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ABSTRACT

In this research, horizon line detection and tracking using the evolutionary method
in images are addressed. Due to the rapid development of computer vision and the
increase in camera resolution, information from cameras is used to solve various
problems, such as object detection, recognition, and tracking. Videos captured by
optical systems are valuable for autonomous vehicles to perceive surrounding infor-
mation for obstacle detection, remote control, and estimation of spatial orientation.
Video processing in maritime and land scenarios is quite challenging because of
random camera shaking and the processing time of high-resolution images.

A horizon line on maritime images is used to address the above challenges. For
example, it is used for the following purposes: estimation of the spatial orientation
of a camera/ship and image registration, which aligns consecutive frames into a
one-coordinate system for object detection and object tracking. On the other hand,
the performance of state-of-the-art horizon line detection methods is still limited in
terms of both speed and accuracy. The focus of this thesis is to produce a fast and
accurate method of horizon line detection. Especially, a horizon line in maritime
images is mainly focused in this study, and horizon line detection and tracking are

addressed. Also, as applications of proposed techniques, horizon detection in road



scenarios using genetic algorithms are proposed.

In order to achieve this goal, we searched for and analyzed state-of-art methods
in horizon line detection. Then, we proposed our novel method, which efficiently
integrates the advantages of existing methods. We formulated the horizon detec-
tion problem as a global optimization problem, and optimization is done by genetic
algorithm (GA). The GA provides fast optimization utilizing fewer combinations
of parameters compared to exhaustive search. We also introduced a fast estima-
tion of global and local feature estimations for fast evaluation of fitness function.
In addition, we adopted a coarse-to-fine approach to meet real-time processing re-
quirements. We verified the performance of the proposed method using the Singa-
pore Maritime Dataset (SMD) and Buoy-Dataset (BD), which are publicly avail-
able. The experimental results indicated that the proposed method could detect the
horizon line more accurately than the compared methods. In particular, the median
positional error and median orientation error of the proposed method were relatively
smaller than those of all the compared methods in all datasets. The processing speed
of our method was approximately 20fps for high-resolution images.

Additionally, we applied the proposed method for two applications. Those are
detection of the horizon line in road images and detection of borderline detection for
mowing machines. The experimental results show that the evolutionary approach

can be used for other prominent line detection problems.



Contents

Introduction

1.1 General Introduction & s w: e s s w0 w0 @ % w6 sow %0 w % w @ e @ % 6
12 Goals . .......x;cwes ey wie s e s 8 s 6N
1.3 Challenges and Contributions . . . . . . . . .. ... ... .....

1.4 Thesis Structure . . . . . . . . . . e e e e e e e

Background

2.1 Evolutionary Algorithms . . . . . . . ... ... ... .......
2.1.1 Historicial Context and Advantages of Genetic Algorithm
2.1.2 Methodology of GA . . . . ... ... ... ... ...
2.1.3 Applicationsof GA . . . . . ... ... ...

2.2 HorizonLine . . .. . . . . . . . . .

Fast horizon detection in maritime images using genetic algorithm

3.1 IntroduCtion . e s = 5 s o o o o mosw w8 5 e wow e 6w s RS ¥ e
32 Related WOrK iurvos v isovn o o v % wio o 5 b o s 5 50 6 5 o s s
33 Proposed Method . . . ... ... ... ... ... ... ...

33,1 Overview . . . . ... e e

10

11

13

16



3.3.2 Optimization by Genetic Algorithm . . . . .. ... .. .. 26

333 GlobalFeature . .. ... .......... ... .... 31
334 LocalFeatures . ... ... ................. 33
34 ExperimentalResults . . . ... ... ... ... .......... 36
3.4.1 Dataset and Evaluation Criteria . . . . . ... .. ... .. 36
3.42 Parameter Setting . . . . . . ... ... 38
3.4.3 Effectiveness of EVP and Parameter Analysis . . . . . . . . 39
3.4.4 Comparison Results and Consideration . . .. ... .. .. 41
35 Conclusion . . .. ... ... 47
4 Possibility of practical application 54
4.1 Horizon line detection in road images using genetic algorithm . . . 55
4.1.1 Introduction. . ... ... ... ... .. ... ...... 55
4.1.2 Methodology . . . .. .. ... ... . 57
4.1.3 ExperimentalResult . ... ... .............. 62
414 Conclusion . . . ... .. ... ... 64

4.2 Local texture based borderline detection of mowing using genetic
algorithm . . . .. ... ... ... 65
42.1 Introduction. . . . ... ... ... ... ... ... . 66
422 RelatedWork . . .. ... ... ... . ... ... 67
423 Methodology . . ... ... ... .. ... ... ... ... 68
424 Experimentalresult . . . . ... ............... 73
425 Conclusion . .. .. ... ... oo 74
5 Conclusion 76

il



A Details of the SMD and Comparison Result

B Dataset Captured by Fisheye Camera

1ii

77

84



Chapter 1

Introduction

1.1 General Introduction

In this research, horizon line detection and tracking using the evolutionary method
in images are addressed. Due to the rapid development of computer vision and the
increase in camera resolution, information from cameras is used to solve various
problems, such as object detection, recognition, and tracking. Videos captured by
optical systems are valuable for autonomous vehicles to perceive surrounding in-
formation for obstacle detection, remote control, and estimation of spatial orienta-
tion. Video processing in maritime and land scenarios is quite challenging because
of random camera shaking and the processing time of high-resolution images. To
solve the these challenges, a horizon line is used for the following purposes: esti-
mation of the spatial orientation of a camera/vehicle and image registration, which
aligns consecutive frames into a one-coordinate system for object detection and ob-
ject tracking. On the other hand, the performance of state-of-the-art horizon line

detection methods is still limited in terms of both speed and accuracy. The focus



of this thesis is to produce the fast and accurate method of horizon line detection.
Especially, a horizon line in maritime images is mainly focused in this study, and
horizon line detection and tracking are addressed. Also, as applications of pro-
posed techniques, horizon detection in road scenarios using genetic algorithms are
proposed.

In order to achieve this goal, we searched for and analyzed state-of-art methods
in horizon line detection. Then, we proposed our novel method, which efficiently
integrates the advantages of existing methods. We formulated the horizon detection
problem as a global optimization problem, and optimization is done by genetic al-
gorithm (GA). The GA provides fast optimization utilizing fewer combinations of
parameters compared to exhaustive search. Simple GA requires the generation of
an initial population for each frame of a sequence, and it is time-consuming. There-
fore, we used evolutionary video processing (EVP). The EVP generates the initial
population once at the initial frame of a sequence and inherits a population of the
last generation into an initial generation of the next frame. As a result, the EVP
improved optimization accuracy and reduced processing time. In an EVP, a fitness
function is used to guide the simulation toward an optimal solution, and it evaluates
the goodness of each individual. Therefore, designing the fitness function is very
important for quick convergence on an appropriate solution, and it has a significant
impact on computational time. The fitness function should precisely evaluate how
to fit a given solution and should be fast to compute. Therefore, we also introduced
a fast estimation of global and local feature estimations for the fast evaluation of fit-
ness function. In addition, we adopted a coarse-to-fine approach to meet real-time

processing requirements.



The local feature-based extract the horizon candidates using the edge informa-
tion and use consecutive filtering to find the final solution. A limitation of these
methods is that if the candidates cannot be extracted from edge information in
the previous stage, they are not considered in the next stage, even though these
candidates are survival candidates in the filtering of the next stages. Unlike these
methods, our method is a metaheuristic optimization method, and local and global
features are concurrently utilized to evaluate each candidate. The proposed method
does not extract edge information from multi-scale images, and even for blurred
input images, it can detect the horizon line.

On the other hand, the existing global feature-based methods used a global fea-
ture as an optimization criterion to optimize the horizon line parameters. These
methods are not dependent on edge information, and they can detect the horizon
line on blurred and noisy images. But these methods require computational cost
because they calculate the global feature for all candidates, and they use exhaus-
tive search to optimize the parameters. Thus, we created a probability map of the
horizon line in the pre-processing stage and used it as a global feature factor in the
fitness function of the coarse optimization. In coarse optimization, local and global
features are concurrently utilized to evaluate each candidate. In the fine-tuning step,
the global feature factor effects were weaker than those of the local feature factor for
the optimization because the position of the horizon line was roughly determined in
the coarse optimization. Therefore, we assumed only the local feature factor in the
fine optimization for fast evaluation of fitness function.

We verified the performance of the proposed method using the Singapore Mar-

itime Dataset (SMD) and Buoy-Dataset (BD), which are publicly available. The



SMD consists of onboard and onshore videos. The onboard videos were captured
by a camera mounted on a moving board, and the onshore videos were captured by
a static camera installed onshore. The videos contain complex maritime scenes that
have strong noise caused by wakes and waves and color changes in the sea. The
resolution of the SMD videos was 1920x1080 pixels. The BD consists of videos
captured by a camera mounted on a floating buoy with a resolution of 800x600 pix-
els. A challenge for the onboard videos of SMD and BD is the large variation in the
orientation and position of the horizon line between adjacent frames. In addition,
we compared the performance of the proposed method with that state-of-the-art
method, which used the same datasets. The experimental results indicated that the
proposed method could detect the horizon line more accurately than the compared
methods. In particular, the median positional error and median orientation error of
the proposed method were relatively smaller than those of all the compared meth-
ods in all datasets. The processing speed of our method was approximately 20fps
for high-resolution images.

Additionally, we tested the proposed method to detect the horizon line in road
images captured by a fish-eye camera. In the experimental result, the absolute error
of position and absolute error of orientation was low and stable. It indicates that the

proposed method can detect the horizon line in road images.

1.2 Goals

The goal of this research is to explore methods that to detect the horizon from

video captured by a vehicle-mounted camera. In order to achieve this goal, we



done following sub research and works.

* To clarify what is the horizon and to study how it is defined in recent re-

searches;

* To analyze the state-of-art methods in horizon line detection;

* To determine the model to provide consistent and robust identification of the

horizon line;

To make the reliable method to detect the horizon line and test it.

1.3 Challenges and Contributions

Although several horizon detection methods were proposed, each presents certain
challenges. A horizon detection methods that edge extraction-based (local feature-
based) are fast processing, but these are weak in noises and blurring images. Con-
trary, horizon detection methods, which are optimization-based (global feature-
based) methods, are relatively robust for noise and blurring of input images, but
these methods are computationally expensive and not available for real-time pro-
cessing. The machine learning-based techniques are highly dependent on the train-
ing sets and computationally expensive. Therefore, making a fast and reliable de-
tection method of the horizon is a challenging task. In this work, we propose a fast

and reliable method, and our contributions are following:

* A metaheuristic approach for borderline detection, which is independent from

edge-extraction unlike existing deterministic methods;



* A combination of the GA and coarse-to-fine approach for fast processing;

* Integration of local and global features in the optimization criteria for high

performance;

* A quick estimation of the local and global features for fast processing.

Our main contribution is the metaheuristic method GA based, which is applied
for borderline detection. It is independent of edge-extraction, unlike existing de-
terministic methods such us Hough and Radon transform-based methods. Thus,
we tested the effectiveness of the metaheuristic method on two applications of bor-
derline (single line) detection. Those are the detection of the horizon line in road
scenarios images and the boundary line for a mower. In detecting the horizon line
in road scenarios images, GA is utilised to optimise line parameters, and local fea-
tures are used for the objective function. The local features are derived from van-
ishing line characteristics, same as the horizon detection method in maritime. In the
boundary line detection for a mower, GA is also used to optimise line parameters,
and grey level co-occurrence (GLCM) is used to distinguish the cut grass and the
uncut grass. The result shows that the evolutionary method can be use in borderline

line detection applications.

1.4 Thesis Structure

Chapter 2 provides a brief background in the evolutionary algorithm, which is used
for optimization in our proposed method, and also discusses the horizon. Our pro-

posed method, which is the” fast horizon detection method in maritime images us-



ing genetic algorithm,” is introduced in chapter 3.

In chapter 4, some practical applications of the proposed method are introduced.
We improved and tested our proposed method for horizon detection in images that
are captured in road scenarios. It is introduced in section 4.1. Also, we proposed
the evolutionary method for detecting the boundary line for mower. It is introduced
in detail in the section 4.2. Finally, we conclude with an overview of this study in

chapter 5.



Chapter 2

Background

2.1 Evolutionary Algorithms

An evolutionary algorithm (EA) is a generic population-based metaheuristic opti-
mization algorithm. It is inspired by the process of the natural selection process.
Since the genetic algorithm was proposed by John Holland [1], the study of the
evolutionary algorithm has emerged as a popular research field [2]. In this thesis,
we used the genetic algorithm, which is the most classic evolutionary algorithm.
Thus, to introduce the working mechanism of an EA, we introduce, illustrate, and
discuss genetic algorithms to understand EAs. We also discuss the history of genetic

algorithms, current applications, and especially useful in computer vision.

2.1.1 Historicial Context and Advantages of Genetic Algorithm

The GAs are a type of optimization algorithm, meaning they are used to find the op-
timal solution(s) to a given combinatorial problem that maximizes or minimizes a

particular function. Since genetic algorithms are designed to simulate an evolution



process, it involved a simulation of Darwinian survival of the fittest and crossover,
recombination, mutation, and inversion that occur in genetics. Mitchell [3] stated
that this population-based method was a massive innovation because previous ge-
netic algorithms only used mutation to drive evolution. In 1975, Holland presented
the first comprehensive study of genetic algorithms to solve optimization problems
as his doctoral dissertation. In the 1970s and 1980s, research on genetic algorithms
rapidly increased due to computer science technology development.

Computer scientists also realized the limitations of conventional programming
and traditional optimization methods for solving complex problems. Researchers
found that genetic algorithms can find solutions to a wide range of search problems.
Genetic algorithms can simultaneously test many points from all over the solution
space, optimize with either discrete or continuous parameters. Especially, Genetic
algorithm provides several optimum parameters instead of a single solution and
works with many different kinds of data. These advantages allow genetic algorithms
to produce stunning results when traditional optimization methods fail miserably.
GA has many advantages over these traditional methods. It is efficient for global
optimization problems because it consists of candidates’ solutions. Also, GA does
not require additional information that is not related to the meaning of the possible
slolutions. The only mechanism that guides their search is the numerical value of
the candidate’s solution fitness based on the definition of fitness. This allows the
search space to be noisy, non-linear, and free of derivatives. It means that GA can

be used in more situations than traditional algorithms.



2.1.2 Methodology of GA

Here, I explain an algorithm of a simple GA. Since GA is derived from a biological
process, much of the terminology is related to biology. The basic components of

GA are following:

a population of candidate (each candidate consists a chromosome )

a fitness function for optimization

selection of which chromosome will reproduce

* a genetic operators(crossover, mutation) to produce the next generation

To solve the optimization problem with GA, a representation of a solution to the
problem as chromosomes and a formulation of the fitness function must be deter-
mined, which are essential for optimization accuracy and speed. The candidates (in-
dividual) are search points in search spaces and each individual has chromosomes,
which are optimized parameters. The chromosomes also consist of a binary string
and users can determine the length. A fitness function is utilized to guide the simu-
lation toward an optimal solution, and it evaluates the goodness of each individual.
Therefore, designing the fitness function is very important for quick convergence
on an appropriate solution, and it has a significant impact on computational time.
The fitness function should precisely evaluate how to fit a given solution and should
be fast to compute.

Once the genetic representation of inidividual and the fitness function are de-
fined, GA proceeds to initialize a population of solutions. Typically, the initial pop-

ulation is generated randomly, allowing the entire range of possible solutions. Then,
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the fitness function evaluates the fitness of the candidates. After the evaluation of
the fitness, genetic operations, selection, crossover, and mutation are performed to
produce the next generation.

Selection tries to apply pressure upon the population like that of natural selec-
tion found in biological systems. Candidates with poorer fitness are weeded out.
Contrary, and candidates with higher fitness have a greater chance of promoting
genetic information within the next generation. To implement this idea in an algo-
rithm, a roulette wheel selection is used to select the individuals whose fitness is
high with high probability.

Crossover allows solutions to exchange genetic information in a way similar to
that used by natural organisms undergoing sexual reproduction. One method is a
uniform crossover which changes the genes of the two selected individuals. The
positions of the changed genes are randomly determined.

The standard mutation inverts genes with a low probability of maintaining di-
versity. In other words, this processing is to preserve premature convergence to
local optima. By iterating, these operations parameters are optimized, and an elite
individual(it has the highest fitness) is obtained as a global optimum. These genetic
operations are repeated until a termination condition has been reached. A com-
mon terminating conditions are sufficient solutions are found and fixed number of

generations.

2.1.3 Applications of GA

The advantages of genetic algorithms as problem-solving strategies are quickly
gaining recognition among researchers of diverse areas of study. Some advantages

11



of GA are the following. First, GA can optimize various problems such as discrete
functions, multi-objective problems, and continuous functions. Second, it does not
need derivative information. Genetic algorithms know nothing about the problems
they are being applied to. Instead of relying on specific information about a prob-
lem, as do many other search techniques, a fitness function is employed to ascertain
whether the random changes resulting from crossover and mutation have made im-
provements to the overall fitness with data to a theoretical model. Also, GA has
excellent parallel capabilities. Due to the above advantages, GAs are applied in

many fields. Several fields are following:

Transportation([4, 5];

Electronis(VLSI)[6, 7];

 Trainging and designing artificial inteligence systems(8, 9];

Bioinformatics[10];

Robotics[11, 12];

* Computer vision[13, 14, 15];

This thesis will focus more on the GA application of computer vision. The main
tasks of computer vision are to obtain and understand meaningful information from
images and videos. The various processes that perform these tasks are often con-
fronted with situations that require optimization. Especially, the solution spaces
are a vast and complex landscape. In that situation, GA is used powerful tool for
solving the optimization problems occurring in computer vision. For example, GA
is involved with respect to different computer vision tasks: image segmentation.

12



[16, 17], feature detection and selection [18, 19], template matching [20, 21], visual

tracking [15, 22], face recognition [23, 24, 25].

2.2 Horizon Line

The horizon is important for space perception and self-orientation [26, 27]. Gib-
son’s ground theory of space perception identified that the vanishing line of ground
(horizon) helps to solve problems often encountered in such applications, like the
lack of initial estimates for the depth of structures and height of objects. The hori-
zon is important for space perception and self-orientation as well as in computer
vision.

Humans have no problem completing this task easily. But, machines still have
a big problem finding images given only such a semantic description. This is not
unintentional, given that almost every image needs to be interpreted. Find and iden-
tify objects (trees, cars, and humans), estimate perspectives, etc. We extract all the
information in just a few hundred milliseconds per image. The analysis is not very
thorough, but it is detailed enough to form a superficial representation of the im-
age content in our minds. The term “horizon” is widely used by “where the sky
meets the ground”. However, it becomes more complex caused by image scenarios
and purpose to estimate. In previous studies, three different clues are assumed as
“horizon,” and these are explained in detail here.

The first cue is an astronomical horizon. It is defined by a horizon plane that
is perpendicular to gravity and located at the same height as the observer. It is

not dependent on the slant of the ground surface nor on the presence of occluding

13



objects, and it is orthogonal to gravity [28]. Second is a visible horizon, which is
the boundary line above which separates the regions, sky and not sky. It is usually
not straight-line [29, 30, 31]. The third is the horizon line which is the vanishing
line of the ground plane. Most of these researchers assume that the ground/sea
plane is almost plate [14, 32, 33, 34]. As shown in Fig.2.1(top row), these cues
are overlapped when the ground plane is almost flat and there are no occluding
objects. However, there exists plants, mountains, and buildings, or ground surface
is slanted, estimation of horizon line becomes complex as shown in Fig.2.1(3-rd
and 4-th rows).

For ground and sea surface vehicle navigation, the monocular vision systems
have been proposed to investigate the environmental information [35, 36, 33, 34].
Like the above works, the vanishing line of the ground/sea surface is referred to as
the horizon on the rest of this work. This work concentrates on horizon estimation

from videos captured by a camera in vehicles.

14



Figure 2.1: Scenarios to show horizon cues. (a) Original images. (b) The variation
of horizon estimation are shown as colored lines. The red and green dashed lines
indicate the visible horizon and astronomical horizon, respectively, and the blue line
indicates the horizon line which vanishing line of ground plane.
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Chapter 3

Fast horizon detection in maritime

images using genetic algorithm

In this chapter, I explain a fast horizon detection in maritime images using ge-
netic algorithm. Horizon detection is useful in maritime image processing for vari-
ous purposes, such as estimation of camera orientation, registration of consecutive
frames, and restriction of the object search region. Existing horizon detection meth-
ods are based on edge extraction. For accuracy, they use multiple images, which are
filtered with different filter sizes. However, this increases the processing time. In
addition, these methods are not robust to blurting. Therefore, we developed a hori-
zon detection method without extracting the candidates from the edge information
by formulating the horizon detection problem as a global optimization problem.
A horizon line in an image plane was represented by two parameters, which were
optimized by an evolutionary algorithm (genetic algorithm). Thus, the local and
global features of a horizon were concurrently utilized in the optimization process,

which was accelerated by applying a coarse-to-fine strategy. As a result, we could

16



detect the horizon line on high-resolution maritime images in about 50ms. The
performance of the proposed method was tested on 49 videos of the Singapore ma-
rine dataset and the Buoy dataset, which contain over 16000 frames under different
scenarios. Experimental results show that the proposed method can achieve higher

accuracy than state-of-the-art methods.

3.1 Introduction

Autonomous surface vehicles have been developed for applications such as environ-
mental protection and coastal guard [37]. These vehicles usually utilize radar, light
detection and ranging, inertial systems, and GPS for navigation and obstacle detec-
tion [38]. With the rapid development of computer vision and the increase in camera
resolution, information from cameras is used to solve various problems, such as ob-
ject detection, recognition, and tracking. Videos captured by optical systems are
valuable for autonomous surface vehicles to perceive surrounding information for
obstacle detection, remote control, and estimation of the spatial orientation. Video
processing in maritime scenarios is quite challenging because of random camera
shaking caused by waves and the processing time of high-resolution images.

To address the above challenges, a horizon on maritime images is used for the
following purposes: estimation of the spatial orientation of a camera/ship and im-
age registration, which aligns consecutive frames into a one-coordinate system for
object detection and object tracking [39, 40, 41]. In addition, the horizon is used
to determine the region of interest to reduce the processing time and false detection

[41, 42].
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Therefore, the accurate detection of the horizon line is critically important for
maritime image processing as an initial step. However, the detection of the hori-
zon line faces several issues caused by complex maritime environments, such as
waves, ocean color, light changing, and partial occlusions by maritime objects. An-
other challenge is that the pixels of the horizon line features are fewer than those
of the entire image[43]. Thus, an accurate extraction of the horizon line features is
required.

In the last two decades, several approaches have been proposed for detecting the
horizon line in maritime environments. In the maritime scenario, the horizon line is
generally represented as a straight line because the sea surface can be assumed to
be flat and vanishes into a line on the image plane. Related works can be divided
into local feature-based methods[44, 45], global feature-based methods[46, 47] and
hybrid methods[32, 33, 34, 41]. The local feature-based methods extract a line
segment of the horizon from local features such as edge information using line
detection techniques such as Hough, and Radon. Global feature-based methods
optimize the horizon line parameters using the horizon features on the entire image.
Although hybrid methods, which utilize both global and local features, can achieve
higher accuracy, the estimation of these features for all horizon candidates requires
considerable computation time.

In this work, we formulate the horizon line detection as an optimization problem
and propose a new method called coarse-to-fine evolutionary method, abbreviated
as CFEM. As suggested by the name, we adopted the genetic algorithm (GA) to op-
timize the parameters of the horizon line. The GA is an evolutionary algorithm that

can optimize the parameters using a criterion, which concurrently assumes global

18



and local features. In addition, a coarse-to-fine approach was adopted to acceler-
ate the processing. First, the GA optimizes the parameters of the horizon line on
down-sampled image of input image by using an optimization criterion that utilizes
both global and local features. Then, the coarsely estimated parameters from the
previous step are fine-tuned on a higher resolution image within a narrow range of
line parameters with the GA using local feature estimation.

Our main contributions are:

A metaheuristic approach, which is independent from edge-extraction unlike

existing deterministic methods;

A combination of the GA and coarse-to-fine approach for fast processing;

Integration of local and global features in the optimization criteria for high

performance;

A quick estimation of the local and global features for fast processing.

In Section 3.2, we discuss related works on horizon detection and the GA. Section
3.3 outlines the proposed method for horizon detection. The experimental results
and details of the parameters are discussed in Section 3.4. Finally, we conclude with

an overview of this study in Section 3.5.

3.2 Related Work

For most horizon detection methods in the maritime scene, the horizon is consid-
ered a straight line. Related works can be classified as local and global feature-based
methods. The local feature-based methods [44, 45] identify a prominent line as a

19



(b)

Figure 3.1: Result of transformation-based method [44]. (a) An input image. (b)
edge map extracted by Canny edge method on the grayscale image of an input
image. (c) red lines show the top 100 candidates lines with largest strengths in
Hough spaces and a green line shows ground truth of the horizon line.

horizon line using line segment extraction methods from an edge information of
the input image. Hough transform[44], Radon transform[32], and line segmenta-
tion algorithms are mostly used to extract line features from an edge information.

20



Although the horizon line can be detected in real-time [44, 45], it cannot be es-
tablished by a prominent line owing to oceanic color differences and noise caused
by waves and blurring of an input image shown in Fig. 3.1. Another limitation of
this approach is that it is difficult to distinguish the horizon line from the extracted
lines[43].

Several methods that improve the local feature-based method have been intro-
duced. Fefilatyev et al. [41] introduced a candidate-first approach. First, a few
candidate lines are selected by the Hough transform based on an edge map. Then, a
global feature of the horizon line is used to find an optimal solution from candidates,
and calculates the difference of the color distributions in two regions divided by the
candidate line. A similar method was proposed by Lipschutz et al.[48], in which
a color histogram was used to model the color-space distribution of two regions
to reduce the processing time. Prasad et al.[49, 32] used multi-scale edge extrac-
tion approaches to extract edges from multiple images filtered with different filter
sizes and accurately extract the edge information of the horizon line. In MSCM-
LiFe[49], Canny edge detection and Hough transform are used to select the first
modal candidates on multiple images filtered with different filter sizes and the max-
imum intensity variation is calculated to select the second modal candidates. Then,
to select the final solution from the candidates, the goodness of the two modals and
the geometric proximity of the pair of modals are measured. In MusCoWERT][32],
a weighted edge rﬁap is computed for each image filtered with a multi-scale filter
and candidates are selected by the Radon transform from the weighted edge map.
Then a voting system is used for the final solution from all the candidates. Jeong

at el.[50] combined multi-scale edge detection and convolutional neural network
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for reliable edge extraction. Then, they used linear curve fitting along with median
filtering to find an optimal horizon line. In experimental results of [50], the above
multi-scale approaches achieved the highest accuracy. But, they required expensive
computation for real-time processing in high-resolution images for detecting the
optimal horizon line.

In addition, global feature-based methods [47, 46, 44, 48] have also been pro-
posed. The global feature is used as an optimization criterion to optimize the hori-
zon line parameters. The horizon line can be represented by two parameters, orien-
tation and position. Ettinger et al. [46, 47] considered that the horizon line divides
an image into two different regions, namely sky and sea, thus the difference of the
two regions was used as an optimization criteria. To find the optimal parameters of
the horizon line, they calculated the statistical distance metrics of distributions in
the two regions for all combinations of the horizon line parameters. These meth-
ods are not dependent on edge information and they can detect the horizon line on
blurred and noisy images. They achieved real-time processing on a low-resolution
image using a coarse-to-fine approach. However, the result of [32] shows that this
method requires tens of seconds to detect the horizon line on the high-resolution im-
age because it requires calculation of the statistical distribution of the two regions
for all candidates and uses exhaustive search to optimize the parameters.

Recently, sky-sea region extraction methods have been proposed to reduce the
processing time by restricting the search region [33, 34]. Liang et al.[34] extracted
the sky-sea region using probabilities that were distributed on vertically divided
regions by weighted textures. Then, candidate lines were extracted from the sky-sea

region using an edge detector and Hough transform. Finally, a voting method was
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applied to obtain the final solution. The extraction of the sea-sky regions reduced
the processing time and false detection. However, only part of the horizon line is
obtained when there are occlusions near the horizon and a large angle gradient along
the horizontal axis. Jeong et al.[33] also vertically divided an image into several
regions and extracted the sky-sea region using the difference between the color
distributions of the consecutive regions. The difference between the two regions
was calculated by the Bhattacharyya distance, and a region with the largest distance
was selected as the sky-sea region. Then, multi-scale edge detection was applied
to the sky-sea region and merged into one edge map. Finally, the Hough and least-
squares methods were sequentially used to find the horizon line.

Except for Ettinger’s methods [46, 47], the above methods extract the candidates
of horizon using local features as edge information and use consecutive filtering on
several stages, which are based on features of the horizon. One limitation of this
approach is that filtered candidates in the previous stage cannot be considered in
the next stage, even though these candidates have survival candidates in the filter-
ing of the next stages. Thus, multi-scale approaches have been proposed to extract
sufficient candidates in an early stage. However, these methods require along pro-
cessing time. In addition, Jeong et al.[33] stated that the methods that depend on
edge information cannot detect the horizon line when the input image is blurred or
the boundary between the sky and sea region is gradually changed.

Therefore, in our previous study[51], we proposed a novel method that opti-
mizes the parameters of the horizon line. For the fast and accurate detection of the
horizon, we considered several improvements. First, we used global optimization

algorithms to solve the horizon detection problem, and applied GA for efficient op-
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Figure 3.2: Diagram of the proposed method.

timization to reduce the processing time. Second, instead of considering all pixels
of an image for each combination of the horizon line parameters, such as in [46],
we defined the local features of the horizon line using a vanishing line character-
istic. The result of [51] shows that utilization of the local features of the horizon
for optimization criteria can reduce the processing time and can increase an accu-
racy. However, this method has limitation in certain scenarios such as for mostly
occluded horizon and drastic changes in the color of the sea.

Our study extends the previous method [51] for improving accuracy by adding
the factor of global feature to the optimization criterion. Consequently, the accu-
racy of the proposed method was improved in frames, whose sea color drastically
changes. One advantage of optimization-based approaches is that several optimiza-
tion criterion can be used as fitness functions. In our case, local and global features

were utilized concurrently in the fitness functions.
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3.3 Proposed Method

3.3.1 Overview

In this section, we introduce a horizon detection method called coarse-to-fine evo-
lutionary method. A diagram of the proposed method is presented in Fig. 3.3. The
proposed method consists of three steps. First, an input image is down-sampled and
a probability map of the horizon is created during the pre-processing stage. Before
down-sampling, the input image is filtered by a Gaussian filter. The probability
map of the horizon is used for optimization criterion as a factor of the global fea-
ture of the horizon in the next step. Subsequently, coarse-to-fine optimization is
performed for detect the horizon line. Coarse-to-fine approaches are widely used
in computer vision to improve the efficiency[52, 53]. In the coarse-optimization
stage, the parameters of the horizon are roughly optimized on the gray-scale image
of the down-sampled image. The global and local features are concurrently utilized
in the optimization criterion. Finally, the fine-optimization of the parameters is per-
formed at high-resolution to improve the accuracy. The fine-optimization stage is
performed in a narrow region close to the parameters that are roughly optimized by
coarse optimization. The results of each stages are shown in Fig. 3.3.

For quick optimization of the horizon line parameters, GA is used, which pro-
vides optimization utilizing fewer combinations of parameters compared to exhaus-
tive search. The GA is broadly applied to efficiently solve combinatorial optimiza-
tion problems in computer vision such as template matching and object detection[23,
14, 13].

For all optimization methods, an optimization criterion significantly affects the
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processing time and accuracy. We introduced the fast estimation of local and global
features for the optimization criteria. In the next subsection, for horizon detection,

a GA and utilization of local and global features are presented.

3.3.2 Optimization by Genetic Algorithm

The horizon is projected onto a single line in an image plane. Therefore, the prob-
lem of the horizon detection can be regarded as a global optimization problem. GA
is a popular evolutionary algorithm for global optimization and has been applied to
various combinatorial optimization problems in computer vision [23, 13] and sim-
ple GA algorithm is shown in Algorithm 1. Thus, we used the GA to optimize
the parameters of horizon line in both coarse and fine optimization. A simple GA
requires the generation of an initial population of individuals for every frame of a
sequence. Each individual within the population represents a possible solution, a
so-called candidate. For every iteration, the individuals of the population are evalu-
ated by a fitness function, and then updated by genetic operations such as selection,
crossover, and mutation.

The generation of an initial population for each frame of a sequence is time-
consuming. Therefore, we used evolutionary video processing (EVP) [15]. It gener-
ates the initial population once at the initial frame of a sequence and inherits a popu-
lation of the last generation into an initial generation of the next frame. Akashi et al.
[15] stated that evolutionary video processing can improve optimization accuracy
and reduce processing time. In addition, we used an elite saving strategy to improve
the efficiency of GA, which is the process of preserving previous high-performance
solutions from the current generation to the next. To solve the combinatorial prob-
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Figure 3.3: The result of the coarse and fine stage optimization (a) input image
(b) result of coarse-optimization (c) result of fine-optimization. The elite candidate
line is shown by the red, line of initial parameter value on each optimization step is
shown by blue and the ground truth of the horizon line is shown by the green.

lem with GA, a representation of a solution to the problem as chromosomes and
a formulation of the fitness function must be determined, which are essential for

optimization accuracy and speed, and will be explained in the following sections.
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Algorithm 1: GA(Ny,N,c,m)
//initialization:

m = 0;
P, = N, number of randomly generated individuals;
/levaluate P,,: compute fitness(i) for eachi € P,,;

while N, > m do
//1.Selection and copy:

select the individuals of P, by roulete selection;
insert the selected individuals into Py, ;
/12.Crossover:

select IV, x c individuals of P, ,, pair them up;
produce new individuals from the pairs;

insert the new individuals into P,,,.;

//3.Mutation:

select N, x m individuals of P, 11,;

invert a randomly selected bit in selected individuals;
//4.Evaluate P, ; and increase

compute fitness(i) foreachi € P, 1;

m=m+ 1;
end

Result: the fittest individual from Py,

Representation of Parameters in Chromosomes

The chromosome of an individual is often represented by bit strings because of

it is faster than the real coded GA in the processing of crossover and mutation
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operations[23]. The chromosome contains a set of parameters, that are necessary
to solve a problem. In our case, the horizon can be a straight line, and the ground
truth of the horizon line is given by a straight line on the datasets [40, 54]. Hence, a
horizon can be represented by two parameters of the straight line: vertical position
Y and orientation angle 6. An adjustment values for the two parameters decoded as
a chromosome of individuals. These were the orientation p and the height adjust-

ments of the horizon line A. Y and 0 were calculated as follows,

Y = (Yo + M), (3.1)

where Y| is the initial vertical position, and 6, is the initial orientation angle. In
the coarse-step optimization, the initial value of the vertical position Yy = H/2 was
located in the center of an image, and the initial value of orientation 6y = 0 was
set parallel to the horizontal edge of the image. In the fine-step optimization, the
initial parameters of the horizon line were the elite-candidate-line parameters of the

coarse-optimization stage as follows,

Yo=Y x S, (3.3)

6y = 0., (3.4)

where Y, and 6, are the elite-candidate-line parameters of the coarse-optimization
stage, and .S is a scale used to downsample an input image into a low-resolution

image.
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Designing of the Fitness Function

In a GA, a fitness function is used to guide the simulation toward an optimal so-
lution, and it evaluates the goodness of each individual. Therefore, designing the
fitness function is very important for quick convergence on an appropriate solution,
and it has a significant impact on computational time. The fitness function should
precisely evaluate how to fit a given solution and should be fast to compute. Exist-
ing optimization-based[47, 48] methods for horizon detection use an optimization
criterion, which calculates the color distribution across all pixels of an image. Thus,
these methods require a significant amount of time to achieve an accurate detection
of the horizon line. In our previous work [51], we determined the local feature of
the horizon line, which was used in the fitness function. As a result, the process-
ing speed and accuracy of horizon detection was improved. However, the method
in [51] failed in certain scenarios, such as changes in the color of the sea and the
mostly occluded horizon line. To improve the accuracy in the above scenarios, we
assumed a global feature factor in the fitness function. As mentioned before, the
global feature estimation for each candidate is time-consuming because it covers a
wide area of the input image. Thus, we created a probability map of the horizon
line in the pre-processing stage and used it as a global feature factor in the fitness
function. In the coarse step, the fitness function F' was designed with the global

feature factor G and local feature factor L as follows,

Fe(Y,0) = G(Y) x L(Y,0). (3.5)
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In the fine-tuning step, the global feature factor effects were weaker than those of
the local feature factor for the optimization because the position of the horizon line
was roughly determined in the coarse-optimization. Therefore, we assumed only

the local feature factor in the fine-tuning step into the fitness function as follows,

FI(Y,0) = L(Y,6). (3.6)

3.3.3 Global Feature

In the pre-processing stage, an input image is filtered by the Gaussian filter and
downsampled. The downsampled image was used for global feature estimation and
coarse stage optimization. Global feature estimation covers all pixels of image, but
it is computationally expensive. Thus, we create a probability map of the horizon,
which indicates the probability of the horizon at each row of an image. The map was
used as a global feature factor in the fitness function. A textural feature and a color
feature were used to extract the region that contains the horizon [34, 33]. Although
both features are significant in extraction process for input images without blur,
the textural feature is not applicable, where the color feature performs better. We
used a color feature to determine the probability of existence of the horizon, similar
to [33]. The creation steps of the probability map of the horizon are shown in
Fig. 3.4. First, the image were divided into nine regions (I = 9). The height of these
regions h was a fifth of the image height H, and 50 percent of the regions overlapped
with neighboring regions as shown in Fig. 3.4(b). The region with larger change in

color distribution compéred with neighboring regions has a higher probability of
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Figure 3.4: Creation steps of the probability map of horizon. (a) Downsampled
image, (b) divided regions, (c) existence probability of horizon for each region, (d)
probability map of horizon.

(d)

containing the horizon. A color histogram was calculated for each region to evaluate
the color distribution due to processing speed considerations, and N = 64 bins

were used for each color. To compare the histograms of two regions, the Hellinger
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distance was calculated as follows,

H,( H,
DRy R = 1 — im0 VIO X HnG) 3.7)

\ ¢z J>xz”1Hm<>

where H,, and H,, are the histograms of neighboring regions R, and R,,, respec-
tively. H(7) indicates the j-th bin of the histogram. Then, as shown in Fig. 3.4(c),

the existence probability of horizon was calculated for each region as follows,

D(Ri, Ri+1) lf Z == 0

P(i) = { D(R;, Ri_1) ifi=I-1 1 (3.8)

D(RiyRi—l);D(RuRH-l)_ otherwise

“

where I is the number of the divided regions and nine in this research. Subsequently,
a probability map of horizon was created for each row of the image as shown in Fig.

3.4(d). The probability of horizon at Y -th row of the image is calculated as follows,

[P(O) if Y <h/2
G(Y) = ¢ P(I-1) ifY > (H-h/2) - (39)
PQ(h‘/,z)J‘l;‘*P(LﬁJ). otherwise

3.3.4 Local Features

For the fast evaluation of a candidate line, we defined the local features of the hori-
zon line using a vanishing line characteristic. As shown in Fig. 3.5(a), we propose

three essential characteristics. First, the horizon line is a straight line. Second, an
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Figure 3.5: (a) Description of the horizon line in image plane, where bold line h
indicates horizon line, the line X is line which intersects with h on the image plane
I passes through the camera center C' and is parallel to the sea surface plane O, the
p; and p; pixels of image, the s; and s; are regions of sea surface those are projected
into p; and p; respectively. (b) Local features of the horizon line in the sample frame
and can be estimated in a narrow range close to the horizon.

appearance of the above horizon line is different from that of the side below the
horizon line. Third, regions close to the horizon line tend to be texture-less. The
reason is that the wide area of the sea surface is projected to a few pixels near the
horizontal. Thus, the regions, which are close to the horizon line, have texture-less.
As shown in Fig. 3.5(b), these characteristics can be estimated in the narrow re-
gions close to the horizon line as local features. Reducing the area of the region,
which evaluates the candidate, can reduce the processing time of the optimization
process. The same local feature estimation is used in both the coarse and fine-step

optimizations. In addition, the local features are estimated on a gray-scale image
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using the following equation:

Z K
LY:0) = 5qres me x> > C(Y,8,5,3), (3.10)

Jj=1 =0

where Z is a parameter to control the evaluation range of the local feature, K is the
number of samples according to the image width (W) and it is K = W/d. d is the
sampling step and z; follows z; = 7 x d. C is a function to estimate the local feature
of the horizon line and it consists of the following three functions:

C(Y7 95j7 Ii) = AB(Ya 61j7 IZ) + A(Y) 97j7 .’171;)
G.11)

+ B(Y,0,7,x;),
where AB is a function that estimates the difference in appearance above and below
the horizon area. A and B are functions that estimate the texturelessness of the
above and below-side regions of the horizon line, respectively. To estimate the local
features at given Y, 6, j, and z;, four pixels (51,52, M1, and M2) were assumed,
as shown in Fig. 3.6. The S1 and M1 points are symmetric with respect to the
candidate line and symmetric to point O1. The S2 and M2 points are symmetric
with respect to the candidate line and symmetric to point O2. O1 and O2 are points
on the candidate line at a given z; and z; — d/2, respectively. When the four pixels
are in the image plane, the function C' is calculated using Eq. (3.11) otherwise C'is
0. N, is the total number of combinations of Y, 6, 7, and z;, when the four pixels

are in the image plane. A W,,,,, is the total value of the weights of the features used
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in functions AB, A, and B. Function AB, A, and B are as follows:

w1 if |ISI = I]\/Ill >T
AB(Y,0,,:) = ._ (3.12)

wy otherwise

wy if|Isy — Is2| <T
AY,0,5.51) = , (3.13)

0 otherwise

W4 if |[M1 - IM2| <T

0 otherwise
Here, AB counts symmetric points with respect to the candidate line with a different
color. Functions 4 and B count the points that have similar neighboring points
along with the candidate line. Igy, Iso, Inr1, and Ipso are the pixel values at S1,
S2, M1 and M2, respectively. As shown in Fig. 3.6, the distance from the points
S1, M1, 52, and M2 into the candidate line is j. A threshold value of T is used
to evaluate whether the points are similar or different. w;, ws, ws, and wy are the

weights of the features.

3.4 Experimental Results

3.4.1 Dataset and Evaluation Criteria

We verified the performance of the proposed method using the Singapore Maritime

Dataset (SMD) and Buoy-Dataset (BD) because which are publicly available and
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Figure 3.6: Local feature estimation. Four pixels are used for local feature estima-
tion at given Y, 0, j, and x;. These are S1, 52, M1, and M 2. The red line describes
a candidate line given by an orientation angle # and a vertical position Y.

mostly used in recent researches[32, 33, 34]. The SMD consists of onboard and
onshore videos. The onboard videos were captured by a camera mounted on a
moving board, and the onshore videos are captured by a static camera installed
onshore. The videos contain complex maritime scenes that have strong noise caused
by wakes and waves, and color changes in the sea. The resolution of the SMD
videos was 1920 x 1080 pixels. The BD consists of videos captured by a camera
mounted on a floating buoy with resolution of 800 x 600 pixels. A challenge for the
onboard videos of SMD and BD is the large variation in the orientation and position
of the horizon line between adjacent frames. The details of SMD and BD are given
in Table 4.3. The ground truth of the horizon line is given by the vertical position
Y and the orientation angle 6.

In previous studies [32, 33, 34, 43, 38], the performance is commonly evaluated
by mean absolute error (MAE) and percentile error at 25th, S0th, and 95th. The
95th percentile error indicates the detection result on complex scenes and it is used

to imply that the how detection method is robust and consistent over datasets with
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Table 3.1: Details of datasets.[32]

Dataset Buoy Singapore maritime
Onboard = Onshore
No. of videos 10 11 28
No. of frames 996 2772 12604
Min(Y -mean(Y")) -281.68 -436.30 | -13.54
Max(Y -mean(Y")) 307.82 467.86 9.95
Standard deviationof Y 107.98 145.10 1.52
Min(#-mean(8)) -15.72 -26.34 -9.99
Max(6-mean(8)) 20.72 12.99 0.51
Standard deviation of 6  4.40 1.11 0.04

great diversity [32, 33]. To compare our results, our study used the same percentile

errors. Moreover, MAE was used for analyzing parameter analysis.

3.4.2 Parameter Setting

The proposed method needs to adjust the values of the parameters. Because they af-
fect the performance, it is necessary to investigate the optimal values of parameters.
However, the number of parameters is very large. Hence, we focused on popula-
tion size, generation size, and threshold of the local features (7°) because these have
a significant influence on performance. The experimental results are described in
Sect. 3.4.3. The other parameters were empirically fixed. The details are described
as follows. The population and generation sizes of the GA are 20 and 20 in both
coarse and fine optimization stages. The crossover and mutation probabilities are
0.6 and 0.07, respectively, which affect the convergence speed and diversity of the
population. The orientation adjustment parameter p and height adjustment param-
eter A are decoded from the chromosome. In the coarse-optimization stage, the

adjustment ranges of each parameters are described as follows,
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* Orientation adjustment p: [—7/4,7/4],
* Height adjustment \: [-3H/5,3H/5).

To detect the horizon line that is particularly out of an image, we set the range of
height adjustment by a value that larger than the height of an image. In coarse
optimization, the parameters were roughly optimized. Hence, in the fine-step op-
timization, the orientation and height adjustment ranges exhibited a reduction of
six times and two times, respectively, with the ranges of coarse optimization. The
chromosome length has 16 bits because each parameter is represented by eight bits
in both optimization stages. We downsampled the input image for global feature
estimation and coarse optimization. The scale to downsample was S = 1/4 for the
BD and S = 1/8 for the SMD. For quick local features estimation, the range pa-
rameter to evaluate the local features was Z = 6 and the sampling step was d = 4.
In addition, the threshold value was T' = 20, and the weights of the local feature

were w; = 3, we = —2, w3 = 1, and wy = 2.

3.4.3 Effectiveness of EVP and Parameter Analysis

As described in Sect. 3.3.2, in our coarse-to-fine evolutionary method, the EVP is
used for the optimization of HL. parameters. In this section, to confirm the effec-
tiveness of EVP in this study, its performance was compared with the simple GA
(see Sect. 3.3.2) and exhaustive search (ES) on the SMD. The same fitness function
was used for the EVP and the simple GA, also the same function was used as an
evaluation function in the ES. In the experiment of this paper, the same size of can-

didates was used in both coarse and fine optimization stages. In the EVP and simple
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Figure 3.7: Accuracy and processing times (EVP, simple GA, and ES), which were
performed by fixing the threshold value of the local features (1" = 20) and changing
the number of candidates on SMD.

GA, the population and generation sizes were the same, 5, 10, 20, 30, 40, and 50.
In the ES, we uniformly sampled the search space of two parameters (Y and ) for
HL and the sampling resolutions were similarly S, 10, 20, 30, 40, and 50.

Figure 3.7 shows the MAE of vertical position and average processing time per
frame on various numbers of candidates. The MAE of EVP was smaller than the
simple GA and ES in all the candidate sizes. Moreover, the processing times of all
methods were almost the same. Therefore, the EVP is effective for HL detection
on the video. Although the number of candidates on each stage increased from
20 x 20, the accuracy of the EVP increased a little. Considering fast detection of
HL, 20 and 20 for the population and generation sizes were optimal combination for
the proposed method. Hence, these values were used for comparison experiments

with related work.
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Figure 3.8: Accuracy of the proposed method, which was performed on two
datasets, SMD and BD by fixing the generation and population sizes (set as 20)
and changing the threshold value of the local features.

To find the optimal threshold value of the local features (7'), various values
were set to the proposed method to compare. The results are shown in Fig. 3.8. The
lowest MAEs on BD and SMD were 7" = 10 and 7" = 20, respectively. However,
while comparing our method with related works, we used the same threshold value

T = 20 on all datasets like Ganbold et al.[51].

3.4.4 Comparison Results and Consideration

First, we compared the variation of proposed methods to clarify the effectiveness of
the improvements. A variation one (V1) is a method that is not used in the global
feature (GF) estimation and coarse-to-fine approach (CF). A variation two (V2) is
a method that is not used in the global feature estimation [51]. Also, the method

introduced in section 3.3 (CFEM) used all improvements. To compare the detection
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result of V1 with other variations, we set the parameter values on the V1 method
as follows. The height range of the position parameter is the same as the input
image height. The orientation adjustment range is [—/4, 7/4], which is also the
conceivable range. The chromosome length per parameter is 10 bits. The population
and generation sizes are 80 and 80. Except the above parameters are the same as
parameter values in section 3.4.2. To compare the detection result of V2, we used
the parameter values, which is introduced in [51].

Second, the performance of proposed method was compared with the state-of-
the-art HL. detection methods, which were compared in [33]. For fair compari-
son, the same datasets and same evaluation criteria are used in this study. Jeong
et al.[33] compared their proposed method on the SMD and BD with state-of-art
methods including MusCoWERT([32], MSCM-Life[49], the method of Fefilatyev
et al. (FGSL)[54], the method of Lipschutz et al. (LHSL)[48] and two methods on
[44] those are the Hough method (Hough) and the intensity variation analysis based
method (IntV).

Hough [44] method applied the median filter to smooth the input image. Then, it
extracted the edge image using the Canny edge detector. Then, the Hough transform
was used to find the optimal parameter of horizon line from the edge map.

IntV [44] method first performed the median filtering. Then, it searched the
points having the maximum edge magnitude in each column of the smoothed image.
Then, the least-square method was applied to maximal edges to find the optimal line.

FGSL [54] method selected NV candidate horizon lines by performing the Hough
transform on the edge image. Gaussian distribution was then used to model the

color information of two regions separated by the candidate line. The similarity
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between the color distribution of the sea and the sky regions was measured using
the Bhattacharyya distance. The candidate horizon line having the lowest similarity
was determined to be the final solution. The number of candidate lines greatly
affected the processing speed of the system. Thus, 10 candidate lines were selected
for the computational efficiency.

LHSL [48] method also selected N candidate horizon lines, like the FGSL
method. However, the different color model was used to model the color distri-
bution of the regions. The optimal line was then selected by calculating the distance
between the two histograms. In the experiment, the number of candidate lines equal
to the FGSL method was selected.

MSCM-LiFe [49] 10 vertical median filters having different sizes were used
to generate the multi-scale image. For each scale image, Canny edge detection
and the Hough transform were used to find the 10 candidate horizon lines. For
each scale, the mean multi-scale images were generated by accumulating the scale
image. Then, the method found the points having the maximum intensity variation
in each column of the mean multi-scale images. The optimal horizon line was then
selected by

In MuSCoWERT [32], the multi-scale image was generated by applying median
filters of various sizes. An edge detection was performed to generate the edge map
for each scale image. Then, lengths were calculated for all edges to consider their
weight. After that, the Radon transform was applied to each weighted edge map to
select N candidate horizon parameters. The final horizon line was then determined
by voting on the candidate horizon parameters of each scale.

Jeong et al. [33] vertically divided an image into several regions and extracted
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the sky-sea region using the difference between the color distributions of the con-
secutive regions. The difference between the two regions was calculated by the
Bhattacharya distance, and a region with the largest distance was selected as the
sky-sea region. Then, multi-scale edge detection was applied to the sky-sea region
and merged into one edge map. Finally, the Hough and least-squares methods were
sequentially used to find the horizon.

The statistics of the errors in parameters Y and § on SMD are listed in Tables
3.2 and 3.3. The statistics of the errors in parameters Y and 6 on BD are listed in
Table 3.4. The experimental results show that the proposed method performs better
on the SMD and BD datasets. In particular, the median positional error and median
orientation error of the proposed method were relatively smaller than those of all the
compared methods in all datasets. In addition, the proposed method can detect the
horizon line when the input image is blurred, as shown in the bottom image of Fig.
3.13. In the 95th percentile, the orientation angle error of [33] was smaller than that
of the proposed method on the SMD, but the position error of the proposed method
was smaller than that of the other methods.

Comparison of proposed method variations demonstrates that the method with
coarse-to-fine has high accuracy and high processing speed even in high-resolution
images. In low-resolution images, the effectiveness of coarse-to-fine was low com-
pared with the result on high-resolution images. The global feature estimation in
the fitness function has increased the accuracy compared with methods without it.
As shown in Fig. 3.9, the utilization of global features in optimization criteria had
the effect of reducing false positives caused by changes in sea color. Although the

vertical position error decreased, orientation angle error increased when the horizon
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(a) (b)

Figure 3.9: Comparison of the detection results. (a) Result of the V2 [S1]. (b)
Result of proposed method.

line was mostly occluded by objects, as shown in the bottom row images in Fig. 3.9.

Average processing times per image by our and comparative methods are pro-
vided in Table A.3. The results of the Jeong ROI[33], MSCM-Life[49], FGSL[54],
LHSL [48], Hough[44], IntV[44] were taken from [33]. They were implemented
using Phyton and executed on an Intel ES-1680 CPU. The MusCoWERT was taken
from [32] and it was implemented using MATLAB 2015b, and the result was ob-
tained on an Intel 17-3770 CPU. The proposed method and method of the V2 [51]
were implemented using C/C++ and were executed on an Intel i7-3770 CPU. The
MusCoWERT, MSCM-Life, FGSL, and LHSL were required several seconds per
image. The methods of IntV and Hough were relatively fast, but they were low
detection accuracy. The methods of Jeong ROI[33], the V2 [51], and the proposed
method processed the image within one-tenth seconds and they were reliable detec-
tion accuracy.

The experimental results demonstrate that the proposed method can detect the
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Table 3.2: Comparision of horizon detection on onboard videos from the SMD
Vertical position error (pixels)

] 25th percentile  50th percentile ~ 95th percentile
Jeong ROI[33] 0.51 1.23 3.99
MusCoWERT](32] 0.54 1.49 8.17
MSCM-Life[49] 1.16 2.84 505.78
LHSL[48] 13.78 25.65 507.92
FGSL[33] 5.28 10.85 581.44
IntV[44] 13.36 24.89 498.17
Hough([44] 227 221.67 520.34
Ours (V1) 213.11 397.49 660.17
Ours (V2) [51] 0.58 1.26 4.74
Ours (CFEM) 0.51 1.09 3.83

Orientation angle error (degrees)
25th percentile ~ 50th percentile ~ 95th percentile
Jeong ROI[33] 0.05 0.12 0.39
MusCoWERT([32] 0.06 0.25 0.88
MSCM-Life[49] 0.17 0.38 5.50
LHSL[48] 0.88 1.37 6.52
FGSL[33] 0.67 1.00 3.88
IntV[44] 0.87 1.35 6.12
Hough([44] 0.25 1.00 4.57
Ours (V1) 0.50 2.11 9.48
Ours (V2) [51] | 0.06 0.14 0.55
Ours (CFEM) ‘ 0.05 0.11 0.44

HL at high speed with high accuracy, is effective for HL detection on high resolu-

tion video data. Example frames of the horizon line detection results for SMD and

BD are shown in Fig. 3.10, 3.12, 3.11 which indicates that the proposed method ac-

curately detected the horizon line in various maritime scenes. The detection results

for complex scenarios are shown in Fig. 3.13. The proposed method failed for data

in which the horizon line was mostly occluded by objects.
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Table 3.3: Comparision of horizon detection on onshore videos from the SMD
Vertical position error (pixels)

25th percentile  50th percentile ‘ 95th percentile
Jeong ROI[33] 099 2.09 | 12.87
MusCoWERT[32] 1.14 2.63 11.41
MSCM-Life[49] 1.63 3.88 81.59
LHSL[48] 14.96 27.92 109.00
FGSL[33] 5.88 11.53 64.70
IntV[44] 2.08 5.82 39.89
Hough([44] 3.12 165.02 460.24
Ours (V1) 1.43 4.32 573.72
Ours (V2) [51] 0.83 1.94 32.72
Ours (CFEM) 0.77 1.95 11.00
Orientation angle error (degrees)
25th percentile  50th percentile ~ 95th percentile

Jeong ROI[33] 0.04 0.10 0.67
MusCoWERT[32] 0.14 0.21 1.07
MSCM-Life[49] 0.11 0.18 1.14
LHSL[48] 0.75 1.03 3.86
FGSL[33] 0.75 1.00 2.87
IntV([44] 0.14 0.52 5.37
Hough[44] 0.14 0.36 3.80
Ours (V1) 0.12 0.27 4.88
Ours (V2) [51] 0.03 0.09 0.44
Ours (CFEM) 0.03 0.07 0.74

3.5 Conclusion

In this study, we proposed a novel fast horizon line detection method that optimizes

the horizon parameters by using a GA. We also adopted a coarse-to-fine approach

to meet real-time processing requirements. In addition, we introduced a fast es-

timation of global and local feature estimations for quick optimization. Previous

methods extracted the candidates of horizon using the edge information and use

consecutive filtering to find the final solution. A limitation of these methods is that
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Table 3.4: Comparision of horizon detection on videos from the Buoy dataset

Vertical position error (pixels)

25th percentile ~ 50th percentile | 95th percentile

Jeong ROI[33] 0.53 1.07 2.98
MSCM-Life[49] 1.54 2.97 11.56

LHSL[48] 0.66 1.50 3.76

FGSL[33] 0.60 1.35 3.84

IntV[44] 0.84 1.91 55.06

Hough[44] 0.77 1.76 4.46

Ours (V1) 0.46 1.01 293

Ours (V2) [51] 0.44 0.94 2.74

Ours (CFEM) 0.37 0.80 2.29

Orientation angle error (degrees)
25th percentile ~ 50th percentile ~ 95th percentile

Jeong ROI[33] 0.07 0.15 0.45
MSCM-Life[49] 0.33 0.57 11.56

LHSL[48] 0.17 0.33 0.67

FGSL[33] 0.18 0.36 0.79

IntV[44] 0.14 0.32 13.24

Hough([44] 0.18 0.37 0.89 |
Ours (V1) | 0.09 0.19 0.54 |
Ours (V2) [51] | 0.08 0.17 0.59 |
Ours (CFEM) | 0.06 0.14 0.44 |

Table 3.5: Average processing time per frame in seconds

Onboard | Onshore Buoy

Jeong ROI[33] 0.07 0.07 0.02
MusCoWERT([32] 9.2 9.5 5.8

MSCM-Life[49] 6.73 6.83 2.26
LHSL[48] 13.75 13.76 2.30
FGSL[33] 36.58 36.63 8.61
IntV[44] 0.30 0.30 0.01
Hough([44] 0.11 0.10 0.01
Ours (V1) 0.11 0.29 0.29
Ours (V2) [51] 0.04 0.04 0.02
Ours (CFEM) 0.05 0.05 0.02
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if the candidates cannot be extracted from edge information in the previous stage,
they are not considered in the next stage, even though these candidates are survival
candidates in the filtering of the next stages. Unlike these methods, our method is a
heuristic optimization-based method and local and global features are concurrently
utilized to evaluate each candidate. The proposed method does not extract edge in-
formation from multi-scale images, and even for blurred input images, it can detect
the horizon line.

The proposed method was tested on the SMD and BD, which are publicly
available datasets that contain complex maritime scenes. In addition, we com-
pared the performance of the proposed method with that state-of-the-art methods,
which used the same datasets. The experimental results indicated that the proposed
method could detect the horizon line more accurately than the compared methods.
In particular, the median positional error and median orientation error of the pro-
posed method were relatively smaller than those of all the compared methods in all
datasets. The processing speed of our method was approximately 20 fps for high-
resolution images. However, the proposed method failed in scenarios in which the
horizon line was mostly occluded by objects as shown at the top of Fig. 3.13. The
mostly occluded case is out of range of the proposed method. In future work, we
plan to explore other optimization criteria and features for robust detection of HL.
in complex scenarios such as the horizon is mostly occluded and the coastal line is

visible.
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Figure 3.10: Sample frames of detection results from the onboard dataset of SMD.
The red and blue dashed lines indicate the detection result of the horizon line and
the coarse-step optimization result, respectively, and the green line indicates the
ground truth.
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Figure 3.11: Sample frames of detection results from Bouy dataset. The red and
blue dashed lines indicate the detection result of the horizon line and the coarse-
step optimization result, respectively, and the green line indicates the ground truth.
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Figure 3.12: Sample frames of detection results the onshore dataset of SMD. (c)
Detection results on BD. The red and blue dashed lines indicate the detection result
of the horizon line and the coarse-step optimization result, respectively, and the
green line indicates the ground truth.
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Figure 3.13: Detection results on complex scenarios, with occlusion of the horizon
and blurred images. The red and blue dashed lines indicate the detection result of
the horizon line and the coarse-step optimization result, respectively, and the green
line indicates the ground truth.
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Chapter 4

Possibility of practical application

In this chapter, some practical applications of the proposed method are introduced.
In previous studies, deterministic methods such as Hough and Radon transform-
based methods are used to detect line detection. In chapter 3, we introduced the
evolutionary method which metaheuristic method to detect the horizon line. As a
result, the effectiveness of the evolutionary method is confirmed. Therefore, we
tested the proposed method for two applications of borderline (single line) detec-
tion. First, we applied for detection of the horizon line in road scenarios images.
Like the proposed method in chapter 3, GA is utilised for optimization of line pa-
rameters, and local features estimation is used for the objective function. The local
features are derived from vanishing line characteristics. The section 4.1 introduces
the methods in detail. Second, we proposed the evolutionary method for finding
the boundary line for mower. The boundary line is a single line in the image plane
which separates the image into the cut grass and the uncut grass regions. In the
section 4.2, the method is introduced in detail. As a result of tests, the evolutionary

method is useful in borderline line detection applications.
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4.1 Horizon line detection in road images using ge-

netic algorithm

In this section, I explain a fast horizon detection in road images using genetic al-
gorithm. In mobile robots and autonomous vehicles, the information of depth and
camera’s orientation are necessary for the applications of positioning and naviga-
tion. We propose a horizon line (HL) detection method on the road image captured
by a single fish-eye camera. The fish-eye camera can capture a broader scope of
environmental information than camera with narrow angle view. It is important to
detect the objects by one camera for advanced driver assistance systems. The HL
can provide the important information about depth and camera’s orientation for the
single view estimation. The detection of HL is assumed as an optimization prob-
lem. The optimization of the line parameters is performed by the genetic algorithm
(GA). We implement the real-time detection method of HL using GA. There has
fisheye dataset for autonomous driving [55] but there has not ground truth of hori-
zon line of the videos. Therefore, we created by fish-eye camera with the various
environment, and we tested the proposed method on this dataset. Experimental

results demonstrate the efficiency of the proposed method.

4.1.1 Introduction

Autonomous vehicles (AVs) and advanced driver assistance systems (ADASs) have
become the active research area aimed at improving traffic safety. In recent years,
several techniques estimating depth and camera‘s orientation have been developed

using the single image and stream observed with a monocular camera. In the last
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two decades, the estimation techniques of relative camera pose and 3D structure
from monocular images, have been widely developed.

The horizon line (HL) is defined by the Vanishing Line (VL) of ground/road
plane. According to the suggestion of Gibson[56] and Hartley et al.[57], the van-
ishing line on the image plane can provide important information about depth and
camera’s orientation for single view estimation. a Okada et al.[58] and Bertozzi
et al.[59] used the static HL (HL is fixed) for filtering to decrease the number of
false positives. Unfortunately, each movement of the vehicle causes the variation -
of camera orientation and estimation of depth. Therefore, horizon line detection is
needed. Common detection approaches of the HL and VL use the voting procedure
on the extracted edge line segments to find points with many intersects[60, 61]. Fe-
filatyev et al.[54] present a method for detecting the VL by looking for similar pairs
from scale-invariant feature transform (SIFT) keypoints. But this method focused
on the only stochastically-textured plane such as ocean surface. Ahmad et al.[62]
proposed the HL detection method, which is Local Features based method with
machine learning. First, Maximally Stable Extremal Edges (MSEE) are extracted.
Then SIFT is computed on MSEE. Finally, SVM classifier is used to classify MSSE
pixels are into horizon or non-horizon. Limitation of this work is training data
(which is needed for the new scene) and the horizon is expressed by boundary points
(too flexible).

In this study, we propose the appearance-assumption-based method on the im-
age to detect the HL. It is necessary to search the HL. within the wide range since the
camera mounted on a vehicle has oscillation. The exhaustive search is expensive in

processing time. In order to solve this problem efficiently, this study exploit GA as
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the optimization technique for the HL detection. Our proposed method has the fol-
lowing advantages. First, it can detect the HL on the image taken by an uncalibrated
fish-eye camera. Because an uncalibrated image has high radial distortion effect. To
minimize the radial distortion effect error, the HL is encoded into two linked lines
in this research. Second, the detection algorithm with GA searches for the HL on
input image. Thus, the preprocessing stages such as edge detection and clustering
are not required. Third, our method can detect the HL from a single image. More-
over, our method is able to run in the real-time. For the reason that the proposed
method uses the inheritance of genetic information from the detection result of the
previous video frame. The proposed method is detailed described in the following

sections. Experimental results are shown in Section 4.3.

4.1.2 Methodology

This section explains the HL detection method based on the appearance-assumption
by using GA [14]. The main idea of this research is the appearance-assumptions of
the HL is initially described. Then, the defined description is formulated into logical
rules. This logical rule becomes the fitness function in GA. To become efficiency
and robustness, we used the GA to find the best-fitted HL. After that, the most fitted
HL for the formulated rule is directly searched from the input image. The HL has
described not the single line, it is described by two linked lines in this research. The

details of the methodology are explained by following paragraphs:
* Horizon Line in Road Images,
* HL Parameters and Structure Chromosome,
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* Fitness Function.

Horizon Line in Road Images

In this work, we considered that the HL also represents the vanishing line of the road
surface on an image plane. In fact, the HL on the image plane is the vanishing line
where the road surface vanishes and disappears on the image plane. If we assume
that the road surface is relatively flat, all parallel planes to the sea surface plane
intersect in a common line on the image plane. This common line considers the HL
of the road surface plane [57]. The HL is geometrically illustrated in Fig. 4.1. From
this understanding, we propose three essential characteristics. First, an appearance
of above the HL is different from the appearance of below the HL. Second, regions
which close to HL tend to be uniform textures. The reason is that the wide area
of the sea surface is projected to a few pixels near the HL in the image illustrated
in Fig. 4.1(b). Thus the regions which close to HL has texture-less. Third, the
appearance of above the HL, for instance; obstacle and object, have anisotropic

/uncommon/ characteristics.

HL Parameters and Structure Chromosome

As shown in Fig. 4.2, power lines are projected on image by curve due to distortion
of the fish-eye camera. To minimize the distortion effect of the fish-eye camera,
the HL is demonstrated by linked two lines at three points. The HL encoded into
4 parameters as a chromosome. These are the orientation of line ¢, height adjust-
ment of center point «, height adjustment of left point 3, and height adjustment of

right point 9. The GAs work with a strings of the parameter set, not the parameter
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Figure 4.1: The formulation of a horizon line. The horizon line [ is obtained at the
intersection of the image plane p and the plane m which passes through the camera
center C. The plane 7 is parallel to the ground surface plane y. (b) The r;,r; are
surface regions and the 7‘3, r; are projected regions of the r; > r;.

themselves. These chromosomes represent the line on the image. The length of
chromosome affects the processing speed. Therefore, we minimized the length of
the chromosome according to the range of parameters. Table 4.1 shows the range
of each parameter. Eq. 4.1 describe the location of the center point. Eq. 4.2 and

Eq. 4.3 formulate the location of the left and right points. In eqs.4.1-4.3, W and H
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Table 4.1: List of each candidate line parameter’s range

Parameter Range Length of gene Step size
[ [—0.17,0.37] 5 bit 0.27/32
a [-0.25H,0.25H] 8 bit 0.5H/256
I¥] [-0.02H,0.02H] 4 bit 0.04H/16
& [-0.02H,0.02H] 4 bit 0.04H/16

donate the width and height of the input image.

W H

Pcenter . (xlyyl) = (?7 5 + O‘) (41)
H %%

Presi o (z0,90) = (0, 5 tor— o X () +8) (4.2)
H %%

Prignt (z2,92) = (0, D) +a+ o X () +9) (4.3)

Fitness Function

The GA works on the maximization of fitness. The fitness value of a candidate
F consists of three subfunctions in Eq. 4.4. These functions are inspired by the
appearance-assumption of HL stated in section 6.1. Equations 4.5-4.7 formulate
three sub-functions. Function7T'B calculates the number of the symmetric points
if the pixel value difference of the two symmetric points with respect to the HL
is greater than the threshold value T'"H. The T'H is a threshold value to judge the
similar or different. The 7T'H is empirically fixed to 10. The function 7 calculates a
point on the top side of HL. when the pixel value difference between that point and

neighbor point along with y-axis is greater than the 7'H. The function B calculates
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Figure 4.2: The description of the candidate line by red. (zo,vo),(Z1,¥1),(x2, y2)
are coordinates of respectively the left, center and right. The (0,0) is the origin
point and L is a parameter to control the evaluation range of the candidate. W and
H denote the width and height of the input image.

a point on the bottom side of HL when the pixel value difference between that point

and neighbor point along with y-axis is lower than the T'H.

1 s . .
F= T ; 2 (TB(j,z) + T(j,z) + B(j, x)), 4.4)
1 |P(z,Y(z)+j) — P(z,Y(z) — j)| > TH
TB(j,z) = 4.5)
0 otherwise
1 |P(z,Y(z)—j) - Plz+1,Y(x) - j)| >TH
T(j,z) = | (4.6)

0 otherwise
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1 |P(z,Y(z)+j)— Plz+1,Y(z)+5)| < TH
B(j,x) = 4.7

0 otherwise

where L is a parameter to control the evaluation range when L is equal to 20. Y (z)

is given by Eq. 4.8.

Yo+ ot xx T <1
Y(z) = (4.8)
Y1+ 20 X (z—%) otherwise

where (2o, Y0),(z1,¥1),(z2,y2) are coordinates of respectively the left, center and
right points of the candidate. These coordinates are decoded from the chromosome

of candidate.

4.1.3 Experimental Result

This section mentions the experimental results of the proposed method. The pro-
posed method is tested on real traffic 10 sequences involving the moving objects
of pedestrian, cars, and bicycles in different environments. The sequences 1-9 are
cgptured when the car stops at the crossroad. The sequence 10 is captured when
the car moves into the crossroad. The dataset is captured by the fish-eye camera
mounted above 0.7m high from the ground panel in the car. The ground truths of
HL and moving object are labeled manually per frame. Each sequence consists of
150 frames in 320 x 240 pixel resolution. The frame rate is 30fps. All the results
are tested on the PC with CPU of Intel Core (TM) 17-3770 (3.40 GHz) and RAM of

8.0 GB. The details of the evaluation criteria and experimental results are explained
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by following paragraphs.

Evaluation Criteria

To evaluate the detection of HL, we calculated absolute distance error and absolute

orientation error. The absolute distance error is evaluated the following Eq. 4.9.

w-1
=Y [YFT -y (4.9)

=0
where Y%7 is y coordinate of the point, it lies on the ground truth line at x coordi-

nate. Y,/ is y coordinate of the point, it lies on the detected HL at z coordinate.

The absolute orientation error is evaluated the following Eq. 4.10.

_ !SDGT . SOHL|

5 (4.10)

To
where ©C7 is the angle of ground truth line and 7 is the angle of detected HL,
defined by Eq. 4.11.

—1(Y1—Y —1(Yy2—y
_tan T (2=0) +tanT (221

HL . Tro—T1
= 4.11
v 5 (4.11)

Where (o, Y%0), (z1,91), (z2,y2) are coordinates of respectively the left, center and

right points of detected the HL.

Experimental Result of Horizon Line Detection

In order to prove the performance of the proposed HL detection method, while ro-

tating the input frame, we evaluated the position and orientation of the HL.. The
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Table 4.2: Performance result of horizontal line estimation

Number of sequence Average absolute error =~ Average absolute error
of distance (pixels) of orientation (degrees)

Sequence 1 4.26 1.75

Sequence 2 3.86 1.85

Sequence 3 2.65 1.35

Sequence 4 3.81 0.86

Sequence 5 3.47 2.79

Sequence 6 5.14 2.98

Sequence 7 4.35 1.37

Sequence & 2.94 0.70

Sequence 9 2.13 1.57

Sequence 10 5.49 1.61

angle of the ground truth line can assume as equal to the rotation angle of the input
frame because the orientations of ground truth lines equal to O without any rotation.
The rotation range is fixed to be [—10°, 10°] and rotation rate is 1° every two frames.
The estimation result of HL orientation is shown in Fig. 4.3. The estimated orienta-
tion was similar to the rotation angle of frame. Table4.2 shows the average absolute
error of distance and average absolute error of orientation on 10 sequences. The
average processing time of HL detection was 32.52ms for one frame under the fol-
lowing condition. The probabilities of crossover and mutation were 0.70 and 0.01.

The number of individuals and generation iterations was 30 and 50.

4.1.4 Conclusion

In conclusion, the absolute error of position and absolute error of orientation are
low and the difference between the absolute errors are stable. Our proposed method
can be used to detect the horizon line in road images. In the future, we would like

to improve the proposed method and compare with the state-of-art methods.
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Figure 4.3: Results of HL orientation estimation on the 10 sequences with rotation.
Red line represents rotation angles of dataset’s frame.

4.2 Local texture based borderline detection of mow-
ing using genetic algorithm

In this section, I explain a local texture based borderline detection of mowing using
genetic algorithm. With the development of automatic robots technology, it is using
for more and more fields, mowing is still done manually. One of the important
reasons of this is that it is difficult to automatically plan the mowing path. Therefore,
we proposed a method for finding the boundary line between the cut grass and the
uncut grass based on GLCM (greylevel co-occurrence matrix) for this problem.
The features we extracted were energy, contrast, correlation and entropy by each
GLCM, then using the average of each feature to segment the image of the grass. We
used these features to find a boundary line that maximizes the difference in features

on both sides. Finally, GA (genetic algorithm) is used to solve the maximization

65



problem. The experiment shows that it is feasible to distinguish between the cut

grass and the uncut grass using GA and GLCM features.

4.2.1 Introduction

Computer vision technique is more and more widespread along with the develop-
ment of these techniques, and these are applied for many actual products. However,
the mowing is not automated completely yet. Using traditional pure manual mow-
ing takes not only much time, but also the cutting effect is not good. Nowadays, a
widely used mowing machine cannot efficiently cut grassland automatically. If we
use these mowing machines to cut grass, it will take much time to repeat mechan-
ical labour. Although it can improve the efficiency of mowing, it is dangerous and
annoying for operators. Therefore, if we can develop an automatic mowing robot
will save a lot of human resources and material resources [63].

To develop a robot that can automatically cut grass for various scenes, a key
component is planning the path of the mowing robot. This is used to guide the
mowing robot to automatically identify the path that should be followed so that it
does not need to operate the mowing robot. There are many means for planning the
path, the mainstreams include using GPS and image, but the accuracy of GPS is not
satisfied with our requirements. In this study, we seek out the boundary line of the
cut and uncut parts by using an image. However, results in the following factors
that are very hard, the various scenes, the non-regular distribution of grass, different
illumination and so on. In this study, we propose a method that is basing GLCM
and GA to find out the boundary line.

A. Texture with GLCM The texture is the surface identity of the object. Usually,
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the surface of various objects has different texture features. The texture feature is
one of the important features that can reflect the surface of different objects in an
image. Different objects can be distinguished by comparing the texture information
of the surfaces of different objects. As shown in Fig.4.4, the texture of the cut
and uncut grass in the image is different. In this study, we used gray level co-
occurrence matrix (GLCM) to extract texture features from an image. GLCM can
extract the features of texture from the image in different directions. The method
records the pixel pair information in part of the image with different directions to
construct GLCMs, and then calculate features by GLCM with a series of equations.
By comparing the texture information in an image, we can find the boundary line
between the cut grass and the uncut grass, thus guiding the mowing robot to work

on the path that should be followed.

4.2.2 Related Work

Image segmentation is an important method in computer vision that divides an im-
age into parts by features. The traditional method uses color information to seg-
ment images. However, when using color information, it is affected by disturbance
factors such as weather and illumination, the result of the segmentation may be un-
stable. Some methods use texture features to reduce the effects of these disturbance
factors on an image. In [64, 65] propose using a fixed set of Gabor filters to extract
the texture features from an image. In order to make the experimental results more
stable. In [66] analyses the texture information of the image using order statistics,
and segment images based on these statistics. In [67] uses GLCM to analyze the
texture of the B-mode images and extract features to judge lesions. In [68] proposed
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Figure 4.4: These pictures show us the boundary line between the cut grass and the
uncut grass. The left side of each picture shows we the texture of uncut grass, the
right side of each picture shows we the texture of cut grass.

a method that uses GLCM to extract the texture features, then use SVM to classify
the obtained feature quantities. However, this approach requires a significant learn-
ing data-set. In this study, the GLCM is used to extract the features, and then our
problem becomes an optimization problem, we use the GA to solve this optimiza-
tion problem. The GA simulates the process of the evolution of biological proposed
in [69, 1]. It is a search heuristic algorithm used to solve the optimization problem.
In [70] using GA to do the segmentation of the computed tomography images to
find the prostate. In [71] using a GA identifying a region in HSI for outdoor field
weed sensing. In [72] using GA to search objects of interest in a complex scene.
In [73] proposed a closed-loop image segmentation system which incorporates a
GA to process images with variable environmental and can adapt to the changes in
real-world such as time of day, clouds, etc. In [74] proposed an improved Sobel

algorithm that uses a GA to automatically set the optimal threshold.

4.2.3 Methodology
The details of the methodology are explained by following paragraphs:

* Problem Description,
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¢ Construction of GLCM,

¢ Construction of Chromosome of GA.

Problem Description

This study utilizes the method of GLCM and GA to detect the boundary line. The
GLCM is used to extract the features in the image’s texture. Also, GA is used to find
the optimal solution of cut grass and the uncut grass boundary line of the image.
Input is given a gray scale image, noted as /. In this work, we extract GLCM
features from I to construct the GLCM features vector which size is n x m, the
row is n, the column is m, and the dimensional of the vector is noted as dim, with
dim = 6. Which include 4 dimensional of GLCM features and 2 dimensional of
local information. We want to divide the I into two parts that are cut and uncut
grass, noted as /; and I5. The size of [; is n; X my, size of Iy is ng X moy. I; U I
=Q.n,n,m,my € NT. P; ; is an element which include the features in row ¢
column j of the normalized symmetrical GLCM. And we calculate each part weight

center vector by formula 1, noted as G'1 and G2, respectively.
Gilk] = > Pylkl, k € dim, P € I, t € 1,2. (4.12)
ijel

In this work, we define the function D for boundary line to measure the difference

between I; and 1.

m G, F; el
D(I, ) =) > \(G-P,)?*G= L @13)

G, otherwise



With the D is defined, our purpose become find a boundary line b, that has the

maximal D.

by, = argmaz(D(I4, I5)) (4.14)

Using this formula we can calculate the fitness value for each boundary line.

Construction of GLCM

To construct GLCM, pre-process the image and homogenize the processed image
is necessary. At first, the gray level of the input image / need to be reduced, which
operator use to reduce the amount of calculation and reduce the noise interference.
The gray level is reduced to 8 as same as [75], the processed image noted as I, .
Then, we can use the Ir to construct the GLCM. And also, the size of the constructed
GLCM is 8 x 8 as same as [76]. In the step we construct GLCM with four directions:
0°,45°,90°,135°. As shown in Fig.4.5. We use a 32 x 32 sliding window in the
image. Then, count the pixel pairs in different directions in this sliding window, this
operator show in Fig.4.6. It show us the construct of GLCM, the left side of figure
is the pixels in sliding windows, the right side of figure is the GLCM. The Fig.4.6 is
a example of 0° direction. The pixel pair (1,1) in left is only once, so the coordinate
(1,1) of GLCM in right is 1. The pixel pair (5,7) in left is twice, so the coordinate
(5,7) of GLCM in right is 2. Next, for each direction construct the GLCM according
to the statistical values, which obtained by counting the pixel pairs that the pixels
which are neighbouring in different directions on the sliding window.

In this study, we used the four features: energy, entropy, correlation and contrast.
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The following function are equations of each feature.

N-1
Energy = Z(.Pi,j)Q. (4.15)
i,j=0
N-1
Entropy = Z —In(F; ;) B ;. (4.16)
§,§=0
N-1
Contrast = Z Pi;(i — )% 4.17)
i,j=0
S p G=w6—n)
Correlation = Z S (4.18)
o
i,j=0

The N is the number of gray levels. The s is calculated by the following function.

N-1
p=)Y iP,; (4.19)

1,j=0

The o2 is calculated by the following function.

N-1
p=Y P,;li—p? (4.20)

1,j=0

Then, we calculate the average features in four directions for every features, the
average features and the geometric information z, y is used to construct the features

vector of GLCM G.
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Figure 4.7: Examples of results. The left column is the images of datal, the middle
column is the images of data 2, the right column is the images of data 3.

Table 4.3: Comparison between GA and K-means with overlap rate.

Method Data Overlap rate
min max avg avg
data 1 56.96%  9931%  87.53%
GA data 2 63.03%  99.16%  85.46%  87.61

data 3 7417%  97.96%  89.01%
data 1 21.28%  97.59%  74.21%

K-means data 2 31.62%  9791%  76.53%  65.17
data 3 3428%  771.20%  47.38%

find the optimal solution of the weeding boundary line with the maximal D. The
experimental results show that the method is effective for searching the weeding
boundary line in different environments. In the future, we will use this method for

more various environment.
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or P, and C'I, at the same time, then consider this pixel is correct pixel, else the
pixel is not correct pizel. The all pixels in this image is noted as all pixel. Overlap
rate is:

correct pixel

overlap rate = ————. (4.21)
all pizel

Result Evaluation

In this experiment, for the GA parameters 50 initial individuals, and performed 20
iterations to get the optimal solution. We use the same parameter to deal with the
three data. The average overlap rate for comparing the processing results of 931
photos with the correct was 87.6%. We used K-means as comparing method to
segment the same images, the average overlap rate is 65.1%. We can find that the
overlap rate of our method is higher than use K-means. Especially, as shown in
Table 4.3 the results of data 3 indicate that our method has a great improvement
for the difficult case with short grass. The example results shown in Fig.4.7. From
the Fig.4.7, we can find that the method of using GLCM and GA to seek for the
boundary of the cut and uncut grass is feasible. The image withred borderin Fig.4.7
is the inaccurate result, that due to the features difference between different position
in uncut grass is more then the cut and uncut grass (e.g., target image include flower

and grass two parts).

4.2.5 Conclusion

In this study, we present a method for finding weeding boundaries based on GLCM
and GA. First, we extract the GLCM features in the image and then using these

features to define a function D for measure boundary line. Finally, use GA to
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6-bit binary gene to represent the position of the column for each point. That is to
say, our chromosome code by 18-bit binary code. Each binary code of chromosome

can map to a boundary line that total has 2'® possibilities.

4.2.4 Experimental result

The details of the experimental results are explained by following paragraphs. Those

are experimental environment, evaluation criteria, and result evaluation.

Experimental Environment

In this experiment, we collect three videos in different environments and under high
variability of lighting conditions. The video No.1 and No.3 are taken in an overcast
day and grass distributed messy. However, grass of video No.3 is short compare then
grass of video No.1, and it is more different to recognize the cut and uncut grass.
The video No.2 is taken on a bright day and grass distributed evenly. Moreover,
we extract 400, 200, 331 images from video No.1, No.2 and No.3 form datal data2
and data3, respectively. Three data-set total of 931 grass images are used to test the

performance of our method.

Evaluation Criteria

In this experiment, we used the overlap rate between the ground truth and our results
to measure the accuracy. Note the part left then the boundary in ground truth as P1;,
note the part right then the boundary in ground truth as PI5, note the part left then
the boundary in our result as C'I;, note the part right then the boundary in our result

as C'I,, note the pixel in this image as g¢; ;. If the pixel is belong to PI; and C1I,;
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Figure 4.6: The operation of GLCM construction.

Construction of Chromosome of GA
In this study, we want to search the boundary line with the maximum value of
function D. The boundary line of the grass image is always can divide image to the

left and right two parts. We designed a boundary line control by three points which

are in the image first, middle and bottom row to segment image. Then we use a
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Chapter 5

Conclusion

In this thesis, we proposed an evolutionary approach for horizon detection and
tracking in images. We formulate the horizon line detection as a global optimization
problem, and a genetic algorithm is utilized for the optimization of the horizon line
parameters. We also adopted a coarse-to-fine approach and fast local feature esti-
mation to meet real-time processing requirements on high-resolution images. The
local features are defined from vanishing line characteristics, and they can be fast
estimated on narrow regions of an image.

As a result, the effectiveness of the method is confirmed in some researches,
which are horizon detection in maritime images and horizon detection in road im-
ages. The proposed method can be used for other- prominent line detection prob-
lems, and we tested the method on the real problem of borderline detection of mow-
ing.

In the future, we would like to improve the proposed methods from line detec-

tion to curve detection problems and apply them to many practical systems.
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Appendix A

Details of the SMD and Comparison

Result

In this appendix section, we inform additional information abour datasets and the
criteria used for an evaluation of the proposed method and comparisons. The pro-
posed method applied to the Singapore Maritime Dataset (SMD) and Buoy-Dataset
(BD). The SMD contains onboard videos taken by a camera mounted on moving
board and onshore videos taken by a static camera installed onshore. Each frame
has 1920 x 1080 pixels resolution. The SMD has challenges including a strong
presence of wakes and waves, terrestrial features close to the horizon, and a differ-
ence in the color of the sea. The videos of BD are taken by a camera mounted on a
floating buoy. Each frame has 800 x 600 pixels resolution. The onboard videos of
SMD and BD have a large variation in the orientation and position of the horizon
line between adjacent frames. All videos and ground truths of the horizon line are
downloaded in [77]. The ground truth of the horizon line is represented by a ver-

tical position Y relatively upper edge and an angle o between the horizon line and
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Table A.1: Details of datasets.

Dataset Buoy Singapore maritime
Onboard Onshore
No. of videos 10 10 35
No. of frames 996 2915 16819
Min(Y -mean(Y")) -261.4424 -364.9797 -197.7587
Max(Y -mean(Y)) 339.1325 535.0281 395.6408
Standard deviationof Y 108.6655 162.4086 103.7937
Min(a-mean(a)) -15.9123 -3.8498 -1.6998
Max(a-mean(«)) 20.5301 4.1307 3.9690
Standard deviation of « 4.4371 1.8976 1.1653

horizontal edge of an image.

Due to updating the SMD databases, different numbers of videos and frames
are used in various research. In chapter 3, we organized the databases the same
as [33, 32] in rorder to compare our result with their results. They used the sam-
pled frames from videos of datasets. Specially, they not used the blurred frames in
the videos. Liang et al. [34] have not cut the blurred frames from videos of the
datasets. Therefore, we also tested the our method on dataset which same as [34].
The detailed procedure of organizing databases is available in [78]. We compared
our results to the result of [34].

The details of the datasets are given in Table A.1.

In general, to evaluate the performance of the horizon line detection, the angle
error a®" and vertical position error y*" are calculated in the estimated result and

the ground truth at every frame shown in (A.1) and (A.2).

o = ot — af (A1)
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Table A.2: The number of frames and ground truths for onboard videos of SMD.
Name of test sequences The number of ground truth/frames

MVI_0788_VIS_OB_HorizonGT 299
MVI_0789_VIS_OB_HorizonGT 279
MVI_0790_VIS_OB _HorizonGT 299
MVI_0792_VIS_OB_HorizonGT 299
MVI_0794_VIS_OB _HorizonGT 288
MVI_0795_VIS_OB_HorizonGT 255
MVI_0796_VIS_OB_HorizonGT 299
MVI_0797_VIS_OB_HorizonGT 299
MVI_0801_VIS_OB_HorizonGT 299
MVI_0804_VIS_OB _HorizonGT 299
The total number of frames 2915

ierr _ y;qt __,est (A2)

2

Average errors are calculated as:

1 N
o= Z:O: ™| (A3)
1 N
err _ err A4
yave N 12:(; |y1 I ( )

where N is the total number of frames in the dataset.

In the [34], the original frame of compared methods as on H-PDF[48], H-
DE[46], and H-CI[41] is down-sampled in order to estimate the performance under
the approximate computational complexity. Scale factor for SMD is 0.05, 0.04 and
0.1 on H-PDF, H-DE and H-CI respectively. Scale factor for BD is 0.05, 0.05 and
0.1 on H-PDF, H-DE and H-CI respectively. Results of the proposed method are
shown in Table A.4 to Table A.7. Average errors o, and yg,. are shown in Table

A.4 and Table A.S respectively. Standard deviations of vertical position error and
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angle error are shown in Table A.6 and Table A.7.

As the experiment result, the proposed method with both global and local fea-
ture estimation has the highest performance in the onboard dataset of SMD and BD
from compared methods. The average vertical position error and the average an-
gle error of the proposed method are the lowest from all compared methods in the
onboard dataset of SMD and BD. The proposed method with only local feature es-
timation also has a higher performance in the onboard dataset of SMD and BD than
compared methods. In the onshore dataset of SMD, the average vertical position
error of [34] is smaller than proposed method with only local feature estimation.
The angle error of the proposed methods are smaller than all compared methods in
the onshore dataset of SMD and BD. The experimental result demonstrates that the

proposed method is more robust and can accurately detect the horizon line.
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Name of test sequences
MVI_1469_VIS _HorizonGT
MVI_1470_VIS_HorizonGT
MVI_1471_VIS_HorizonGT
MVI_1474_VIS_HorizonGT
MVI_1478_VIS_HorizonGT
MVI_1479_VIS_HorizonGT
MVI_1481_VIS_HorizonGT
MVI_1482_VIS_HorizonGT
MVI_1483_VIS_HorizonGT
MVI_1484_VIS _HorizonGT
MVI_1578_VIS_HorizonGT
MVI_1582_VIS_HorizonGT
MVI_1583_VIS_HorizonGT
MVI_1584_VIS_HorizonGT
MVI_1587_VIS_HorizonGT
MVI_1592_VIS_HorizonGT
MVI_1609_VIS _HorizonGT
MVI_1610_VIS_HorizonGT
MVI_1612_VIS_HorizonGT
MVI_1613_VIS_HorizonGT
MVI_1614_VIS_HorizonGT
MVI_1615_VIS_HorizonGT
MVI_1617_VIS_HorizonGT
MVI_1619_VIS_HorizonGT
MVI_1620_VIS _HorizonGT
MVI_1622_VIS _HorizonGT
MVI_1623_VIS_HorizonGT
MVI_1624_VIS_HorizonGT
MVI_1625_VIS _HorizonGT
MVI_1626_VIS_HorizonGT
MVI_1627_VIS_HorizonGT
MVI_1640_VIS _HorizonGT
MVI_1644_VIS_HorizonGT
MVI_1645_VIS_HorizonGT
MVI_1646_VIS_HorizonGT
The total number of frames

81

Table A.3: The number of frames and ground truths for onshore videos of SMD.

The number of ground truth
600
266
299
445
477
206
409
454
299
687
505
540
251
539
600
491
505
543
261
626
582
566
600
473
502
309
522
494
995
556
600
310
252
535
520
16819




Table A.4: Average vertical position error (in pixel).

Methods

MSCM[49]
H-CI[41]
H-HC[44]
H-PDF[48]
H-DE[46]
ESSR-HV[34]
Ganbold [51]
Proposed

Methods

MSCM[49]
H-CI[41]
H-HC[44]
H-PDF[48]
H-DE[46]
ESSR-HV[34]
Ganbold [51]
Proposed

Buoy
Onboard
4.2395
139.2665
6.1450
174.2168
30.1506
3.0944
1.2698
0.9740

Dataset

Singapore maritime
Onboard Onshore
218.2402 109713
50.9551 87.7430
132.7571 42.0757
40.3386 43.3907
32.0536 40.2241
15.7981 7.0688
4.6314 9.0122
4.4877 6.3846

Table A.5: Average angle error (in degree).

Buoy
Onboard
0.5627
3.8630
0.4079
6.7451
3.4527
0.3847
0.2311
0.1812

Dataset

Singapore maritime

Onboard Onshore
1.5096 0.3247
1.8975 1.8172
0.8753 0.3651
2.4016 0.8765
3.8837 3.1037
0.4112 0.3124
0.2330 0.1805
0.3386 0.2869

Table A.6: Standard deviation on vertical position error.

Methods

MSCM[49]
H-CI[41]
H-HC[44]
H-PDF[48]
H-DE[46]
ESSR-HV[34]
Ganbold [51]

- Proposed

Buoy
Onboard
15.0124
116.2509
33.2009
221.9335
60.6384
17.6911
1.0033
1.3738

82

Dataset
Singapore maritime

Onboard Onshore
214.6823 35.5998
85.3445 158.8357
209.1154 109.3672
89.9382 126.1882
59.8974 55.4034
50.0784 | 13.4168
39.2421 | 17.7337
12.1686 | 12.8971



Table A.7: Standard deviation on angle error.

Dataset

Methods Buoy Singapore maritime

Onboard Onboard Onshore
MSCM[49] 0.7830 2.2527 0.4380
H-CI[41] 5.1883 2.8911 2.9519
H-HC[44] 0.6015 1.5724 0.6409
H-PDF[48] 8.9383 2.8667 1.5719
H-DE[46] 4.2080 4.3988 4.0729
ESSR-HV[34] 0.6773 0.7229 0.4085
Ganbold [51] 0.1954 0.4368 0.2745
Proposed 0.2619 0.8369 0.5445
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Appendix B

Dataset Captured by Fisheye Camera

Data was recorded using a fisheye camera mounted on the front-side bumper of the
car The location of camera shown in Fig. 1. The camera is at a height of 0.7 m. The
horizontal angle of view is 192 degrees. The vertical angle of view is 151 degrees.
To estimate the position on the image plane where the moving object on the ground

appears, image data was acquired by the following situation.

* Situation of car: stopped (0 km/h).

* Distance between car to measurement point: 0.2 m to 1.2 m (0.1 m incre-
ments), 1.4m, 1.6 m, 1.8 m, 20m, 3.0 m, 4.0 m, 5.0 m, 7.0 m, 10.0 m, 15.0

m, 20.0 m, 25.0 m

* Orientation between car direction and measurement point: 0, 15, 30, 45, 60,

75, 90, 105, 120, 135, 150, 165, 175, 180 (degrees)

Fig. B.2 shows the measured points on the input scene and the position of measured
points. As shown this figure, the vanishing of the ground on the image plane starts
from 25m. In other words, it is able to filter the near objects from 20m using horizon

34



line. The dataset is captured the real traffic 10 sequences involving the moving
objects of pedestrian, cars, and bicycles in different environments. Sample frames
are shown in Fig. B.3 and Fig. B.4. The sequences 1-9 are captured when the car
stops at the crossroad. The sequence 10 is captured when the car moves into the
crossroad. The ground truths of HL and moving object are labeled manually per
frame. Each sequence consists of 150 frames in 320 x 240 pixel resolution. The

frame rate is 30fps.
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Figure B.1: The location of the fisheye camera is shown in the top side figure. The
measured points on the input scene is shown in the bottom side figure.
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Figure B.2: The location of measured points. (a): The location of measured points
between from 0.2m to 1.2m. (b): The location of measured points between from
1.2m to 25m.
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Figure B.3: Sample frames of sequence 1-5.
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(10)

Figure B.4: Sample frames of sequence 6-10.
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