2019 2 8.1 11:27-11:56 150+205 459 

68 20.05.2019 3 5.5 12:07-12:44 110+150 594 

69 20.05.2019 1 6 12:45-13:14 80+120 497 

70 20.05.2019 5 3.4 14:47-15:01 130+150 365 

71 20.05.2019 4 3 15:05-15:17 80 231        

Summer 
2019 

      

72 04.06.2019 9 6.1 10:07-10:20 150 266 

73 04.06.2019 2 8.1 11:52-12:21 150+205 456 

74 04.06.2019 3 5.5 13:05-13:35 110+145 515 

75 04.06.2019 1 6 14:03-14:36 80+120 437 

76 04.06.2019 5 3.4 15:18-15:41 130+150 328 

77 04.06.2019 4 3 15:45-15:58 80 234 

78 04.06.2019 7 5.1 16:06-16:20 90 248 

79 13.06.2019 9 6.1 16:50-17:05 150 270 

80 13.06.2019 8 4.3 17:10-17:25 110 299 

81 13.06.2019 10 5.4 17:29-17:42 140 233 

82 13.06.2019 1 6 18:04-18:44 80+120 419 

83 14.06.2019 5 3.4 9:37-10:00 130+150 324 

84 14.06.2019 4 3 10:01-10:16 80 232 

85 14.06.2019 6 4.1 10:25-10:38 80 218 

86 14.06.2019 2 8.1 11:24-11:56 205+150 457 

87 14.06.2019 7 5.1 13:25-13:38 90 240 

88 14.06.2019 11 3.5 13:41-13:52 100 214 

89 14.06.2019 12 3 13:55-14:08 100 236 

90 14.06.2019 13 4.8 14:10-14:25 100 259 

91 20.06.2019 9 6.1 9:04-9:35 150 265 

92 20.06.2019 8 4.3 9:22-9:35 100 269 

93 20.06.2019 10 5.4 9:35-9:51 140 241 

94 20.06.2019 7 5.1 9:45-10:08 90 245 

95 20.06.2019 13 4.8 10:10-10:24 100 260 

96 20.06.2019 6 4.1 10:47-11:02 80 290 

97 20.06.2019 2 8.1 11:57-12:24 205+150 450 

98 20.06.2019 3 5.5 12:50-13:18 145+110 494 

99 20.06.2019 1 6 13:26-13:54 80+120 419 

100 20.06.2019 5 3.4 14:55-15:13 150+130 321 

101 20.06.2019 4 3 15:16-15:29 80 230 
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102 20.06.2019 6 4.1 15:34-15:49 80 294 

103 20.06.2019 11 3.5 16:13-16:25 100 216 

104 20.06.2019 12 3 16:27-16:40 100 247 

105 26.06.2019 9 6.1 9:20-9:33 150 262 

106 26.06.2019 8 4.3 9:36-9:50 100 264 

107 26.06.2019 6 4.1 9:57-10:11 80 290 

108 26.06.2019 5 3.4 10:23-10:43 150+130 319 

109 26.06.2019 Spectral 8 
 

12:14-12:22 115 245 

110 26.06.2019 6 4.1 12:25-12:50 80 291 

111 26.06.2019 5 3.4 13:00-13:15 150+130 296 

112 26.06.2019 Spectral 8 
 

14:59-15:11 115 250 

113 26.06.2019 6 4.1 15:20-15:34 80 292 

114 26.06.2019 5 3.4 15:43-16:00 150+130 291 

115 04.07.2019 9 6.1 10:30-10:41 150 263 

116 04.07.2019 10 5.4 10:45-10:59 140 241 

117 04.07.2019 7 5.1 11:01-11:15 90 224 

118 04.07.2019 13 4.8 11:18-11:31 100 257 

119 04.07.2019 12 3 11:35-11:47 100 241 

120 04.07.2019 11 3.5 11:50-12:01 100 213 

121 04.07.2019 2 8.1 12:45-13:12 205+150 430 

122 04.07.2019 3 5.5 13:31-14:03 110+145 497 

123 10.07.2019 1 6 10:20-10:46 80+120 426 

124 10.07.2019 5 3.4 11:05-11:22 150+130 289 

125 10.07.2019 4 3 11:26-11:35 80 242 

126 10.07.2019 6 4.1 11:47-12:01 80 270 

127 10.07.2019 9 6.10 12:10-12:19 150 265 

128 10.07.2019 7 5.1 12:28-12:40 90 227 

129 21.07.2019 Spectral 8 
 

9:41-9:55 115 249 

130 21.07.2019 7 5.1 9:559-10:11 90 236 

131 21.07.2019 6 4.1 10:18-10:32 80 285 

132 21.07.2019 5 3.4 10:40-10:57 150+130 296 

133 21.07.2019 Spectral 8 
 

12:05-12:18 115 245 

134 21.07.2019 12 3 12:21-12:34 100 241 

135 21.07.2019 6 4.1 12:42-12:57 80 291 

136 21.07.2019 5 3.4 13:08-13:23 150+130 296 

137 21.07.2019 3 5.5 14:05-14:34 110+145 498 

138 21.07.2019 5 3.4 15:02-15:18 150+130 297 

139 21.07.2019 6 4.1 15:28-15:41 80 290 

140 21.07.2019 Spectral 8 
 

15:50-16:02 115 248 

141 21.07.2019 10 5.4 16:06-16:20 140 237 

142 26.07.2019 13 4.8 9:17-9:30 100 256 

143 26.07.2019 11 3.5 9:32-9:46 100 214 

144 26.07.2019 9 6.1 9:47-10:01 150 262 

145 26.07.2019 6 4.1 10:33-10:48 80 291 

146 26.07.2019 10 5.4 10:59-11:12 140 240 

147 26.07.2019 7 5.1 11:13-11:28 90 245 

148 26.07.2019 spectral8 
 

11:29-11:45 115 248 

149 26.07.2019 12 3 11:47-11:59 100 244 
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150 26.07.2019 2 8.1 13:59-14:14 150+205 239 

151 26.07.2019 1 6 15:27-15:50 80+120 429 

152 26.07.2019 5 3.4 16:18-16:34 130+150 268 

153 26.07.2019 4 3 16:38-16:46 80 224 

154 26.07.2019 3 5.5 14:36-15:05 110+145 499 

155 17.08.2019 13 4.8 9:29-9:42 100 255 

156 17.08.2019 10 5.4 9:48-10:00 140 241 

157 17.08.2019 7 5.1 10:05-10:17 90 249 

158 17.08.2019 9 6.1 10:20-10:34 150 269 

159 17.08.2019 11 3.5 10:42-10:53 100 202 

160 17.08.2019 12 3 10:57-11:09 100 243 

161 17.08.2019 6 4.1 12:29-12:44 80 290 

162 17.08.2019 5 3.4 12:45-13:10 130+150 296 

163 17.08.2019 4 3 13:14-13:25 80 237 

164 17.08.2019 2 8.1 13:45-14:11 150+205 430 

165 17.08.2019 3 5.5 14:52-15:20 110+145 498 

166 17.08.2019 1 6 15:32-15:56 80+120 432 

167 17.08.2019 8 4.3 16:10-16:24 100 270 

168 21.08.2019 spectal 8 
 

9:53-10:07 
 

247 

169 21.08.2019 6 4.1 10:13-10:29 80 290 

170 21.08.2019 5 3.4 10:34-10:52 130+150 287 

171 21.08.2019 1 6 13:42-14:04 
 

401 

172 21.08.2019 5 3.4 12:43-13:01 130+150 292 

173 21.08.2019 6 4.1 12:22-12:38 80 295 

174 21.08.2019 spectral 8 
 

12:03-12:18 
 

248 

175 21.08.2019 5 3.4 15:05-15:23 130+150 290 

176 21.08.2019 6 4.1 15:28-15:44 80 291 

177 21.08.2019 spectral 8 
 

15:49-16:03 
 

242        

Autumn 
2019 

      

178 03.09.2019 1 6 9.03-9:14 80 219 

179 03.09.2019 2 8.1 9:27-9:54 150+205 431 

180 03.09.2019 3 5.5 9:58-10:37 110+145 497 

181 03.09.2019 4 3 10.44-10:56 80 234 

182 03.09.2019 5 3.4 11:00-11:15 130+150 297 

183 03.09.2019 6 4.1 11:33-11:48 80 282 

184 03.09.2019 7 5.1 12:12-12:24 90 245 

185 03.09.2019 8 4.3 12:54-13:08 100 268 

186 03.09.2019 9 6.1 13:12-13:26 150 262 

187 03.09.2019 13 4.8 14:02-14:15 100 235 

188 03.09.2019 12 3 14:19-14:31 100 245 

189 03.09.2019 11 3.5 14:34-14:45 100 240 

190 03.09.2019 10 5.4 15:08-15:20 140 242 

191 18.09.2019 10 5.4 7:05-7:20 140 222 

192 18.09.2019 13 4.8 7:23-7:36 100 251 

193 18.09.2019 12 3 7:41-7:54 100 238 

194 18.09.2019 11 3.5 8:20-8:31 100 217 
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195 18.09.2019 9 6.1 8:34-8:47 150 265 

196 18.09.2019 8 4.3 8:51-9:04 100 268 

197 18.09.2019 7 5.1 2:22-9:34 90 243 

198 18.09.2019 6 4.1 9:37-9:52 80 291 

199 18.09.2019 5 3.4 10:06-10:22 130+150 294 

200 18.09.2019 4 3 10:25-10:37 80 235 

201 18.09.2019 2 8.1 10:52-11:19 150+205 441 

202 18.09.2019 3 5.5 11.34-12:03 110+145 501 

203 18.09.2019 1 6 12:07-12:29 80+120 433 

204 09.10.2019 13 4.8 9:24-9:39 100 280 

205 09.10.2019 12 3 9:43-9:56 100 230 

206 09.10.2019 11 3.5 10:02-10:13 100 215 

207 09.10.2019 9 6.1 10:18-10:32 150 270 

208 09.10.2019 8 4.3 10:35-10:49 100 269 

209 09.10.2019 7 5.1 10:53-11:08 90 246 

210 09.10.2019 5 3.4 13:39-13:56 130+150 294 

211 09.10.2019 4 3 14:01-14:13 80 229 

212 09.10.2019 6 4.1 14:20-14:40 80 295 

213 09.10.2019 10 5.4 14:57-15:11 140 238 

214 16.10.2019 10 5.4 9:05-9:21 140 248 

215 16.10.2019 9 6.1 9:24-9:40 150 267 

216 16.10.2019 7 5.1 9:47-10:01 90 247 

217 16.10.2019 13 4.8 10:04-10:19 100 262 

218 16.10.2019 6 4.1 10:30-10:47 80 294 

219 16.10.2019 4 3 10:56-11:12 80 243 

220 18.10.2019 1 6 8:03-8:35 80+120 446 

221 18.10.2019 12 3 14:03-11:19 100 249 

222 18.10.2019 11 3.5 14:21-14:34 100 216 

223 29.10.2019 3 5.5 9:33-10:05 110+145 506 

224 29.10.2019 5 3.4 10:29- 10:45 130+150 301 

225 29.10.2019 2 8.1 10:56-11:42 150+205 447 

226 29.10.2019 10 5.4 14:16-14:34 140 251 

227 29.10.2019 9 6.1 14:37-14:57 150 328 

228 29.10.2019 8 4.3 14:59-15:11 100 215 

229 29.10.2019 13 4.8 15:13-15:28 100 265 

230 29.10.2019 12 3 15:31-15:46 100 240 

231 29.10.2019 11 3.5 15.49-16:02 100 219 

232 08.11.2019 2 8.1 9:43-10:15 150+205 446 

233 08.11.2019 3 5.5 10:33-11:03 110+145 507 

234 07.11.2019 8 4.3 11:15-11:30 100 279 

235 07.11.2019 9 6.1 10:56-11:12 150 266 

236 07.11.2019 10 5.4 10:36-10:53 140 250 

237 07.11.2019 11 3.5 10:06-12:21 100 214 

238 07.11.2019 12 3 11:49-12:05 100 245 

239 07.11.2019 13 4.8 11:33-11:48 100 263 

       

Winter 
2020 
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240 19.02.2020 7 5.1 16:06-16:16 90 249 

241 19.02.2020 8 4.3 16:38-16:53 100 277 

242 19.02.2020 9 6.1 16:20-16:34 150 268 

243 20.02.2020 10 5.4 11:44-12:04 140 260 

244 20.02.2020 11 3.5 12:07-12:19 100 217 

245 20.02.2020 12 3 12:23-12:37 100 250 

246 20.02.2020 13 4.8 12:43-12:57 100 290        

Summer  
2020 

     

247 18.06.2020 Salix 
 

16:53-17:08 50 380 

248 18.06.2020 Crenata 
 

16:23-16:38 50 296 

249 02.06.2020 1 6 9:57-11:12 close 1066 

250 26.06.2020 3 5.5 11:20-12:20 close 869 

251 28.06.2020 7 5.1 13:46-14:30 close 576 

252 28.06.2020 13 4.8 14:30-14:59 close 443 

253 28.06.2020 8 4.3 12:51-13:46 close 732 

254 28.06.2020 9 6.1 12:51-13:46 close / 

255 26.07.2020 4 3 13:27-14:20 close 665 

256 26.07.2020 5 3.4 14:20-14:50 close 358 

257 26.07.2020 6 4.1 12:24-13:19 close 751 

258 26.07.2020 11 3.5 15:38-16:34 close 784 

259 26.07.2020 12 3 15:38-16:34 close / 

260 02.08.2020 Black 
locust 

 
12:51-12:59 50 129 

261 02.08.2020 Crenata 
 

17:17-17:29 50 296 

262 02.08.2020 5 3.4 16:04-16:09 close 69 

263 02.08.2020 10 5.4 16:19-16:56 close 791 

264 02.08.2020 2 8.1 14:23-15:16 close 728 

265 02.08.2020 4 3 15:56-16:09 close 221 

266 02.08.2020 1 6 15:28-15:38 close 187 

267 10.08.2020 10 5.4 15:46-15:57 close 236 

268 10.08.2020 7 5.1 15:41-15:45 close 106 

269 10.08.2020 2 8.1 15:15-15:31 close 258 

270 10.08.2020 4 3 14:31-14:35 close 138 

271 10.08.2020 1 6 14:56-15:04 close 175 

272 16.08.2020 1 6 12:45-12:59 close 182 

273 16.08.2020 5 3.4 13:22-13:24 close 54 

274 16.08.2020 6 4.1 12:22-12:32 close 245 

275 16.08.2020 10 5.4 10:27-10:34 close 119 

276 16.08.2020 12 3 11:16-11:40 close 487 

277 16.08.2020 8 4.3 11:41-12:10 close 539 

278 16.08.2020 9 6.1 11:41-12:10 close /        

Autumn 
2020 

      

279 08.10.2020 7 5.1 9:47-9:59 90 361 

280 08.10.2020 13 4.8   10:07-10:20 100 382 
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281 08.10.2020 
     

282 08.10.2020 12 3 14:21-14:34 100 355 

283 08.10.2020 11 3.5 14:36-14:49 100 365 

284 08.10.2020 9 6.1 14:52-15:03 150 337 

285 08.10.2020 10 5.4 15.07-15:18 140 320 

286 08.10.2020 8 4.3 15:21-15:35 100 396 

287 08.10.2020 4 3 11:18-11:32 80 412 

288 08.10.2020 6 4.1 10:53-11:09 80 454        

Winter 
2021 

      

289 08.03.2021 5 3.4 11:37-11:51 130+150 358 

290 08.03.2021 8 4.3 12:29-12:43 100 397 

291 08.03.2021 9 6.1 12:10-12:24 150 403 

292 08.03.2021 10 5.4 12:47-12:57 140 322 

293 08.03.2021 11 3.5 13:03-13:16 100 365 

294 08.03.2021 13 4.8 13:19-13:24 100 382 

295 08.03.2021 7 5.1 13:36-13:49 90 361 
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Appendix B – Programmed setting for flights 

Site  Waypoints Flight 
length 

Cover 
area  

Shooting angle Capture mode Shutter 
interval 

Speed Altitude Flight time Photo  Front + 
Side 
overlap  

1.1 52 2258 2.47 Parallel to main path at equal time interval 3 sec 3.5 80 13 min 3 sec 227 90 + 90 

1.2 10 1702 1.83 Parallel to main path at equal time interval 2 sec 3.7 120 9 min 11 sec 221 95 + 95 

2.1 26 1665 1.45 Parallel to main path at equal time interval 3 sec 2.6 150 12 min 38 sec 203 96 + 96 

2.2 22 2219 2.19 Parallel to main path at equal time interval 3 sec 2.8 205 15 min 40 sec 245 97 + 97 

3.1 20 1980 1.9 Parallel to main path at equal time interval 3 sec 2.5 110 15 min 33 sec 254 95 + 95 

3.2 20 2064 1.96 Parallel to main path at equal time interval 3 sec 2.6 145 15 min 52 sec 254 96 + 96 

4 27 2007 1.94 Parallel to main path at equal time interval 3 sec 2.8 80 14 min 29 sec  241 92 + 92 

5.1 8 1201 1.18 Parallel to main path at equal time interval 3 sec 2.8 130 8 min 29 sec  131 95 + 95 

5.2 12 1447 1.25 Parallel to main path at equal time interval 3 sec 2.6 150 11 min 8 sec  172 96 + 96 

6 20 2466 2.45 Parallel to main path at equal time interval 3 sec 2.8 80 17 min 48 sec  296 92 + 92 

7 16 2094 2.05 Parallel to main path at equal time interval 3 sec 2.7 90 15 min 14 sec 250 93 + 93 

8 18 2175 1.79 Parallel to main path at equal time interval 3 sec 2.6 100 16 min 44 sec  276 94 + 95 

9 20 2658 2.34 Parallel to main path at equal time interval 3 sec 3.2 150 16 min 22 sec  269 95 + 96  

10 30 2284 2.18 Parallel to main path at equal time interval 3 sec 3 140 15 min 4 sec 249 95 + 96 

11 24 1748 1.56 Parallel to main path at equal time interval 3 sec 2.6 100 13 min 23 sec  220 94 + 94 

12 26 1961 1.49 Parallel to main path at equal time interval 3 sec 2.6 100 15 min 1 sec  251 94 + 95 

13 16 2091 1.62 Parallel to main path at equal time interval 3 sec 2.6 100 16 min 4 sec 264 94 + 95  

spectral 8 22 2320 2.03 Parallel to main path at equal time interval 3 sec 3 115 15 min 32 sec  253 94 + 95 
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Appendix C – Density measures per site 

Site 1 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 107 13.67 24.95 

Aesculus turbinata S02 24 3.07 5.60 

Cryptomeria japonica S03 201 25.67 46.87 

Pterocarya rhoifolia S04 125 15.96 29.15 

Quercus mongolica subsp. crispula S05 9 1.15 2.10 

Larix kaempferi S06 19 2.43 4.43 

Fagus crenata S07 
 

0.00 0.00 

Magnolia obovata S08 19 2.43 4.43 

Acer japonicum, sieblodium, palmatum S09 145 18.52 33.81 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa  

S10 13 1.66 3.03 

Acer mono maxim, Acer pictum subsp. 
mono  

S11 15 1.92 3.50 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 8 1.02 1.87 

Castanea Crenata S14 4 0.51 0.93 

Robinia pseudoaccaccia  S15 14 1.79 3.26 

Cornus controversa S16 23 2.94 5.36 

Phelledendron amurense S17  9 1.15 2.10 

Betula corylifolia S18 
 

0.00 0.00 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax   

S23 13 1.66 3.03 

Morus australis S24 
 

0.00 0.00 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 28 3.58 6.53 

Japanese honeysuckle, Lonicera 
japonica 

S27 
 

0.00 0.00 

Kalopanax septemlobu S28 
 

0.00 0.00 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei  S31 0 0.00 0.00 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia,  S39 0 0.00 0.00 
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Hamamelis japonica S40 0 0.00 0.00 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana  S42 5 0.64 1.17 

Carpinus Cordata S43 2 0.26 0.47  
mix 

 
0.00 0.00  

Sum 783 
  

 

Site 2 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 23 2.77 5.73 

Aesculus turbinata S02 35 4.21 8.73 

Cryptomeria japonica S03 195 23.47 48.62 

Pterocarya rhoifolia S04 3 0.36 0.75 

Quercus mongolica subsp. crispula S05 45 5.42 11.22 

Larix kaempferi S06 
 

0.00 0.00 

Fagus crenata S07 
 

0.00 0.00 

Magnolia obovata S08 63 7.58 15.71 

Acer japonicum, sieblodium, palmatum S09 351 42.24 87.51 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 
 

0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 63 7.58 15.71 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 
 

0.00 0.00 

Castanea Crenata S14 
 

0.00 0.00 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 7 0.84 1.75 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 2 0.24 0.50 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 2 0.24 0.50 

Morus australis S24 6 0.72 1.50 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 4 0.48 1.00 

Japanese honeysuckle, Lonicera 
japonica 

S27 
 

0.00 0.00 

Kalopanax septemlobu S28 
 

0.00 0.00 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 
 

0.00 0.00 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 
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Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 6 0.72 1.50 

Hamamelis japonica S40 10 1.20 2.49 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana S42 
 

0.00 0.00 

Carpinus Cordata S43 14 1.68 3.49  
mix 2 0.24 0.50  
Sum 831 100 

 

 

Site 3 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 53 4.83 15.18 

Aesculus turbinata S02 3 0.27 0.86 

Cryptomeria japonica S03 122 11.11 34.95 

Pterocarya rhoifolia S04 3 0.27 0.86 

Quercus mongolica subsp. crispula S05 66 6.01 18.91 

Larix kaempferi S06 27 2.46 7.73 

Fagus crenata S07 27 2.46 7.73 

Magnolia obovata S08 32 2.91 9.17 

Acer japonicum, sieblodium, palmatum S09 605 55.10 173.31 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 3 0.27 0.86 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 75 6.83 21.48 

Salix serissaefolia S12 1 0.09 0.29 

Salix jessoensis S13 2 0.18 0.57 

Castanea Crenata S14 4 0.36 1.15 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 17 1.55 4.87 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 
 

0.00 0.00 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 14 1.28 4.01 

Morus australis S24 7 0.64 2.01 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 7 0.64 2.01 

Japanese honeysuckle, Lonicera 
japonica 

S27 2 0.18 0.57 

Kalopanax septemlobu S28 1 0.09 0.29 
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Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 19 1.73 5.44 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 3 0.27 0.86 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 4 0.36 1.15 

Hamamelis japonica S40 
 

0.00 0.00 

Acer japonica S41 1 0.09 0.29 

Corylus sieboldiana S42 
 

0.00 0.00 

Carpinus Cordata S43 
 

0.00 0.00  
mix 

 
0.00 0.00  

Sum 1098 100.00 314.53 

 

Site 4 

Tree species Abbreviation Numbe
r 

relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 58 17.79 32.87 

Aesculus turbinata S02 
 

0.00 0.00 

Cryptomeria japonica S03 129 39.57 73.12 

Pterocarya rhoifolia S04 9 2.76 5.10 

Quercus mongolica subsp. crispula S05 7 2.15 3.97 

Larix kaempferi S06 7 2.15 3.97 

Fagus crenata S07 
 

0.00 0.00 

Magnolia obovata S08 6 1.84 3.40 

Acer japonicum, sieblodium, 
palmatum 

S09 12 3.68 6.80 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 0 0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 1 0.31 0.57 

Salix serissaefolia S12 78 23.93 44.21 

Salix jessoensis S13 1 0.31 0.57 

Castanea Crenata S14 
 

0.00 0.00 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 2 0.61 1.13 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 
 

0.00 0.00 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 2 0.61 1.13 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 12 3.68 6.80 
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Morus australis S24 1 0.31 0.57 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 
 

0.00 0.00 

Japanese honeysuckle, Lonicera 
japonica 

S27 
 

0.00 0.00 

Kalopanax septemlobu S28 
 

0.00 0.00 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 0 0.00 0.00 

Betula corylifolia S32 1 0.31 0.57 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 
 

0.00 0.00 

Hamamelis japonica S40 
 

0.00 0.00 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana S42 
 

0.00 0.00 

Carpinus Cordata S43 
 

0.00 0.00  
mix 

 
0.00 0.00  

Sum 326 
  

 

Site 5 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 47 9.13 23.52 

Aesculus turbinata S02 18 3.50 9.01 

Cryptomeria japonica S03 51 9.90 25.53 

Pterocarya rhoifolia S04 14 2.72 7.01 

Quercus mongolica subsp. crispula S05 53 10.29 26.53 

Larix kaempferi S06 0 0.00 0.00 

Fagus crenata S07 4 0.78 2.00 

Magnolia obovata S08 42 8.16 21.02 

Acer japonicum, sieblodium, palmatum S09 176 34.17 88.09 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 0 0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 52 10.10 26.03 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 3 0.58 1.50 

Castanea Crenata S14 1 0.19 0.50 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 13 2.52 6.51 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 
 

0.00 0.00 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 
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Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 17 3.30 8.51 

Morus australis S24 
 

0.00 0.00 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 
 

0.00 0.00 

Japanese honeysuckle, Lonicera 
japonica 

S27 12 2.33 6.01 

Kalopanax septemlobu S28 4 0.78 2.00 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 
 

0.00 0.00 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 
 

0.00 0.00 

Hamamelis japonica S40 4 0.78 2.00 

Acer japonica S41 0 0.00 0.00 

Corylus sieboldiana S42 6 1.17 3.00 

Carpinus Cordata S43 
 

0.00 0.00  
mix 

 
0.00 0.00  

Sum 515 
  

 

Site 6 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 47 14.33 21.78 

Aesculus turbinata S02 4 1.22 1.85 

Cryptomeria japonica S03 156 47.56 72.30 

Pterocarya rhoifolia S04 25 7.62 11.59 

Quercus mongolica subsp. crispula S05 3 0.91 1.39 

Larix kaempferi S06 
 

0.00 0.00 

Fagus crenata S07 
 

0.00 0.00 

Magnolia obovata S08 5 1.52 2.32 

Acer japonicum, sieblodium, palmatum S09 10 3.05 4.63 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 
 

0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 5 1.52 2.32 

Salix serissaefolia S12 8 2.44 3.71 

Salix jessoensis S13 16 4.88 7.42 

Castanea Crenata S14 10 3.05 4.63 
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Robinia pseudoaccaccia S15 7 2.13 3.24 

Cornus controversa S16 5 1.52 2.32 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 6 1.83 2.78 

Alnus inokumae, Alnus hirsuta S19 1 0.30 0.46 

Picea abies S20 4 1.22 1.85 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 9 2.74 4.17 

Morus australis S24 
 

0.00 0.00 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 
 

0.00 0.00 

Japanese honeysuckle, Lonicera 
japonica 

S27 
 

0.00 0.00 

Kalopanax septemlobu S28 
 

0.00 0.00 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 
 

0.00 0.00 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 5 1.52 2.32 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 
 

0.00 0.00 

Hamamelis japonica S40 
 

0.00 0.00 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana S42 
 

0.00 0.00 

Carpinus Cordata S43 
 

0.00 0.00  
mix 

 
0.00 0.00  

Sum 328 
  

 

Site 7 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 72 23.84 32.69 

Aesculus turbinata S02 3 0.99 1.36 

Cryptomeria japonica S03 55 18.21 24.97 

Pterocarya rhoifolia S04 22 7.28 9.99 

Quercus mongolica subsp. crispula S05 13 4.30 5.90 

Larix kaempferi S06 
 

0.00 0.00 

Fagus crenata S07 
 

0.00 0.00 

Magnolia obovata S08 1 0.33 0.45 

Acer japonicum, sieblodium, palmatum S09 67 22.19 30.42 
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Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 
 

0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 16 5.30 7.27 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 14 4.64 6.36 

Castanea Crenata S14 
 

0.00 0.00 

Robinia pseudoaccaccia S15 14 4.64 6.36 

Cornus controversa S16 
 

0.00 0.00 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 
 

0.00 0.00 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  2 0.66 0.91 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 1 0.33 0.45 

Morus australis S24 
 

0.00 0.00 

Clethra barvinervis Sieb. et Zucc. S25 1 0.33 0.45 

Tilia japonica, Tilia maximowizciana S26 
 

0.00 0.00 

Japanese honeysuckle, Lonicera 
japonica 

S27 
 

0.00 0.00 

Kalopanax septemlobu S28 
 

0.00 0.00 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 20 6.62 9.08 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 1 0.33 0.45 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 
 

0.00 0.00 

Hamamelis japonica S40 
 

0.00 0.00 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana S42 
 

0.00 0.00 

Carpinus Cordata S43 
 

0.00 0.00  
mix 

 
0.00 0.00  

Sum 302 
  

 

Site 8 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 32 6.30 19.45 

Aesculus turbinata S02 8 1.57 4.86 

Cryptomeria japonica S03 7 1.38 4.25 

Pterocarya rhoifolia S04 1 0.20 0.61 
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Quercus mongolica subsp. crispula S05 42 8.27 25.52 

Larix kaempferi S06 
 

0.00 0.00 

Fagus crenata S07 1 0.20 0.61 

Magnolia obovata S08 7 1.38 4.25 

Acer japonicum, sieblodium, palmatum S09 241 47.44 146.45 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 
 

0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 38 7.48 23.09 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 1 0.20 0.61 

Castanea Crenata S14 2 0.39 1.22 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 14 2.76 8.51 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 13 2.56 7.90 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 15 2.95 9.12 

Morus australis S24 14 2.76 8.51 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 3 0.59 1.82 

Japanese honeysuckle, Lonicera 
japonica 

S27 2 0.39 1.22 

Kalopanax septemlobu S28 
 

0.00 0.00 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 
 

0.00 0.00 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 
 

0.00 0.00 

Hamamelis japonica S40 33 6.50 20.05 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana S42 18 3.54 10.94 

Carpinus Cordata S43 16 3.15 9.72  
mix 

 
0.00 0.00  

Sum 508 
  

 

Site 9 
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Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 7 0.98 3.99 

Aesculus turbinata S02 30 4.18 17.10 

Cryptomeria japonica S03 53 7.39 30.20 

Pterocarya rhoifolia S04 
 

0.00 0.00 

Quercus mongolica subsp. crispula S05 51 7.11 29.06 

Larix kaempferi S06 
 

0.00 0.00 

Fagus crenata S07 53 7.39 30.20 

Magnolia obovata S08 22 3.07 12.54 

Acer japonicum, sieblodium, palmatum S09 140 19.53 79.78 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 
 

0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 169 23.57 96.31 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 
 

0.00 0.00 

Castanea Crenata S14 
 

0.00 0.00 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 24 3.35 13.68 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 45 6.28 25.64 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 8 1.12 4.56 

Morus australis S24 6 0.84 3.42 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 7 0.98 3.99 

Japanese honeysuckle, Lonicera 
japonica 

S27 4 0.56 2.28 

Kalopanax septemlobu S28 
 

0.00 0.00 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 
 

0.00 0.00 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 
 

0.00 0.00 

Hamamelis japonica S40 30 4.18 17.10 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana S42 1 0.14 0.57 

Carpinus Cordata S43 14 1.95 7.98 
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mix 53 7.39 30.20  
Sum 717 100 

 

 

Site 10 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 14 2.35 6.41 

Aesculus turbinata S02 29 4.87 13.28 

Cryptomeria japonica S03 74 12.42 33.88 

Pterocarya rhoifolia S04 
 

0.00 0.00 

Quercus mongolica subsp. crispula S05 51 8.56 23.35 

Larix kaempferi S06 
 

0.00 0.00 

Fagus crenata S07 10 1.68 4.58 

Magnolia obovata S08 35 5.87 16.02 

Acer japonicum, sieblodium, palmatum S09 167 28.02 76.45 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 4 0.67 1.83 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 88 14.77 40.29 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 
 

0.00 0.00 

Castanea Crenata S14 1 0.17 0.46 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 16 2.68 7.32 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 13 2.18 5.95 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 5 0.84 2.29 

Morus australis S24 8 1.34 3.66 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 19 3.19 8.70 

Japanese honeysuckle, Lonicera 
japonica 

S27 1 0.17 0.46 

Kalopanax septemlobu S28 13 2.18 5.95 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 
 

0.00 0.00 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 
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Styrax obassia, S39 3 0.50 1.37 

Hamamelis japonica S40 30 5.03 13.73 

Acer japonica S41 11 1.85 5.04 

Corylus sieboldiana S42 4 0.67 1.83 

Carpinus Cordata S43 
 

0.00 0.00  
mix 

 
0.00 0.00  

Sum 596 
  

 

Site 11 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 54 17.20 29.53 

Aesculus turbinata S02 26 8.28 14.22 

Cryptomeria japonica S03 125 39.81 68.35 

Pterocarya rhoifolia S04 31 9.87 16.95 

Quercus mongolica subsp. crispula S05 
 

0.00 0.00 

Larix kaempferi S06 1 0.32 0.55 

Fagus crenata S07 
 

0.00 0.00 

Magnolia obovata S08 6 1.91 3.28 

Acer japonicum, sieblodium, palmatum S09 36 11.46 19.68 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 
 

0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 16 5.10 8.75 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 
 

0.00 0.00 

Castanea Crenata S14 
 

0.00 0.00 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 9 2.87 4.92 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 
 

0.00 0.00 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 5 1.59 2.73 

Morus australis S24 
 

0.00 0.00 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 2 0.64 1.09 

Japanese honeysuckle, Lonicera 
japonica 

S27 
 

0.00 0.00 

Kalopanax septemlobu S28 
 

0.00 0.00 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 
 

0.00 0.00 

Betula corylifolia S32 
 

0.00 0.00 
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Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 
 

0.00 0.00 

Hamamelis japonica S40 
 

0.00 0.00 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana S42 
 

0.00 0.00 

Carpinus Cordata S43 
 

0.00 0.00  
mix 

 
0.00 0.00  

Sum 314 
  

 

Site 12 

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 91 18.06 47.14 

Aesculus turbinata S02 31 6.15 16.06 

Cryptomeria japonica S03 73 14.48 37.82 

Pterocarya rhoifolia S04 29 5.75 15.02 

Quercus mongolica subsp. crispula S05 12 2.38 6.22 

Larix kaempferi S06 1 0.20 0.52 

Fagus crenata S07 
 

0.00 0.00 

Magnolia obovata S08 7 1.39 3.63 

Acer japonicum, sieblodium, palmatum S09 144 28.57 74.60 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 
 

0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 38 7.54 19.69 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 
 

0.00 0.00 

Castanea Crenata S14 
 

0.00 0.00 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 21 4.17 10.88 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 
 

0.00 0.00 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 17 3.37 8.81 

Morus australis S24 14 2.78 7.25 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 9 1.79 4.66 

Japanese honeysuckle, Lonicera 
japonica 

S27 4 0.79 2.07 
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Kalopanax septemlobu S28 3 0.60 1.55 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 5 0.99 2.59 

Alnus fauriei S31 4 0.79 2.07 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 1 0.20 0.52 

Hamamelis japonica S40 
 

0.00 0.00 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana S42 
 

0.00 0.00 

Carpinus Cordata S43 
 

0.00 0.00  
mix 

 
0.00 0.00  

Sum 504 
  

 

Site 13  

Tree species Abbreviation Number relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 106 20.08 47.60 

Aesculus turbinata S02 10 1.89 4.49 

Cryptomeria japonica S03 229 43.37 102.83 

Pterocarya rhoifolia S04 2 0.38 0.90 

Quercus mongolica subsp. crispula S05 2 0.38 0.90 

Larix kaempferi S06 
 

0.00 0.00 

Fagus crenata S07 
 

0.00 0.00 

Magnolia obovata S08 17 3.22 7.63 

Acer japonicum, sieblodium, palmatum S09 60 11.36 26.94 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 
 

0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 21 3.98 9.43 

Salix serissaefolia S12 
 

0.00 0.00 

Salix jessoensis S13 
 

0.00 0.00 

Castanea Crenata S14 
 

0.00 0.00 

Robinia pseudoaccaccia S15 
 

0.00 0.00 

Cornus controversa S16 22 4.17 9.88 

Phelledendron amurense S17  
 

0.00 0.00 

Betula corylifolia S18 
 

0.00 0.00 

Alnus inokumae, Alnus hirsuta S19 
 

0.00 0.00 

Picea abies S20 
 

0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 
 

0.00 0.00 

Albizia julibrissin S22  
 

0.00 0.00 
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Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 26 4.92 11.68 

Morus australis S24 2 0.38 0.90 

Clethra barvinervis Sieb. et Zucc. S25 
 

0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 1 0.19 0.45 

Japanese honeysuckle, Lonicera 
japonica 

S27 15 2.84 6.74 

Kalopanax septemlobu S28 3 0.57 1.35 

Acer nipponicum S29 
 

0.00 0.00 

Celtic jessoensis S30 
 

0.00 0.00 

Alnus fauriei S31 8 1.52 3.59 

Betula corylifolia S32 
 

0.00 0.00 

Aralia elata S33 
 

0.00 0.00 

Zanthoxylum piperitum, S34 
 

0.00 0.00 

Fraxinus lanugiosa S35 
 

0.00 0.00 

Fraxinus mandshurica var. japonica S36 
 

0.00 0.00 

Ginko biloba S38 
 

0.00 0.00 

Styrax obassia, S39 1 0.19 0.45 

Hamamelis japonica S40 3 0.57 1.35 

Acer japonica S41 
 

0.00 0.00 

Corylus sieboldiana S42 
 

0.00 0.00 

Carpinus Cordata S43 
 

0.00 0.00  
mix 

 
0.00 0.00  

Sum 528 
  

 

Appendix D – Density calculations for the three forest types 

Riparian sites 

Tree species Abbreviation Tree 
count 

relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 284 16.33 1.57 

Aesculus turbinata S02 31 1.78 0.17 

Cryptomeria japonica S03 541 31.11 2.99 

Pterocarya rhoifolia S04 181 10.41 1.00 

Quercus mongolica subsp. crispula S05 32 1.84 0.18 

Larix kaempferi S06 26 1.50 0.14 

Fagus crenata S07 0 0.00 0.00 

Magnolia obovata S08 31 1.78 0.17 

Acer japonicum, sieblodium, palmatum S09 234 13.46 1.29 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 13 0.75 0.07 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 37 2.13 0.20 

Salix serissaefolia S12 86 4.95 0.47 

Salix jessoensis S13 39 2.24 0.22 

Castanea Crenata S14 14 0.81 0.08 

Robinia pseudoaccaccia S15 35 2.01 0.19 

Cornus controversa S16 30 1.73 0.17 
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Phelledendron amurense S17  9 0.52 0.05 

Betula corylifolia S18 6 0.35 0.03 

Alnus inokumae, Alnus hirsuta S19 1 0.06 0.01 

Picea abies S20 4 0.23 0.02 

Cercidiphyllum japonicum var. 
Magnificum 

S21 2 0.12 0.01 

Albizia julibrissin S22  2 0.12 0.01 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 35 2.01 0.19 

Morus australis S24 1 0.06 0.01 

Clethra barvinervis Sieb. et Zucc. S25 1 0.06 0.01 

Tilia japonica, Tilia maximowizciana S26 28 1.61 0.15 

Japanese honeysuckle, Lonicera 
japonica 

S27 0 0.00 0.00 

Kalopanax septemlobu S28 0 0.00 0.00 

Acer nipponicum S29 0 0.00 0.00 

Celtic jessoensis S30 0 0.00 0.00 

Alnus fauriei S31 20 1.15 0.11 

Betula corylifolia S32 1 0.06 0.01 

Aralia elata S33 0 0.00 0.00 

Zanthoxylum piperitum, S34 5 0.29 0.03 

Fraxinus lanugiosa S35 0 0.00 0.00 

Fraxinus mandshurica var. japonica S36 1 0.06 0.01 

Ginko biloba S38 0 0.00 0.00 

Styrax obassia, S39 0 0.00 0.00 

Hamamelis japonica S40 0 0.00 0.00 

Acer japonica S41 0 0.00 0.00 

Corylus sieboldiana S42 5 0.29 0.03 

Carpinus Cordata S43 2 0.12 0.01  
mix 0 0.00 0.00  
Sum 1739 100 

 

 

Terrace sites 

Tree species Abbreviation Tree 
count 

relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 251 19.76 3.30 

Aesculus turbinata S02 67 5.28 0.88 

Cryptomeria japonica S03 427 33.62 5.62 

Pterocarya rhoifolia S04 62 4.88 0.82 

Quercus mongolica subsp. crispula S05 14 1.10 0.18 

Larix kaempferi S06 2 0.16 0.03 

Fagus crenata S07 0 0.00 0.00 

Magnolia obovata S08 30 2.36 0.39 

Acer japonicum, sieblodium, palmatum S09 240 18.90 3.16 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 0 0.00 0.00 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 75 5.91 0.99 



380 
 

Salix serissaefolia S12 0 0.00 0.00 

Salix jessoensis S13 0 0.00 0.00 

Castanea Crenata S14 0 0.00 0.00 

Robinia pseudoaccaccia S15 0 0.00 0.00 

Cornus controversa S16 52 4.09 0.68 

Phelledendron amurense S17  0 0.00 0.00 

Betula corylifolia S18 0 0.00 0.00 

Alnus inokumae, Alnus hirsuta S19 0 0.00 0.00 

Picea abies S20 0 0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 0 0.00 0.00 

Albizia julibrissin S22  0 0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 48 3.78 0.63 

Morus australis S24 16 1.26 0.21 

Clethra barvinervis Sieb. et Zucc. S25 0 0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 12 0.94 0.16 

Japanese honeysuckle, Lonicera 
japonica 

S27 19 1.50 0.25 

Kalopanax septemlobu S28 6 0.47 0.08 

Acer nipponicum S29 0 0.00 0.00 

Celtic jessoensis S30 5 0.39 0.07 

Alnus fauriei S31 12 0.94 0.16 

Betula corylifolia S32 0 0.00 0.00 

Aralia elata S33 0 0.00 0.00 

Zanthoxylum piperitum, S34 0 0.00 0.00 

Fraxinus lanugiosa S35 0 0.00 0.00 

Fraxinus mandshurica var. japonica S36 0 0.00 0.00 

Ginko biloba S38 0 0.00 0.00 

Styrax obassia, S39 2 0.16 0.03 

Hamamelis japonica S40 3 0.24 0.04 

Acer japonica S41 0 0.00 0.00 

Corylus sieboldiana S42 0 0.00 0.00 

Carpinus Cordata S43 0 0.00 0.00  
mix 0 0.00 0.00  
Sum 1270 

  

 

Slope sites 

Tree species Abbreviation Tree 
count 

relative 
Density 

Density per ha 
and species 

Juglans ailantifolia S01 169 4.76 0.31 

Aesculus turbinata S02 93 2.62 0.17 

Cryptomeria japonica S03 449 12.66 0.82 

Pterocarya rhoifolia S04 21 0.59 0.04 

Quercus mongolica subsp. crispula S05 257 7.24 0.47 

Larix kaempferi S06 27 0.76 0.05 

Fagus crenata S07 42 1.18 0.08 
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Magnolia obovata S08 179 5.05 0.33 

Acer japonicum, sieblodium, palmatum S09 1540 43.40 2.82 

Prunus salicina Lindley, Prunus 
serrulata/grayana, Prunus speciosa 

S10 7 0.20 0.01 

Acer mono maxim, Acer pictum subsp. 
Mono 

S11 316 8.91 0.58 

Salix serissaefolia S12 1 0.03 0.00 

Salix jessoensis S13 6 0.17 0.01 

Castanea Crenata S14 8 0.23 0.01 

Robinia pseudoaccaccia S15 0 0.00 0.00 

Cornus controversa S16 67 1.89 0.12 

Phelledendron amurense S17  0 0.00 0.00 

Betula corylifolia S18 28 0.79 0.05 

Alnus inokumae, Alnus hirsuta S19 0 0.00 0.00 

Picea abies S20 0 0.00 0.00 

Cercidiphyllum japonicum var. 
Magnificum 

S21 0 0.00 0.00 

Albizia julibrissin S22  0 0.00 0.00 

Japanese Hydrangea, Schizophragma 
hydrangeoides and Smilax  

S23 53 1.49 0.10 

Morus australis S24 35 0.99 0.06 

Clethra barvinervis Sieb. et Zucc. S25 0 0.00 0.00 

Tilia japonica, Tilia maximowizciana S26 33 0.93 0.06 

Japanese honeysuckle, Lonicera 
japonica 

S27 17 0.48 0.03 

Kalopanax septemlobu S28 18 0.51 0.03 

Acer nipponicum S29 0 0.00 0.00 

Celtic jessoensis S30 0 0.00 0.00 

Alnus fauriei S31 19 0.54 0.03 

Betula corylifolia S32 0 0.00 0.00 

Aralia elata S33 0 0.00 0.00 

Zanthoxylum piperitum, S34 0 0.00 0.00 

Fraxinus lanugiosa S35 3 0.08 0.01 

Fraxinus mandshurica var. japonica S36 0 0.00 0.00 

Ginko biloba S38 0 0.00 0.00 

Styrax obassia, S39 13 0.37 0.02 

Hamamelis japonica S40 77 2.17 0.14 

Acer japonica S41 12 0.34 0.02 

Corylus sieboldiana S42 28 0.79 0.05 

Carpinus Cordata S43 30 0.85 0.05  
mix 2 0.06 0.00  
Sum 3548 
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Appendix E – Tree counts 

Tree counts results analysed by the Census code, which counted tree top annotation for all sites. 

Part 1  

SPECIES 
LABEL 

SITE1 SITE4 SITE6 SITE7 SITE11 SITE12 SITE13 SITE2 SITE3 SITE5 SITE8 SITE9 SITE10 

S01 107 58 47 72 54 91 106 23 53 47 32 7 14 

S02 24 
 

4 3 26 31 10 35 3 18 8 30 29 

S03 201 129 156 55 125 73 229 195 122 51 7 53 74 

S04 125 9 25 22 31 29 2 3 3 14 1 
  

S05 9 7 3 13 
 

12 2 45 66 53 42 51 51 

S06 19 7 
  

1 1 
  

27 0 
   

S07 
        

27 4 1 53 10 

S08 19 6 5 1 6 7 17 63 32 42 7 22 35 

S09 145 12 10 67 36 144 60 351 605 176 241 140 167 

S10 13 0 
      

3 0 
  

4 

S11 15 1 5 16 16 38 21 63 75 52 38 169 88 

S12 
 

78 8 
     

1 
    

S13 8 1 16 14 
    

2 3 1 
  

S14 4 
 

10 
     

4 1 2 
 

1 

S15 14 
 

7 14 
         

S16 23 2 5 
 

9 21 22 7 17 13 14 24 16 

S17  9 
            

S18 
  

6 
    

2 
  

13 45 13 

S19 
  

1 
          

S20 
  

4 
          

S21 
 

2 
           

S22  
   

2 
         

S23 13 12 9 1 5 17 26 2 14 17 15 8 5 

S24 
 

1 
   

14 2 6 7 
 

14 6 8 
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Part 2 
 

SITE1 SITE4 SITE6 SITE7 SITE11 SITE12 SITE13 SITE2 SITE3 SITE5 SITE8 SITE9 SITE10 

S25 
   

1 
         

S26 28 
   

2 9 1 4 7 
 

3 7 19 

S27 
     

4 15 
 

2 12 2 4 1 

S28 
     

3 3 
 

1 4 
  

13 

S29 
             

S30 
     

5 
       

S31 0 0 
 

20 
 

4 8 
 

19 
    

S32 
 

1 
           

S33 
             

S34 
  

5 
          

S35 
        

3 
    

S36 
   

1 
         

S37 
  

2 
 

3 
        

S38 
             

S39 0 
    

1 1 6 4 
   

3 

S40 0 
     

3 10 
 

4 33 30 30 

S41 
            

11 

S42 5 
        

6 18 1 4 

S43 2 
      

14 
  

16 14 
 

MIX 
       

2 
   

53 
 

SUM 783 326 328 302 314 504 528 831 1098 515 508 717 596 
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Appendix F – Pixel counting 

Area calculations performed on basis of counted black pixels, which were previously annotated in GIMP. The black pixels together with the set image resolution 

allowed the calculation of the area in m².  

Part 1 
 

SITE 1 SITE 4 SITE 6 SITE 7 SITE 11 SITE 12 SITE 13 SITE 2 SITE 3 SITE 5 SITE 8 SITE 9 SITE 10 

SPECIES 
LABEL 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

S01 9864.20 4629.35 2655.65 5463.61 3608.91 5546.10 8920.32 1246.46 5899.66 3397.58 2410.54 240.25 1326.07 

S02 1235.52 0.00 68.33 84.53 978.47 1035.81 534.25 1637.10 217.83 594.62 339.75 763.86 1708.42 

S03 5838.15 2151.46 4207.55 1094.08 2370.87 1037.72 4565.50 5926.63 3155.72 563.15 242.78 1348.74 2236.27 

S04 7250.37 471.91 1338.17 1257.24 1875.15 1520.57 41.28 211.27 144.43 661.84 118.41 0.00 0.00 

S05 442.84 135.66 101.00 293.28 0.00 234.29 71.68 1649.56 2953.23 1096.13 1126.18 1193.48 1790.17 

S06 580.36 220.75 0.00 0.00 33.25 0.65 0.00 0.00 1253.27 0.00 0.00 0.00 0.00 

S07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1423.92 230.61 69.42 1062.12 502.52 

S08 915.87 199.97 290.72 30.67 365.01 286.80 551.13 4951.32 2044.01 3222.04 443.02 1163.13 2247.97 

S09 949.24 95.23 52.09 352.73 459.91 818.98 658.71 5241.54 4724.15 773.31 1935.43 1084.42 1388.53 

S10 572.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 148.63 0.00 0.00 0.00 162.15 

S11 438.59 9.39 147.17 238.91 462.16 682.14 576.79 2451.67 1860.74 1707.42 921.75 3991.45 2842.49 

S12 0.00 778.19 260.01 0.00 0.00 0.00 0.00 0.00 21.05 0.00 0.00 0.00 0.00 

S13 371.63 85.48 632.19 618.05 0.00 0.00 0.00 0.00 191.60 230.39 63.53 0.00 0.00 

S14 110.08 0.00 395.07 0.00 0.00 0.00 0.00 0.00 152.13 57.55 16.47 0.00 51.62 

S15 326.76 0.00 124.94 230.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S16 616.13 16.72 81.62 0.00 239.45 301.93 539.54 337.76 647.66 349.88 383.62 367.17 482.77 

S17 512.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S18 0.00 0.00 370.35 0.00 0.00 0.00 0.00 52.80 0.00 0.00 185.34 779.80 787.20 

S19 0.00 0.00 88.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S20 0.00 0.00 294.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S21 0.00 112.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 



385 
 

Part 2 
 

SITE 1 SITE 4 SITE 6 SITE 7 SITE 11 SITE 12 SITE 13 SITE 2 SITE 3 SITE 5 SITE 8 SITE 9 SITE 10 

SPECIES 
LABEL 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

Area in 
m² 

S22 0.00 0.00 0.00 44.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S23 274.79 151.27 262.27 10.11 89.78 221.80 474.56 94.47 378.12 324.42 429.79 110.03 153.09 

S24 0.00 23.45 0.00 0.00 0.00 265.49 118.11 232.15 228.07 0.00 338.38 69.48 265.87 

S25 0.00 0.00 0.00 43.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S26 1091.48 0.00 0.00 0.00 36.00 253.38 23.89 131.96 478.42 0.00 129.90 283.58 721.37 

S27 0.00 0.00 0.00 0.00 0.00 107.29 232.21 0.00 0.00 266.48 83.84 55.99 76.08 

S28 0.00 0.00 0.00 0.00 0.00 55.71 47.51 0.00 17.07 107.12 0.00 0.00 179.63 

S29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S30 0.00 0.00 0.00 0.00 0.00 74.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S31 68.57 0.00 0.00 98.75 0.00 85.83 93.35 0.00 164.28 0.00 0.00 0.00 0.00 

S32 0.00 85.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S34 0.00 0.00 43.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 168.80 0.00 0.00 0.00 0.00 

S36 0.00 0.00 0.00 82.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S37 0.00 0.00 57.50 0.00 86.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S39 41.04 0.00 0.00 0.00 0.00 27.77 20.77 110.39 80.70 0.00 77.34 8.70 138.96 

S40 0.00 0.00 0.00 0.00 0.00 0.00 50.51 376.19 0.00 65.98 855.53 778.96 825.09 

S41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.13 0.00 0.00 86.97 

S42 157.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 247.56 397.31 57.79 103.09 

S43 27.97 0.00 0.00 0.00 0.00 0.00 0.00 605.12 7.83 0.00 364.07 266.57 0.00 

MIX 
 

0.00 0.00 0.00 0.00 0.00 0.00 56.36 0.00 0.00 0.00 435.41 0.00 

SUM 31686.7 9166.82 11100.1 9942.39 10605.9 12556.8 17520.1 25256.4 26361.3 13901.2 10932.4 14060.9 18076.3 
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Part 3:  

Calculation of area per tree based on the basal area and tree top counting. 
 

SITE1 SITE4 SITE6 SITE7 SITE11 SITE12 SITE13 SITE2 SITE3 SITE5 SITE8 SITE9 SITE10 

S01 92.19 79.82 56.5 75.88 66.83 60.95 84.15 54.19 111.31 72.29 75.33 34.32 94.72 

S02 51.48 
 

17.08 28.18 37.63 33.41 53.42 46.77 72.61 33.03 42.47 25.46 58.91 

S03 29.05 16.68 26.97 19.89 18.97 14.22 19.94 30.39 25.87 11.04 34.68 25.45 30.22 

S04 58 52.43 53.53 57.15 60.49 52.43 20.64 70.42 48.14 47.27 118.41 
  

S05 49.2 19.38 33.67 22.56 
 

19.52 35.84 36.66 44.75 20.68 26.81 23.4 35.1 

S06 30.55 31.54 
  

33.25 0.65 
  

46.42 
    

S07 
        

52.74 57.65 69.42 20.04 50.25 

S08 48.2 33.33 58.14 30.67 60.84 40.97 32.42 78.59 63.88 76.72 63.29 52.87 64.23 

S09 6.55 7.94 5.21 5.26 12.78 5.69 10.98 14.93 7.81 4.39 8.03 7.75 8.31 

S10 44.02 
       

49.54 
   

40.54 

S11 29.24 9.39 29.43 14.93 28.89 17.95 27.47 38.92 24.81 32.84 24.26 23.62 32.3 

S12 
 

9.98 32.5 
     

21.05 
    

S13 46.45 85.48 39.51 44.15 
    

95.8 76.8 63.53 
  

S14 27.52 
 

39.51 
     

38.03 57.55 8.23 
 

51.62 

S15 23.34 
 

17.85 16.46 
         

S16 26.79 8.36 16.32 
 

26.61 14.38 24.52 48.25 38.1 26.91 27.4 15.3 30.17 

S17 57 
            

S18 
  

61.72 
    

26.4 
  

14.26 17.33 60.55 

S19 
  

88.16 
          

S20 
  

73.55 
          

S21 
 

56.38 
           

S22 
   

22.02 
         

S23 21.14 12.61 29.14 10.11 17.96 13.05 18.25 47.23 27.01 19.08 28.65 13.75 30.62 

S24 
 

23.45 
   

18.96 59.06 38.69 32.58 
 

24.17 11.58 33.23 

S25 
   

43.57 
         

S26 38.98 
   

18 28.15 23.89 32.99 68.35 
 

43.3 40.51 37.97 

S27 
     

26.82 15.48 
 

0 22.21 41.92 14 76.08 
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S28 
     

18.57 15.84 
 

17.07 26.78 
  

13.82 

S29 
             

S30 
     

14.9 
       

S31 
   

4.94 
 

21.46 11.67 
 

8.65 
    

S32 
 

85.24 
           

S33 
             

S34 
  

8.68 
          

S35 
        

56.27 
    

S36 
   

82.38 
         

S37 
  

28.75 
 

28.99 
        

S38 
             

S39 
     

27.77 20.77 18.4 20.18 
   

46.32 

S40 
      

16.84 37.62 
 

16.5 25.93 25.97 27.5 

S41 
            

7.91 

S42 31.57 
        

41.26 22.07 57.79 25.77 

S43 13.98 
      

43.22 
  

22.75 19.04 
 

MIX 
       

28.18 
   

8.22 
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Appendix G – Area distribution based on pixel counting 
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Appendix H: DEMs, Aspect and Slopes 

The appendix is divided into three parts: DEM, Aspect and Slope.  

Part 1: DEM - The following pages contain the DEMs of all sites, processed in ArcGIS. The applied 

progressing is that the DEM was filtered before it was used to generate a map for each site.  
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Part 2: Aspect 

The following pages contain the Aspect maps for each site, generated with ArcGIS under the use of 

the tool Aspect. As basis of the analysis the DEM was used, which were first filtered and then the tool 

Focal Statistics was used to smooth the DEM, before the tool Aspect was used.  
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Part 3: Slope 

The following pages contain the slope maps generated with ArcGIS using the tool Slope after the 

DEM of each site was filtered and smoothened.  
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Slope site 8 
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Appendix I – Species maps 

Species maps generated on basis of manual annotations for all 13 study sites. 
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Appendix I (a) – Species maps with orthomosaics
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Appendix J – Field and image surveys 

This appendix is divided into two parts: part 1 field survey information, part 2 winter counting 

Part 1: Count maps based on field surveys.  

 

Field survey site 1 (YURF) 
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Field survey site 4 (YURF) 

 alnifolia 

Fraxinus species 
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Field survey site 6 (YURF) 

Field survey site 5 (YURF) 

alnifolia 

Styrax obassia 

Hydrangea species 
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Field survey site 7 (YURF) 
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Field survey site 11 (YURF) 

alnifolia 
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Field survey site 12 (YURF) 

alnifolia 
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Field survey site 13 (YURF) 
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Part 2: Winter orthomosaic surveys based on manual annotation of winter images. 

 

Image survey site 1 (YURF) 
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Image survey site 2 (YURF) 
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Image survey site 3 (YURF) 



456 
 

 

Image survey site 4 (YURF) 
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Image survey site 5 (YURF) 
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Image survey site 6 (YURF) 
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Image survey site 8 (YURF) 
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Image survey site 9 (YURF) 
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Image survey site 10 (YURF) 
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Image survey site 11 (YURF) 
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Image survey site 12 (YURF) 
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Image survey site 13 (YURF) 
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Appendix K – Counting data 

Tree species counting divided into three parts: part 1 field surveys, part 2 image counting, part 3 winter image counting 

Part 1: Contains the counts performed in the field for each site. 

 

Field survey data site 1 
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Field survey data site 4 
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Field survey data site 6 
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Field survey data site 7 
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Field survey data site 11 
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Field survey data site 12 
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Field survey data site 13 
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Part 2: 

As for the slope sites no field work was performed in ArcGIS, image counts were used for the survey and are presented in this part. 
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Survey – tree species counting site 9 
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Part 3: Counting performed based on summer and winter images. 

 

 

Winter survey – tree species counts site 1 
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Winter survey – tree species counts site 4 
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Winter survey – tree species counts site 7 
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Appendix L – Relative densities  

Relative densities calculated for site 1, 3, 4, 6, 7, 8/9, 10, 11, 12 and 13 for tree species, which were 

identified during the field work.  

Tree species Site  
1 

Site  
4  

Site  
6 

Site  
7 

Site  
3 

Site 
8/9 

Site 
10 

Site 
11 

Site 
12 

Site 
13 

Salix jessoensis 1.23 0.00 7.56 2.77 0.47 0.63 0.34 0.00 0.00 0.00 

Salix 
serissaefolia 

0.00 29.98 3.11 0.00 0.47 0.00 0.00 0.00 0.00 0.00 

Juglans 
ailantifolia 

19.7
5 

23.89 14.67 24.04 10.39 2.35 1.01 15.46 22.49 32.35 

Pterocarya 
rhiofolia 

23.7
3 

11.71 12.22 10.43 0.79 0.00 1.01 9.59 12.88 2.14 

Aesculus 
turbinata 

5.08 4.92 4.44 2.98 1.26 0.00 14.43 8.61 12.45 6.15 

Magnolia 
obovata 

3.70 0.00 2.00 0.00 5.51 3.29 1.01 0.78 1.53 5.61 

Phelledendron 
amurense 

2.61 0.00 0.44 0.21 0.00 0.00 0.00 0.39 0.00 0.00 

Robinia 
Pseudoacacia 

2.88 2.58 6.22 4.26 0.00 0.16 0.67 0.39 0.22 0.00 

Quercus 
mongolica  

3.98 3.51 2.44 3.40 10.55 16.43 25.50 0.20 5.02 1.34 

Fagus Crenata 0.00 0.00 1.56 0.43 7.40 10.33 13.76 0.00 0.00 0.00 

Cornus 
Controversa 

3.98 0.94 4.22 1.70 2.83 0.63 0.00 3.72 6.11 10.16 

Weigela 
hortensis 

0.41 0.23 0.67 8.51 0.00 0.00 0.00 1.17 0.44 0.00 

Alnus fauriei 4.39 0.23 2.89 15.53 5.98 0.63 0.00 0.20 0.00 8.02 

Ilex geniculata 0.00 0.00 0.00 0.00 4.57 0.00 0.00 0.00 0.00 0.00 

Carpinus cordata 0.96 0.23 0.00 0.21 0.16 2.03 0.00 0.20 2.84 1.07 

Sorbus 
sambucifolia 

0.00 3.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sorbus alnifolia 0.00 0.70 4.44 0.00 0.00 0.00 0.00 4.89 1.09 0.00 

Styrax obassia 3.02 5.39 2.00 0.85 3.78 5.63 0.00 0.00 2.40 2.14 

Lindera 
umbellata 

0.55 0.00 0.89 4.47 4.41 0.00 0.00 0.00 4.15 0.00 

Hamamelis 
japonica  

0.00 0.00 0.00 0.00 0.63 1.25 1.34 0.00 0.00 0.00 

Cercidiphyllum 
magnificum 

0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tilia 
maximowiczina 

7.00 0.00 0.89 0.64 1.57 0.00 0.34 0.00 1.31 0.00 

Morus australis 0.00 0.94 1.33 0.21 0.00 0.00 0.00 4.11 6.11 0.80 

Alnus inokumae 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Castanea crenata 0.41 0.00 3.56 0.00 0.00 0.00 2.35 0.00 0.00 0.00 

Corylus 
sieboldiana 

0.27 0.00 0.00 0.00 0.47 9.70 4.03 0.20 0.22 0.00 

Prunus speciosa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 



486 
 

Prunus 
serrulata/ 
grayana 

1.65 0.00 0.00 0.21 1.10 4.69 3.02 0.00 0.00 0.00 

Prunus salicina 
Lindley 

0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 

Aralia elata 
Seemann 

0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Acer palmatum 3.57 6.09 15.11 0.00 0.63 26.13 15.10 10.37 8.73 0.00 

Acer 
sieboldianum 

7.82 0.23 2.22 7.02 21.89 2.50 0.00 1.57 0.00 6.68 

Acer japonicum 0.41 0.00 0.00 5.53 1.10 0.16 0.00 3.33 1.97 0.00 

Acer mono 
Maxim. 

0.27 1.64 2.00 1.70 1.73 0.00 12.08 0.78 2.62 6.68 

Alangium 
planifolium 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Acer pictum 
subsp. mono 

0.00 0.00 0.00 0.00 0.00 6.10 0.00 0.00 0.00 0.00 

Acer rufinerve 
Sieb. et Zucc. 

0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Acer 
buergerianum 

0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Larix kampferi 1.37 1.87 0.00 0.00 6.30 0.00 0.00 0.20 0.00 0.00 

Ginkgo biloba 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fraxinus 
lanuginosa 

0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.00 

Fraxinus 
platyoda 

0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 

Celtic jessoensis 0.00 0.00 0.44 0.00 3.31 0.31 0.00 0.39 1.09 0.80 

Betula schmidtii 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 

Cryptomeria 
japonica 

0.00 0.00 0.00 0.00 0.00 0.47 0.34 0.00 0.00 0.00 

Betula 
maximowicziana 

0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 

Betula corylifolia 0.00 0.00 1.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sorbus japonica 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 

Camellia 
japonica 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.63 0.00 13.37 

Acer disylum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 

Tilia japonica 0.00 0.00 0.00 0.00 0.00 0.31 1.01 0.20 0.00 0.53 

Alnus wirsata 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 

Quercus detala 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 

Wisteria 
floribunda 

0.00 0.00 0.00 0.43 0.00 1.25 0.00 0.39 0.00 0.00 

Fagus Japonica 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 

Aleurites fordii/ 
Vernicia fordii 

0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 

Platycarya 
strobilacea 

0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00 

Abizia Julibrissin 0.00 0.00 0.00 0.64 0.00 0.00 0.00 0.00 0.00 0.00 

Alnus pendula 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 
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Symplocos 
chinesis 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.44 0.00 

Acer amonesum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.20 0.00 0.00 

Pterostyrax 
corymbosa 

0.00 0.00 0.00 0.00 0.00 0.00 1.01 0.00 0.00 0.00 

Acer nippon 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Alnus japonica 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 

Vaccinium 
oldhamii 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.37 0.00 0.00 

Picea abies 0.00 0.00 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Euonymus 
sieboldianus 

0.00 0.00 0.00 0.00 0.00 4.54 0.00 0.00 0.00 0.00 

Clethra 
barvinervis 

0.00 0.00 0.00 0.21 0.00 0.00 0.00 2.74 0.00 0.27 

Kalopanax 
Septemlobus 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 

Unknown 0.14 0.23 1.78 1.70 1.89 0.00 1.01 1.17 5.90 0.00 

Sum 100.
0 

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Appendix M – Results image analysis 

There are maps contained from density, count and hot spot analysis. Analyses were performed with 

ArcGIS pro.  

Part 1: Density maps 
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Density map site 6 



494 
 

 

Density map site 7 
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Density map site 13 
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Part 2: Density lower radius (6m) 
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Density map site 6 
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Density map site 6 
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Density map site 7 
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Density map site 7 
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Density map site 13 
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Density map site 13 
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Part 2: Count maps for each site. 

 

Count map site 1 
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Count map site 6 
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Count map site 6 
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Part 3: Hot spot maps for each site 
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Hot spot analysis site 6 
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Appendix N – GIS analyses maps  

Contained are distribution maps based on image analysis performed in ArcGIS pro. The analyses were 

performed for small-leaved Acer species, Acer mono maxim, Aesculus turbinata, Cornus controversa, 

Fagus crenata, Juglans ailantifolia, Magnolia obovata, Pterocarya rhiofolia, Quercus mongolica, Robinia 

pseudoacacia, Salix species and Tilia species.   

Part 1: Contained the maps for the different species for the sites located in the south (6, 7, 8, 9, 10, 11, 

12, 13) 

Part 2: Contained the maps for the different species for the sites located in the south (1, 2, 3, 4, 5). 

Part 3: Hot spot analysis for the northern sites for the different tree species 

Part 4: Hot spot analysis for the southern sites for the different tree species. 

Part 5: Hot spot analysis to differentiate between riparian and terrace/slope sites.                
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Part 1: Contained the maps for the different species for the sites located in the south (6, 7, 8, 9, 10, 

11, 12, 13) 
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Magnolia obovata distribution 



554 
 

Pterocarya rhoifolia distribution 
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Quercus mongolica distribution 
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Robinia pseudoacacia distribution 
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Salix distribution 
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Aesculus turbinata distribution 
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Cornus controversa distribution 
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Fagus crenata distribution 
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Part 2: Contained the maps for the different species for the sites located in the south (1, 2, 3, 4, 5).
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Acer mono maxim distribution 
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Aesculus turbinata distribution 
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Cornus controversa distribution 
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Juglans ailantifolia distribution 
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Pterocarya rhiofolia distribution Pterocarya rhoifolia distribution 
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Quercus mongolica distribution 
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Robinia pseudoacacia distribution 
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Part 3: Hot spot analysis for the northern sites for the different tree species.
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Hot spot analysis Pterocarya rhoifolia 
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Part 4: Hot spot analysis for the southern sites for the different tree species.
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Pterocarya rhoifolia Hot spot analysis 
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Robinia pseudoacacia Hot spot analysis 
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Part 5: Hot spot analysis to differentiate between riparian and terrace/slope sites.              

.
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Appendix O – Height/Distance diagrams 

Contains the diagrams of the distribution along the river and with increasing height for several tree 

species characteristic for YURF. 
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