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We isolated the Cobetia sp. strains IU 180733JP01 (5-11-6-3) and 190790JP01 (5-25-
4-2) from seaweeds and showed that both strains accumulate poly(3-hydroxybutyrate)
[P(3HB)] homopolymer in a nitrogen-limiting mineral salt medium containing alginate
as a sole carbon source. Genome sequence analysis of the isolated strains showed
that they have putative genes which encode enzymes relevant to alginate assimilation
and P(3HB) synthesis, and the putative alginate-assimilating genes formed a cluster.
Investigation of the optimum culture conditions for high accumulation of P(3HB) showed
that when the 5-11-6-3 strain was cultured in a nitrogen-limiting mineral salt medium
(pH 5.0) containing 6% NaCl and 3% (w/v) alginate as a sole carbon source for
2 days, the P(3HB) content and P(3HB) production reached 62.1 ± 3.4 wt% and
3.11 ± 0.16 g/L, respectively. When the 5-25-4-2 strain was cultured in a nitrogen-
limiting mineral salt medium (pH 4.0) containing 5% NaCl and 3% (w/v) alginate for
2 days, the P(3HB) content and P(3HB) production reached 56.9 ± 2.1 wt% and
2.67 ± 0.11 g/L, respectively. Moreover, the 5-11-6-3 strain also produced P(3HB) in a
nitrogen-limiting mineral salt medium (pH 5.0) containing 6% NaCl and freeze-dried and
crushed waste Laminaria sp., which is classified into brown algae and contains alginate
abundantly. The resulting P(3HB) content and P(3HB) productivity were 13.5± 0.13 wt%
and 3.99 ± 0.15 mg/L/h, respectively. Thus, we demonstrated the potential application
of the isolated strains to a simple P(3HB) production process from seaweeds without
chemical hydrolysis and enzymatic saccharification.

Keywords: polyhydroxyalkanoate, biopolymer, seaweeds, marine biomass resources, alginic acid brown algae

INTRODUCTION

Heavy consumption of petrochemical plastic is causing serious problems in the environment
all over the world. One solution to these environmental problems is the development and use
of biodegradable plastics. Polyhydroxyalkanoates (PHAs) are attractive thermoplastics having
biodegradability. The physical properties of PHAs closely resemble those of conventional plastics
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such as polypropylene and low-density polyethylene (Doi,
1990). In addition, more than 150 different structures of PHA
monomers have been reported, and this diversity of monomers
in PHA copolymers contributes a wide range of physical
properties (Nomura and Taguchi, 2007; Tan et al., 2014; Ishii-
Hyakutake et al., 2018). The PHA monomers are classified by
their number of carbon atoms as short-chain-length PHAs (SCL-
PHAs), medium-chain-length PHAs (MCL-PHAs), and long-
chain-length PHAs (LCL-PHAs). SCL-PHAs, MCL-PHAs, and
LCL-PHAs consist of 3–5 carbon atoms, 6–14 carbon atoms,
and more than 14 carbon atoms, respectively (Kunasundari and
Sudesh, 2011). Many bacteria produce poly(3-hydroxybutyrate)
[P(3HB)], which is the most common type of PHA, and SCL and
MCL-PHAs are generally produced by different types of bacteria
(Taguchi and Doi, 2004).

The other main advantage of PHAs is that they can be
produced by microorganisms from various substrates such
as sugars, oils, and fatty acids (Sudesh et al., 2011). This
property has led to the use of various kinds of biomass for
PHA production as an alternative feedstock to petroleum, and
thus, many researches have focused on PHA production from
sugars derived from cellulosic biomass (Singh Saharan et al.,
2014; Obruca, 2015). Although previous studies have identified
some bacteria that produce PHA and use cellulose and lignin
derivatives for growth (Tomizawa et al., 2014; Kumar et al.,
2017), chemical hydrolysis and/or enzymatic saccharification of
cellulosic biomass is generally required for high productivity
of PHA (Obruca, 2015). Many bacteria can also utilize plant
oils to accumulate PHA, and P(3HB) yields from plant oils are
approximately two-fold higher than those from sugar (Akiyama
et al., 2003). Thus, various plant oils (e.g., palm oil, soybean
oil, olive oil, coconut oil, sunflower oil, and jatropha oil) have
been evaluated as potential substrates for PHA production (Kahar
et al., 2004; Ng et al., 2010). Moreover, the production of PHA
from industrial and domestic wastes is an attractive approach and
could help both to minimize waste disposal and to reduce the
costs of PHA production. The methods of PHA production using
industrial by-products such as lignocellulosic materials, molasses,
fats and oils, whey, glycerol, and wastewater have been widely
reported (Keenan et al., 2006; Zhu et al., 2010; Chenyu et al.,
2012; Jiang et al., 2016; Scheel et al., 2019; Van Thuoc et al., 2019).
However, there are few studies on PHA production from marine
biomass. Thus, utilization of marine biomass can contribute to
the increase in the diversity of substrates for PHA production.

Seaweeds, a component of marine biomass, have attracted
attention as a foreseeable sustainable source of fuels and
materials, since the marine environment represents an untapped
source of energy and can supply seaweeds plentifully. For
instance, several studies have reported the production of various
useful compounds – biogas, ethanol, butanol, lactic acid, etc. –
by fermentation with seaweed (Wise et al., 1979; Hansson, 1983;
Yokoyama et al., 2007; Park et al., 2009). Seaweeds also become
a focus of attention as a new substrate for PHA production.
With respect to PHA production from seaweeds, studies have
shown that PHA was accumulated by bacteria in a medium
containing brown algae or compounds extracted from seaweed
(levulinic acid) (Bera et al., 2015; Azizi et al., 2017). The red algae

species Gelidium amansii and green macroalgae species Ulva
have also been used for PHA production (Alkotaini et al., 2016;
Sawant et al., 2018; Ghosh et al., 2019). In two of these reports
(Alkotaini et al., 2016; Ghosh et al., 2019), seaweeds that were
chemically hydrolyzed and/or enzymatically saccharified were
used for PHA production. One-step PHA production without
those pretreatments would be important for a further practical
production process.

Among seaweeds, we focused on brown algae as a feedstock for
PHA production. Brown algae such as Kombu (dried Laminaria
spp.) and Wakame (Undaria pinnatifida) are well-reputed as
foods in Japan, and huge arrays of aquaculture equipment
have been erected in Japanese bays to produce these algae.
However, a lot of seaweed garbage is also generated in the
manufacturing, processing, and cooking of seaweed-based food
products. Thus, components of brown algae such as cellulose,
agar, mannitol, alginate, laminarin, carrageenan and fucoidan
(Ito and Hori, 1989) have potential as good substrates for PHA
production that do not compete with the production of foods.
In particular, brown algae contains large amounts of mannitol
(∼10 wt% in dry weight) and alginate (∼20 wt% in dry weight)
(Ito and Hori, 1989). In our previous study, we isolated the
Burkholderia sp. AIU M5M02, which produces P(3HB) from
mannitol as a sole carbon source, from a marine environment
(Yamada et al., 2018). At the same time, we found no PHA-
production microorganism from alginate by screening. To date,
the Hydrogenophaga sp. strain UMI-18 is the only microorganism
found to produce P(3HB) from alginate as a sole carbon source
(Yamaguchi et al., 2019).

In the present study, we isolated two strains, which we
identified as strains of a Cobetia sp., that are capable of
utilizing alginate as a sole carbon source for P(3HB) production
and growth. The optimum culture conditions were determined
to reach effective accumulation of PHA from alginate, and
the metabolic pathways relevant to alginate-assimilation and
P(3HB)-synthesis were predicted based on the draft genome
sequence of the isolated strains. Moreover, we demonstrated
that the isolated strains could produce P(3HB) from a
Laminaria sp. without chemical hydrolysis and enzymatic
saccharification treatment.

MATERIALS AND METHODS

Isolation of the Microorganisms
The liquid culture was carried out at 30◦C for 2–3 days using the
Zobell Marine Broth 2216E medium containing 0.5% peptone,
0.1% yeast extract, and 0.01% FePO4, at pH 5.0, 7.0, or 9.0. The
microorganisms grown in the medium were cultivated on an
agar plate containing the Zobell Marine Broth 2216E medium
at pH 5.0, 7.0, or 9.0. All isolated strains from the agar plate
were cultivated again on an agar plate containing a nitrogen-
limiting mineral salt (MM) medium with 1% alginate (viscosity
range 300–400, FUJIFILM Wako Pure Chemical, Japan) as a sole
carbon source and 0.05% Nile red at 30◦C for 3 days. Strains
that exhibited pinkish colonies on the agar plate containing the
MM medium were selected as candidates that can produce PHA
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from alginate. Nile red was added from a stock solution of
25% (v/v) in dimethylsulfoxide to the agar medium at a final
concentration of 0.5 µg/mL (Spiekermann et al., 1999). The MM
medium (100 mL) contained 0.3% KH2PO4, 0.3% Na2HPO4,
0.05% (NH2)2CO, and 0.025% MgSO4·7H2O, and 1 mL of filter-
sterilized trace element was added aseptically. The trace element
solution consisted of (per liter) 0.22 g CoCl2·6H2O, 9.7 g FeCl3,
7.8 g CaCl2, 0.12 g NiCl2·6H2O, 0.11 g CrCl3·6H2O, and 0.16 g
CuSO4·5H2O (Kahar et al., 2004).

Identification of the Isolated Strains and
Phylogenetic Analysis
The isolated strains were identified based on morphological
observation, biochemical characterization (Arahal et al.,
2002), and 16S rRNA analysis. Genomic DNA was extracted
using a bacteria genomicPrep Mini Spin Kit (GE Healthcare
United Kingdom, United Kingdom). The 16S rRNA gene
was amplified by PCR using primers 16S rRNA 27F
(5′-AGAGTTTGATCCTGGCTCAG-3′) and 1525R (5′-
AAAGGAGGTGATCCAGCC-3′) (Weisburg et al., 1991). The
PCR protocol consisted of 30 thermal cycles of 98◦C for 10 s,
55◦C for 30 s, and 72◦C for 90 s. The similarity and identity
of the sequences obtained were compared to those of other
sequences in GenBank using nucleotide–nucleotide BLAST
commands (Altschul et al., 1997) at the National Center for
Biotechnology Information (NCBI). The phylogenetic tree base
on the sequences of 16S rDNA genes was constructed using the
MEGA-X software, where a neighbor-joining program was used
based on the bootstrap test of 500 replicates (Felsenstein, 1985).

PHA Biosynthesis
The isolated strains were incubated in 10 mL of MM medium
containing alginate at 30◦C for 2 days with shaking (120
strokes/min). The culture (3.0 mL) was inoculated into a 500-mL
culture flask containing 150 mL of the MM medium containing
alginate or the Laminaria sp. and then incubated at 30◦C
with shaking. Waste Laminaria sp. (alginate content, 6.3 wt%)
was obtained from the seaweed farm in Yamada Bay (Iwate
Prefecture, Japan). The alginate content of the waste Laminaria
sp. was determined according to the previous method in the
following steps (Nishide et al., 1987). The waste Laminaria sp.
was sectioned into squares ∼10 cm on a side, and the sections
were lyophilized using an FD-1000 vacuum freeze dryer (EYELA,
Japan) at −80◦C for 2 days. After homogenization of 10 g of the
lyophilized Laminaria sp., 200 mL of 0.34 M Na2CO3 solution
added to the slurry and the mixture was heated under stirring
at 75◦C for 3 h. Then, 800 mL of distilled water was added
and mixed. The solution was separated from the solid matter
by filtration of Celite 545 and acidified with HCl to pH 1.0.
The generated precipitation was incubated at room temperature
for 3 h and collected by centrifugation (3,000 g × 10 min,
4◦C). Two hundred mL of 50% methanol was added to the
precipitation, and the mixture was neutralized with NaOH under
stirring. After standing overnight at room temperature, the
mixture was filtered by a cotton cloth to separate the gel. The
gel was washed successively with 60% methanol, 95% methanol,
and acetone and was dried at 30◦C for 12 h. The part of dried

gel was solved to deionized water, and the concentration of
alginate in the solution was measured by the Bitter–Muir method
(Bitter and Muir, 1962).

With respect to the MM medium containing the waste
Laminaria sp., the lyophilized sections were crushed into small
chips. The small chips of the Laminaria sp. [5%(w/v)] were
added to the MM medium, and the medium was autoclaved.
After cultivation, the cells were harvested by centrifugation
(6,400 g × 15 min, 4◦C) and washed three times with distilled
water. When the Laminaria sp. was used in the medium,
the residue of Laminaria sp. was removed by a filter paper
before centrifugation. The cells were then lyophilized, and the
polymer was extracted with chloroform at 70◦C for 48 h in
glass tubes with screw caps. Cell debris was removed by passage
through a PTFE filter, and then the filtrate was dried in vacuo.
The extracted polymer was subsequently subjected to nuclear
magnetic resonance (NMR), gel permeation chromatography
(GPC), and differential scanning calorimetry (DSC) analyses.

NMR, GPC, and DSC Analyses
The extracted polymers were dissolved in deuterated chloroform
and analyzed by NMR. The 1H-NMR spectra of the polymer
were obtained using a JNM-AL400 spectrometer (400 MHz;
JEOL, Japan). The chemical shifts are reported in ppm, with
tetramethylsilane as the internal reference. GPC and DSC
analyses of extracted polymers were performed at Mitsui
Chemical Analysis and Consulting Service (Japan). Polymers
dissolved in hexafluoroisopropyl alcohol (HFIP) were applied
to an analytical GPC (Showa Denko, Japan) equipped with
Shodex HFIP-G and HFIP-606 M (Showa Denko, Japan) at
40◦C. The mobile phase was HFIP containing 0.01 mM sodium
trifluoroacetate. The molecular weight was estimated using a
polymethyl methacrylate standard (Showa Denko, Japan). DSC
data were recorded in the temperature range of −90 to 200◦C
on an X-DSC7000 system (Hitachi High-Tech Science, Japan)
equipped with a cooling accessory under a nitrogen flow rate of
50 mL/min. The solvent-cast films (10 mg) were encapsulated in
aluminum pans and heated from−90 to 200◦C at 10◦C/min (first
heating scan). The melt samples were then rapidly quenched at
−90◦C and maintained at −90◦C for 5 min. They were heated
from−90 to 200◦C at 10◦C/min (second heating scan). The glass-
transition temperature (Tg) was taken as a midpoint of the heat
capacity change. The melting temperature (Tm) was determined
from the positions of the endothermic peaks.

Genome Analysis
Genomic DNA of the isolated bacterium was extracted
by a bacteria genomicPrep Mini Spin Kit (GE Healthcare
United Kingdom, United Kingdom). Genome sequencing,
genome assembly, and gene annotation were performed at
Genewiz (Japan). The genome sequence was analyzed with an
Illumina HiSeq instrument (Illumina, United States). The draft
genome was assembled using Velvet and gapfilled with SSPACE
and GapFiller (Zerbino and Birney, 2008; Zerbino et al., 2009;
Boetzer et al., 2011; Hunt et al., 2014). Prodigal (Delcher et al.,
2007) gene-finding software was used to find coding genes in
bacteria. The coding genes were annotated using the NCBI nr
database by BLAST.
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Gas Chromatography (GC) Analysis
In order to calculate polymer content (weight percent) based on
the dry cell weight and polymer productivity, GC analysis was
performed. The lyophilized cells were ground into powder. By
incubating ∼30 mg of lyophilized cells with 1 mL chloroform,
3.4 mL ethanol, and 0.4 mL HCl at 100◦C for 4 h, P(3HB)
was ethanolyzed to ethyl 3-hydroxybutyrate. Then, the esterified
sample was neutralized by addition of 4 mL mixed solution (0.65
M NaOH and 0.9 M NaCl) and 2 mL solution (0.25 M Na2HPO4).
The organic phase containing ethyl 3-hydroxybutyrate was mixed
with 16 µg of ethyl caproate as a standard and analyzed by GC on
a GC4000 Plus system (GL Science, Japan) using an HP-5 column
(0.25 mm× 30 m, 0.25 µm) (Agilent, United States). The carrier
gas was nitrogen at a flow rate of 1.6 mL/min. The GC conditions
were as follows: an initial oven temperature of 45◦C held for
1 min and increased to 80◦C at a rate of 7◦C/min and then to
300◦C at a rate of 80◦C/min, followed by a 10-min hold time.

RESULTS

Isolation of PHA-Producing Bacteria
From Alginate and Characterization of
the Isolated Strains
Beached seaweeds of Ofunato Bay (Iwate Prefecture, Japan) were
selected as sources of microorganisms. The samples were put
directly into the Zobell Marine Broth 2216E medium (pH 5.0,
7.0, or 9.0), and liquid culture was carried out for 2–3 days.
More than 300 colonies were isolated from the culture solution.
All colonies were inoculated into the agar plate containing MM
medium, Nile red, and alginate as the sole carbon source for
the growth and biosynthesis of PHA, and cultured again. The
Nile red-stained colonies were selected as candidates for PHA-
producing microorganisms.

The 5-11-6-3 strain and the 5-25-4-2 strain, which grew in the
MM medium that contained alginate as the sole carbon source
at pH 5.0, exhibited strong staining. Thus, both these strains
were examined for their ability to produce PHA from alginate
at 30◦C for 2 days under aerobic conditions. In the 1H-NMR
spectra, the products of the 5-11-6-3 and 5-25-4-2 strains showed
the resonances for P(3HB) between 5.24 and 5.28 ppm, 2.44 and
2.64 ppm, 1.27 and 1.28 ppm (Figure 1).

Identification of the Bacterial Strains
Which Produce P(3HB) From Alginate
The 5-11-6-3 strain and the 5-25-4-2 strain were identified
by phylogenetic analysis and biochemical properties (Table 1).
The 16S rRNA gene sequences showed high similarity between
the 5-11-6-3 strain (accession no. LC549335) and the 5-25-4-2
strain (accession no. LC549336), but they were not completely
identical (99% identity, 1409/1411). Thus, we used these strains
for further experiments as a different strain. The results of
the 16S rRNA gene sequence of 1,411 bp from the 5-11-6-3
strain revealed a 100% identity to the partial sequence of the
16S rRNA gene of Cobetia sp. strain P4 (1411/1411) (accession
no. MH790205); this was followed by a 100% identity to a

FIGURE 1 | 1H-NMR spectra of a commercial P(3HB) and P(3HB) produced
from the isolated strains grown in the MM medium containing 3% (w/v)
alginate at pH 5.0 and 30◦C for 2 days. (A) P(3HB) produced from Cobetia
sp. IU180733JP01 (5-11-6-3); (B) P(3HB) produced from Cobetia sp.
IU190790JP01 (5-25-4-2); (C) commercial P(3HB).

partial sequence of the 16S rRNA gene of Cobetia sp. strain
Aga-AMLN-15-8 (1410/1410) (accession no. MK453454). The
third-closest identity was shown by the 16S rRNA gene of
Cobetia marina strain HNS037 with 100% identity (1399/1399)
(accession no. JN128271). In addition, the results of the 16S
rRNA sequence of 1,435 bp from the 5-25-4-2 strain revealed
a 99% identity to the partial sequence of the 16S rRNA gene
of Cobetia pacifica strain GPM2 (1429/1433) (accession no.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 August 2020 | Volume 8 | Article 974

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00974 August 21, 2020 Time: 15:57 # 5

Moriya et al. Bioplastic Production From Marine Biomass

TABLE 1 | Characteristics of Cobetia sp. IU180733JP01 (5-11-6-3) and Cobetia
sp. IU190790JP01 (5-25-4-2).

Characteristic 5-11-6-3 5-25-4-2

Cell shape Straight rods Straight rods

Motile - -

Gram stain - -

Temperature range (◦C) 4-42 4-42

NaCl range (%) 0.5-20 0.5-20

Oxidase - -

Growth on:

L-Arabinose - -

D-Glucose + +

Glycerol + +

myo-Inositol + +

Lactose - -

D-Mannitol + +

D-Mannose + +

D-Sorbitol - -

Sucrose + +

GC content (mol%) 62.4 62.5

Morphological characteristics and features of the isolates were monitored on SW-5
agar plates (Arahal et al., 2002). Physiological characteristics were also determined
according to Arahal et al. (2002). GC content was calculated based on the genome
sequence of each strain.

CP047970); this was followed by a 99% identity to a partial
sequence of the 16S rRNA gene of Cobetia sp. strain KMM
6284 (1429/1433) (accession no. MK587632). The third-closest
identity was shown by the 16S rRNA gene of Cobetia marina
strain JCM 21022 with 99% identity (1429/1433) (accession
no. NZ_CP017114).

With respect to the biochemical examination of the 5-
11-6-3 and 5-25-4-2 strains, the isolates were grown in
D-glucose, glycerol, myo-inositol, D-mannitol, D-mannose, and
sucrose but not L-arabinose, lactose, or D-sorbitol. In addition,
the isolates were straight rod-shaped (2.0–20.0 × 0.8–1.2
µm), Gram-negative, oxidase-negative, and not motile. The
isolates grew in the temperature range from 4 to 42◦C
and in the NaCl range from 0.5 to 20%. These properties
were almost the same as those of Cobetia marina and
Cobetia pacifica, but C. marina and C. pacifica can utilize
L-arabinose but not D-mannose for growth (Romanenko
et al., 2013). Thus, the 5-11-6-3 and 5-25-4-2 strains were
identified as strains of Cobetia sp. according to all of the
identification results. The isolates were deposited in the National
Institute of Technology and Evaluation (NITE). The code
names were Cobetia sp. IU180733JP01 (5-11-6-3) (NITE P-
02758) and Cobetia sp. IU190790JP01 (5-25-4-2) (NITE P-
03085), respectively.

In a phylogenetic tree of isolated strains with alginate-
degrading bacteria (alginate lyase-producing bacteria) (Wong
et al., 2000; Yamaguchi et al., 2019), the isolated strains closely
related to C. marina and belonged to a cluster of marine
bacteria (Figure 2). However, there are no reports that these
bacteria except Hydrogenophaga sp. UMI-18 exhibited PHA
production from alginate.

Genome Analysis of the Isolated Strains
and Prediction of the
Alginate-Assimilating and P(3HB)
Biosynthesis Pathways
The assembled genome of the 5-11-6-3 strain and 5-25-4-2
strain consisted of 40 scaffolds with from 281 to 925,956 bp
(accession nos. BLWJ01000001–BLWJ01000040) and 41 scaffolds
with from 261 to 1,114,877 bp (accession nos. BLWK01000001–
BLWK01000041), respectively. According to the results of
assembly between the genome sequences of the 5-11-6-3 strain
and the 5-25-4-2 strain, the two genomes were closely related, but
the 5-11-6-3 strain and 5-25-4-2 strain were different strains.

The putative genes encoding the proteins or enzymes related
to alginate assimilation, such as alginate lyase (Yagi et al., 2016),
oligoalginate transporters (ToaABC) (Kawai and Murata, 2016),
outer-membrane porins (KdgMN) of oligo alginate (Kawai and
Murata, 2016), oligoalginate lyase (Yagi et al., 2016), SDR family
oxidoreductase (DEH reductase) (Inoue et al., 2015), and Kdgf
which converts unsaturated mannuronate and gluronate into
4-deoxy-L-erythro-5-hexoseulose uronate (DEH) (Hobbs et al.,
2016), were located in one cluster found in scaffold 8 (301,144 bp)
of the 5-11-6-3 strain and in scaffold 6 (306,581 bp) of the 5-
25-4-2 strain (Tables 2, 3 and Figure 3). These enzymes would
constitute the metabolic pathway to convert alginate to DEH
in the 5-11-6-3 and 5-25-4-2 strains (Figure 4). Furthermore,
the putative gene encoding 2-keto-3-deoxy-6-phosphogluconate
(KDPG) aldolase, which catalyzes the cleavage of KDPG to
glyceraldehyde-3-phosphate and pyruvate (Nishiyama et al.,
2017), was found in scaffold 1 (925,956 bp) of the 5-11-6-3 strain
and in scaffold 1 (1,114,691 bp) of the 5-25-4-2 strain. However,
the putative gene encoding 2-keto-3-deoxy-D-gluconate (KDG)
kinase, which converts KDG to KDPG, was not found in the draft
genome sequences of either strain.

The putative genes encoding the enzymes related to P(3HB)
synthesis were also found in the genome of the 5-11-6-3 and
5-25-4-2 strains, but they were not located in the same cluster.
Three putative genes encoding β-ketothiolase (PhaA), which
catalyzes the condensation of two molecules of acetyl-CoA to
form acetoacetyl-CoA (Sudesh et al., 2000), were found in scaffold
1 (925,956 bp), 2 (480,608 bp), and 5 (355,745 bp) of the 5-11-6-3
strain (Tables 2, 3 and Figure 4). In the genome sequence of the
5-25-4-2 strain, there are also three putative genes encoding PhaA
in scaffolds 1 (1,114,691 bp), 3 (485,930 bp), and 4 (343,977 bp).
The putative genes encoding other enzymes required for P(3HB)
synthesis, such as NADPH-dependent acetoacetyl CoA reductase
(PhaB) and Class I PHA synthase (PhaC) (Sudesh et al., 2000),
were present in scaffolds 13 (53,722 bp) and 1 (925,956 bp)
of the 5-11-6-3 strain, respectively. In the 5-25-4-2 strain, the
putative genes encoding PhaB and PhaC were found in scaffolds
12 (52,686 bp) and 1 (1,114,691 bp), respectively. We compared
the putative amino acid sequences of PhaC from the 5-11-6-3 and
5-25-4-2 strains with sequences of PhaC from Ralstonia eutropha
and Chromobacterium sp. USM2, whose crystal structures were
successfully determined (Wittenborn et al., 2016; Chek et al.,
2017, 2019, 2020; Kim et al., 2017; Figure 5). The amino acid
sequences were relatively conserved around the α/β hydrolase
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FIGURE 2 | Phylogenetic tree of isolated strains with alginate-degrading bacteria (alginate lyase-producing bacteria). The trees were constructed by the
neighbor-joining method with MEGA-X software. The GenBank accession no. was described after each microorganism name. The numbers at the branch nodes
represent the levels of bootstrap support based on the analyses of 500 replicates. Bar 0.05 substitutions per site.

domain. The conserved catalytic triad residues and lipase-like
box residues were also found in the putative PhaC from the
5-11-6-3 and 5-25-4-2 strains.

All putative genes related to alginate assimilation and P(3HB)
synthesis listed in Tables 2, 3 with the exception of phaC showed
over 99% identity between the 5-11-6-3 strain and 5-25-4-2
strain, while only the putative gene encoding PhaC did not
show high identity between the 5-11-6-3 strain and 5-25-4-2
strain (Supplementary Figure S1). The presence of an alginate-
assimilating gene cluster and P(3HB)-synthesis genes in the
genome of the 5-11-6-3 and 5-25-4-2 strains supported that

the 5-11-6-3 and 5-25-4-2 strains have the ability to synthesize
P(3HB) from alginate as a sole carbon source.

Effects of Alginate Concentration, pH,
and NaCl Concentration on P(3HB)
Biosynthesis
The effects of alginate concentrations between 0.5 and 3% in the
MM medium with 2% NaCl were investigated at 30◦C and pH 5.0
using the 5-11-6-3 strain or the 5-25-4-2 strain. We determined
the cultivation temperature (30◦C) according to the previous
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TABLE 2 | Putative genes encoding the proteins or enzymes related to alginate assimilation and P(3HB) synthesis in the draft genome of Cobetia sp. IU180733JP01
(5-11-6-3) (accession nos. BLWJ01000001–BLWJ01000040).

Scaffold Gene
length (bp)

Description Accession no. Locus tag number

8 1,059 Polysaccharide lyase family 7 protein (alginate lyase) BLWJ01000008 Cobetia51163_080091

8 801 DNA-binding transcriptional regulator KdgR BLWJ01000008 Cobetia51163_080092

8 345 KdgF BLWJ01000008 Cobetia51163_080093

8 774 SDR family oxidoreductase BLWJ01000008 Cobetia51163_080094

8 2,160 Oligoalginate lyase BLWJ01000008 Cobetia51163_080095

8 2,142 Oligoalginate lyase BLWJ01000008 Cobetia51163_080096

8 1,788 Transporter ToaABC-1 BLWJ01000008 Cobetia51163_080097

8 693 Outer-membrane porins (kdgMN) BLWJ01000008 Cobetia51163_080098

8 1,716 Transporter ToaABC-2 BLWJ01000008 Cobetia51163_080099

1 663 2-Dehydro-3-deoxy-phosphogluconate aldolase BLWJ01000001 Cobetia51163_010600

1 1,179 Acetyl-CoA C-acyltransferase (PhaA) BLWJ01000001 Cobetia51163_010751

2 1,221 Acetyl-CoA C-acyltransferase (PhaA) BLWJ01000002 Cobetia51163_020365

5 1,182 Acetyl-CoA acetyltransferase (PhaA) BLWJ01000005 Cobetia51163_050288

13 747 Acetoacetyl-CoA reductase (PhaB) BLWJ01000013 Cobetia51163_130024

1 2,829 Class I poly(R)-hydroxyalkanoic acid synthase (PhaC) BLWJ01000001 Cobetia51163_010347

Nucleotide sequences of the genes are available in DDBJ/EMBL/GenBank with the accession numbers and their locus tag numbers.

TABLE 3 | Putative genes encoding the proteins or enzymes related to alginate assimilating and P(3HB) synthesis in the draft genome of Cobetia sp. IU 190790JP01
(5-25-4-2) (accession nos. BLWK01000001–BLWK01000041).

Scaffold Gene
length (bp)

Description Accession no. Locus tag number

6 1,716 Transporter ToaABC-2 BLWK01000006 Cobetia52542_060124

6 693 Outer-membrane porins (KdgMN) BLWK01000006 Cobetia52542_060125

6 1,788 Transporter ToaABC-1 BLWK01000006 Cobetia52542_060126

6 2,142 Oligoalginate lyase BLWK01000006 Cobetia52542_060127

6 2,160 Oligoalginate lyase BLWK01000006 Cobetia52542_060128

6 774 SDR family oxidoreductase BLWK01000006 Cobetia52542_060129

6 345 Alginate and pectin degradation protein (Kdgf) BLWK01000006 Cobetia52542_060130

6 801 DNA-binding transcriptional regulator (KdgR) BLWK01000006 Cobetia52542_060131

6 1,059 Polysaccharide lyase family 7 protein BLWK01000006 Cobetia52542_060132

1 663 2-Dehydro-3-deoxy-phosphogluconate aldolase BLWK01000001 Cobetia52542_010170

1 1,179 Acetyl-CoA C-acyltransferase (PhaA) BLWK01000001 Cobetia52542_010019

3 1,221 Acetyl-CoA C-acyltransferase (PhaA) BLWK01000003 Cobetia52542_030022

4 1,182 Acetyl-CoA C-acyltransferase (PhaA) BLWK01000004 Cobetia52542_040024

12 747 Acetoacetyl-CoA reductase (PhaB) BLWK01000012 Cobetia52542_120023

1 3,018 Class I poly(R)-hydroxyalkanoic acid synthase (PhaC) BLWK01000001 Cobetia52542_010422

Nucleotide sequences of the genes are available in DDBJ/EMBL/GenBank with the accession numbers and their locus tag numbers.

reports which evaluated PHA productivity using other PHA-
producing microorganisms such as R. eutropha, Pseudomonas
putida, recombinant Escherichia coli, and Hydrogenophaga sp.
UMI-18 (Fidler and Dennis, 1992; Kichise et al., 1999; Wang and
Nomura, 2010; Yamaguchi et al., 2019). The 3% (w/v) alginate
concentration was suitable for well growth and high P(3HB)
content and P(3HB) production of both strains (Figures 6A,B).
However, when the alginate concentration was increased to
more than 3% in the medium, it became difficult to prepare
the medium due to the high viscosity. Next, the effect of
NaCl concentration on P(3HB) production was evaluated in the
MM medium containing 3% (w/v) alginate at 30◦C and pH
5.0. In the NaCl concentration range from 3 to 6%, the cell

growth, P(3HB) content, and P(3HB) production of the 5-11-6-3
strain increased along with the NaCl concentration (Figure 6C).
However, alginate was deposited when the NaCl concentration
was more than 6% in the medium, and we were not able to
examine the culture conditions using the medium containing
more than 6% NaCl. The 5-25-4-2 strain exhibited good growth
in the medium containing 6% NaCl, but maximum P(3HB)
content and P(3HB) production were confirmed in the medium
containing 5% NaCl (Figure 6D). Subsequently, we investigated
the effect of pH on PHA production. The 5-11-6-3 strain and the
5-25-4-2 strain were not able to grow at pH 2. In addition, 3%
(w/v) alginate was deposited in the medium at higher than pH
7. Thus, we examined the optimum pH in the range from 3 to
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FIGURE 3 | Schematic representation of the putative gene cluster encoding enzymes relevant to alginate assimilation in Cobetia sp. IU180733JP01 (5-11-6-3) and
Cobetia sp. IU190790JP01 (5-25-4-2). The gene cluster was 13.5 kbp. Oligoalginate transporter and outer membrane porins genes: gray; alginate lyase genes,
black; DEH reductase gene, vertical stripe; Kdg F, horizontal stripe; transcription regulator, white.

6. When the 5-11-6-3 strain was cultured in the MM medium
containing 3% (w/v) alginate and 6% NaCl at 30◦C, there was no
significant effect on the cell growth, P(3HB) content, or P(3HB)
production in the pH range from 4 to 6 (Figure 6E). The P(3HB)
production at pH 5.0 was slightly higher than that at other
pH ranges. When the 5-25-4-2 strain was cultured in the MM
medium containing 3% (w/v) alginate and 5% NaCl at 30◦C,
the cell growth, P(3HB) content, and P(3HB) production were
highest at pH 4.0 (Figure 6F). We therefore further investigated
the time course of growth and P(3HB) production of isolated
strains using the MM medium containing 3% (w/v) alginate and
6% NaCl at pH 5.0 (for the 5-11-6-3 strain), or 3% (w/v) alginate
and 5% NaCl at pH 4.0 (for the 5-25-4-2 strain).

Growth Profile and P(3HB) Accumulation
Under Optimized Culture Conditions
The growth profile and P(3HB) accumulation of the 5-11-
6-3 strain and 5-25-4-2 strain were investigated in the MM
medium containing the optimum alginate concentration, NaCl
concentration, and pH at 30◦C. The growth profile of the 5-11-
6-3 strain showed that the cells grew rapidly until 48 h, and the
cell biomass increased gradually from 48 to 72 h (Figure 7A).
During the period of exponential growth, the P(3HB) content
and production also increased significantly, but the P(3HB)
accumulation was almost saturated after 48 h of cultivation.
After 48 h of cultivation, the maximum P(3HB) content and
P(3HB) production were 62.1 ± 3.4 wt% and 3.11 ± 0.16 g/L,
respectively. The cell biomass, P(3HB) content, and P(3HB)
production of the 5-25-4-2 strain also grew rapidly until 48 h, but
the cell biomass, P(3HB), and P(3HB) production decreased after
48 h (Figure 7B). The maximum P(3HB) content and P(3HB)
production were 56.9± 2.1 wt% and 2.67± 0.11 g/L, respectively,
at 48 h of cultivation.

The molecular weights of P(3HB) obtained from the 5-11-
6-3 strain under optimum culture conditions were determined
to be Mn = 20.5 × 104 and Mw = 108 × 104, respectively,
using analytical GPC (Table 4). The molecular weights of

P(3HB) obtained from the 5-25-4-2 strain under optimum
culture conditions were determined to be Mn = 24.7 × 104

and Mw = 117 × 104, respectively (Supplementary Figure S2).
According to the DSC analysis, glass-transition temperature (Tg)
and melting temperature (Tm) values for the P(3HB) obtained
from the 5-11-6-3 strain were determined as 5 and 177.4◦C,
respectively (Table 4). The Tg and Tm values for P(3HB) obtained
from the 5-25-4-2 were 5.1 and 176.0◦C, respectively.

Although the maximum P(3HB) production and polymer
properties showed no significant differences between the 5-11-6-
3 strain and the 5-25-4-2 strain, the 5-11-6-3 strain continued to
exhibit high P(3HB) accumulation after 48 h of cultivation. Thus,
we selected the 5-11-6-3 strain for further experiments.

Biosynthesis of P(3HB) From Waste
Laminaria sp. Using Cobetia sp.
IU180733JP01 (5-11-6-3)
The utilization of low-purity substrates for P(3HB) production
is advantageous for industrial application. We tried to use waste
Laminaria sp. obtained from a seaweed farm in Yamada Bay
(Iwate Prefecture, Japan) for P(3HB) production. The growth
profile and P(3HB) accumulation of the 5-11-6-3 strain were
evaluated in the MM medium containing 6% NaCl and 5%(w/v)
freeze-dried and crushed Laminaria sp. at pH 5.0 for 4 days
(Figure 8). After 24 h of cultivation, the cell growth was
saturated and P(3HB) accumulation was confirmed [the P(3HB)
content and P(3HB) productivity were 13.5 ± 0.13 wt% and
3.99 ± 0.15 mg/L/h, respectively]. The P(3HB) content and
P(3HB) productivity decreased gradually after 24 h. In addition,
after 4 days of cultivation, weight of seaweeds was decreased to
approximately 45 wt% of the adding amount before cultivation.

DISCUSSION

In order to utilize untapped bioresources for PHA production,
we searched for microorganisms that produce PHA from
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FIGURE 4 | Predicted biosynthetic pathway of P(3HB) from alginate in Cobetia sp. IU180733JP01 (5-11-6-3) and Cobetia sp. IU190790JP01 (5-25-4-2). PhaA,
β-ketothiolase; PhaB, acetoacetyl-coenzyme A reductase; PhaC, PHA synthase.

alginate, which is an abundant component of seaweed, as
a sole carbon source in the culture medium. By screening
environmental microorganisms using Nile red staining, we
succeeded in isolating two strains, Cobetia sp. IU180733JP01
(5-11-6-3) and Cobetia sp. IU190790JP01 (5-25-4-2). In our
previous study, we also searched a marine environment for
a microorganism that can use either alginate or mannitol
for PHA production. However, we found only Burkholderia
sp. AIU M5M02, which is capable of producing P(3HB) in
the culture medium containing mannitol as a sole carbon
source (Yamada et al., 2018). There were two differences in
the screening process between the previous study and our

present one. The first difference was the source of the isolated
microorganisms. Although in our previous screening we isolated
microorganisms from shallow sea mud samples taken from
Ofunato Bay, in this study we used beached seaweeds obtained
from Ofunato Bay as a source of microorganisms. Another
difference concerned the components of the culture medium
used for microorganism isolation. In our previous screening,
the samples were inoculated directly into the MM medium
containing alginate or mannitol as the sole carbon source
in order to enrich target microorganisms. In this study, we
used Zobell Marine Broth 2216E medium, which is suitable
for culturing marine bacteria, for isolation. Thus, our finding
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FIGURE 5 | Multiple alignments of putative Class I PHA synthase (PhaC) from Cobetia sp. IU180733JP01 (5-11-6-3) and Cobetia sp. IU190790JP01 (5-25-4-2) with
PhaC from Ralstonia eutropha (accession no. WP_078196023) and Chromobacterium sp. USM2 (accession no. ADL70203). Asterisks, identical residues; white box,
α/β hydrolase domain of PhaC from R. eutropha and Chromobacterium sp. USM2; black box, catalytic triad residues; gray box, lipase-like box residues. The multiple
alignments were performed with Constraint-based Multiple Alignment Tool (COBALT) (Papadopoulos and Agarwala, 2007) at NCBI.
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FIGURE 6 | Effects of alginate concentration, NaCl concentration, and pH on growth and P(3HB) production in Cobetia sp. IU180733JP01 (5-11-6-3) and Cobetia
sp. IU190790JP01 (5-25-4-2). (A) Effect of alginate concentration on growth, P(3HB) production, and P(3HB) content of Cobetia sp. IU180733JP01 (5-11-6-3) in
the MM medium containing 2% NaCl at 30◦C, pH 5.0 for 3 days. (B) Effect of alginate concentration on growth, P(3HB) production, and P(3HB) content of Cobetia
sp. IU190790JP01 (5-25-4-2) in the MM medium containing 2% NaCl at 30◦C, pH 5.0, for 2 days. (C) Effects of NaCl concentration on growth, P(3HB) production,
and P(3HB) content of Cobetia sp. IU180733JP01 (5-11-6-3) in the MM medium containing 3% (w/v) alginate at 30◦C, pH 5.0 for 3 days. (D) Effect of NaCl
concentration on growth, P(3HB) production, and P(3HB) content of Cobetia sp. IU190790JP01 (5-25-4-2) in the MM medium containing 3% (w/v) alginate at 30◦C,
pH 5.0, for 2 days. (E) Effects of pH on growth, P(3HB) production, and P(3HB) content of Cobetia sp. IU180733JP01 (5-11-6-3) in the MM medium containing 3%
(w/v) alginate and 6% NaCl at 30◦C for 3 days. (F) Effect of pH on growth, P(3HB) production, and P(3HB) content of Cobetia sp. IU190790JP01 (5-25-4-2) in the
MM medium containing 3% (w/v) alginate and 5% NaCl at 30◦C for 2 days. Closed bars, dry cell weight; gray bars, P(3HB) production; open bars, P(3HB) content.
Dry cell weight was measured after freeze-drying. The P(3HB) content of freeze-dried cells was determined by the weight of the produced P(3HB). The data
represent means ± S.D (n = 3).
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FIGURE 7 | Time profiles of growth and P(3HB) synthesis by Cobetia sp.
IU180733JP01 (5-11-6-3) and Cobetia sp. IU190790JP01 (5-25-4-2).
(A) Cobetia sp. IU180733JP01 (5-11-6-3) was cultured in the MM medium
containing 3% (w/v) alginate and 6% NaCl at pH 5.0 and 30◦C. (B) Cobetia
sp. IU190790JP01 (5-25-4-2) was cultured in the MM medium containing 3%
(w/v) alginate and 5% NaCl at pH 4.0 and 30◦C. Filled circles, dried cell
weight; opened triangles, P(3HB) content; closed squares, P(3HB) production.
The data represent means ± S.D (n = 3). Dry cell weight was measured after
freeze-drying. The P(3HB) content of freeze-dried cells was determined by the
weight of the produced P(3HB).

of new microorganisms having the ability to biosynthesize
P(3HB) from alginate would be due to these differences in the
screening process.

To our knowledge, there has been no report about
microorganisms that can produce PHA from alginate as a
sole carbon source, except for Hydrogenophaga sp. UMI-
18 (Yamaguchi et al., 2019). We therefore predicted the

TABLE 4 | Thermal properties and molecular weights of P(3HB) produced by
Cobetia sp. IU180733JP01 (5-11-6-3) and Cobetia sp. IU190790JP01
(5-25-4-2) from alginate.

Polymer Tg

(◦C)
Tm

(◦C)
Mw

(× 104)
Mn

(× 104)
Mw/Mn References

5-11-6-3 5.0 177.4 108 20.5 5.2 This study

5-25-4-2 5.1 176.0 117 24.7 4.7 This study

Commercial P(3HB) 3.5 175.4 97 33 2.9 (Tanadchangsaeng
and Yu, 2012)

Cobetia sp. IU180733JP01 (5-11-6-3) was cultured in the MM medium containing
3% (w/v) alginate, 6% NaCl at pH 5.0, and 30◦C for 48 h. Cobetia sp.
IU190790JP01 (5-25-4-2) was cultured in the MM medium containing 3% (w/v)
alginate, 5% NaCl, at pH 4.0, and 30◦C for 48 h.

FIGURE 8 | Time profiles of growth and P(3HB) synthesis by Cobetia sp.
IU180733JP01 (5-11-6-3) from waste Laminaria species. Cobetia sp.
IU180733JP01 (5-11-6-3) was cultured in the MM medium containing 6%
NaCl and 5% (w/v) Laminaria sp. at pH 5.0 and 30◦C. After Laminaria sp. was
lyophilized and crushed into small chips, the small chips Laminaria sp. were
added to the MM medium. Filled circles, dried cell weight; opened triangles,
P(3HB) content; closed squares, P(3HB) productivity. The data represent
means ± S.D (n = 3). Dry cell weight was measured after freeze-drying. The
P(3HB) content of freeze-dried cells was determined by the weight of the
produced P(3HB).

metabolic pathways relevant to alginate assimilation and P(3HB)
biosynthesis in the isolated strains by genome analysis. In the
predicted pathways, alginate is converted to pyruvate, a precursor
of acetyl-CoA via glycolysis, and P(3HB) is synthesized from
acetyl-CoA by three enzyme reactions (Figure 4). This predicted
P(3HB) synthesis pathway from alginate in the isolated strains
was similar to the predicted pathway in Hydrogenophaga sp.
strain UMI-18. However, unlike in Hydrogenophaga sp. strain
UMI-18, the putative gene encoding KDPG aldolase was not
located in an alginate-assimilating gene cluster, and the putative
genes encoding enzymes which catalyze conversion reactions
from acetyl-CoA to P(3HB) did not form one gene cluster.

We investigated the optimum culture conditions, such as the
alginate concentration, NaCl concentration, pH of the culture
medium, and culture time, for high P(3HB) accumulation in the
isolated strains. The ability to accumulate P(3HB) was almost
identical between the 5-11-6-3 strain and the 5-25-4-2 strain,
while the 5-25-4-2 strain showed a decrease in P(3HB) content
and P(3HB) production after 48 h of cultivation (Figure 7). This
rapid degradation of P(3HB) in the 5-25-4 strain may be due to
differences derived from P(3HB) depolymerase (PhaZ) between
the 5-11-6-3 strain and the 5-25-4-2 strain. However, the putative
genes encoding PhaZ were not found in our homology search.
Thus, it would be expected that other enzymes played a role of
PhaZ in the 5-11-6-3 strain and the 5-25-4-2. Differences of those
enzymes may lead the rapid degradation of P(3HB) in the 5-
25-4 strain. When Hydrogenophaga sp. UMI-18 was cultured in
mineral salt medium containing alginate, the maximum P(3HB)
content was 58 ± 4 wt% (Yamaguchi et al., 2019). This value
was lower than the maximum P(3HB) content of the 5-11-6-
3 strain (62.1 ± 3.4 wt%) and was similar to the maximum
P(3HB) content of the 5-25-4-2 strain (56.9 ± 2.1 wt%). Precise

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 August 2020 | Volume 8 | Article 974

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00974 August 21, 2020 Time: 15:57 # 13

Moriya et al. Bioplastic Production From Marine Biomass

comparison of the P(3HB) accumulation abilities between the
isolated strains and Hydrogenophaga sp. UMI-18 was difficult
because of the experimental differences, such as the culture
scale and culture manipulation, but the abilities of our isolated
strains to accumulate P(3HB) were suggested to be similar to or
higher than that of Hydrogenophaga sp. UMI-18. Moreover, the
molecular weights and thermal properties of P(3HB) produced
by the isolated strains were comparable to those of commercial
P(3HB) (Table 4), which is advantageous for practical PHA
production. The broad polydispersity for P(3HB)s produced by
the 5-11-6-3 strain and 5-25-4-2 strain would be due to a nature
of their PhaCs, the amount of PhaC, and the simultaneous
degradation of P(3HB) during biosynthesis in the cell. It is
known that these factors affect the molecular weight and the
polydispersity of PHA in the cell (Tsuge, 2016).

When waste Laminaria sp. was added to the medium, the
P(3HB) content and production of the 5-11-6-3 strain were lower
than those when 3% (w/v) alginate was added (Figures 7, 8).
Moreover, the P(3HB) content rapidly decreased after the cells
reached to the stationary phase in the cultivation using waste
Laminaria sp. We presumed that there would be two reasons:
one is shortage of carbon source because the concentration
of alginate in medium containing waste Laminaria sp. was
approximately 0.3% (w/v). Another possibility is that the C/N
ratio in the medium containing waste Laminaria sp. would not
be appropriate to PHA production. It is well known that the
C/N ratio of the medium also affects PHA productivity (Faccin
et al., 2009; Yang et al., 2010). Considering the rapid decrease
in P(3HB) content in the stationary phase, the former would
be a main cause in this experimental culture conditions. In
order to understand in detail, we should clarify which kinds of
carbon sources of waste Laminaria sp. would be easily utilized
for growth and P(3HB) production by the 5-11-6-3 strain in
our future work.

Some researches have focused on waste or inedible seaweeds
such as red algae Gelidium amansii (Alkotaini et al., 2016;
Sawant et al., 2018), green macroalgae Ulva sp. (Ghosh et al.,
2019), and brown algae Sargassum sp. (Azizi et al., 2017)
as a raw material of PHA production. In most of these
studies, the seaweed was subjected to chemical hydrolysis
and/or enzymatic saccharification before cultivation. If a
process could be established that includes hydrolysis and
fermentation in a single step, this would be a promising
approach for producing PHA from marine biomass. Recently,
Sawant et al. succeeded in producing Saccharophagus degradans
2–40 P(3HB) from red algae without pretreatment (Sawant
et al., 2018). In the cultivation of S. degradans 2–40 using
the medium including untreated red algae, the P(3HB) content
was from 12 to 16 wt%, which was a similar value to
the P(3HB) content of our isolated strain using the MM
medium including Laminaria sp. without chemical hydrolysis
and enzymatic saccharification. Furthermore, S. degradans 2–
40 required at least 65 h of cultivation to reach 12 wt% of
P(3HB) content. Our isolated strain accumulated an amount
of P(3HB) almost equal to that accumulated by S. degradans
2–40 (13.5 ± 0.13 wt%) by culture of only 24 h. Thus, our
isolated strain is an appropriate candidate for application to

P(3HB) production from not only pure alginate extracted from
seaweeds but also brown algae. In order to enhance P(3HB)
productivity using the isolated strain and brown algae, it
will be important to fine tune the culture conditions in our
future experiments.
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