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Multicoding in neural 
information transfer suggested 
by mathematical analysis 
of the frequency‑dependent 
synaptic plasticity in vivo
Katsuhiko Hata1,3,5*, Osamu Araki2, Osamu Yokoi3, Tatsumi Kusakabe1, Yoshio Yamamoto4, 
Susumu ito1 & tetsuro nikuni5

Two elements of neural information processing have primarily been proposed: firing rate and spike 
timing of neurons. In the case of synaptic plasticity, although spike-timing-dependent plasticity 
(StDp) depending on presynaptic and postsynaptic spike times had been considered the most 
common rule, recent studies have shown the inhibitory nature of the brain in vivo for precise spike 
timing, which is key to the STDP. Thus, the importance of the firing frequency in synaptic plasticity 
in vivo has been recognized again. However, little is understood about how the frequency-dependent 
synaptic plasticity (FDP) is regulated in vivo. Here, we focused on the presynaptic input pattern, 
the intracellular calcium decay time constants, and the background synaptic activity, which vary 
depending on neuron types and the anatomical and physiological environment in the brain. By 
analyzing a calcium-based model, we found that the synaptic weight differs depending on these 
factors characteristic in vivo, even if neurons receive the same input rate. This finding suggests the 
involvement of multifaceted factors other than input frequency in fDp and even neural coding in vivo.

Synaptic plasticity in neural networks is a substrate of learning and memory, which includes both positive and 
negative components, i.e., both long-lasting enhancements and declines in the weight of synaptic transmission 
(long-term potentiation (LTP) and long-term depression (LTD))1. Many experimental studies have suggested 
two plausible mechanisms for the induction of the synaptic  plasticity2,3. The first is the frequency of spike trains, 
which has been studied in association with the Bienenstock, Cooper, and Munro (BCM) rule in classical research 
conducted approximately half a century  ago4–6. LTP is induced by high-frequency firing in presynaptic neurons, 
which produces large increases in postsynaptic calcium  concentration5–8. The low-frequency firing causes a mod-
est increase in the calcium level, and thereby induces  LTD9–11. The second is the precise timing of presynaptic 
and postsynaptic firing, which has been investigated as spike-time-dependent plasticity (STDP) in numerous 
experimental and theoretical studies from approximately 20 years  ago12–15. LTP is induced by the presynaptic 
action potentials preceding postsynaptic spikes by no more than tens of milliseconds, whereas presynaptic fir-
ing that follows postsynaptic spikes produces  LTD13,14,16–19. The idea that STDP plays a central role in synaptic 
plasticity had been becoming mainstream.

Recent studies have reported, however, that in some cases, the environment in vivo may not be suitable for 
precise spike timing, which is key to the STDP. Pre- and post-synaptic neurons in the primary visual cortex and 
extrastriate cortex of awaking animals fire so irregularly that the timing of presynaptic and postsynaptic firing 
 varies20–22. Neurons and synapses in the cerebral cortex of rats receive a lot of background neuronal activity 
that is generated internally, which provides strong constraints on spike  timing23–25. In these environments, the 
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firing rate, rather than the spike timing, is likely to be important for the synaptic plasticity and neural coding. 
For example, it has been demonstrated experimentally that the cerebral cortex in which there is a high level of 
internal noise uses a rate  code25, and it has been shown mathematically that synaptic changes are induced by 
variation of firing rate without any timing  constraints20. The firing rate may also be an essential factor for the 
STDP. Recently, Madadi Asl et al. revealed that STDP model incorporating dendritic and axonal propagation 
delay can adequately explain the existence of recurrent connections between pairs of neurons in the cerebral 
 cortex26. They found that the firing frequency plays an essential role in the formation of connectivity patterns 
in Two-Neuron  Motif27. Moreover, firing variability, as well as the statistical properties of the spike frequency, 
seems essential for real-time information  processing28.

Based on these reports, the role of firing frequency in various aspects of neural information processing has 
again come into the limelight. Furthermore, in vivo characteristic factors such as the variation of the firing pat-
tern, the difference of intracellular parameters, and internal noise have also been suggested to be important for 
synaptic plasticity and neural  coding20,28–32. However, how these factors are involved in the synaptic plasticity 
is poorly understood. In order to clarify this problem, we examined the role of the presynaptic input pattern, 
the intracellular calcium decay time constants, and the background synaptic activity in frequency-dependent 
synaptic plasticity (FDP) by analyzing a calcium-based model, which is one of the most compatible models with 
experimental  results12,33.

Currently, it is widely accepted that the calcium concentration in the postsynapse determines whether LTP 
or LTD is  induced34–37. A moderate elevation of intracellular calcium correlates with induction of LTD, whereas 
a larger increase correlates with  LTP35,36. Only if glutamate is released by presynaptic activity and if the postsyn-
aptic membrane is depolarized sufficiently, calcium ions enter the cell through channels controlled by NMDA 
 receptors12. The depolarization of the postsynaptic membrane potential is due not only to excitatory postsynaptic 
potentials (EPSPs) generated by binding glutamate to the AMPA receptors but also to many kinds of background 
synaptic  activities38–41. These experimental events were formulated by Shouval et al.33 as a calcium-based model 
(from now on, we call it “Shouval’s model”), which has been used in numerous studies.

In the present study, we investigated the FDP in vivo analytically and numerically using the Shouval’s model. 
First, to investigate the FDP in neurons with in vivo-specific firing pattern, we used three types of firing, which 
are widely observed in the brain, that is, constant-inter-spike intervals (ISI) inputs, Poisson inputs, and gamma 
inputs. Next, the calcium decay time constant of in vivo neurons varies from cell to cell. Previous reports sug-
gested that pyramidal neurons in superficial layers possess faster calcium dynamics than those in deep layers. 
Here, τca ≈ 40 ms in layer II to IV neurons, whereas τca ≈ 100 ms in layer V to VI  neurons42,43. To study the 
association of the calcium decay time constant with the FDP, we examined two kinds of neurons with time con-
stants of 40 ms and 80 ms. Finally, neurons in vivo are constantly exposed to background synaptic  activity38,41. The 
frequency and magnitude of this activity vary depending on the location of the synapse and the level of neuronal 
 activity38,41. We, therefore, examined the correlation between the amplitude of background activity and the FDP. 
The findings in the present study may contribute to a detailed understanding of synaptic plasticity in in vivo brain.

Results
We used a model for the FDP based on the calcium control hypothesis of Shouval et al., assuming that the change 
of the synaptic weight is fully determined by the postsynaptic calcium  level33,44. This model has been confirmed 
to integrate STDP observed in acute hippocampal slices within a single theoretical  framework45. Among the 
few studies that have analytically solved this hypothesis, Yeung et al.46 calculated the mean values of the calcium 
transients evoked by a spiking neuron. In the present study, we analytically derived the intracellular calcium 
concentration and synaptic weight with respect to the input frequency focusing only on the long-term behavior 
of the intracellular calcium concentration and synaptic weight.

postsynaptic calcium concentration as a function of the presynaptic stimulation frequency 
with fixed interstimulus intervals. In order to investigate the dependence of the postsynaptic calcium 
concentration on the average presynaptic stimulation frequency of each input pattern, we first developed an 
analytical solution of the postsynaptic calcium concentration with constant-ISI inputs as a control. In Fig. 1, we 
plot the analytical solution of Ca in Eq. (42) as a function of the input frequency f. We also plot the simulation 
results obtained by solving Eqs. (9)–(18) numerically as a function of time and taking the time average of Ca 
for each frequency. The analytical solution for the long-term behavior of calcium level agrees very well with the 
numerical simulation results. We adopted τCa = 80 ms for a long calcium decay time constant and τCa = 40 ms 
as a short calcium decay time constant. The calcium concentration as a function of input frequency increases 
slower for τCa = 40 ms than for τCa = 80 ms. Equation (42) indicates that the calcium concentration at an arbi-
trary stimulation rate increases linearly for the calcium decay time constant τCa.

Approximate analytic solution of synaptic weight as a function of the input frequency with 
fixed interstimulus intervals. Figure  2 shows the curve obtained by performing the integration in 
Eq. (51). We also plot the results obtained by the numerical simulation, which agree qualitatively with the ana-
lytical results. These results suggest that the LTD/LTP threshold shifts to a lower frequency as the calcium decay 
time constant increases. Here, the LTD/LTP threshold is defined as the frequency at which the synaptic weight 
first returns to 1 after falling below 1 when the input frequency is increased from 0 Hz. This tendency can also be 
understood from Eq. (42) as follows. Equation (42) is written as Ca(f ) = τCa · F(f ) , where F(f) is a monotoni-
cally increasing function of f, so that f can be formally expressed as
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Equations (11) and (49) indicate that when the synaptic strength is at the LTD/LTP threshold, the postsynaptic 
calcium level has a fixed value:

Substituting the numerical values of the parameters in Eq. (11) into Eq. (2), we obtained Ca = 0.54µM . Thus, 
the stimulation frequency when the synaptic weight reaches the LTD/LTP threshold is a monotonically increas-
ing function of 1/τCa.

postsynaptic calcium level and synaptic weight as functions of the average frequency of pois‑
son input. In several experimental studies on synaptic plasticity, the paradigms for inducing synaptic plastic-
ity have consisted of constant-frequency stimulation trains, such as paired pulses or a tetanic stimulus. Neurons 
in vivo, however, are unlikely to experience such simple inputs. Rather, these neurons receive more complex 
input patterns in which ISIs are highly  irregular47. The most representative stimulation patterns that are not 
constant-frequency stimulation trains are the Poisson process and the gamma process. In fact, spike sequences 
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Figure 1.  Presynaptic firing rate-induced elevation of intracellular calcium concentration in two types of 
neurons with different time constants of calcium decay. The analytic solution is indicated by solid lines, while 
the results of numerical calculation are indicated by dotted lines. The calcium level increases more slowly in 
neurons with the short calcium decay time constant (40 ms) than in neurons with the long decay time constant 
(80 ms). This is also understood from Eq. (42). Error bars indicate the standard error of the mean (SEM).
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Figure 2.  Synaptic strength in two types of neurons that have different calcium decay time constants as a 
function of the constant presynaptic stimulation frequency. The x axis indicates the input frequency, and the 
y axis represents normalized synaptic weights that are obtained after several hundreds of presynaptic spikes. 
The analytic solutions are indicated by solid lines, whereas the solutions provided by numerical calculation are 
indicated by dotted lines. Error bars indicate the SEM.



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13974  | https://doi.org/10.1038/s41598-020-70876-4

www.nature.com/scientificreports/

similar to these processes are sometimes observed in neurons of  brain12,48–51. In this section, we discuss the 
results for the FDP of neurons with Poisson-distributed spike trains.

First, the calcium concentration at the postsynapse receiving Poisson input was calculated numerically and is 
plotted with red dotted lines in Fig. 3, in which the calcium concentration with constant-ISI input is also plotted 
with blue dotted lines for comparison. In the same manner, we examined two kinds of neurons with calcium 
decay time constants of 40 ms and 80 ms. The intracellular calcium concentration, regardless of the stimulation 
pattern, increases more gradually in the case of τCa = 40 ms than in the case of τCa = 80 ms. Besides, the calcium 
level with Poisson input rises more slowly than that with constant-ISI input, which is independent of the calcium 
decay time constant (Fig. 3, left and right panels).

Here we discuss how the calcium concentration increases with the input frequency. In Eqs. (42) and (44), the 
first-half part τCaf (γ0 + γ1f + γ2f

2) is a supra-linear function of the stimulation frequency f. This part describes 
the approximate expression of the voltage-dependence of the postsynaptic events given by H(V) in Eq. (14). The 
second-half parts 

∑

j=f ,s Ijτj

[

1− exp
(

− 1
τj ·f

)]

 in Eq. (42) and 
∑

j=f ,s Ij
τj

τj f+1 in Eq. (44) converge to 0 in the limit 
of infinite f. Thus, the competition between the two parts determines whether the calcium concentration in 
Eqs. (42) and (44) increases sublinearly or supralinearly. As shown in Fig. S1, in cases of both constant-ISI and 
Poisson input, the calcium concentration increases sublinearly in the frequency range between 0 and approxi-
mately 100 Hz, which is usually observed in the  brain52. This is because the second-half parts of Eqs. (42) and 
(44) are dominant in this frequency range. The effect of the first-half part becomes stronger as the input frequency 
increases above about 100 Hz, so that the calcium concentration increases supralinearly.

Next, we examined numerically the strength of a synapse receiving Poisson input. In Fig. 4, we define the LTD 
phase or LTP phase as the range of frequency indicating LTD or LTP. When the calcium decay time constant is 
80 ms, interestingly, Poisson input makes the LTD phase disappear and the LTP phase is observed at any input 
frequency (see a dotted red line in Fig. 4, left panel), whereas in the case of constant-ISI stimulation, the LTD 
phase still exists at roughly between 3 and 9 Hz (see a dotted blue line in Fig. 4, left panel). When the calcium 
decay time constant is 40 ms, unlike in the case of τCa = 80 ms, changing the stimulus pattern from constant-ISI 
input to Poisson input shifted the LTD/LTP threshold to the right (see dotted blue and red lines in Fig. 4, right 
panel). Since the firing rate observed in the brain is found to be at most approximately 112 Hz, we need only 
consider synaptic plasticity within 100 Hz52. This consideration leads to the conclusion that Poisson input to a 
neuron with τCa = 40 ms expands the LTD phase and narrows the LTP phase. These results can be well repro-
duced by approximate analytical solutions [Eqs. (44) and (52)].

Analytical solutions for the calcium concentration with Poisson input [Eq. (44)] are plotted with red solid 
lines in Fig. 3, left and right panels. The solutions agree well with the numerical results(red dotted lines in Fig. 3) 
and indicate that Poisson stimulation gently increases the calcium concentration, as compared to constant-ISI 
input. This property does not depend on the calcium decay time constant (Fig. 5).

Next, we obtained an approximate expression for the relation between the synaptic weight and the average 
stimulation rate. By assuming that the synaptic weight W(t) converges to a stationary solution in the long-time 
scale [Eq. (49)], we obtain Eq. (52). Solid lines in Fig 4 show that the analytical expression agrees well with the 
results of the numerical simulation. Regardless of the τCa value, the synaptic weight varies slowly by changing 
the stimulus pattern from constant-ISI input to Poisson input. This change in the stimulation pattern moves 
the LTD/LTP threshold to the left and narrows the LTD phase decrease for τCa = 80 ms (see a solid red line in 
Fig. 4, left panel), whereas it has the opposite effect for τCa = 40 ms (see a solid red line in Fig. 4, right panel).
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Figure 3.  Relation between the postsynaptic calcium concentration and the average frequency of presynaptic 
constant-ISI (or Poisson) input. As in Fig. 1, two types of neurons with different calcium decay time constants 
were examined. The analytic solutions are shown with solid lines, whereas the results of numerical simulation 
are shown with dotted lines. The blue (or red) lines indicate the calcium concentration of the postsynapse 
with constant-ISI (or Poisson) input. In the case of Poisson input, the increase in calcium concentration with 
respect to the average frequency is slower than in the case of constant-ISI input. This result is independent of the 
calcium decay time constant. Error bars indicate the SEM.
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Thus, the numerical and analytical studies indicate that the postsynaptic calcium concentration and synaptic 
strength receiving Poisson input behave differently from those receiving constant-ISI stimulation. At the same 
frequency, when τCa = 80 ms, a synapse receiving Poisson input is more likely to be LTP than a synapse receiv-
ing constant-ISI input, and when τCa = 40 ms, a synapse receiving Poisson input is more likely to be LTD. These 
findings suggest that the difference in input patterns (constant-ISI or Poisson input) and calcium decay time 
constant affects the output of FDP, i.e., LTD or LTP. In addition, this tendency to become LTP or LTD by chang-
ing the input pattern depends on the postsynaptic calcium decay time constant.

postsynaptic calcium level and synaptic weight as a function of the average frequency of 
gamma process input. We studied the postsynaptic calcium concentration and synaptic load of neurons 
receiving gamma process inputs, which is one of the firing patterns observed in  brain51,53. Since the analytic solu-
tions are qualitatively consistent with the simulation results so far presented in the present paper, we discuss the 
plasticity of synapses receiving gamma process input by only the analytic solutions. The postsynaptic calcium 
concentration of neurons that receive gamma process input is expressed by Eq. (48), where α is a shape param-
eter. The synaptic weight of the neurons receiving gamma process input is approximately expressed by Eq. (53) 
as a function of average input frequency.
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Figure 4.  Synaptic strength for two types of neurons ( τCa = 80 ms and τCa = 40 ms) as a function of the 
average rate of presynaptic stimulation. The x axis represents the input frequency, and the y axis represents 
normalized synaptic weights that are obtained after several hundreds of presynaptic spikes. The analytic 
solutions are shown with solid lines, whereas the results of numerical simulation are shown with dotted lines. 
Error bars indicate the SEM. The blue (or red) lines indicate the synaptic weights with constant-ISI (or Poisson) 
input. The synaptic weight with the Poisson input changes slowly compared to that with the constant-ISI input. 
As shown by the numerical simulation results, in neurons with τCa = 80 ms, the Poisson input makes the LTD 
phase disappear, and only the LTP phase remains (a red dotted line in left panel). On the other hand, in neurons 
with τCa = 40 ms, the LTD/LTP threshold moves to the right, and the LTD phase increases (red dotted line in 
right panel). These results are also qualitatively illustrated by analytical solutions (solid lines).
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This result for the calcium concentration is illustrated in Fig. 6A. As the shape parameter increases, the slope 
of the calcium concentration increases. The results for the synaptic weight are shown in Fig. 6B. When neurons 
with τCa = 80 ms are stimulated by gamma process input, as the shape parameter α increases, the LTD/LTP 
threshold shifts to a higher frequency and the minimum value of the synaptic weight becomes smaller (Fig. 6B, 
left). When τCa = 40 ms, the LTD/LTP threshold shifts to a lower frequency as the shape parameter α increases; 
on the other hand, the minimum value of the synaptic weight is approximately the same from α = 1 to α = 5 
(Fig. 6B, right).

In summary, the postsynaptic calcium level with gamma process input increases slower than that with con-
stant-ISI input, but increases faster than that with Poisson input. As the shape parameter increases, the increase in 
the calcium concentration becomes faster. The tendency to induce LTP or LTD by gamma process input depends 
on the shape parameter. These results suggest that the difference in input pattern as well as the shape parameter 
in gamma process input affects the synaptic weight.

Effect of increase in background synaptic activity receiving constant-ISI input. The postsynap-
tic terminals in neurons in vivo display intense background activity, which is characterized by fluctuations in 
the postsynaptic membrane potential. This background activity has at least three components: dendritic action 
potential, BPAPs, and voltage  noise41,54. The voltage noise includes the stochastic properties of ion channels, the 
random release of neurotransmitter, and thermal noise. The distance from the soma or the differences in the 
cortical layer, in which neurons are located, affects the frequency and size of the amplitude of the background 
synaptic  activity38–40.
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Figure 6.  Change in the postsynaptic calcium concentration and the weight in the synapse with gamma process 
input. We show two types of neurons with different time constants of calcium decay, τCa = 80 ms and 40 ms. 
In each graph, the black, orange, light blue, blue green, yellow, and blue lines indicate constant-ISI input, shape 
parameter α = 1 , α = 2 , α = 3 , α = 4 , and α = 5 , respectively. (A) Relationship between the postsynaptic 
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A graph of constant-ISI stimulation is shown as a control (black lines). The trace of the shape parameter 
α = 1 matches the graph of the Poisson input. As the value of the shape parameter increases, the calcium level 
increases is faster. (B) Approximate relationship between synaptic weight and mean input frequency in neurons 
with constant-ISI and gamma process inputs. The LTD/LTP threshold moves to a higher frequency in the case of 
τCa = 80 ms and the moves lower in the case of τCa = 40 ms as the value of the shape parameter becomes large.
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In order to examine the FDP under various background synaptic activities, we first analytically and numeri-
cally calculated the dependence of the postsynaptic calcium concentration on the constant-ISI input under 
various frequencies of background Poisson input. The fluctuation of the membrane potential due to background 
synaptic activity is denoted by Vbg in Eq. (18). Since Vbg increases in proportion to the average frequency of the 
background synaptic activity fbg , H(V) in Eq. (37) is approximately expressed as a bivariate quadratic function 
of f and fbg . Thus, the postsynaptic calcium concentration is given as a function of f and fbg as follows:

where ζ0 = 1.21× 10−2 , ζ1 = 2.97× 10−5 , ζ2 = 6.12× 10−4 , ζ3 = 3.52× 10−8 , ζ4 = 1.45× 10−6 , and 
ζ5 = 1.49× 10−5 . Figure 7A plots Eq. (3) using τCa = 80 ms or τCa = 40 ms. In both cases, the higher the aver-
age frequency of the background Poisson input is, the faster the rate of increase in the calcium concentration 
with synaptic input frequency becomes. As shown in Fig. 7B, qualitatively consistent results were obtained by 
numerical simulations.

We next analytically and numerically calculated the relation between the synaptic weight and the input fre-
quency under various background input rates. The approximate analytic solution is obtained as follows:

Here, Cac(f , fbg , x, ǫ|rCa;c , rj;c) is defined by Eq. (3) in Eq. (50). More explicitly, Cac(f , fbg , x, ǫ|rCa;c , rj;c) is given by
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Figure 7.  Postsynaptic calcium concentration in two types of neurons ( τCa = 80 ms and τCa = 40 ms) as a 
function of the frequency of presynaptic input and of the background input. The ISI of the presynaptic input 
is constant. The background Poisson input with a frequency in the range of 1 to 5 Hz was applied. The analytic 
solution is shown in (A), whereas the results of numerical simulation are shown in (B). Error bars indicate the 
SEM.
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The analytical solution (4) is plotted in Fig. 8A, and the corresponding numerical solution is shown in Fig. 8B. 
Although the analytical solution captures the overall qualitative behavior of the numerical solution, one can see 
quantitative deviations. These deviations can be attributed to the fact as follow. First, as you can see from Eq. (16), 
the time fluctuation of the postsynaptic membrane potential V(t) elevates as the background input increases. 
Accordingly, the time dependence of H(V) in Eq. (14) or Eq. (20) cannot be ignored, which leads to the difficulty 
in establishing “Assumption 1” (see the “Methods” section). Second, as shown in the description of Eq. (42) in 
the “Methods” section, H(V) is approximated by a quadratic power series around the resting membrane poten-
tial. Therefore, when V moves away from the resting potential due to an increase in background activity, the 
approximation accuracy of H(V) deteriorates.

Although two types of neurons with different calcium decay time constants were examined, the influence 
on the synaptic strengths by the increase of the background input level is qualitatively common to both types 
of neurons. In other words, the increase in the background input rate moves the LTD/LTP threshold to the left, 
decreases the LTD phase, and broadens the LTP phase.

Thus, upregulation of background synaptic activities leads to the enhancement of synaptic efficacy through 
the acceleration of the increasing rate of postsynaptic calcium concentration. These results suggest that the FDP 
output (LTP or LTD) varies depending on the magnitude of the applied background noise, even if the input 
frequency is the same.

We summarize the findings of the present study: (1) We obtained approximately analytical solutions of the 
intracellular calcium concentration and the synaptic weight as a function of the frequency of three kinds of 
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Figure 8.  Synaptic strength as a function of the frequency of presynaptic constant-ISI input and of the 
background Poisson input, under the background Poisson input with a frequency in the range of 1 to 5 Hz. 
Two types of neurons ( τCa = 80 ms and τCa = 40 ms) were examined. The analytic solution and the results of 
numerical calculation are shown in A and B, respectively. Error bars indicate the SEM.
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input: constant-ISI, Poisson, and gamma process input. The latter two input patterns are often observed in vivo. 
(2) In all three input patterns, LTP occurs at a lower frequency as the calcium decay time constant increases. 
We used 80 ms as the longer calcium decay time constant ( = τCa ) and 40 ms as the shorter calcium decay 
time constant. (3) The intracellular calcium level increases more slowly in neurons with Poisson input than in 
neurons with constant-ISI input. At the same stimulation frequency, a synapse with a long calcium decay time 
constant tends to be strengthened (LTP) by changing the stimulation pattern from constant-ISI input to Pois-
son input, while a synapse with a short calcium decay time constant weakened (LTD). (4) The calcium level 
with gamma process input increases faster than that with Poisson input but slower than that with constant-ISI 
input. Moreover, calcium level with gamma process also increases faster as the shape parameter grows. As the 
shape parameter increases, the LTD/LTP threshold moves to a higher frequency in τCa = 80 ms neurons but 
moves to a lower frequency in τCa = 40 ms neurons. The minimum value of the synaptic weight is smaller in 
τCa = 80 ms neurons but is approximately constant in τCa = 40 ms neurons as the shape parameter increases. 
(5) The increase of background synaptic activities induces the acceleration of the increase rate of the calcium 
level and the enhancement of synaptic weight.

Discussion
The Shouval’s model we studied is the most pioneering calcium-based model and is biophysically  valid33,55. 
However, this model is quite complicated for analytical study. In the present study, focusing on only the long-
term behavior of postsynaptic events, we derived approximate-analytic solutions from the Shouval’s model. Our 
results found from the analytic solutions indicate that the synaptic weight by FDP depends not only on input 
frequency but also on input pattern, shape parameter in gamma process input, calcium decay time constant, and 
background synaptic activity, which have been suggested to vary in vivo depending on the location, the internal 
state, and the external environment of the  neuron41–43,51,53,54.

We now discuss the relevance of our study to some related prior works. Interestingly, conclusions similar to 
ours have been obtained from studies of some STDP models, which considered not intracellular mechanisms 
but only spike timing. The triplet-based model of STDP, which is much simpler than the Shouval’s model that 
was the basis of our research, explained the BCM rule and derived a similar conclusion to our Fig. 4, left panel, 
that is changing from regular to irregular spike patterns tends to evoke  LTP20,56. Why are similar conclusions 
drawn from disparate models? Although all variables in equations of the triplet-based model are not identified 
as specific biophysical quantities, it is suggested that variables o1 and o2 in Eq. (2) in Pfister and Gerstner,  200656 
may be related to the calcium current depending on the post-synaptic membrane potential, and the dynamics of 
the latest and second-to-latest spikes are considered. On the other hand, as can be seen from the Eqs. (23), (24) 
and (25), we separately calculated the contribution from the latest spike ( = H(V)(T

f
N + Ts

N ) ) and the contribu-
tion from all previous spikes ( = H(V)(S

f
N−1 + SsN−1)), when analysing the calcium influx in the postsynapse 

depending on membrane potential. The triplet model seems to ignore the effect of the spikes other than the latest 
and second-to-latest ones. However, they decay exponentially quickly, and thus although these two studies differ 
in how far past spikes are calculated, they may be both good approximate representations of the post-synaptic 
events. Also, the results of the STDP model taking into account dendritic and axonal propagation delays, reported 
by Madadi Asl et al. do not contradict  ours26,27. They showed that, in both two-neuron and network motifs, 
high-frequency firings promote bidirectional connections, indicating a large proportion of neurons with large 
synaptic weights. Low-frequency firings lead to unidirectional or decoupled connections, showing the decrease 
of the mean synaptic weight. These findings are similar to the BCM curve in the FDP (Fig. 2) and the induction 
of LTP by the increase in background postsynaptic inputs (Fig. 8B).

Graupner et al. proposed a calcium-based model that simplifies the Shouval’s model. They found that dif-
ferences in plasticity outcomes are due to differences in parameters defining the calcium  dynamics29. We have 
similar conclusions in this study; that is, LTP tends to occur even at a lower frequency as the calcium decay time 
constant increases (Fig. 2). Besides, applying firing patterns recorded in monkey area MT to the triplet-based 
model and the simplified calcium model, they found that synaptic plasticity can occur sufficiently with only 
the variation of firing rate without exact spike  timing20. Furthermore, they investigated the effect of irregular 
input patterns on long-term plasticity with these models. They showed that irregular spike pairs tend to induce 
potentiation more than regular spike pairs. This conclusion is also similar to that obtained in this paper, that 
is, in τCa = 80 ms neurons, changing from constant-ISI to Poisson input makes LTP easy to be induced (Fig. 4, 
left panel).

In addition to these conclusions, we obtained the following new findings. First, we found that Poisson stimula-
tion evokes a lower calcium concentration than constant-ISI stimulation for the same input frequency (Figs. 3 
and 5C). At a glance, this finding may appear counterintuitive, because, in the case of Poisson input, the prob-
ability of firing in the period between 0 ms and the time of average ISI is 1− 1/e . It indicates that the proportion 
of firing with an ISI shorter than the average ISI is higher compared to that of firing with an ISI longer than 
the average ISI. However, the result we obtained is the opposite. To elucidate the reason for this, we obtained 
analytic solutions of the statistical average of the calcium current through NMDA receptor under constant-ISI 
and Poisson input as follows:

(6)
〈

Ic, NMDA(f )
〉

= f (γ0 + γ1f + γ2f
2)

∑

j=f ,s

Ijτj

[

1− exp
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−
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We also define the subtraction of Eq. (7) from Eq. (6) as follows:

In Fig. S2, we plot the analytical solution of �
〈

INMDA(f )
〉

 in Eq. (8). Equations (8) and (13) indicate that, at any 
input frequency, the Poisson input leads to a smaller INMDA than the constant-ISI input, resulting in a smaller 
calcium concentration. For Poisson input, when firing with ISIs longer than the average, Vepsp (EPSPs generated 
by binding glutamate to the AMPA receptors) and INMDA might decay much stronger than the case of firing with 
ISIs shorter than the average [cf. Eq. (17) and Eq. (20)].

Second, as can be seen from Eq. (1), where F−1 is a monotonically increasing function, we found that the 
LTD/LTP threshold under constant-ISI input can be written as a monotonically increasing function of 1/τCa . 
Moreover, we showed that the LTD/LTP threshold by changing from regular to irregular spikes shifts to lower 
frequency when τCa is long (Fig. 4, left panel) and to higher frequency when τCa is short (Fig. 4, right panel). 
It is necessary to examine whether the difference in the changes in the LTD/LTP threshold due to the calcium 
decay time constant is found in other calcium models such as the simplified calcium model and whether this 
phenomenon actually occurs in the brain.

For a long time, there has been a debate on the nature of neural coding, which is primarily founded on 
the generation, propagation, and processing of  spikes57–59. The classical view of neural coding emphasizes the 
information carried by the rate at which neurons produce action potentials, whereas spike variability and back-
ground activity were ignored or treated as  noise28,60,61. In experimental and theoretical studies of recent decades, 
arguing the importance of the spike timing rather than the firing rate in neural coding, the spike variability and 
background activity are also considered as noise  activities12,25. However, the results of recent electrophysiologi-
cal experiments on waking animals suggest that they are too large to be ignored for precise spike  timing25,54, 
leading to a renewed awareness of the importance of the rate coding, which is less affected by individual spike 
variability and background  noise20,21. Moreover, recent studies reveal the need for several simultaneous codes 
(multi-coding), including spike variability and fluctuation of membrane potential, as  sources57,62–64. Hence, the 
multi-coding hypothesis for the neural coding problem may be supported by the results of the present study, sug-
gesting that not only firing rate but also firing variability, the internal parameters of neurons, and the magnitude 
of background synaptic activity could be important for neural coding and synaptic  plasticity28,57.

We found that the calcium decay time constant determines the plasticity outcome. In neurons with a long 
time constant, LTP is induced even by a small presynaptic rate (about 9 Hz), because the calcium concentration 
via the NMDA receptors increases faster in these neurons than in neurons with a short time constant (Figs. 1 
and 2). In neurons with a short time constant, LTP is not induced until the stimulation frequency is large (over 
about 50 Hz). This difference due to calcium dynamics is more pronounced when the stimulation pattern is set 
to Poisson or gamma process input (Figs. 4 and 6).

The calcium decay time constant is closely related to the function of sodium-calcium exchangers (NCXs)65. 
Sodium-calcium exchangers, which are expressed highly in dendrites and dendritic spines in a variety of brain 
 regions66, are controlled in activity by various intracellular and extracellular signaling  molecules67 and are widely 
involved in many neural events from developmental processes to cognitive  abilities68,69. Thus, the calcium decay 
time constant differs depending on anatomical and physiological characteristics. Indeed, previous reports suggest 
that the calcium decay time constant varies with the depth of the cerebral cortex and that nitric oxide stimulates 
the increase of the calcium decay time constant in a cGMP-dependent  manner43,67,70. Our findings and those of 
previous studies suggest that, even with the same frequency, the synaptic plasticity induced thereby depends on 
the anatomical and physiological factors and that this difference becomes more prominent when the stimulation 
pattern is irregular.

Previous studies have demonstrated that applying an appropriate level of noise to the postsynapse results 
in the enhancement of the neural sensitivity and the improvement of signal detection in the central nervous 
 system71,72. Consistent with these findings, our research indicates that increased synaptic noise is more likely 
to induce LTP, regardless of the calcium decay time constant. Recently, the dendritic action potential has been 
considered as one of the main components of synaptic noise. In the record of the dendritic membrane potential of 
freely behaving rats, dendrite spikes accompanied by large subthreshold membrane potential fluctuations occur 
with high rates greater than the BPAP evoked in the  soma54. In addition, it has been shown in hippocampal syn-
apses that even a single presynaptic burst induces LTP, provided dendritic action potentials are  generated73. These 
findings and our results indicate that inputs from other than the presynapse, such as background synaptic activity, 
including the BPAP and the dendritic action potential, are largely involved in synaptic plasticity, especially the 
generation of LTP. We cannot, however, conclude from our results that even a single presynaptic input induces 
LTP. It is necessary to conduct research in which single-burst-induced LTP is substantiated experimentally. There-
fore, a mathematical model that further improves the model used in the present study should be constructed.

Our study has the limitations as follows: (1) This study is a model study without experiments. By solving 
the Shouval’s model under various conditions analytically and numerically, we obtained conclusions that are 
similar to or novel over the previous studies. However, they are merely theoretical predictions, and whether they 
occur in the brain has to be verified by future experiments. (2) Since we analyzed only the long-term behavior of 
the Shouval’s model, the transient nature of synaptic plasticity in vivo was ignored. (3) Since our research uses 
the Shouval’s model, which considers only post-synaptic plasticity, we do not examine the presynaptic factors. 
However, in 2015, a new model of spike timing plasticity was proposed by Rui Ponte Costa et al. in which both 
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pre- and post-synaptic plasticity were considered (referred to as “pre-post STDP model”)74. They used Poisson 
input as input pattern and showed that the pre-post STDP model induces higher SNR (signal-to-noise ratio) 
of a synaptic response than models considering only post-synaptic changes, and induces fast re-learning of 
stimuli experienced in the past. Therefore, it may be more appropriate to investigate, considering the pre- and 
post-synaptic plasticity, the influence on the synaptic weight by a difference in spike pattern, calcium dynam-
ics, and background activity. It is necessary to clarify this point in the future. (4) We did not investigate the 
involvement of higher-order correlations. Gjorgjieva et al. analyzed the triplet-based model of STDP analytically 
and  numerically55. They showed that, even when the input frequency is constant, the difference in spatial and 
spatiotemporal correlations determines the synaptic weight. It is a future task to study calcium dynamics and 
weight dynamics with highly correlated inputs to the calcium-based model. (5) We used only one model. It will 
be possible to deepen an understanding of synaptic plasticity by performing similar analysis as done in this paper 
on other mathematical models, STDP models and calcium models.

In conclusion, a problem regarding the FDP, namely, a firing rate abstraction, in which the temporal aver-
age of spikes is taken, is discussed, ignoring a large amount of extra information within the encoding window, 
such as the variation of firing  pattern3,28,61. This loss of information contrasts the encoding of rapidly changing 
neuronal activity observed in the  brain3,28. The present study showed theoretically that the output of synaptic 
plasticity in neurons receiving the same input frequency differs depending on the input pattern, the calcium 
decay time constant, and the background activity, which are related by neuron type and the anatomical and 
physiological condition in the brain. This finding suggests that information neglected in the view that only the 
firing rate induces the synaptic plasticity is also involved in the synaptic plasticity and neural coding. In the 
future, the ratio at which this information is related to synaptic plasticity and neural coding should be verified 
experimentally and theoretically.

Methods
Model. We used a model for the FDP based on the calcium control hypothesis of Shouval et al., assuming that 
the change of the synaptic weight is fully determined by the postsynaptic calcium  level33,44.

The dynamics of the synaptic weight W(t) are governed by

where Ca(t) represents the intracellular calcium concentration, and η and � are functions of intracellular calcium 
concentration given by the following formulas:

where

and we used the following parameters: p1 = 0.1 s, p2 = p1/10−4 , p3 = 3 , p4 = 1 s, α1 = 0.35µmol/dm3 , 
α2 = 0.55µmol/dm3 and β1 = β2 = 80µmol/dm333,44.

The dynamics of the intracellular calcium concentration are described as follows:

where τca is the calcium decay time constant. In order to investigate the relation between the calcium dynamics 
and the synaptic plasticity, we examined two kinds of neurons with time constants of 40 ms and 80 ms, which 
are known as representative values in pyramidal cells in the superficial cortex (layers II to IV) and the deep 
cortex (layers V to VI)42,43.

In Eq. (13), INMDA represents the calcium current via the NMDA receptor and is expressed as a function of 
time and postsynaptic potential as follows:

Here, �(t) is the Heaviside step function and we choose the parameters If = 0.75 , Is = 0.25 , τf = 50 ms, and 
τs = 200 ms, and H(V) is given by

where we choose the parameters P0 = 0.5 , GNMDA = −1/140 µmol dm−3/(mmV) , Mg = 3.57 , and a reversal 
potential for calcium ions of Vr = 130 mV33. Since H(V) increases monotonically with the membrane potential 
V before reaching a plateau at V = 27.1 mV , the higher the membrane potential the greater the calcium current 
through the NMDA receptor, INMDA , as long as V < 27.1 mV.

(9)
d

dt
W(t) = η(Ca(t))[�(Ca(t))−W(t)],

(10)η(Ca) =
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]−1

,

(11)�(Ca) = 1+ 4sig(Ca − α2,β2)− sig(Ca − α1,β1),

(12)sig(x,β) = exp(βx)/[1+ exp(βx)],
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1
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The postsynaptic membrane potential is given as the sum of the resting membrane potential Vrest , which is 
set to −65 mV, and the depolarization terms Vepsp + Vbg:

The depolarization terms in Eq. (16) include both EPSPs generated by binding glutamate to the AMPA receptors 
( = Vepsp ) and background contribution ( = Vbg ), which describes the depolarization due to the factors other 
than EPSP. Here, Vepsp is expressed as

where ti indicates the i-th presynaptic spike time, and the time constants are τ1 = 50 ms and τ2 = 5 ms33. Here, 
Vbg is composed of the summation of the dendritic action potentials, the back propagating action potentials 
(BPAPs), and the voltage noise applied to the postsynapse. The amplitude of the depolarization generated at the 
postsynaptic dendritic spine by the BPAPs varies, decreasing exponentially with the distance from the soma, at 
which it is about 100 mV relative to the  synapse40,75. The duration of the depolarization by BPAPs also differs 
among cell  types76. Moreover, the noise level at dendritic spines has been reported to be similar to that measured 
at the  soma77. We took these previous studies into consideration in order to perform the numerical simulation 
and presumed that the spike trains by both BPAPs and voltage noise follow a homogeneous Poisson process. 
Thus, we simply expressed Vbg as follows:

where s = 20 mV and {tk} is a Poisson process with a frequency that varies depending on the simulation condi-
tions. (In all simulations except for those of Figs. 7 and 8, we used a Poisson process with a mean frequency of 
1 Hz.)

numerical simulations. In the present study, we performed numerical simulations as well as analytical 
calculations in order to investigate the FDP. We used Wolfram Mathematica software in all simulations, and 
determined the dependence of both the calcium concentration and the synaptic weight on the stimulation fre-
quency as follows. First, we repeatedly solved Eqs. (9)–(18) numerically as a function of time for each frequency. 
The calcium concentration as a function of time obtained by this calculation is similar to the results of a previ-
ous  paper46. Next, after a period of 8.5× 104 ms, which is necessary for the system to reach a steady state, the 
average of the calcium level or the synaptic efficacy between 8.5× 104 ms to 9.0× 104 ms was calculated. When 
simulating with Poisson inputs, we performed the above calculations for at least three input patterns by chang-
ing the random seed, and took the average. The quantitative data are expressed as the mean of ten independent 
experiments plus/minus the standard error of the mean (SEM).

Derivation of the analytic solutions of the postsynaptic calcium concentration as functions 
of the average frequency of constant-ISI, Poisson, and gamma process inputs. By integrating 
Eq. (13), we can formally express the solution for Ca(t) as

Considering that the ion current through NMDAR ( INMDA ) is reset to zero each time presynaptic input is applied, 
Eq. (14) is rewritten as follows for the interval between the presynaptic inputs ̂tk ≤ s ≤ t̂k+1 , where t̂k is the time 
for k-th presynaptic input ( ̂t0 = 0 ms):

Now, we make the following assumptions.

Assumption 1 The time dependence of H(V) can be neglected because it varies slowly in time compared to the 
other terms in Eq. (20)

Assumption 2 The spike interval fluctuates stochastically. If we define the average spike interval as �t , t̂k is 
written as follows:

Then,

(16)V(t) =Vrest + Vepsp(t)+ Vbg(t).

(17)Vepsp(t) =
∑

i

�(t − ti)
[

e−(t−ti)/τ1 − e−(t−ti)/τ2
]

,

(18)Vbg(t) =s
∑

k

�(t − tk)
[

e−(t−tk)/τ1 − e−(t−tk)/τ2
]

,

(19)Ca(t) =

∫ t

0
e

1
τca

(s−t)INMDA(s)ds.

(20)
INMDA(s) =H(V)

[

If�(s − t̂k)e
−(s−t̂k)/τf

+ Is�(s − t̂k)e
−(s−t̂k)/τs

]

.

(21)t̂k = δk�t + t̂k−1, t̂0 = 0.
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Inserting Eq. (20) into Eq. (19) with Assumption 1, we obtain

where we have separated the contributions from the N-th presynaptic input, Tf
N (t) and Ts

N (t) from the contribu-
tions from the first N − 1 presynaptic inputs, SfN−1(t) and SsN−1(t):

and

Furthermore, we define Sjk+1,k(t) as

where τ0f  and τ0s are defined as follows:

We write t = t̂N + ǫ�t , where ǫ�t represents the time interval between the last spike time ( ̂tN ) and the time 
to measure the calcium concentration (t). Substituting the formula into Eq. (26), we obtain

In the case of 0 ≤ k ≤ N − 2 , we have

In the case of k = N − 1 , we have

Since we are interested in the long-term behavior of the calcium concentration and synaptic weights, but not in 
the fluctuations caused by each spike, we take the statistical average over one cycle. Let δk in Assumption 2 obey 
the probability density function ρ(δ) . Then the statistical averages of e−

1
τCa

δk�t and e
− 1

τj
δk�t

 can be written as

Hence, the statistical average of Eq. (29) is given as

Summing from k = 0 to k = N − 1 , the statistical average of Eq. (24) is obtained as

(22)t̂k =

k
∑

k′=1

δk′�t (k ≥ 1).

(23)

Ca(t) =H(V)

N
∑

k=0

∫ t̂k+1

t̂k

ds
[

If�(s − t̂k)e
−(s−t̂k)/τf

+ Is�(s − t̂k)e
−(s−t̂k)τs

]

e
1
τca

(s−t)

=H(V)[S
f
N−1(t)+ T

f
N (t)+ SsN−1(t)+ Ts
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(24)S
j
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,

(27)
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(30)S
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.

(31)
rCa :=

〈

e
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τCa
δk�t

〉

=
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0
ρ(δ)e
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τCa

δ�t
dδ,

rj :=

〈

e
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δk�t

〉

=
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(32)
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In order to obtain the long-term behavior of 
〈

S
j
N−1

〉

 , we take the limit N → ∞ . Since rCa < 1 , and thus rNCa → 0 
as N → ∞ , we obtain

Similarly, using t = t̂N + ǫ�t in Eq. (25) and taking the statistical average, we obtain (in the limit N → ∞)

Using Eqs. (34) and (35), we obtain the statistical average of the postsynaptic calcium concentration as

Furthermore, the statistical average of this equation with respect to the observation time is given by

where

Calcium concentration of constant‑ISI input. First, we calculate rCa , rj , r′Ca , and r′j for the constant-ISI input, 
which are denoted as rCa;c , rj;c , r′Ca;c , and r′j;c , respectively. In this case, the probability density function is given 
by ρCa;c(x) = ρj;c(x) = δ(1− x) . Using this function in Eq. (31), we obtain

Since it is assumed that the sampling time follows a uniform distribution, r′Ca and r′j are expressed as follows:

Using Eqs. (39) and (40), we obtain the statistical average of the postsynaptic calcium concentration as a function 
of the spike interval �t as follows:

Note that H(V) is a slowly changing and monotonically increasing function of the membrane potential in the 
vicinity of the resting membrane potential (− 65 mV), and the duration of depolarization by EPSP is approxi-
mately 50 to 100 ms at most. Therefore, the increase in the average membrane potential remains at approximately 
5.4 mV, even in the case of the highest frequency, e.g., 100 Hz. The average membrane potential, moreover, 
increases linearly with the stimulation frequency. Thus, H(V(�t)) is approximately expressed as a quadric func-
tion of 1/�t(= f ) . With this approximation, we obtain the following expression:

Here, γ0 = 1.28× 10−2 mV , γ1 = 3.20× 10−2 mVms , and γ2 = 3.71× 10−2 mVm2 . These values are deter-
mined by finding the relation between the input frequency and the time average of V(t) in Eq. (16) and by 
substituting the obtained values into the quadratic approximation of H(V).

Calcium concentration of Poisson input. The time interval of the spike sequence according to the Pois-
son process follows an exponential distribution, the probability density function of which is given by 
ρCa;poi(x) = ρj;poi(x) = e−x . Then, we can calculate rCa and rj for the Poisson input as

(33)
〈

S
j
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〉

= Ijτ0je
− 1

τCa
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.

(35)T
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.
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.
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,

(38)r′Ca :=
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.
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−
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.

(42)

〈

Cac(f )
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= τCaf (γ0 + γ1f + γ2f
2)

×
∑

j=f ,s

Ijτj

[

1− exp
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(43)rCa;poi =
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Since the spike interval fluctuates stochastically in the Poisson input, the observation time is considered to 
fluctuate with the same statistics. Then, r′Ca and r′j in the Poisson input, written as r′Ca;poi and r′j;poi , are equal to 
rCa;poi and rj;poi , respectively. Substituting rCa;poi , rj;poi , r′Ca;poi , and r′j;poi , we obtain the statistical average of the 
postsynaptic calcium concentration receiving Poisson input as a function of the average frequency as follows:

Calcium concentration of gamma process input. The time interval of the spike sequence according to the gamma 
process follows a gamma distribution, the general formula for the probability density function of which is given 
as

where α is the shape parameter, and Ŵ is the gamma function, which is given by

Since, as in the Poisson input, the spike interval and the sampling time fluctuate with the same statistics, 
rCa = r′Ca =: rCa:Ŵ and rj = r′j =: rj:Ŵ in Eq. (36). Thus, we obtain

Noting that the average spike interval of the gamma distribution input is α�t , we can express the statistical 
average of the postsynaptic calcium concentration with gamma process input as follows:

Derivation of the approximate analytic solutions for the synaptic weight as functions of the 
average frequency of constant-ISI, Poisson, and gamma process inputs. According to the cal-
cium control hypothesis reported by Shouval et al., the time derivative of the synaptic efficacy W is expressed as 
a function of intracellular calcium concentration as indicated in Eqs. (9)–(11)33. Equation (9) indicates that the 
synaptic strength approaches an asymptotic value �(Ca(t)) with time constant 1/η(Ca(t)) . The functional form 
of �(Ca(t)) in Eq. (11) is based qualitatively on the notion that a moderate rise in calcium leads to a decrease in 
the synaptic weight, whereas a large rise leads to an increase in the synaptic weight. This notion is closely related 
to the BCM theory, which states that weak synaptic input activity results in a decrease in synaptic strength, 
whereas strong input leads to an increase in synaptic  weight4,78.

Although it is difficult to find the exact relation between the synaptic weight W and the stimulation rate f 
analytically, we can obtain an approximate relation by assuming that W(t) converges to a stationary solution in 
the macroscopic time scale, i.e.,

In order to calculate 
〈

�(Ca(f ))
〉

 , we express the postsynaptic calcium concentration as

where x = δN , rCa , and rj are defined in Eq. (31). By substituting Eq. (50) into the expression for �(Ca) in Eq. (11) 
and calculating the statistical average with respect to x and ǫ , we obtain an approximate analytical solution for 
the synaptic weight as a function of the average input frequency.

In the case of the constant-ISI input, the time interval of the spike sequence obeys the probability density 
function ρ(x) = δ(1− x) . Moreover, the time interval from the last spike to the sampling time obeys a uniform 
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distribution. Thus, we obtain the statistical average of the synaptic weight as a function of input frequency f as 
follows:

In the cases of the Poisson input and gamma process input, the spike interval as well as the time interval 
between the last spike and the observation time obey exponential and gamma distributions, respectively. Thus, the 
statistical average of the synaptic weight as a function of input frequency f in these inputs are calculated as follows:

Received: 22 February 2020; Accepted: 4 August 2020

References
 1. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 

23, 649–711. https ://doi.org/10.1146/annur ev.neuro .23.1.649 (2000).
 2. Sjostrom, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 

32, 1149–64 (2001).
 3. Weissenberger, F., Gauy, M. M., Lengler, J., Meier, F. & Steger, A. Voltage dependence of synaptic plasticity is essential for rate based 

learning with short stimuli. Sci. Rep. 8, 4609. https ://doi.org/10.1038/s4159 8-018-22781 -0 (2018).
 4. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and 

binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).
 5. Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following 

stimulation of the perforant path. J. Physiol. 232, 331–56 (1973).
 6. Bliss, T. V. & Gardner-Medwin, A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized 

rabbit following stimulation of the perforant path. J. Physiol. 232, 357–74 (1973).
 7. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–9. 

https ://doi.org/10.1038/36103 1a0 (1993).
 8. Kirkwood, A., Dudek, S. M., Gold, J. T., Aizenman, C. D. & Bear, M. F. Common forms of synaptic plasticity in the hippocampus 

and neocortex in vitro. Science 260, 1518–21 (1993).
 9. Dudek, S. M. & Bear, M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate 

receptor blockade. Proc. Natl. Acad. Sci. USA 89, 4363–7 (1992).
 10. Mulkey, R. M. & Malenka, R. C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the 

hippocampus. Neuron 9, 967–75 (1992).
 11. Artola, A. & Singer, W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. 

Trends Neurosci. 16, 480–7 (1993).
 12. Gerstner, W. & Kistler, W. M. Spiking Neuron Models : Single Neurons, Populations, Plasticity (Cambridge University Press, Cam-

bridge, 2002).
 13. Song, S., Miller, K. D. & Abbott, L. F. Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. 

Neurosci. 3, 919–26. https ://doi.org/10.1038/78829  (2000).
 14. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, 

and postsynaptic cell type. J. Neurosci. 18, 10464–72 (1998).
 15. Gerstner, W., Kempter, R., van Hemmen, J. L. & Wagner, H. A neuronal learning rule for sub-millisecond temporal coding. Nature 

383, 76–81. https ://doi.org/10.1038/38307 6a0 (1996).
 16. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. 

Science 275, 213–5 (1997).
 17. Debanne, D., Gahwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells 

in rat hippocampal slice cultures. J. Physiol. 507(Pt 1), 237–47 (1998).
 18. Feldman, D. E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 

(2000).
 19. Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A. & Poo, M. A critical window for cooperation and competition among developing 

retinotectal synapses. Nature 395, 37–44. https ://doi.org/10.1038/25665  (1998).
 20. Graupner, M., Wallisch, P. & Ostojic, S. Natural firing patterns imply low sensitivity of synaptic plasticity to spike timing compared 

with firing rate. J. Neurosci. 36, 11238–11258. https ://doi.org/10.1523/JNEUR OSCI.0104-16.2016 (2016).
 21. Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. 

Neurosci. 13, 334–50 (1993).
 22. Knierim, J. J. & van Essen, D. C. Neuronal responses to static texture patterns in area v1 of the alert macaque monkey. J. Neuro‑

physiol. 67, 961–80. https ://doi.org/10.1152/jn.1992.67.4.961 (1992).
 23. Chance, F. & Abbott, L. F. Simulating in Vivo Background Activity in a Slice With The Dynamic Clamp 73–87 (Springer, Berlin, 

2009).
 24. Jacobson, G. A. et al. Subthreshold voltage noise of rat neocortical pyramidal neurones. J. Physiol. 564, 145–60. https ://doi.

org/10.1113/jphys iol.2004.08090 3 (2005).
 25. London, M., Roth, A., Beeren, L., Hausser, M. & Latham, P. E. Sensitivity to perturbations in vivo implies high noise and suggests 

rate coding in cortex. Nature 466, 123–7. https ://doi.org/10.1146/annur ev.neuro .23.1.6490 (2010).

(51)
〈

Wc(f )
〉

=

∫ ∞

0
dx

∫ 1

0
dǫ δ(1− x)�(Ca(1/f , x, ǫ|rCa;c , rj;c)).

(52)

〈

Wpoi(f )
〉

=

∫ ∞

0
dx

∫ ∞

0
dǫ e−(x+ǫ)

× �(Ca(1/f , x, ǫ|rCa;poi , rj;poi)),

(53)

〈

WŴ(f )
〉

=
1

Ŵ(α)2

∫ ∞

0
dx

∫ ∞

0
dǫ (xǫ)α−1e−(x+ǫ)

× �(Ca(1/αf , x, ǫ|rCa;Ŵ , rj;Ŵ)).

https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/361031a0
https://doi.org/10.1038/78829
https://doi.org/10.1038/383076a0
https://doi.org/10.1038/25665
https://doi.org/10.1523/JNEUROSCI.0104-16.2016
https://doi.org/10.1152/jn.1992.67.4.961
https://doi.org/10.1113/jphysiol.2004.080903
https://doi.org/10.1113/jphysiol.2004.080903
https://doi.org/10.1146/annurev.neuro.23.1.649


17

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13974  | https://doi.org/10.1038/s41598-020-70876-4

www.nature.com/scientificreports/

 26. Madadi Asl, M., Valizadeh, A. & Tass, P. A. Dendritic and axonal propagation delays determine emergent structures of neuronal 
networks with plastic synapses. Sci. Rep. 7, 39682. https ://doi.org/10.1146/annur ev.neuro .23.1.6491 (2017).

 27. Madadi Asl, M., Valizadeh, A. & Tass, P. A. Delay-induced multistability and loop formation in neuronal networks with spike-
timing-dependent plasticity. Sci. Rep. 8, 12068. https ://doi.org/10.1146/annur ev.neuro .23.1.6492 (2018).

 28. Li, M. & Tsien, J. Z. Neural code-neural self-information theory on how cell-assembly code rises from spike time and neuronal 
variability. Front. Cell Neurosci. 11, 236. https ://doi.org/10.1146/annur ev.neuro .23.1.6493 (2017).

 29. Graupner, M. & Brunel, N. Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and 
dendritic location. Proc. Natl. Acad. Sci. USA 109, 3991–6. https ://doi.org/10.1146/annur ev.neuro .23.1.6494 (2012).

 30. Sjostrom, P. J. & Hausser, M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical 
pyramidal neurons. Neuron 51, 227–38. https ://doi.org/10.1146/annur ev.neuro .23.1.6495 (2006).

 31. Nobukawa, S. & Nishimura, H. Enhancement of spike-timing-dependent plasticity in spiking neural systems with noise. Int. J. 
Neural Syst. 26, 1550040. https ://doi.org/10.1146/annur ev.neuro .23.1.6496 (2016).

 32. Yasuda, H. et al. Novel class of neural stochastic resonance and error-free information transfer. Phys. Rev. Lett. 100, 118103. https 
://doi.org/10.1146/annur ev.neuro .23.1.6497 (2008).

 33. Shouval, H. Z., Bear, M. F. & Cooper, L. N. A unified model of nmda receptor-dependent bidirectional synaptic plasticity. Proc. 
Natl. Acad. Sci. USA 99, 10831–6. https ://doi.org/10.1146/annur ev.neuro .23.1.6498 (2002).

 34. Cummings, J. A., Mulkey, R. M., Nicoll, R. A. & Malenka, R. C. Ca2+ signaling requirements for long-term depression in the hip-
pocampus. Neuron 16, 825–33 (1996).

 35. Cormier, R. J., Greenwood, A. C. & Connor, J. A. Bidirectional synaptic plasticity correlated with the magnitude of dendritic 
calcium transients above a threshold. J. Neurophysiol. 85, 399–406. https ://doi.org/10.1146/annur ev.neuro .23.1.6499 (2001).

 36. Cho, K., Aggleton, J. P., Brown, M. W. & Bashir, Z. I. An experimental test of the role of postsynaptic calcium levels in determining 
synaptic strength using perirhinal cortex of rat. J. Physiol. 532, 459–66 (2001).

 37. Yang, S. N., Tang, Y. G. & Zucker, R. S. Selective induction of LTP and LTD by postsynaptic [Ca2+ ]i elevation. J. Neurophysiol. 81, 
781–7. https ://doi.org/10.1038/s4159 8-018-22781 -00 (1999).

 38. Jones, R. S. & Woodhall, G. L. Background synaptic activity in rat entorhinal cortical neurones: Differential control of transmitter 
release by presynaptic receptors. J. Physiol. 562, 107–20. https ://doi.org/10.1038/s4159 8-018-22781 -01 (2005).

 39. Rapp, M., Yarom, Y. & Segev, I. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal 
cells. Proc. Natl. Acad. Sci. USA 93, 11985–90 (1996).

 40. Bereshpolova, Y., Amitai, Y., Gusev, A. G., Stoelzel, C. R. & Swadlow, H. A. Dendritic backpropagation and the state of the awake 
neocortex. J. Neurosci. 27, 9392–9. https ://doi.org/10.1038/s4159 8-018-22781 -02 (2007).

 41. Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303. https ://doi.org/10.1038/
s4159 8-018-22781 -03 (2008).

 42. Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A. & Whitteridge, D. Estimates of the net excitatory currents evoked by 
visual stimulation of identified neurons in cat visual cortex. Cereb. Cortex 8, 462–76 (1998).

 43. Liu, Y. H. & Wang, X. J. Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. J. Comput. Neurosci. 
10, 25–45 (2001).

 44. Shouval, H. Z. & Kalantzis, G. Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity 
curves. J. Neurophysiol. 93, 1069–73. https ://doi.org/10.1038/s4159 8-018-22781 -04 (2005).

 45. Bush, D. & Jin, Y. Calcium control of triphasic hippocampal STDP. J. Comput. Neurosci. 33, 495–514. https ://doi.org/10.1038/s4159 
8-018-22781 -05 (2012).

 46. Yeung, L. C., Castellani, G. C. & Shouval, H. Z. Analysis of the intraspinal calcium dynamics and its implications for the plasticity 
of spiking neurons. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69, 011907. https ://doi.org/10.1038/s4159 8-018-22781 -06 (2004).

 47. Speed, H. E. & Dobrunz, L. E. Developmental decrease in short-term facilitation at schaffer collateral synapses in hippocampus 
is mGluR1 sensitive. J. Neurophysiol. 99, 799–813. https ://doi.org/10.1038/s4159 8-018-22781 -07 (2008).

 48. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 
(2000).

 49. Deger, M., Helias, M., Boucsein, C. & Rotter, S. Statistical properties of superimposed stationary spike trains. J. Comput. Neurosci. 
32, 443–63. https ://doi.org/10.1038/s4159 8-018-22781 -08 (2012).

 50. Maimon, G. & Assad, J. A. Beyond poisson: Increased spike-time regularity across primate parietal cortex. Neuron 62, 426–40. 
https ://doi.org/10.1038/s4159 8-018-22781 -09 (2009).

 51. Baker, S. N. & Lemon, R. N. Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur 
at chance levels. J. Neurophysiol. 84, 1770–80 (2000).

 52. Burton, S. D. & Urban, N. N. Rapid feedforward inhibition and asynchronous excitation regulate granule cell activity in the mam-
malian main olfactory bulb. J. Neurosci. 35, 14103–22. https ://doi.org/10.1038/36103 1a00 (2015).

 53. Li, M. et al. Spike-timing pattern operates as gamma-distribution across cell types, regions and animal species and is essential for 
naturally-occurring cognitive states. Biorxiv 145813 (2018).

 54. Moore, J. J. et al. Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Sciencehttps ://doi.
org/10.1126/scien ce.aaj14 97 (2017).

 55. Gjorgjieva, J., Clopath, C., Audet, J. & Pfister, J. P. A triplet spike-timing-dependent plasticity model generalizes the Bienenstock–
Cooper–Munro rule to higher-order spatiotemporal correlations. Proc. Natl. Acad. Sci. USA 108, 19383–8. https ://doi.org/10.1073/
pnas.11059 33108  (2011).

 56. Pfister, J. P. & Gerstner, W. Triplets of spikes in a model of spike timing-dependent plasticity. J. Neurosci. 26, 9673–82. https ://doi.
org/10.1523/JNEUR OSCI.1425-06.2006 (2006).

 57. Carrillo-Medina, J. L. & Latorre, R. Implementing signature neural networks with spiking neurons. Front. Comput. Neurosci. 10, 
132. https ://doi.org/10.3389/fncom .2016.00132  (2016).

 58. Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. Reading a neural code. Science 252, 1854–7 (1991).
 59. Kandel, E. R. et al. (eds) Principles of Neural Science 5th edn. (Elsevier Science Publishing Co., Inc., New York, 2013).
 60. Rao, R. P. N., Olshausen, B. A. & Lewicki, M. S. Probabilistic models of the brain: Perception and neural function. In Neural 

Information Processing Series (eds Rao, R. P. N. et al.) (MIT Press, Cambridge, 2002).
 61. Zhao, C. et al. Spike-time-dependent encoding for neuromorphic processors. J. Emerg. Technol. Comput. Syst. 12, 1–21. https ://

doi.org/10.1145/27380 40 (2015).
 62. Panzeri, S., Brunel, N., Logothetis, N. K. & Kayser, C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 

33, 111–20. https ://doi.org/10.1016/j.tins.2009.12.001 (2010).
 63. Latorre, R., Rodriguez, F. B. & Varona, P. Neural signatures: Multiple coding in spiking-bursting cells. Biol. Cybern. 95, 169–83. 

https ://doi.org/10.1007/s0042 2-006-0077-5 (2006).
 64. Kayser, C., Montemurro, M. A., Logothetis, N. K. & Panzeri, S. Spike-phase coding boosts and stabilizes information carried by 

spatial and temporal spike patterns. Neuron 61, 597–608. https ://doi.org/10.1016/j.neuro n.2009.01.008 (2009).
 65. Hu, E. et al. A glutamatergic spine model to enable multi-scale modeling of nonlinear calcium dynamics. Front. Comput. Neurosci. 

12, 58. https ://doi.org/10.3389/fncom .2018.00058  (2018).
 66. Minelli, A. et al. Cellular and subcellular localization of Na+–Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in 

cerebral cortex and hippocampus of adult rat. Cell Calcium 41, 221–34. https ://doi.org/10.1016/j.ceca.2006.06.004 (2007).

https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/s41598-018-22781-0
https://doi.org/10.1038/361031a0
https://doi.org/10.1126/science.aaj1497
https://doi.org/10.1126/science.aaj1497
https://doi.org/10.1073/pnas.1105933108
https://doi.org/10.1073/pnas.1105933108
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.3389/fncom.2016.00132
https://doi.org/10.1145/2738040
https://doi.org/10.1145/2738040
https://doi.org/10.1016/j.tins.2009.12.001
https://doi.org/10.1007/s00422-006-0077-5
https://doi.org/10.1016/j.neuron.2009.01.008
https://doi.org/10.3389/fncom.2018.00058
https://doi.org/10.1016/j.ceca.2006.06.004


18

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13974  | https://doi.org/10.1038/s41598-020-70876-4

www.nature.com/scientificreports/

 67. Jeon, D. et al. Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron 38, 965–76 (2003).
 68. Secondo, A. et al. Involvement of the Na+/Ca2+ exchanger isoform 1 (NCX1) in neuronal growth factor (NGF)-induced neu-

ronal differentiation through Ca2+-dependent AKT phosphorylation. J. Biol. Chem. 290, 1319–31. https ://doi.org/10.1074/jbc.
M114.55551 6 (2015).

 69. Moriguchi, S. et al. Reduced expression of Na+/Ca2+ exchangers is associated with cognitive deficits seen in Alzheimer’s disease 
model mice. Neuropharmacology 131, 291–303. https ://doi.org/10.1016/j.neuro pharm .2017.12.037 (2018).

 70. Asano, S. et al. Nitroprusside and cyclic GMP stimulate Na+-Ca2+ exchange activity in neuronal preparations and cultured rat 
astrocytes. J. Neurochem. 64, 2437–41 (1995).

 71. Destexhe, A., Rudolph, M. & Pare, D. The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–51. 
https ://doi.org/10.1038/nrn11 98 (2003).

 72. Stacey, W. C. & Durand, D. M. Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. J. Neuro‑
physiol. 86, 1104–12. https ://doi.org/10.1152/jn.2001.86.3.1104 (2001).

 73. Remy, S. & Spruston, N. Dendritic spikes induce single-burst long-term potentiation. Proc. Natl. Acad. Sci. USA 104, 17192–7. 
https ://doi.org/10.1073/pnas.07079 19104  (2007).

 74. Costa, R. P., Froemke, R. C., Sjostrom, P. J. & van Rossum, M. C. Unified pre- and postsynaptic long-term plasticity enables reliable 
and flexible learning. Elifehttps ://doi.org/10.7554/eLife .09457  (2015).

 75. Stuart, G. J. & Hausser, M. Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4, 63–71. https ://doi.
org/10.1038/82910  (2001).

 76. Zheng, Y. & Schwabe, L. Shaping synaptic learning by the duration of postsynaptic action potential in a new STDP model. PLoS 
ONE 9, e88592. https ://doi.org/10.1371/journ al.pone.00885 92 (2014).

 77. Yaron-Jakoubovitch, A., Jacobson, G. A., Koch, C., Segev, I. & Yarom, Y. A paradoxical isopotentiality: A spatially uniform noise 
spectrum in neocortical pyramidal cells. Front. Cell Neurosci. 2, 3. https ://doi.org/10.3389/neuro .03.003.2008 (2008).

 78. Izhikevich, E. M. & Desai, N. S. Relating stdp to bcm. Neural Comput. 15, 1511–23. https ://doi.org/10.1162/08997 66033 21891 783 
(2003).

Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers JP18K10858, JP18K10999.

Author contributions
K.H. conceived of the presented idea. K.H. developed the theory. K.H. and O.A. designed the model and the 
computational framework. K.H. and T.N. performed the analytical calculation. K.H. and O.Y. performed the 
numerical simulation. K.H., T.K., Y.Y., S.I. and T.N. analysed the data. All authors reviewed the manuscript.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-70876 -4.

Correspondence and requests for materials should be addressed to K.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1074/jbc.M114.555516
https://doi.org/10.1074/jbc.M114.555516
https://doi.org/10.1016/j.neuropharm.2017.12.037
https://doi.org/10.1038/nrn1198
https://doi.org/10.1152/jn.2001.86.3.1104
https://doi.org/10.1073/pnas.0707919104
https://doi.org/10.7554/eLife.09457
https://doi.org/10.1038/82910
https://doi.org/10.1038/82910
https://doi.org/10.1371/journal.pone.0088592
https://doi.org/10.3389/neuro.03.003.2008
https://doi.org/10.1162/089976603321891783
https://doi.org/10.1038/s41598-020-70876-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multicoding in neural information transfer suggested by mathematical analysis of the frequency-dependent synaptic plasticity in vivo
	Anchor 2
	Anchor 3
	Results
	Postsynaptic calcium concentration as a function of the presynaptic stimulation frequency with fixed interstimulus intervals. 
	Approximate analytic solution of synaptic weight as a function of the input frequency with fixed interstimulus intervals. 
	Postsynaptic calcium level and synaptic weight as functions of the average frequency of Poisson input. 
	Postsynaptic calcium level and synaptic weight as a function of the average frequency of gamma process input. 
	Effect of increase in background synaptic activity receiving constant-ISI input. 

	Discussion
	Methods
	Model. 
	Numerical simulations. 
	Derivation of the analytic solutions of the postsynaptic calcium concentration as functions of the average frequency of constant-ISI, Poisson, and gamma process inputs. 
	Calcium concentration of constant-ISI input. 
	Calcium concentration of Poisson input. 
	Calcium concentration of gamma process input. 

	Derivation of the approximate analytic solutions for the synaptic weight as functions of the average frequency of constant-ISI, Poisson, and gamma process inputs. 

	References
	Acknowledgements


