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Abstract 

Face recognition refers to the technology capable of identifying or verifying the 

identity of subjects in images or videos. Face recognition has a wide range of ap­

plications, which can be used in automatic access control systems, identification of 

ID cards, and home security. Facial recognition systems can identify individuals 

by comparing the input image to the stored or learned images. Based on the fact 

that different individuals have different facial features, face recognition systems 

usually take advantage of analyzing the characteristics of each individual's face. 

Compared with the common characteristics of many individuals, the unique char­

acteristics are usually emphasized to distinguish one identity from another. Since 

the first face recognition algorithms developed in the early seventies, the accuracy 

of face recognition improved to the new level that nowadays face recognition often 

performs more practical and more convenient than any other biometric modalities 

that have traditionally been considered more robust, such as fingerprint recognition 

and handwriting recognition. 

Most face detection and recognition tasks are based on the training of intact fa­

cial images and corresponding labels. Both the three-dimensional structure and 

two-dimensional appearance from the frontal view of human faces are approxi­

mately bilaterally symmetrical in general. However, sometimes, illumination on 



the left-half face and the right-half face is uneven. In this case, the symmetrical 

characteristic of human faces can facilitate expressing distinct identity information. 

This is because even if one side of the facial image is corrupted by noise, the oppo­

site side can still be used for feature extraction. The recent literature indicates that 

face recognition and facial expression classification has achieved high accuracy on 

benchmark datasets with a large number of face images in the wild. However, un­

like the purpose of recognizing as many people as possible, real applications for 

families or companies usually aim to recognize a small group of people as accu­

rately as possible. In case of the face is partially occluded, convolutional solutions 

always simply put images with occlusions into the training dataset and hope the 

convolution neural network learns a model robust to partial occlusion. These pro­

cesses not only increase the burden of learning but also affect the model to identify 

normal images without occlusions. 

To address this problem, an automatic selection of the better half of the face 

can be used for identity recognition with only a single half face. Different from 

the MegaFafe challenge of recognizing millions of identities in the wild, this thesis 

focuses on building recognition systems for a small number _of people with fewer 

training images, for example, building access control systems for research labo­

ratory members or family members. This thesis proposes an artificial face image 

construction method and a half-face training strategy for transfer learning of pre­

trained conventional neural network models. 

The facial image reconstruction to discard the influence of partial occlusion is 

also discussed. Based on the phenomenon that human faces are roughly symmet­

rical, the intact half-face can be used to reconstruct the facial information of the 



occluded areas. Specifically, occlusion on the left-half face is reconstructed with a 

linear combination of features on the right-half face and vice versa. The process is 

modeled by keeping row sparsity for the coefficient matrix with 12, I-norm regular­

ization while minimizing the reconstruction error. An alternative iterative algorithm 

is proposed to solve the optimization problem. To validate the effectiveness of the 

reconstruction, the pre-trained CNN model is trained on normal face images and 

tested with various occluded images. Extensive experimental results show that the 

proposed method improves the performance of state-of-the-art models by utilizing 

the symmetrical characteristics of human faces. 
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Chapter 1 

Introduction 

1.1 Background 

Face recognition refers to the technology capable of identifying or verifying the 

identity of subjects in images or videos [1, 2, 3]. Since the first face recognition 

algorithms [ 4, 5] developed in the early seventies, the accuracy of face recognition 

improved to the new level that nowadays face recognition often performs more prac­

tical and more convenient than any other biometric modalities that have tradition­

ally been considered more robust, such as fingerprint recognition and handwriting 

recognition [6, 7, 8]. 

A significant difference between face recognition and any other biometric 

modalities is that it has many influence factors, such as illumination, expression, 

pose, occlusion, and so on. The limited facial features will be affected by these 

factors. These factors will cause a significant intra-class difference, which may 

be greater than the inter-class difference. This is contr� to the objective of face 

recognition, i.e., maximizing the discriminating power between inter-class informa-
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tion and minimizing the differences between intra-class information [9]. 

In the first decade of the 21st century, with the development of machine learn­

ing, researchers have successively explored face recognition method which based 

on genetic algorithm [10], support vector machine (SVM) [11], boosting [12] and 

manifold learning [13]. Then, sparse representation [14] became a research hotspot 

because of its robustness to occlusion factors. At the same time, the industry has ba­

sically reached a consensus: feature extraction ba�ed on artificially designed local 

descriptors and subspace methods for feature selection can achieve_ the best recogni­

tion results. Gabor and LBP feature descriptors [ 15] are two of the most successful 

artificially designed local descriptors in the field of face recognition. During this 

period, the targeted processing of various face recognition influence factors is also 

the research hotspot of that stage, such as face illumination normalization, face 

pose correction, face super-resolution, and occlusion processing. Also at this time, 

the research about face recognition was moved frqm a constrained environment to 

an unconstrained environment. The LFW [ 16] Face Recognition Open Competition 

became popular in this context. The best recognition system at that time can achieve 

more than 99% recognition accuracy on the FRGC dataset which is constrained. 

In 2013, researchers at Microsoft Research Asia first attempted large-scale train­

ing data of 100,000 scales and obtained 95.17% accuracy on LFW based on high­

dimensional LBP features and the joint formulation [ 17]. This result indicates that 

large training data sets are important for effectively improving the accuracy of face 

recognition in an unconstrained environment. However, all of these classic methods 

are difficult to handle training scenarios for large datasets. 

Around 2014, with the development of big data and deep learning, neural net-
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works have attracted more and more attention, and have obtained far more results 

than classical methods in image classification, handwriting·recognition, and speech 

recognition. More and more researchers apply neural network to face recognition, 

and getting higher and higher accuracy [18, 19, 20, 21, 22]. 

Since then, researchers have continued to improve the network structure, while 

expanding the scale of training data, pushing the recognition accuracy on the 

LFW [ 16] to more than 99 .5 % . The basic trends based on some classic methods 

in the development of face recognition is as follows: the scale of training data is 

getting larger and larger, and the recognition accuracy is getting higher and higher. 

1.2 Research Problem 

Face recognition is a typical computer vision task based on classifying facial image 

features. In particular, because deep learning algorithms achieve good performance 

in image classification, numerous convolutional neural network (CNN)-based meth­

ods have been proposed to recognize millions of human identities in large face im­

age datasets. This is reasonable considering that facial analysis is based on the 

extraction and comparison of key features of the face. Among them, the integrity of 

the feature is the key to the success or failure of a face recognition algorithm [23]. 

In the case of extracting image features, once some parts of the features disappear 

owing to the occlusion or uneven illumination of the face, it will lead to fail or un­

satisfied results. It will also be impossible to compare with the face information 

in the database. The difficulty of face recognition caused by occlusion or uneven 

illumination is mainly reflected in the feature loss, alignment error, and local alias-
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ing (24]. 

In some cases, the face recognition of several people requires only a few images. 

For instance, when we wish to build an access control system for research labora-

. tory members or family members using face recognition techniques, the ability to 

recognize millions of human identities is not necessary. In this case, recognizing 

a few people is more important than recognizing millions of people. In addition, 

collecting millions of images is difficult and time-consuming. Therefore, this thesis 

focuses on the task of recognizing a few people with a small number of training 

images for practical use. 

In small datasets, facial feature extraction may be affected by factors such as 

illumination, expression, pose, and occlusion. These factors will cause significant 

facial feature information intact. This thesis proposes a more effective extraction of 

features using the symmetrical characteristics of human faces to reduce the effects 

of these factors, particularly the uneven illumination conditions and occlusion on 

the left and right half faces, as shown in Fig. 1.1 and Fig. 1.2, especially the left half 

face or the right half face is totally occluded, as shown in Fig. 1.3. As illustrated 

in the comparison between Fig. 1.4 and Fig. 1.5, the method proposed in this the­

sis is able to address the classification problem in all the cases that are shown in 

Fig. 1.1, Fig. 1.2, and Fig. 1.3 (25] (26]. For the uneven brightness on the face in the 

face recognition task, there are also other researches, such as lighting normaliza­

tion method. The underlying reflectance model is proposed in (27]. This method 

characterizes interactions between skin surface, lighting source and camera sensor, 

and elaborates the formation of face color appearance. The experimental results 

show that it is effective by improving the face recognition task. However, this kind 
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of methods is complex and time-consuming. So, this thesis propose a simple flip­

ping method to handle with·the left-right uneven illumination problem and left-right 

occlusion problem. 

Figure 1.1: Sample images of uneven illumination on left-half and right-half of face. 

The first row shows normal illuminated images. The second row shows images with a light 

source located on the left. The third row shows images with a light source located on the 

right. 

Considering that different individuals have different facial image features, face 

recognition systems typically analyze the distinctive characteristics of each individ­

ual's face. A face recognition system typically requires a large number of images 

for each individual to assemble the training image dataset. Most publicly accessible 

large face image datasets contain images captured in the wild and from different 

views, thereby resulting in many profile face images. Some images are collected di­

rectly from the Internet with unknown copyright problems. However, when building 

face recognition systems for a small number of people, it is difficult to collect the 

same number of images as the number of images in public datasets. When only a 
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Figure 1.2: Examples of occluded faces. 

Figure 1.3: The cases of left half face occluded and right half face occluded. 
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Figure 1.5: The case of applying the proposed method. 
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few images for each individual can be used, transfer learning of pre-trained CNN 

models on ImageNet is a good alternative for reusing the parameters trained for 

object classification. 

In the past two decades, feature extraction with artificially designed local de­

scriptors and subspace methods for classification have been investigated succes­

sively based on particle swarm optimization, support vector machine, boosting, and 

manifold learning. Subsequently, sparse representation [14] demonstrated robust­

ness to occlusion. Significant attention has been directed to improving the perfor­

mance of classification, which is affected by various factors, such as face i11umina­

tion normalization, face pose correction, face super-resolution, and occlusion pro­

cessing. Furthermore, studies regarding face recogi:iition have evolved from a con­

strained environment to an unconstrained environment. With the development of 

big data and deep learning, CNN s have attracted significant attention and achieved 

better results than existing methods in many image classification tasks. Moreover, 

face recognition methods using CNNs have achieved high accuracies-in many public 

datasets [18, 19, 20]. Since then, the scale of training data for CNNs has increased 

significantly, and the recognition accuracy has improved considerably. When train­

ing image shortage occurs, pre-trained networks from other large datasets can be 

reused by transferring the network for new classification tasks [28]. Hence, both 

the number of images required for training and the training time can be reduced 

significantly by transfer learning. This thesis proposes the application of facial 

symmetrical characteristics to transfer learning. 

Owing to the effects of varying illumination conditions on face recognition, 

Pizer et al. [29] proposed histogram equalization to normalize faces with differ-
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ent illumination effects. Shan et al. [30] developed a gamma intensity correction 

to normalize the overall image intensity at a specified illumination level; it per­

formed well in different situations. Blanz and Vetter [31] proposed a face recogni­

tion method suitable for a three-dimensional (3D) deformation model that describes 

the shape and texture of the face separately. This model achieved good results on 

the CMU-PIE [32] and FERET [33] datasets. Ishiyama et al. [34, 35] established a 

3D shape data model under arbitrary illumination and attitude, fitted the model in 

certain lighting conditions and posture positions, and then assessed the results. In a 

200-individual dataset, different illumination datasets, and multi-pose image sets (a 

total of 14,000 datasets), the average recognition accuracy rate reached 93.8%. 

In the field of hand-crafted features, partial occlusion has become an impor­

tant challenge for facial analysis, especially in face recognition. It has received 

widespread attention. Prior to the use of CNN s, the methods for partial occlusion 

were mainly divided into two categories. One was to extract only the part of the 

face that was not occluded, and the other was to recover the complete normal non-

occluded face from the occluded part [36]. 

In order to handle the occlusion problem in face recognition, Kim et al. [37] pro­

posed a method based on two-dimensional principal component analysis to combine 

the k-nearest neighbors and I-nearest neighbors classifier to eliminate the occlusion 

effect and then do the partial matching only on the non-occluded parts. Their re-

sults showed that their method �as robust to occlusions by sunglasses or scarfs. 

Another literature [38] introduced a support vector machine (SVM) based approach 

for partially occluded face recognition. When there is an occlusion in the training 

or test datasets, the feature vector of the defined sample will lack entries and the 

9 



conventional SVM will not be able to handle the problem. They� defined a criterion 

that minimizes the probability of overlap to solve this partial occlusion problem. To 

indicate the possible range of values for missing entries, the derivation algorithm in­

corporates additional terms into SVM to yield better classification results. However, 

it still remains a challenge to discard the influence of occlusion while recognizing 

the identity with faces. 

This thesis proposes a more effective extraction of features using the symmet­

rical characteristics of human faces to reduce the effects of the affect factors, such 

as illumination and occlusion. In [26], occlusion on the left-half face is recon­

structed with a linear combination of features on the right-half face, and vice versa. 

The process is modeled by keeping row sparsity for the coefficient matrix with l2 ,1-

norm regularization while minimizing the reconstruction error. This paper showed 

that the occluded half face can .be reconstructed by unoccluded half. This means 

that the symmetrical characteristic of human faces is effective to perform the face 

recognition task. In [25], an automatic selection method of the better half of the 

face using only a half-face for identity recognition is proposed. This paper pro­

poses an artificial face image construction method and a half-face training strategy 

for transfer learning of pretrained conventional neural network models. Extensive 

experimental results show that the proposed method improves the performance of 

state-of-the-art models by utilizing the symmetrical characteristics of human faces. 
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Chapter 2 

Related Works 

In various domains, face recognition has many applications, such as face recogni­

tion attendance system, face recognition anti-theft door, and so on. By identifying 

or verifying a person in video frames through the facial biometric pattern and data, 

face recognition has a wide range of applications in life. Therefore, face recognition 

received a great deal ·of attention over the last few years. 

As a biometric technique, face recognition has several advantages. Firstly, facial 

recognition technology is based on facial photos or real-time facial images, which is 

undoubtedly the easiest to obtain compared with iris recognition, fingerprint scan­

ning, palm scanning, and other technologies. Low cost, easy to promote and use. 

Since face recognition technology uses conventional general-purpose equipment, 

the price is within the acceptable range of general users. Compared with other 

biological recognition technologies, face recognition products have a high cost­

performance ratio. The equipment used in face recognition technology is ordinary 

PCs, cameras, and other conventional equipment. Since computers and closed­

circuit television monitoring systems have been widely used, most users do not 
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need to purchase a large number of special equipment to use face recognition tech­

nology. This not only protects the user's original investment, but also expands the 

functions of the user's existing equipment, and meets the user's security require­

ments. Secondly, in applications with high-security requirements, face recognition 

technology requires that the recognition object must be at the recognition site in 

person, and it is difficult for others to counterfeit. The unique active discrimination 

ability of face recognition technology ensures that others cannot deceive the recog­

nition system with inactive photos, puppets, and wax figures. This is difficult to 

achieve with biometric technology such as fingerprints. Thirdly, Face recognition 

technology uses a general-purpose camera as an identification information acquisi­

tion device to complete the recognition process in a non-contact manner without the 

recognition object being noticed. Intuitiveness highlights the use of facial recogni­

tion technology based on human facial images, and human faces are undoubtedly 

the most intuitive source of information that can be distinguished by the naked eye, 

which is convenient for manual confirmation and auditing. "Judge people by ap­

pearance" conforms to the law of human cognition. 

However, face recognition also has some disadvantages, it is not a perfect 

modality for all users. First, the facial feature information is unstable, which will 

change significantly over time due to aging, substantial changes in weight, lifestyle 

conditions, and modifications such as cosmetic surgery. Furthermore, face recogni­

tion is also affected by illumination conditions (such as day and night, indoor and 

outdoor), occlusion(such as masks, sunglasses, hair, beards, etc), and other unc_on­

strained factors. Finally, since faces are one of the most prominent identifiers in 

modern society, face recognition meets the problems of the acceptability criterion, 
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concerns about privacy (39, 40, 41]. 

Based on the images or videos obtained from surveillance systems, private cam­

eras, or other hardware, a 2D face recognition system can be built in the online 

mode or offline mode. For the automatic face recognition system, there are always 

three steps. Firstly, the system has to detect the face in the input images or videos 

and segment it from the detected area. Then, some predefined canonical structure 

should be aligned. And these methods must treated to account for potential illumi­

nation changes. Finally, extract the facial features from the aligned images. Based 

on the calculated features, identity recognition is performed using a proper classifi­

cation approach. 

2.1 Holistic Methods 

There are three different 2D face recognition method, ( 1) holistic methods, (2) geo­

metrical methods, and (3) deep learning-based methods (42]. The holistic methods· 

use the entire face region as input. Principal component analysis(PCA), known 

as eigenfaces [43] is the linear technique employed for facial recognition systems. 

Eigenfaces represent the main components of facial distribution. To overcome the 

problem of performance degradation due to illumination variability, based on the 

PCA methods, Zhao and Yang [ 44] presented a method for calculating the covari­

ance matrix employing three images acquired under different light conditions to 

account for random lighting effects when the subject is Lambertian. The holistic 

methods for face recognition are prevalently used for face recognition systems in 

the 20th century. However, it is very sensitive to context changes and misalign-
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ments. In the majority of cases,· the face must be cut manually from the image. 

Moreover, it is necessary to enforce geometric consistency in all facial instances 

because the data set is viewed as a single matrix. All of the facial images must be 

carefully matched within a standard frame of reference. In the face orientation, a 

minor error can cause substantial facial classification errors. 

2.2 Geometrical Methods 

Geometrical methods use facial landmarks to do face recognition tasks. Based on 

the geometric distribution, the landmarks of the face can be used to register facial 

features, the normalization of expressions, and the recognition of defined positions. 

Frank Y.Shih and Chao-Fa Chuang [45] represented a geometric face model to lo­

cate facial features and an elliptic model to trace face boundary to overcome the 

noises or clustered facial features candidates. Kumar et al. [ 46] represented an en­

semble face recognition system that makes use of a local descriptor called Dense 

Local Structure. It uses an additional graph structure which is generated by finding 

additional comer pixel points through bilinear interpolation of neighborhood pixels. 

This method showed good performance in both constrained and unconstrained envi­

ronments. For the geometric-based face recognition method, all facial images must 

be aligned to possess all referential points which contain mouth, nose, and eyes. It 

is usually considered as a challenging task that optimal automatic alignment. 
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2.3 Deep Learning Methods 

For 2D face recognition, deep learning methods have become the dominant ap­

proach. Convolutional Neural Network (CNN) is the most commonly used deep 

learning method in face recognition. The main advantage of the deep learning 

method is that a large amount of data can be used for training. The deep learn­

ing model for face recognition can learn the face feature that is robust to changes 

in the training data. This method does not need to design specific features that are 

robust to different �ypes of intra-class differences (such as lighting, posture, facial 

expressions, age, etc.), but can learn them from training data. The main shortcom­

ing of deep learning methods is that very large datasets for training are necessary, 

and these datasets need to contain enough changes so that they can be generalized 

to unseen samples. Fortunately, some large-scale face datasets containing natural 

face images have been published and can be used to -train CNN models. In addition 

to learning discriminative features, neural networks can also reduce dimensionality, 

and can be trained into classifiers. CNN is considered to be an end-to-end trainable 

system and does not need to be combined with any other specific methods. 

With the development of big data and computing systems, deep-learning-based 

methods for face recognition have become increasingly popular. CNNs are con­

sidered end-to-end trainable systems, which can not only learn discriminative fea­

tures, but also reduce dimensionality. Furthermore, image classification classifiers 

can be implemented after the training process iIJ CNNs. The ILSVRC competi­

tion [47] involved a task classifying an image into one of thousands of categories, 

where AlexNet [48] achieved remarkable classification results. AlexNet deepens 
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the structure of the network based on LeN et and learns features that are richer and 

have more dimensions. Subsequently, GoogLeNet (49] became more. attractive be­

cause of its simple structure and good performance in the classification task. With 

the development of CNN s, an increasing number of models have been developed 

in the field of face recognition, such as DeepFace (19], FaceNet [50], and Cos­

Face (51]. These methods yielded successful models for face recognition with a 

complicated CNN structure. A large-scale training dataset was required when using 

these models. When we cannot collect too many images instantly and only need to 

classify a small group of people, eg. research lab members, transfer learning with 

these models is a proper choice. 

However, the aforementioned methods are based on images of the entire face. 

Takano (52] mentioned that the human body is approximately left-right symmetric 

and people may sometimes be confused of the left and right when viewing a mir­

rored image. As part of the human body, the face exhibits this left-right symmetry. 

Hence, the similarity of the left- and right-half face features can be used for face de­

tection. In 2014, You et al. [53] proposed the use of facial symmetry characteristics 

for profile face detection. In 2016, Xu et al. (54] used symmetry to perform face 

image preprocessing and virtual face image data augmentation. In the research field 

of face recognition, recent studies have focused on a larger number of images in the 

dataset and better CNN structures. However, few studies have focused on the char­

acteristics of the face itself for simplifying face classification. This thesis proposes 

a method to deal with the left-right uneven illumination on face utilizing the sym­

metrical characteristics of human faces and a method to reconstruct the occluded 

half face by the unoccluded half. 
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Chapter 3 

Facial Symmetrical Characteristic 

3.1 Flipping Half Face for Testing 

Face recognition is sensitive to many external factors, such as illumination, make­

up, and occlusion. These factors can confuse the identification of a person. For 

example, under varying lighting conditions, it is challenging to identify a person 

correctly. In fact, it has been argued that two images of the same per�on are less sim­

ilar than two images of different persons based on the change in illumination [55]. 

This thesis proposes the use of symmetrical characteristics to improve the similarity 

between two images of the same person and reduce the effect of noise. 

3.1.1 Flipping Strategy 

This idea is motivated by the typical phenomenon of mirror reversal. When we 

stand in front of a mirror, we may easily confuse the left-half face with the right­

half face: The human body is completely different from the top to the bottom or 

from the front to the back; however, by mirroring, the similarity of the left- and 
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no processing flipping left 

(a) (b) 

,I 

flipping right 

(c) 

Figure 3.1: Flipping Scheme. (a) A face that is unaffected by illumination and does not 

require processing. (b) A face where the left-half is lighter than the right-half. The left-half 

face that is not affected by illumination is flipped to the right and then combined with the 

original left-half face to form a conjecture face. (c) A face where right-half is lighter than 

.. left-half. The right-half face that is not affected by illumination is flipped.to the left and 

then combined with the original right face to form a conjecture face. 
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right-half body can be recognized owing to the left-right symmetry of the human 

body. As part of the human body, the face exhibits this left-right symmetry. People 

are accustorp.ed to observing our faces usiIJg mirrors or photographs. Although we 

cannot distinguish between the left and right parts of our body through a mirror, we 

realize that the left-half and right-half of our body are approximately symmetrical. 

To verify whether a half-face may contain sufficient information for facial im­

age classification, a flipping strategy is proposed. As illustrated in Fig. 3 .1 (b ), the 

right-half face is darker than the left-half face. In Fig. 3.1 (c), the left-half face is 

darker than the right-half face (here, the directions of left and right are based on the 

viewpoint of the viewer). If we place Fig. 3.1 (b) vertically in front of the mirror, the 

image shown in the mirror will be similar to Fig. 3.1 (c) because the mirror image 

is left-right reversed. If we manually combine the left-half face of Fig. 3.1 (b) and 

the right half of Fig. 3.1 (c), the conjecture face will be similar to a human face that 

is not affected by the illumination. Therefore, we performed a left-right mirrored 

rotation of the half-face that is not affected by illumination and then combined it 

with the original half-face to generate a conjecture face. This process will reduce 

the effect of illumination on face recognition accuracy. 

Evidence was provided via mirror reversal as follows: 

• We are accustomed to observing our face via mirrors or photographs. Al­

though we cannot distinguish between the left and right parts of our body in 

the mirror, we realize that the left-half and right-half of our body are approx­

imately symmetrical. 

• For face recognition, we can flexibly use the faces that are reconstructed by 
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the left or right half-face. 

• Because we used the post-processing method to flip the face image, this flip­

ping process will not affect the performance of the classifier. 

3.1.2 Symmetry Extraction 

The cropped frontal face images exclude most background regions. However, the 

symmetry line is not always located in the middle line of the image. In most cases, 

the symmetry line is slightly shifted from the middle line of the image. Because 

we aim to obtain the flipping face, the first step is to identify the symmetry line 

of the face. To obtain an accurate symmetry, a textual- and color-histogram-based 

symmetry detection method [56] was applied. However, in our case, the prior in­

formation that the symmetry is close to the middle line and almost vertical can be 

used to simplify the symmetry detection. First, we applied a simplified log-Gabor 

fj.lter to calculate the image response. The applied two-dimensional (2D) log-Gabor 

filter (written in polar coordinates) in the frequency domain is defined as follows: 

G(w, 0) =G(w)G(0) = 

ex {- [ln (w/wo)] 2 }·ex {- (0 - 00) 2 } 

p 2 [ln (k/w0)]2 p 2CJ� 
(3.1) 

where w0 denotes the central frequency, k denotes the radial bandwidth, ·00 denotes 

the orientation, and CJ0 denotes the angular bandwidth. To obtain filters of the same 

shape, k / w0 was fixed in our case. Subsequently, the face image was transformed 

· using the log-Gabor filter. In our case, four scales and five orientations were applied 

to extract the features. The maximum amplitude was used as the response image. 
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Finally, the textural- and color-histogram-based symmetry triangulations were the 

same as those proposed in 2017 [56]. As shown in Fig. 3.2, the symmetry extraction 

result is shown on the left, whereas the corresponding probability map is displayed 

on the right. Most extracted symmetries are slightly shifted from the middle of the 

image. Therefore, flipping will enable the symmetry to he the same as the extracted 

symmetry; consequently, more accurate flipped images can be obtained. 

Figure 3.2: Symmetry extraction results. 

3.1.3 Symmetry Adjustment 

To flip the face along an inclined symmetry, an in-plane rotation was applied to the 

image, as shown in Fig. 3.3. Suppose an arbitrary pixel at (x, y) in image I with 

width w and height h is rotated with angle a to ·be ( x', y'). The correspondence can 

be calculated using the following trigonometric function: 

{ t ( w ) - ( h) · w' x = x - 2 cos a - y - 2 sm a + 2, 

t ( w) · ( h) h' y = x-2 sma+ Y-:-2 cosa+2 
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Because the rotation is around the image center, the center of the symmetry line is 

first shifted to the image center. Strictly cropped images of the Yale dataset only 

require a slight rotation, and images captured in the wild require a large rotation. 

.___, 
. . 

·a· 
. . 

> 

Figure 3.3: Rotate the image with angle a to make the symmetry line vertical. 

3.1.4 Flipping Scheme for Classification 

The reconstructed face can be classified into two cases according to the flip direc­

tion. In the first step, the strictly cropped image of one face is segregated into two 

sections of the same area on the left and right. Let I ( x, y) denote an arbitrary pixel 

in image I with width w. In one case, flipping the left face creates a new image h 

as follows: 

h(x,y) = { 
I(x,y), O:s;x:s;� 

I(w-x,y), �<x<w 
(3.3) 

The candidate area is the left-half face. The left-half face was flipped to the right 

side and combined with the original candidate area to construct a conjecture whole 

face. In another case, the candidate region is the right-half face. Hence, the right-

22 



half face was flipped to the left and combined with the original candidate region to 

construct a conjecture whole face IR as follows: 

{ I(x-�,y), 
IR (x,y)= 

I(x,y), 
(3.4) 

�<x<w 

Figure 3.1 illustrates the procedures of the flipping scheme and the construction 

of two artificial faces. Finally, the three images were predicted by the classifier 

individually, and the final prediction score p(I) is set as the sum of their prediction 

scores as follows: 

p (I) =p(I)+p(h)+p(IR) (3.5) 

r· 
Because the prediction scores will be used to find the maximum one, and the identity 

with the maximum prediction score is supposed to be the recognition result, the 

average of three prediction scores is equivalent to the sum of them. Calculating the 

sum of three prediction scores is also faster than the average. 

Using the flipping scheme method, we can not only solve the effect of un­

even illumination on the left and right half-faces but also perform face recognition 

smoothly. Compared with existing methods, flipping half face for testing constructs 

three new images and obtains three corresponding confidence vectors which needs 

to be summarized to output the ·final decision, as shown in Fig. 3.4. In recent years, 

many face recognition methods for illumination primarily train deep learning mod­

els to learn many images affected by illumination. The premise of this method is 

to collect rich data affected by illumination. However, the proposed method solves 

this problem from another perspective, where a significant amount· of data affected 
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Figure 3.4: Comparison between traditional methods and flipping half face for testing. 

by illumination need not be learned in advance, and recognition can be performed 

by the conjectured face using a flipping scheme as the post-processing method after 

learning the normal face images. 

3.2 Training with Half Faces 

In the previous section, flipping a half-face was proposed to construct an artificial 

face image for testing, i.e., a method that did not change the normal training pro-

cess. However, the artificial face image incurred new noise around the symmetry, 

rendering it visually different from normal faces. Therefore, we propose another 

method to apply facial symmetrical characteristics. In this method, all the whole­

face images are cut into halves, which can be denoted as left- and right-faces. To 

maintain an organized dataset, the right faces were mirrored such that they appear 

sim�lar to the left faces, as shown in Fig. 3.5. Subsequently, the six CNN models 
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Figure 3.5: Illustration of whole-face training set and half-face training set. The left­

half or right-half for each face was selected randomly, and. the right-half was flipped. 
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Figure 3.6: Comparison between traditional methods and training with half faces. 
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were trained on the new training images. In the testing stage, both the left-half and 

the mirrored right-half of the whole-face testing images �ere input into the classi­

fier, and the half-face with a higher prediction score was used as the final decision. 

We did not only use the left face to perform the training owing to two reasons. First, 

as each whole face was cut into two half-face images, the number of images would 

be doubled. For a fair comparison, we randomly selected only half of the whole 

face and did not use the other half. Second, in practical applications, the left face 

might be poorly illuminated, and hence the right face would be .more useful for 

the identification task. This training strategy will nullify the mutual effect between 

the two halves, and learning will be emphasized from each half-face image. Com­

pared with existing methods, training with half faces splits the whole face image 

into halves and obtains two confidence vectors for each of them, which needs to be 

summarized to output the final decision, as shown in Fig. 3.6. 

3.3 Face Reconstruction 

3.3.1 Problem Formulation 

For partial occlusions or uneven illumination which only covers an area smaller than 

half of the whole face image, there is a large possibility that the face is only half 

occluded or uneven illuminated while the othet half face normal. In this case, the fa­

cial information in the occluded or uneven illuminated area is corrupted and cannot 

be used for facial analysis. However, the facial information outside of the occluded 

are·a or uneven illuminated area remains the same as the raw data. We proposed a 

novel method to reconstruct the corrupted facial information of the occluded region 

26 



with uncorrupted dimensions of the raw data. 

Considering that the frontal view faces are usually roughly symmetrical along 

the middle vertical line, it can be assumed that the left-half and the right-half of 

frontal view human faces carry almost the same information but distributed with 

mirror reversal [57, 58]. When a small part of the human face is occluded or the 

illumination is not good, people tend to imagine the occluded part or dark part with 

other normal parts [54]. In this way, small occlusion or dark part does not affect the 

facial information analysis of our brain. Motivated by the visual information pro­

cessing mechanism, we assume that the corrupted facial feature on either half-face 

can be reconstructed with features on the other half face. Specifically, each dimen­

sion of the facial features can be reconstructed by a linear combination of features 

on the other half face. A representative feature that is close to the symmetrical 

position of the corrupted feature should give a large weight in the combination. 

Suppose there is a dataset containing n facial images, the left-half parts of all 

images are denoted by X E ]Rnxd and the right-half parts of all images are denoted 

by X E ]Rnxd, as shown in Fig. 3.7 and Fig. 3.8. Each half of an image is reshaped 

to be a vector of d dimensions. Each dimension of all the left-haif and right-half 

images in the dataset can be represented by fi and fi respectively. For each feature 

vector fi, the corresponding reconstruction optimization problem can be written as: 

min L lwjil
p

, 
j=l 

s.t. fi = L Wji�, 
j=l 

(3.6) 

where Wji represents the reconstruction coefficient and I- IP 
denotes the p-norm. The 
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Figure 3.7: The process to construct matrix X. 
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Figure 3.8: The process to construct matrix X. 
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corresponding matrix form can be formulated as: 

min IIWllp, s.t. X = XW, (3.7) 
w 

where W E �dxd is the reconstruction coefficient matrix. As shown in Fig. 3.9, this 

model uses the reconstruction coefficient matrix W to reconstruc't the left half faces 

with the information of the right half faces. Since the raw data of images always 

contains slight noise, the Frobenius norm is utilized to deal with the noise in the 

data. Then the problem (3.7) can be rewritten as: 

min IIEII} + nllWllp, s.t. X = XW + E, 
w,E 

by removing the reconstruction error E, the problem is equivalent to: 

min IIX - XWII} + nllWllp , 
w 

(3.8) 

(3.9) 

where the first term represents the reconstruction residual and the second term is 

the constraint to the coefficient matrix. The values of two terms are balanced by the 

parameter a. 

For the constraint of W, each feature is_ supposed to be reconstructed with a 

few most representative features. Therefore, l2,i-norm minimization is applied to 

keep the coefficient matrix sparse in rows. The l2 ,1-norm of W can be replaced by 

the sum of 2-norm of all row vectors. Let wi represent a row vector of W. The 
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Figure 3.9: The basic model uses the coefficient matrix W_ to reconstruct the left half faces 

with the information in the right half faces. 

corresponding reconstruction problem can be rewritten as: 

d 

mJn IIX - XWII} + a L llwi[l2 • 
i=l 

3.3.2 Optimization 

. (3.10) 

The coefficient matrix W is the variable needs to be solved. The minimization 

problem Eq. 3 .10 is equivalent to computing the minimum of the following function 

ofW: 
d 

£(W) = IIX- XWII} + a L llwill2, (3.11) 

i=l 

where both the first component and the second component are relevant to W. To 

minimize the value of £ (W), the derivative of £ respect to W will set to be zero to 

construct the equation. Firstly, the derivative of£ (W) is equivalent to the following 

form: 

(3.12) 

To simplify the above derivative, the relationship between the Frobenius norm 
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and the trace of matrix can be used here, which can be ·written as follows: 

m n 

IIAIIF = LL laijl
2 = JTr (A*A), 

i=l j=l 

(3.13) 

where A is an arbitrary matrix with m rows and n columns, aij .denotes its element 

in the i-th row and j-th column, and A* denotes the conjugate transpose of A. 

When the elements of A are all real numbers, the conjugate transpose of A is also 

equivalent to the transpose of A. Hence, the Frobenius norm in the first component 

of £ (W) is equivalent to the following form: 

11x-Xw11} = n ( (x-Xwf (x-Xw)) 

= Tr ( ( xr - ( Xw) 
r

) ( x - Xw)) . 
(3.14) 

The transpose of the product of two �atrices can be written as follows: 

(3.15) 

Hence, the first component of £ (W) is equivalent to the following form: 

(3.16) 

To simplify the above formula, the derivative of the product of two matrices can be 

written as follow: 

(3.17) 
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and the derivative of the product of three matrices can be writt�n as follow: 

8Tr (BT AB) _ ( r) 
aB 

- A+A B. (3.18) 

Then, the derivative of the first component of £ (W) is equivalent to the following 

form: 

The derivative of £ (W) is equivalent to the following form: 

where P E JRdxd is a diagonal matrix, with its element Pii calculated by: 

1 
p ii = ----;:=:::;:;::::::==. 

2Jwfwi + 6 

(3.19) 

(3.20) 

(3.21) 

Let the derivative of £ respect to W to be zero, then the equation will constructed 

as follows: 

(3.22) 

Considering that the coefficient matrix is sparse in rows, the term of wf wi will 

probably obtain zero in theory. Therefore, we add a small enough value fJ to avoid 

this situation. To obtain the solution of W, the Eq. 3.22 can be rewritten as: 

(3.23) 

32 



In this equation, variable W cannot be directly solved considering Palso depends 

on the value of W. Thus we propose an alternative iterative algorithm to find the 

optimal solution. When W is fixed, we can obtain P by Eq. 3.21 . When Pis fixed, 

W can be easily obtained by Eq. 3.23. The procedure of our optimization algorithm 

is given by Algorithm 1. 

Algorithm 1 Alternative iterative algorithm to compute the reconstruction coeffi­
cient matrix 
Input: The data matrix for left-half face images X E ]Rnxd, the data matrix for 

right-half face images X E JRnxd, the parameter a, a small enough constraint 

<5 . 

. Output: The coefficient matrix W. 

1: Initialize P = I P E ]Rdxd 
' 

2: Repeat 

3: Update W = ( :xrx + aP) -I :xr:x 

4: Update the diagonal matrix P E ]RdXd by 

1 
Pii = ---;:=:::;;;;;===, (i = 1, 2, · · · , d). 

2✓wf Wi + 6 

5: until Convergence. 

.,o
◄ 

10 

15 

20 

25 

30 

(a) 

� 10
◄ 

10 

15 

20 

25 

30 

10 15 

(d) 

Figure 3.10: Illustration of points on the left-half face being reconstructed with weighted 

features of the right-half face. (a) is the original facial image; (b) is the reconstruction 

weight matrix for point A; (c) is the reconstruction weight matrix for point B; .(d) is the 

reconstruction weight matrix for point C. 
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3.3.3 Application 

As shown in Fig. 3.l0(a), if the facial information of the highlighted three points 

on the left-half face are corrupted, the information of these points A, B, C can be 

reconstructed with all the features of the right-half face. The reconstruction coeffi­

cient matrices calculated by Algorithm 1 are illustrated in heat maps. Take point A 

for example, the pixel value of point A can be estimated by a linear combination of 

all the pixels on the right-half face with the coefficients illustrated in Fig. 3.l0(b). 

From these calculated coefficient matrices, it can be concluded that points close to 

the symmetrical position are given the largest weights, which indicates that these 

points are the most important ones to reconstruct points on the left face. If we only 

use the most important points to reconstruct points on the left face and ignore other 

less important points, the reconstruction process equals to mirroring/flipping a half 

face to the other half. 

As an application of this characteristic, if there are occlusions in some areas 

of the left-half face, we can estimate the original information in these occluded 

areas using the reconstruction strategy described aforementioned. However, it is 

-always unknown that either the left-half or the right-half is occluded. To address 

this problem, as shown in Fig.3.11, three cases have to be taken into account. First, 

the left half face is partially occluded. The features on the right face can be used to 

reconstruct the occlusi�n area. Second, the right half face is p�ially occluded. The 

features on the left face can be used to reconstruct the occlusion. Third, there is no 

occlusion on the face image and the reconstruction is not necessary. 

Since the reconstruction for the first two cases needs all the facial images in a 
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strictly cropped image dataset to calculate the coefficient matrix, the calculation is 

time-consuming and the reconstruction result also takes features with small weights 

into account which is likely to be sensitive to the noise on the right-half face image. 

According to the l2 ,i-norm minimization in Eq. 3.10, the reconstruction coefficient 

matrix is constrained to be sparse in rows. This constraint tries to reconstruct a point 

on the left face with a very small number of points on the right face. To simplify 

the calculation, we propose to use the symmetrical point alone on the right-half face 

to reconstruct the corresponding point on the left face. This reconstruction strategy 

satisfies both the row sparsity of coefficient matrix and the point with maximum 

weight being selected according to results illustrated in Fig. 3.10. For this process, 

it is necessary to determine the midline of the face. Our face symmetry detection 

method used the Log-Gabor filter to extract the texture-orientation feature and the 

HSV color space to extract the color feature [25]. 

Therefore, the occluded face image can be reconstructed by coping the unoc­

cluded half face and flipping it to the other side to replace the other half face, as 

shown in Fig.3.11 (b) and (c). Given an arbitrary frontal view face image I with 

width a, let I ( x, y) denotes the pixel with coordinates ( x, y). In one case, flipping 

the left face generates a new image h using Eq. 3.3. In this case, the left-half face 

is selected as the candidate's unoccluded area. Then, flip the left-half face to the 

right side, and combined it with the original candidate area to construct a conjec­

ture whole face. 

In another case, the right-half face is selected as the candidate unoccluded re­

gion. Then, flip the right-half face to the left, and combined with the original can­

didate region to construct a conjecture whole face IR- using Eq. 3.4. Figure3.11 
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(a) 
no processing 

(b) 

flipping left 

(c) 

Figure 3.11: Three cases of reconstructing face images to discard the influence of partial 

occlusion. (a) is the face image that does not need any processing steps; (b) is the face 

image that right-half face occluded; (c) is the face image that left-half face occluded. 
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illustrate the step of flipping and the construction of two artificial faces. Finally, 

the three images are predicted by the classifier individually and the final prediction 

score p(I) takes the maximum: 

p (I)+-- max (p (I) ,P (h) ,P (IR)). (3.24) 

Taking the maximum is an alternative strategy of Eq. 3.5 to summarize the three 

prediction scores. The experimental results on occluded faces verifies that Eq. 3.24 

is better than Eq. 3 .5 in terms of the face recognition performance, which will be 

introduced in Section 4.4.3. 

3.4 Transfer Learning 

In Chapter. 2, several methods for face recognition are introduced. The main ad­

vantage of the deep learning method is that a large amount of data c�n be used for 

training and does not need to design specific features that are robust to different 

types of intra-class differences (such as lighting, posture, facial expressions, age, 

etc.), but can learn them from training data. The main shortcoming of deep learn­

ing methods is that very large datasets for training are necessary, and these datasets 

need to contain enough changes so that they can be generalized to unseen sam­

ples. In our case, there are not enough uneven illumination and uneven occlusion 

data for training, so we utilize transfer learning method to do face recognition task. 

Transfer learning is defined as a method that extracts knowledge from one or more 

source tasks a�d applies the knowledge to a target task [59]. In our case, for a 
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faster and easier experiment, instead of training a new deep network to obtain opti­

mal weight parameters for each layer by illumination of a large face image dataset, 

we applied pre-trained neural network models that demonstrated good classifica­

tion ability for the classification task on ImageNet. The parameter tuning process 

will be faster because the fundamental feature extraction layers have been trained. 

The pre-trained CNN models applied in this study include AlexNet, GoogLeNet, 

SqueezeNet, ResNet-50, Inception-v3, and DenseNet-201. Among them, AlexNet 

and GoogLeNet are presented as examples to explain the layer replacement and pa­

rameter configuration. AlexNet contains five convolutional layers with max-pooling 

used in the first, second, and fifth convolution layers, and three fully-connected lay­

ers. The important image features can be extracted using these layers. Relu is used 

as the activation function. In addition, local response normalization, dropout, and 

data augmentation have been performed in AlexNet, which has been used in many 

deeper neural networks. GoogLeNet has a deeper network structure and fewer pa­

rameters than AlexNet. Owing to the use of average pooling to replace the fully 

connected layer in the traditional network architecture and its well-designed incep­

tion architecture, GoogLeNet performs well in classification tasks and is widely 

used in transfer learning. All the pre-trained networks require the replacement of 

the final fully connected layer to fit the number of classes in the new task. 

Figure 3.12 illustrates the process of transfer learning by AlexNet. The train­

ing process is illustrated in Fig. 3.13 We replaced the last three layers in AlexNet 

with our layers: a fully connected layer, softmax layer, and classification layer. 

The remaining parameters in the original model were preserved. Subsequently, 

the architecture was segmented into two: the pre-trained network and the trans-
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Figure 3.12: Transfer learning by AlexNet 

• 1 million images 
• 1000s classes 

Task 2 
• Fewer classes 
• Learn faster 

ferred network. AlexNet has been trained on over a million images on ImageNet. 

Rich feature representations have been learned from a wide range of images. In 

the pre-trained AlexNet, the last three layers were configured for 1000 classes. For 

GoogLeNet, we replaced a fully connected layer and a classification layer. To trans­

fer the pre-trained network to learn a new task, we specified the new options of the 

new layers according to the new data. As transfer learning employs all the pa­

rameters in the pre-trained network as initiation, it can exploit the features learned 

from massive images. Furthermore, the training of complex deep networks requires 

high-performance GPU and CPU, but the tasks using transfer learning can be im­

plemented on ordinary personal computers. Therefore, the experiment is rendered 

more convenient and effective. 
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Figure 3.13: Illustration of training process. (a) shows the accuracy varies over the number 

of iteration; (b) shows the loss varies over the number of iteration. 
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Figure 3.14: The framework of the variational autoencoder network for half face. 
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3.5 Facial Latent Spaces 

A representative generative model of variational autoencoder [ 60] can be used for 

extracting the latent variables off the whole face and the half face. Figure 3 .14 shows 

the frame work of the variational autoencoder network for half face [61]. If the la­

tent variable of the whole face is similar to that of the half face, it will verify that 

the half face has similar separating ability to the whole face and the visualization 

of latent variables will illustrate the similarity between their separating ability. The 

variational autoencoder model is commonly used to generate new images in similar 

style of the training dataset. It does not use the encoding-decoding process to recon- · 

struct an input image. It imposes a probability distribution on the latent space, and 

learns the distribution so that the distribution of outputs from the decoder matches 

that of the observed data. Then, the model will sample from this distribution to 

generate new data. The variational autoencoder model has two parts: the encoder 

and the decoder. The encoder takes an image input and outputs a compressed rep­

resentation (the encoding), which is a vector of pre-defined length, which equals 

to 100 for the whole face images in this paper. The decoder takes the compressed 

representation, decodes it, and recreates the original image. In this thesis, the input 

data takes the format of facial images. Both the whole face and· the half face are 

encoded separatly to extract their encoded low-dimentional data in the latent space, 

which can be used to compare the information loss and separating ability. 

From the original face image size (e.g. 32 x 32 x 1) to the pre-defined length of 

the latent space ( e.g. 100), the dimension is substantially reduced. From this per­

spective, the v�ational autoencoder model can also be regarded as a dimensionality 

41 



· reduction technique, which selects a small number of features from the whole fea­

ture set, or create some new features based on the old ones. This process is found 

useful in some applications, which need low-dimensional data, such as data com­

pression and data visualization. In the case of variational autoencoder, the encoder 

produces new features representation from the raw data, and the decoder performs 

as the reverse process. Original features in the raw data can be named with the ini­

tial space, and the new features which the encoder produces can be named with the 

encoded space, also called latent space. Depending on the initial space, the encoded 

space, and the reversed output of the decoder, the encoding process may lose a part 

of the information, which the decoding process cannot recover. In other words, 

the variational autoericoder model can be lossy while performing the dimensional­

ity reduction. However, the variational autoencoder is designed to find the optimal 

pair of encoder and decoder from a given set of all possible encoders and decoders, 

and this optimal pair of encoder and decoder can remain as much information as 

possible. Thus, the reconstruction error between the decoded output and the initial 

features is supposed to be minimized, which can be written as follows: 

(f;, fd) = argmin E (X, fd Ue (X ))), 
(fe,Jd)EFE xFv 

(3.25) 

where the X denotes the original features in the initial space, fe, fd represents the 

encoding function and the decoding function respectively, and the (f;, JJ) repre­

sents the optimal encoding function and the decoding function pair. The recon-
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struction error between the decoded output and the initial features is defined by 

E (X, fd (fe (X))) (3.26) 

The autoencoder architecture is frequently used.to solve the problem described in 

Eq. 3 .25. The autoencoder sets both the encoding function and the decoding func-

tion as neural networks and learns the optimal pair of encoder and decoder with an 

iterative optimization process. As the optimization starts, the autoencoder architec-

ture is fed with some training data, and the reconstruction error described in Eq. 3.26 

is calculated and backpropagated through the architecture to update the parameters 

of the entire neural networks. When the iteration process tends to convergence, 

the optimal pair of encoder and decoder will be learned. The overall autoencoder 

architecture can be described as follows: 

u:, J;,) = argmin IIX- x112 

(fe,Jd)EFE xFD 

argmin IIX - fd(Q)ll 2 

(fe,Jd)EFE XFD 

,argmin IIX- !d Ue (X)) 112 , 

(fe,Jd)EFE xFD 

(3.27) 

where Q denotes the encoded latent variables. The difference between the initial 

features and the reconstructed output of the autoencoder architecture is estimated 

by the l2 -norm. 

However, the loss function described in Eq. 3.27 has a disadvantage that the 

model learns the pair of encoder and decoder to keep as much initial information as 

. possible and ignores the interpretable and exploitable structures while training .by 
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the gradient descent strategy. The variational autoencoder model solves this issue 

by encoding the initial° space as a distribution over the latent space. The variational 

autoencoder model can be trained as follows: 

1. Firstly, assume the initial space can be encoded as a distribution p ( a I b) from 

a given distribution set, e.g. Gaussian distributions. Encode the raw data with 

the initial encoder networks to the latent space. 

2. Secondly, sample a point from the distribution, which is also from the latent 

space. 

3. Thirdly, decode the point and calculate the reconstruction error according to 

Eq. 3.27. 

4. Fourthly, backpropagate the reconstruction error through the encoding net­

works and the decoding networks and update their weight parameters. 

5. Finally, repeat the second step, the third step
," 

and the fourth step until con-

vergence. 

In the first step, the assumed distribution is usually defined to be normal, which will 

make the encoding networks output the mean and the covariance matrix to describe 

the distribution set. To ensure the distribution to be close to a standard normal 

distribution, a regularization term, expressed as the Kulback-Leibler divergence, 

can be added to Eq. 3.27 and the overall model can be written as: 

(f;, f;,) = argmin IIX - fd Ue (X)) 112 + DKL (N (µx , ax) IIN (0, 1)) 
(Je,Jd)EFE xFn 

(3.28) 
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where N (µx , a-
x) denotes a normal distribution with the mean of µx, and the stan­

dard deviation of a-x. The Kulback-Leibler divergence is denoted by DKL (·). The 

calculation of the Kulback-Leibler divergence while using distribution q to approx­

imate distribution p can be expressed as follows: 

N 

DKL(Pllq) = LP (xi)· (logp (xi) -logq (xi)) 
i=l 
N 

� 
p (xi) 

= LP (xi) -log-(x·), 
i=l q i 

which can also be expressed in the form of expectation: 

DKL(Pllq) = E [logp (x) -log q (x)]. 

(3.29) 

(3.30) 

If the logarithm chooses the base of 2, then Kulback-Leibler divergence represents 

the information loss measured by binary digit while using 9 to approximate p. 

To approximate complex distributions, the variational autoencoder applies the 

technique of variational inference, which finds the best approximation from an as-

sumed distribution family. For instance, the latent space is firstly assumed to follow 

Gaussian distribution. The Gaussian distribution family can be expressed by the pa-

rameters of the mean and the covariance matrix. Then, the technique of variational 

inference can be used to find the best pair of the mean and the covariance matrix to 

approximate the target distribution in the latent space. To explain how it finds the 

best approximation, a probabilistic assumption has to be introduced. Assume the 

data variable a E X is generated from a latent variable b E Q, then this assumption 

can be described as follows: the data variable a is sampled from the conditional 
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likelihood distribution p ( a I b). The conditional likelihood distribution p ( a I b) de­

scribes the decoding process and p (b I a) describes the encoding process. Applying 

the Bayes theorem, we have 

(b I ) = 
p(a I b)p(b) p a p(a) . (3.31) 

Suppose p(b I a) can be approximated by function Qa (b) which follows a Gaussian 

distribution, the mean and the covariance of Qa ( b) is defined by two aforementioned 

functions, µx and ax. Thus, this relationship can be expressed by 

(3.32) 

Then the problem of finding the optimal distribution to approximate the latent space 

is transformed into finding the optimal pair of function µx and function ax . Mean­

while, N (µx , ax) is supposed to be as close to the standard normal distribution as 

possible, which can be written as follows: 

(µ;,a-;)= argmin DKL (qa (b) IIP (b I a)). (3.33) 
(µx,ax)EGxH 

According to Bayes theorem expressed in Eq. 3.31, the Kulback-Leibler divergence 

in Eq. 3.33 can be rewritten as follows: 

· 
( p(a I b)p (b)) DKL (qa (b) IIP (b I a))= ]Eb~qa 

(logqa (b)) - ]Eb~qa 
log p (a) . 
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By splitting the expectations, we have 

(3.35) 

where e is a constant. In the second line of 3.35, p( a) is irrelevant with the distribu­

tion that b follows, thus IE.b~qa (log p( a)) can be represented as the constant e. In the 

third line, the Kulback-Leibler divergence is extracted according to Eq. 3.29. In the 

last line, the distribution of p( a I b) is parameterized as follows: 

p(a I b) = N(((b), cl) ( E F ·c > 0, (3.36) 

where ( denotes the function which is used to approximate the mean, and c is 

the constant which is used to approximate the covariance. Therefore, combining 

Eq. 3.33 with Eq. 3.35, the model to find the �ptimal pair of function µx and func­

tion O'x described in Eq . .3.33 can also be rewritten as: 

(µ;, o-;) = argmin (nKL (qa(b)llp(b)) - IE.b~qa (- Ila 
-

((b)ll
2)) 

(µx,ax)EGxH 2c 

( ( lla-((b)ll 2) ) = argmax IE.b~qa - 2 - DKL (qa(b)llp(b)) , 
(µx ,ax)EGxH C 

(3.37) 

where ( is also a unknown function to be found. However, ( can be optimized by 

maximizing the first term of the second line in Eq. 3.37. The overall variational 
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autoencoder architecture involving the aforementioned three functions can be ex-

pressed in the following optimization model: 

(µ;,CT;,(*)= argmax (]Eb~qa (-Ila -
2
((b)II')- DKL (qa(b)llp(b))), 

(µx ,ax ,()EGxHxJ C 

(3.38) 

where J is the function set from which the optimal (* can be found. To this end, 

all the unknown variable can be solved by an optimization problem. Two deep net­

works can be used as the encoder network and the decoder network to solve this 

optimization problem. The experimental result of the optimization will be intro­

duced in Section 4.5. 
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Chapter 4 

Experiment 

4.1 Datasets 

4.1.1 Dataset for Experiments on Uneven -�llumination 

To validate the performance of the flipping scheme as a post-processing method, 

660 images were augmented from the Yale dataset [62]. This dataset originally 

contains 165 images with 11 images for each individual. Each image was aug­

mented to create four images by additional mirroring operations, simulating dark 

illumination for the original and mirrored images, respectively. Because each indi­

vidual had two original images, the left-right image was unevenly illuminated, as 

shown in Fig. 1.1. The total number of left-right unevenly illuminated images was 

120 after augmentation, which were selected for testing. The remaining 540 images 

were used for training, within which 162 (30%) images were used for validation 

and 378 (70%) images were used for training. The small frontal face dataset was 

used for this experiment as the focus of this study was on the development of a face 
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recognition system for research laboratory members or family. 

To validate the performance of the training strategy on half-face images, the Yale 

and CASIA-WebFace datasets [63] were used to test the flipping strategy as a pre­

processing method. Because the face images of the CASl�-WebFace dataset were 

captured in the wild, only faces that can be detected by the OpenCV cascade frontal 

face detector were selected and cropped following the same standard of the Yale 

dataset to create the whole-face image dataset, which had 9,265 images. Compared 

with training the whole-face images, another 9,265 half-face images were cropped 

out to create the half-face image dataset. Both the whole-face and half-face datasets 

were segmented into 70% for training and 30% for testing. Table 4.1 shows the 

evaluation results of these two datasets for comparison. 

4.1.2 Dataset for Experiments on Occlusion 

For the occlusion problem, We used two datasets, the Yale facial dataset [62] and 

the extended Yale B facial dataset [ 64]. Yale facial dataset contains 165 gray scale 

images of 15 subjects. Each subject contains 11 images [62]. The extended Yale 

B facial dataset contains 16128 images of 28 human subjects. We used all of the 

images in the datasets for training the network. The test images was random selected 

from each individual. 

4.2 Flipping Scheme for Testing 

As the first step of our work, we loaded the pretrained AlexNet model and 

GoogLeNet. Subsequently, we examined the input dimension of the first layer of 
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the CNN models and preprocessed the input images according to the model. In 

our study, AlexNet and GoogLeNet required input dimensions of 227 x 227 x 3 

and 224 x 224 x 3, respectively. The primitive features from the images, such as 

edges and blobs, were learned by the first convolutional layer. Higher-level im­

age features were formed by the deeper layers of the network combined with these 

low-level features. 

As mentioned in Section 4.1.1, we used 15 individuals. Every individual had 11 

images. Because we focused on face recognition under the effect of illumination, 

we selected two images for each individual, i.e., the left-lighter face image and 

right-lighter face image, as the final recognition images. The remaining nine non­

illuminated images were used as training images. Because each individual had few 

images for training, we used three methods, i.e., mirroring, color equalization, and 

slight rotation to obtain more training data. Nine images were expanded using each 

method. For each individual, we expanded 27 images. In other words, we trained 

our own model using 36 images for each individual. 

In this experiment, both AlexNet and GoogLeNet applied stochastic gradient 

descent with momentum with a mini-batch size of 20, an L2 regulation factor of 

1 x 10-4
, and a momentum of 0.95. The maximum number of epoch was set to 6. 

The initial learning rate was 1 x 10-4
. Validation was performed for every epoch. 

The pretrained CNN models can easily extract the training feature. We used 

cross-validation to randomly select images for repeated training and testing. This 

method is effective in testing the performance of our model and prevents overfitting. 

We can guarantee that our model performs well on the dataset during training by di­

viding the dataset into a train set and a validation set. Because this experiment was 
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Figure 4.1: An example of classification result predicted by the first two methods. (a) 

Input image; (b) individual of 8, which is the result of the original classifier recognition of 

AlexNet; (c) individual of 10, which is the result of recognition after flipping left. Confi­

dence refers to the prediction score of a test image belonging to a certain identity. 
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Figure 4.2: An example of classification result predicted by the other two methods. (a) 

individual of 13, which is the result after flipping right; (b) individual of 13, which is the 

result that sums the no-processing, flipping left, and flipping right. Confidence refers to the 

prediction score of a test image belonging to a certain identity. 
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designed to evaluate the flipping scheme as a post-processing method in the testing 

stage and was not related to the training process, three different classifiers for both 

AlexNet and GoogLeNet were obtained according to different maximum epoch set­

tings, i.e., 4, 5, and 6. All classifiers were used to predict the artificial face image 

and the original test image for comparison. As illustrated in Figs. 4.3, Figs. 4.4, and 

Figs. 4.5, the receiver operating characteristic (ROC) curves were used to evaluate 

the flipping scheme. In these ROC curves, the curve of "no processing" represents 

the recognition accuracy obtained by inputting the original image into the AlexNet 

without any processing, and the curve of "flipping left" refers to the score that uses 

the image obtained by flipping the left-half face to the right and covering the orig­

inal right side as the test image. The curve of "flipping right" refers to the score 

that uses the image obtained by flipping the right half face to the left and cover­

ing the original left side as the test image. The curve of "proposed method" refers 

to the score that sums the scores of "no-processing", "flipping left", and "flipping 

right". The three experiments shown in Figs. 4.3, Figs. 4.4, and Figs. 4.5 was per­

formed on the classifier obtained on the AlexNet model while the maximum epoch 

is set as 4, 5, and 6 respectively. Similarly, in Figs. 4.6, Figs. 4.7, and Figs. 4.8, the 

curve of "no-processing" represents the recognition accuracy obtained by inputting 

the original image into the GoogLeNet model without any processing. the curve of 

"flipping left" and the curve of "flipping right" as well as the curve of "the proposed 

method" have the similar meaning as curves with AlexNet. Besides, the three ex­

periments shown in Figs. 4.6, Figs. 4.7, and Figs. 4.8 was performed on the classifier 

obtained on the GoogLeNet model while the maximum epoch is set as 4, 5, and 6 

respectively. 
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Figure 4.3: Performance comparison of four methods on three different classifiers trans­

ferred from Alex.Net model with the maximum epoch of 4. 

As shown in Figs. 4.3, Figs. 4.4, and Figs. 4.5, although the method of using flip-

ping left and flipping right alone for recognition did not yield the best performance, 

the proposed method, which summarizes the prediction score of the other three 

methods for a final decision, achieved a better performance than normal transfer 

learning without post-processing. In Figs. 4.6, Figs. 4.7, and Figs. 4.8, the proposed 

method also achieved a better performance than normal transfer learning without 

post-processing. 

Hence, we conclude that our proposed method can achieve the maximum ac-

curacy in comparison with existing CNN models without post-processing. Our 

proposed method offers three main advantages. First, this method is simple and 

straightforward. It can be used as a post-processing step to the classifier trained by 
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Figure 4.4: Performance comparison of four methods on three different classifiers trans­

ferred from AlexNet model with the maximum epoch of 5. 

transfer learning, with a training cost of 11.32 min for Experiment 1. The other 

advantage is that we need not consider whether the training dataset is sufficiently 

large. Even with few training images, our·method can reduce the effect of left-right 

uneven illumination on face recognition. The last advantage is that we need not 

consider the side with a bad illumination condition. The result obtained by calcu­

lating the sum score of the no-processing, flipping left, and flipping right can result 

in the correct recognition. 

To verify the case where the flipping scheme achieved a better performance than 

normal testing without post-processing, an example is shown in Fig. 4.1 and Fig. 4.2 

where the left-right unevenly illuminated testing image is classified as an incorrect 

identity by AlexNet according to the prediction score distribution. Furthermore, us-
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Figure 4.5: Performance comparison of four methods on three different classifiers trans­

ferred from AlexNet model with the maximum epoch of 6. 

ing the flipping-left method that inputs the conjecture face flipping from left to right 

resulted in an incorrect identity. However, using the flipping-right method and the 

proposed method, which maximizes the aforementioned three score, distributions, 

the correct identity was obtained, as shown in Fig. 4.2. It was clear that both the 

results of the no-processing and flipping-left method were wrong in this case. The 

flipping-right method yielded the correct recognition result, which rendered the sum 

score of our proposed method the correct one. 

In this example, the flipping-left method caused both the left and right sides to 

be dark, which affected the performance of the CNN model. However, the clear 

right side was copied to the left side in the flipping-right method, rendering the ap­

pearance of the input image more similar to the correct identity. Therefore, we used 
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Figure 4.6: Performance comparison of four methods on three different classifiers trans­

ferred from GoogLeNet model with the maximum epoch of 4. 
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Figure 4.7: Performance comparison of four methods on three different classifiers trans­

ferred from GoogLeNet model with the maximum epoch of 5. 
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Figure 4.8: Performance comparison of four methods on three different classifiers trans­

ferred from GoogLeNet model with the maximum epoch of 6. 

a flipping scheme to post-process the face image in our proposed method to improve 

the accuracy of face recognition in the case of left-right uneven illumination. 

4.3 Tra-ning with Half Faces 

The face reconstructed using the symmetrical characteristic of the face can eff ec­

tivel y manage the left-right uneven illumination condition. When the face image is 

relatively regular and symmetrical, the face obtained by the flipping scheme is nat­

ural and appropriate for the recognition task. Meanwhile, other cases exist where 

the face image shows an exaggerated expression, rendering a nonsymmetrical face. 

The reconstructed faces in these cases may appear unnatural and different from a 

real face. Furthermore,. another method is proposed herein to apply the symmetrical 
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characteristic, i.e., training on half-face images. The CNN models learn from only 

half of the strictly cropped face image. 

Training on both the whole-face and half-face images was performed for com­

parison. Both strategies use 9,265 images for training and testing, as described 

in Section 4.1.1. Six pretrained CNN architectures, i.e., AlexNet, GoogLeNet, 

SqueezeNet, ResNet-50, Inception-v3, and DenseNet-201 were used in transfer 

learning with both strategies to perform facial image classification on the two 

strictly cropped datasets .. Each dataset contained 9265 images. The difference was 

that one dataset contained strictly cropped frontal view face· images washed up from 

Yale and CASIA, whereas the other dataset contained half-faces cropped along the 

extracted symmetry, in which the right half-face images were flipped to obtain the 

same appearance as the left half-face. 
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Figure 4.9: Four cases of predicted sample images. 

The 12 ROC curves for six models with two training strategies were indistin-
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guishable froll1: each other. Evaluation metrics accuracy, sensitivity, specificity, 

and AUCscore were used in this study for all the testing images (2779 images). 

Suppose the test sample images.have been predicted into two categories of posi­

tives and negatives, and each category has samples which are predicted right and 

also has samples which are predicted wrong. Let TN, T P, F N, and F P denotes 

the true negatives, true positives, false negatives, and false positives, as shown in 

Fig 4.9. The true positives represent the sample images which are positives and 

predicted as positives. The false negatives represent the sample images which are 

positives and predicted as negatives. The true negatives represent the sample im­

ages which are negatives and predicted as negatives. The false positives represerit 

the sample images which are negatives and predicted as positives. The accuracy 

represents the ratio of sample images which are predicted right to all the sample 

images, which can be written as follows: 

TP+TN 
accuracy = T p + TN + F N + F p. 

(4.1) 

The sensitivity represents the ratio of true positive sample images.to all the positive 

sample images, which can be written as follows: 

TP sensitivity = 

T p + (4.2) 

. The specificity represents the ratio of true negative sample images to all the nega-
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tive sample images, which can be written as follows: 

TN 
specificity = 

F p 
+ (4.3) 

The AU C score represents the area under the ROC curve. An ROC curve (receiver 

operating characteristic curve) is a graph showing the performance of a classifica-

tion model at all classification thresholds. An ROC curve plots true positive rate 

vs. false positive rate at different classification thresholds. The AUG score is an 

evaluation metric of the ROC curve. The larger value of AU C score represents the 

better classifier. 

The PC used for the experiment had a CPU of i7-8700 (3.19 GHz), RAM of 16 

GB, and GPU of GeForce GTX 1650. The results for these evaluation metrics are 

presented in Table 4.1. As shown in the table, all six pretrained CNN models were 

evaluated with similar input image sizes. The second column shows the number of 

layers in the source code level. Each model was evaluated using both the whole­

face and half-face strategies. By comparing the results of two different strategies, 

it can be concluded that the half-face training strategy outperformed the whole-face 

training strategy on AlexNet, SqueezeNet, GoogLeNet, and Inception-v3 in terms 

of the accuracy, sensitivity, specificity, and AUG score. The ResNet-50 and 

DenseNet-201 demonstrated a slightly worse performance on the half-faces than on 

the whole face. 

Although training on the half-face images did not yield a better performance 

than traini,ng on the whole-face images using ResNet-50 and DenseNet-201, the 

other four models yielded better performances in terms of accuracy, sensitivity, 
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Table 4.1: Evaluation of transfer learning on the whole face image dataset vs. the half 

face image dataset with different pre-trained CNN models. 

Model #Layers Input size Strategy Accuracy Sensitivity Specificity AUC 

whole face 0.962 0.699 0.980 0.965 
AlexNet 25 227x227 

half face 0.986 0.886 0.992 0.996 

whole face 0.977 0.819 0.988 0.986 
SqueezeNet 68 227x227 

half face 0.984 0.874 0.992 0.994 

whole face 0.984 0.876 0.992 0.996 
GoogLeNet 144 224x224 

half face 0.990 0.889 0.995 0.997 

whole face 0.998 0.981 0.999 0.998 
ResNet-50 177 224x224 

half face 0.992 0.934 0.996 0.996 

whole face 0.990 0.922 0.995 0.998 
Inception-v3 316 299x299 

half face 0.997 0.976 · 0.998 0.999 

whole face 0.999 0.991 0.999 0.999 
DenseN et-201 709 224x224 

half face 0.995 0.961 0.997 0.997 

specificity, and AtJC. The accuracy of-training on the whole face ·using ResNet-

50 and DenseNet-201 exceeded 99%._ Training on the half-face images y ielded a 

slightly worse performance, i.e., less than 1 %. Therefore, the classification per-

formance by training on half-face images is comparable to that by training on the 

whole-face images. 

63 



4.4 Occlusions on Face 

4.4.1 Occlusions on the Whole Face 

Since fine-tuning a pretrained network is effective for extracting the _knowledge 

from one source task and applies the knowledge to a target task [59], the pretrained 

series AlexNet was used for the classification tasks of faces with different degrees 

of occlusion in Sect. 4.4, Sect. 4.4.2 and Sect. 4.4.3. It consists of eight layers, five 

convolutional layers, and three fully connected layers. The last three layers were 

l replaced by new layers: a fully connected layer, softmax layer and classification 

layer. The transferred network was trained by root mean square prop. The mini­

batch size was set by 15 and the max epoch was 15. The momentum was 0.9 and 

the initial learning rate was 1 x 10-5
• 

Figure 4.10: Examples of occlusions on the whole face. 

In this experiment, two images of each individual were selected from the 

datasets to be processed as the test images. Sect. 4.4.2 and Sect. 4.4.3 were also 

the same as Sect. 4.4 by selecting two images from each individual to be processed 
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as test images. In order to verify the effectiveness of the flipping scheme in differ­

ent face occlusion ratios, we occluded each complete face from 10% to 70%. Here, 

we have seven groups of test images as shown in Fig.4.10. In the first part of this 

experiment, we evaluated the recognition rate of each group of occluded faces, as 

shown in Table 4.2 and Table 4.3. "No processing" represents the recognition accu­

racy obtained by inputting the original image into the classifier obtained by AlexNet 

without any processing, and "flipping left" refers to the score that uses the image 

obtained by flipping the left-half face to the right and covering the original right side 

as the test image. "Flipping right" refers to the score that use the image obtained 

by flipping the right-half face to the left and covering the original left side as the 

test image. "Proposed method" refers to the maximum score of the three cases as 

explained in Eq. 3.24. 

Table 4.2: Performance comparison(%) on the extended Yale B database under varying 

levels of block occlusion. 

Percent occluded 10% 20% 30% 40% 50% 60% 70% 

No processing 100.00 100.00 100.00 89.47 68.42 47.37 38.16 

Flipping left 64.47 44.74 43.42 35.53 19.74 17.11 11.84 

Flipping right 100.00 100.00 100.00 100.00 97.37 84.21 71.05 

Proposed method 100.00 100.00 100.00 100.00 82.89 69.74 59.21 

From the results of Table 4.2 and Table 4.3 , the following conclusions can be 

drawn: 

1. Occlusion seriously affects the recognition accuracy of AlexNet both on the 

two datasets. With the increase in occlusion ratio, the face recognition rate 

65 



Table 4.3: Performance comparison (%) on the Yale database under varying levels of block 

occlusion. 

Percent occluded 10% 20% 30% 40% 50% 60% 70% 

No processing 86.67 60.00 50.00 36.67 6.67 6.67 6.67 

Flipping left 53.33 40.00 33.33 30.00 23.33 26.67 23.33 

Flipping right 100.00 60.00 46.67 30.00 16.67 6.67 6.67 

Proposed method 100.00 60.00 43.33 26.67 16.67 10.00 6.67 

of AlexNet gradually decreases from 100% to 38.16% on the extend Yale B 

dataset and frorri 86.67% to 6.67% on the Yale dataset. 

2. In all the occlusion image groups, "Proposed method" performs poorly in all 

the occlusion ratios both on the extended Yale B dataset. "Proposed method" 

performs well in all the occlusion ratio on the extended Yale B dataset. On 

the Yale dataset, "Proposed method" performed bad from the occlusion rate 

of 10% to 40%, but performed well from the occlusion rate of 50% to 70%. 

3. On the extended Yale B dataset, "Proposed method" performed well in all 

the occlusion ratios. On the Yale dataset, the proposed method performs well 

when the face images are slightly occluded. However, when the occlusion 

ratio is high, the proposed method cannot outperform the result of "no pro-

cessing". 

With the increase in occlusion ratio, more and more face feature will be cor-

rupted. This is why the recognition rate of AlexNet without processing gradually 

decreases. As for the methods of flipping left and flipping right, when the non-
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.occluded half face or less occluded face area is flipped to the other half and covered 

the original half, the recognition will be less affected by occlusion. The proposed 

method can significantly improve the performance of face recognition effected by 

partial occlusion problem. 

4.4.2 Occlusion on the Half Face 

Figure 4.11: Examples of occlusions on the half faces. 

In order to verify the recognition performance of flipping scheme when half 

of the face is occluded, we occluded each half face from 10% to 70%. Here, we 

have seven groups of test images as shown in Fig 4.11. In the first part of this 

experiment, we evaluated the recognition rate of each group of occluded faces, as 

shown in Table 4.4 and Table 4.5. From the results of the two table, the following 

conclusions can be drawn: 

1. In all the occlusion image groups, "flipping left" performs poorly in all the 

occlusion ratios both on the two facial datasets. However, "flipping right" 

performs as well as 100% in each occlusion ratio on the Yale dataset. 
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2. On the extended Yale B dataset, "no processing" is less affected by occlusion 

and has a high recognition rate. "Proposed method" cannot outperform the 

AlexNet without processing in some occlusion ratios. 

3. On the Yale dataset. "Proposed method" performs better than "no process­

ing" and "flipping left". However, "Proposed method" cannot outperform the 

flipping right. 

Table 4.4: Performance comparison (%) on the extended Yale B database under varying 

levels of block occlusion on either half region (left-half or right-half). 

Percent occluded 10% 20% 30% 40% 50% 60% 70% 

No processing 100.00 100.00 100.00 97.37 97.37 92.11 ·90.79 

Flipping left 72.37 63.16 55.26 47.37 34.21 25.00 18.42 

Flipping right 88.16 88.16 88.16 88.16 88_.16 88.16 88.16 

Proposed method 100.00 100.00 98.68 97.37 96.05 93.42 88.16 

Table 4.5: Performance comparison(%) on the Yale database under varying levels of block 

occlusion on either half region (left-half or right-half). 

Percent occluded 10% 20% 30% 40% 50% 60% 70% 

No processing 100.00 93.33 96.67 73.33 73.33 73.33 60.00 

Flipping left 53.33 30.0b 10.00 6.67 10.00 20.00 6.67 

Flipping right 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Proposed method 100.00 100.00 100.00 96.67 100.00 100.00 100.00 
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The reason why the proposed method cannot outperform the flipping right is 

that this method considers both the flipping left case and flipping right case. Since 

the left-half face is occluded in our experiment, flipping right method eliminates the 

bad effects, so it performs better than flipping left method. On the other hand, in 

the case where half-face is partially occluded, the recognition result which got from 

the large dataset train� CNN model is less affected by the occlusion. However, 

the recognition model of the CNN trained by the smaller Yale dataset will have 

a greater effect by occlusion. In the case that half-face is partially occluded, our 

proposed method performs better on the small dataset. 

Figure 4.12: Occlusion on eye, nose and mouth. 

4.4.3 Occlusion on the Eye, Nose and Mouth 

In order to find out which part of human face is the most important factor during 

face recognition, we occluded the area of eye, nose, and mouth, respectively. Here, 

we have three groups of test images as shown in Fig. 4.12. Iri the first part of this 
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Table 4.6: Performance comparison (%) on the Yale database under occlusion on the area 

of eye, nose, and mouth. 

Occluded area eye nose mouth 

No processing 46.67 53.33 40.00 

Flipping left 20.00 40.00 33.33 

Flipping right 80.00 33.33 40.00 

Average score 66.67 40.00 40.00 

Maximum score 66.67 46.67 40.00 
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Figure 4.13: The performance comparison of four methods when the face is 70% occluded. 
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Figure 4.14: An occluded face classification example predicted by the first two meth­

ods. (a) Input image; (b) the result of the original classifier recognition of AlexNet; (c) the 

result of recognition _after flipping left. Confidence refers to the prediction score of a test 

image belonging to a certain identity. 
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Figure 4.15: A� example of classification result predicted by the other two methods. 

(a) the result after flipping right; (b) the result that sums the no-processing, flipping left, 

and flipping right. Confidence refers to the prediction score of a test image belonging to a 

certain identity. 
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experiment, we evaluated the recognition rate of each group of occluded faces, as 

shown in Table 4.6. Here, we introduce two methods to combine no processing, 

flipping left and flipping right together. Average score refers to the average score of 

the aforementioned three methods. Proposed method refers to the maximum score 

of the three methods. Specifically, let p = ( s1, s2, s3, . . .  sk) denote the score of a 

test image by the classifier, si denote the possibility of the test image belonging to 

person number i. In our case, the number of people k equals to 15. The average 

score is denoted by the following formula: 

P1 =(Pa+ Pl+ Pr)/3, (4.4) 

where Pa refers to the score of no processing, Pl refers to the score of flipping left, 

Pr refers to the score of flipping right. The proposed method is denoted by the 

following formula: 

P2 = 

Pl max(pl) > max(pa) 

Pr max(pr) > max(pl) 

& max(pl) > max(pr) 

& max(pr) > max(pa) · 

Pa otherwise 

From the results of Table 4.6, the following conclusions can be drawn: 

(4.5) 

1. In the result of "no processing", the order of importance is: mouth > eye > 

nose. 

2. In the result of "average score", the order of importance is: nose= mouth > 

eye. 
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3. In the result of "proposed method", the order of importance is: mouth > 

nose> eye. 

4. "Average score" eliminates the bad effects of eye occlusion, however, the 

improvement is not obvious for nose and mouth. 

5. The proposed method with maximum score performs better than the average 

score, which means the method of choosing the maximum score is better than 

the method of averaging scores. 

The reason why the proposed method is good for eye occlusion is that the occluded 

eye is in the half part face, and the bad effect of occlusion is eliminated after flip­

ping. Since proposed method performed better than the average score, this paper 

uses it as our proposed method. 

To validate the performance of reconstructing occluded faces, classification re­

sults of four reconstruction strategies on the 70% occluded fa�e images are illus­

trated by receiver operating characteristic (ROC) curves as in Fig. 4.13. The curve 

of no processing represents the recognition accuracy obtained by inputting the orig­

inal image without any processing, and flipping left refers to the score that uses the 

image obtained by flipping the left-half face to the right and covering the original 

right side as the test image. Flipping right refers to the score that use the image 

obtained by flipping the right-half face to the left and covering the original left side 

as the test image·. The proposed method refers to the strategy of Eq. 3.24. Thus, 

from the ROC curves, we can see that our method can achieve better performance 

than the method that without any post-processing. The main advantage of our pro­

posed method is that we do not need to consider which side has the bad occlusion 
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condition. The result obtained by calculating the maximum recognition score of the 

no processing, flipping left, and flipping right can lead to a correct recognition. 

To verify why our method can achieve good performance, we examined the 

score distribution for each strategy as in Fig. 4.14 and Fig. 4.15. In the histogram, 

red color represents the subject 1, green represents the subject 3, and purple repre­

sents the subject 11. The r�ctangular box on the output image below the histogram 

also uses the same color to indicate which subject does the output image belongs 

to. We input the image (a) as the test image. Using the normal method that input 

the original image to the classifier got from training process. In Fig. 4.14, (b) is the 

face recognition result of AlexNet without processing, where No.11 subject reaches 

the highest confidence. However, the result is incorrect. The result of flipping left 

method is (c), where No.3 subject reaches the highest confidence. The result of flip­

ping left method is incorrect. As for the flipping right method, the face recognition 

result is shown in Fig. 4.15(a), where No.1 subject reaches the highest confidence. 

The result of flipping right method is correct. The result of proposed method is 

Fig. 4. l 5(b ), where N o.1 subject reaches the highest confidence. The result of pro­

posed method is correct. Flipping right method got the correct recognition result, 

but the highest recognition score is performed by our proposed method. From the 

face image, we can easily know the fact that in the test face image, the left-half face 

is occluded. Thus, if we flipped the right-half face to the left and cover the original 

left face to generate a conjecture face, the negative effect of occlusion on the left 

face will be reduced in the conjecture face. Our proposed method uses the flipping 

strategy to post-process the face image. The combination of CNN and flipping strat­

egy can greatly improve the accuracy of face recognition that under the influence of 
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occlusion. 

Figure 4.16: The result of the reconstructed images using linear combination. From left to 

right: target occluded face, reconstructed face, and unoccluded face. 

As shown in Fig. 4.16, the comparison of reconstructed image and the real image 

is given. From left to right, the images show the target occluded face, reconstructed 

face (calculated by the coefficient matrix W of Section 3.2), and the real face. This 

comparison showed that our reconstruction results of the occluded regions are sim­

ilar to the real images. The reconstructed region in Fig. 4.16 is dim and blurred 

compared to the real image. This is because the reconstruction makes use of the 

statistical information of the right half faces and there is still a· reconstruction error 

after many iterations. Figure 4.17 shows the recognition results of the reconstruc­

tion of linear combination and flipping scheme. The recognition results of linear 

combination and flipping scheme are shown as Fig.4.17 (a) and (b). Both face 

recognition accuracy results are exactly the same. The face recognition confidence 

scores of all subjects in the dataset have no significant difference and this does not 

change the final prediction result. 

In the case where the middle part of face is occluded by the mask, an orthog­

onalized coupled learning model [65] can be learned to approximate no-mask face 

images with images in the masked face database. Then, this model· can be used to 
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Figure 4.17: Examples of the recognition results using linear combination (a) and flipping 

scheme (b) about subject 1. The red bar represents the ground truth. 

predict the no-mask face image of a person with masked face images of the same 

person. The prediction results may differ by the number and quality of images in 

the database. We plan to combine the orthogonalized coupled learning model with 

the aforementioned method to handle more cases of occlusions in the future. 

4.5 Visualization of Facial Latent Spaces 

The variational autoencoder model described in Section 3.5 has two parts: the en­

coder and the decoder. The encoder takes an image input and outputs a compressed 

representation (the encoding), which is a vector of pre-defined length, which equals 

to 100 for the whole face images in this paper. The decoder takes the compressed 

representation, decodes it, and recreates the original image. In this experiment, a 

six-layer encoder network is built as shown in Table. 4.7, and an eight-layer decoder 

network is built as shown in Table. 4.8. In these tables, each layer is named with 

the first few characters of the layer type and the number of times that each type of 

layer appeared. The filter size is denoted by two positive integers which represent 
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the height and width of the filter respectively. The stride represents the step size for 

traversing input. The padding represents the input edge padding, where the value 

of "same" represents the method of zero-padding. The method of zero-padding 

adds zeros to the edge of the input image and makes the output image to have the 

same size of the input image. For instance, suppose the input image has the size 

of 10 x 10, the stride is set as (2, 2), and the padding is set as "same", then the 

zero-padding method firstly adds zeros and makes the input image to be 12 x 12. 

The size of the output image will be (12 - 3 + 1)/2 = 5. When the padding is set 

as "same"., the calculation of the output image size can be written as follows: 

Waut = Ceil ( ( Win 
-

W filter + 1) / S stride) (4.6) 

where• Wout and Win denote the width of the output image and that of the input 

image respectively. The wi�th of the filter and the stride are represented by w filter 

and Sstride respectively. The function of "ceil" rounds the input value to the nearest 

integer greater than or equal to that value. The height can be calculated in the same 

way as the width. Actually, the width of the input image or the filter is usually 

equivalent to the height. 

To make calculations more numerically stable, the range of possible values for 

the desired distribution is increased from [O, 1] to [-oo, O] by making the network 

learn from the logarithm of the variances. The means µ and the variances a (the 

logarithm is taken while calculation) are the two vectors to create the distribution 

to sample from. As shown in Fig. 3.14, multiple 2D convolution layers followed 

by a fully connected layer are used as the encoder to downsample from the 32 x 
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Table 4.7: The encoder network used to visualize the latent space of faces. 

No. Layer Name Layer Type Filter Size # Filters Stride Padding Layer Description 

inpuLencoder Image Input Input images of 32 x 32 x 1 

2 conv l Convolution 3x3 32 (2,2) "same" The first convolutional layer 

3 relu l ReLU The first rectified linear unit 

4 conv2 Convolution 3x3 64 (2,2) "same" The second convolutional layer 

5 relu2 ReLU The second rectified linear unit 

6 fc_encoder Fully connected the fully connected layer 

Table 4.8: The decoder network used to visualize the latent space of faces. 

No. Layer Name Layer Type Filter Size # Filters Stride cropping Layer Description 

input Latent variable input The latent variable of 1 x 1 x 100 

2 transpose! Transposed convolution 8x8 64 (8, 8) "same" The first transposed convolutional layer 

relul ReLU The first rectified linear unit 

4 transpose2 Transposed convolution 3x3 64 (2, 2) "same" The second transposed convolutional layer 

5 relu2 ReLU The second rectified Hnear unit 

6 transpose3 Transposed convolution 3x3 32 (2, 2) "same" The third transposed convolutional layer 

7 relu3 ReLU The third rectified linear unit 

8 transpose4 Transposed convolution 3x3 (1, 1) "same" The fourth transposed convolutional layer 
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16 x 1 half face image to the 1 x 1 x 50 encoding of the latent space. Then, three 

transposed 2D convolution layers are used to scale up the encoding back into a 

32 x 16 x 1 reconstructed half face image. Another instance of whole face image 

32 x 32 x 1 is also trained for the encoding of 1 x 1 x 100. To compare the difference 

between whole face and half face latent spaces, t-Distributed Stochastic Neighbor 

Embedding (tSNE) is utilized to reduce the dimensionality for the 2D data point 

distribution visualization. 

60 

40 

20 

� 0 
w 

-20 

-40 

-60 

-60 

' 

-40 -20 

·� .-,.!J ·n.:, 

0 

tSNE-1 

20 40 

Figure 4.18: Whole face latent space visualization. 
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To enhance the performance of latent space visualization, 2970 images_ were 

augmented from the Yale dataset [62] by translation, flip, crop, and scale. 30% of 

the augmented images are used for validation and 70% for training. In the experi­

ment, the transfer learning of pre-trained CNNs applied stochastic gradient descent 

with momentum with a mini-batch size of 20, an L2 regulation factor of 1 x 10-4, 
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Figure 4.19: Half face latent space visualization. 
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and a momentum of 0.95. The maximum number of epoch was set to 6. The 

initial learning rate was 1 x 10-4_ Training on both the whole-face and half-face 

images was performed with the same parameter configuration for comparison. Six 

pretrained CNN architectures, i.e., Alex.Net, GoogLeNet, SqueezeNet, ResNet-50, 

Inception-v3, and DenseNet-201 were used in transfer learning with both strategies 

to perform facial image classification on the two strictly cropped datasets. Eval­

uation metrics accuracy, sensitivity, specificity, and AUCscore were used in 

this study for all the testing images. The PC used for the experiment had a CPU 

of i7-8700 (3.19 GHz), RAM of 16 GB, and GPU of GeForce GTX 1650. The re­

sults for these evaluation metrics are presented in Table 4.1. As shown in the table, 

all six pretrained CNN models were evaluate� with similar input image sizes. The 

second column shows the number of layers in the source code level. Each model 
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was evaluated using both the whole-face and half-face strategies. By comparing 

the results of two different strategies, it can be concluded that the half-face training 

strategy outperformed the whole-face training strategy on AlexNet, SqueezeNet, 

GoogLeNet, and Inception-v3 in terms of the accuracy, sensitivity, specificity, 

and AUG score. The ResNet-50 and DenseNet-201 demonstrated a slightly worse 

performance on the half-faces than on the whole face. 

Centroid 2 

Centroid 3 Centroid 6 

Centroid 4 Centroid 5 

Figure 4.20: Illustration of calculating the the average distance _between the centroid 1 and 

all the other centroids. 

Two different variational autoencoder networks are trained with the maximum 

epoch of 100, initial learning rate of 0.001 for the "adam optimizer", and mini­

batch size of 512. One is learned for the latent space for whole face training set, 

and the other is for half face training set, which randomly select the left half face 

or the flipped right half face. As shown in Fig.4.18 and Fig.4.19, the dimension 

of the latent space vector is reduced to 2 for visualization of the separative ability 

comparison. Result of dimensionality reduction shows the latent variables of the 
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Figure 4.21: The comparison of cluster distributions between the whole faces and half 

faces. 

whole face or half face encoder network. Each point indicates a face sample image. 

Each color indicates a person identity. Figure 4.18 illustrates the distribution of 

all 15-class whole face sample images. Figure 4.19 illustrates the distribution of 

all 15-class half face sample images. By comparison, the blue points representing 

person id of 11 form the most isolated cluster in both figures. Most of the other 

points of the same color are located near to each other in both figures. We also 

conducted the experiments to evaluate the distribution of color points, as showed in 

Fig. 4.21. The x-axis is the subject number of the 15-class images and the y-axis is 

the average distance between the current centroid and other centroids, which can be 

written as follows: 

I:�1 J(xk - xi)2 
+ (Yk - Yi)2 

cp(k) = -------'--------,i =/=- k,k = 1,2, · · ·n (4.7) 
n-l 
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where cp( k) denotes the average distance between the centroid k and all the other 

centroids. The coordinates of centroid k is denoted by (xk, Yk)- The average dis­

tance is the average of the distance from each individual to all the other individuals, 

as shown in Fig. 4.20. Here, center point of the color points, which is also called 

centroid, is used to do this experiment. A large value of cp( k) represents centroid k 

is far away from the others, which also means the sample images of individual k can 

be easily separated from others and the classifier has a low possibility to make mis­

takes on the sample images of individual k. From the visualization of latent space 

and the evaluation of the color points distribution for whole face and half face, we 

can conclude that they contain the latent encoding variables of similar separative 

ability in general. As shown in Fig. 4.21, for subject 11, the whole face is better 

than the half face in the separative ability of the latent space. Influenced by the 

bangs, the whole face has more distinct recognition features than half face. How­

ever, for subject 13 and subject 15, the half face is better than the whole face in the 

separative ability of the latent space. For subject 13 and subject 15, influence� by 

the glasses and their reflections, the recognition of the whole face is greatly affected. 

Instead, performing the recognition task with half face has less noisy. 

Besides, the dimension of the latent space may have an influence on the separa­

tive ability comparison between whole faces and half faces. Another similar experi­

ment is designed to verify this statement, where the dimension of the latent space is 

reduced to 10, and the case of half faces is divided into two cases of the left half face 

and the right half face. The learning parameters keep the same configuration as the 

previous experiment and the network structure also does not change in order to show 

the influence of a low dimension latent space. As shown in Fig. 4.22 and Fig. 4.23, 
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Figure 4.22: Whole face latent space visualization for subject 1 to subject 8 when the 

dimension of the latent space is reduced to 10. 
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Figure 4.23: Whole face latent space visualization for subject 9 to subject 15 when the 

dimension of the latent space is reduced to 10. 

85 



w 

z 

(f) 

40 

30 

20 

10 

0 

-10 

-20 § 
.

◊ 

-30 

,.,. 
-40 L....L._ ____ j__ __ _  _____J___ ____ c__ ___ ----'-----

-40 -20 0 20 

tSNE-1 

40 

0 1 

+ 2 

* 3 

X 4 

□ 5 

◊ 6 

7 

8 

60 

Figure 4.24: Left half face latent space visualization for subject 1 to subject 8 when the 

dimension of the latent space is reduced to 10. 

30 

20 

10 

N 0 

w 

z 

(f) -10 
........ 

-20 

-30 

-40 

* 

X 

□ 

◊ 

0 

�o( 
11 

D� 

12 

13 
�· 

14 ••r 

15 

-40 -20 0 20 40 

tSNE-1 

Figure 4.25: Left half face latent space visualization for subject 9 to subject 15 when the 

dimension of the latent space is reduced to 10. 
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Figure 4.26: Right half face latent space visualization for subject I to subject 8 whep. the 

dimension of the latent space is reduced to 10. 
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Figure 4.27: Right half face latent space visualization for subject 9 to subject 15 when the 

dimension of the latent space is reduced to 10. 
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the whole face image is encoded into a 10-dimensional latent space and visualized 

in a two-dimensional t-SNE scatter figure for the first 8 subjects and another for the 

rest subjects. As shown in Fig. 4.24 and Fig. 4.25, the left half face image is also 

encoded into a 10-dimensional latent space and visualized in the two-dimensional 

t-SNE scatter figure for the first 8 subjects and another for the rest subjects. As 

shown in Fig. 4.26 and Fig. 4.27, the right half face image is also encoded into a 

10-dimensional latent space and visualized in the two-dimensional t-SNE scatter 

figure for the first 8 subjects and another for the rest subjects. By comparison, both 

the whole face and two half faces show the latent space visualization with a clear 

boundary for subject 9. For other subjects, it is difficult to distinguish one from 

another because the colored points do not display a clear boundary. Thus, the aver­

age distance between the current centroid and other centroids is also used to show a 

quantitative indicator for the difference, as shown in Fig. 4.28. By comparison, the 

whole face has a slightly larger distance value than the left half face and the right 

half face on subject 3, 4, 7, 8, 10, and 11. It represents that on these subjects, the 

whole face latent space has a better separative ability. However, on subject 2, 9, and 

13, the right half face latent space has a better separative ability. By decoding the 

latent spa�e, the input face images can be reconstructed to make a face-like image, 

as shown in Fig. 4.29 for whole face input images, Fig. 4.30_ for left half face input 

images, and Fig. 4.31 for right half face input images. 
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Figure 4.28: The comparison of cluster distributions between the whole face, left half face, 

and right half f�ce. 

■ 

■ 

Figure 4.29: The comparison between original whole face images and reconstructed whole 

face images. 
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Figure 4.30: The comparison between original left half face images and reconstructed left 

half face images. 

Figure 4.31: The comparison between original riglit half face images and reconstructed 

right half face images. 
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Chapter 5 

Conclusion 

Most face detection and recognition tasks are based on the training of intact facial 

images and corresponding labels. Both the three-dimensional structure and two­

dimensional appearance from the frontal view of human faces are approximately 

bilaterally symmetrical in general. However, sometimes, illumination on the left 

half face and the right-half face is uneven. In this case, the symmetrical character­

istic of human faces can facilitate expressing distinct identity information. This is 

because even if one side of facial image is corrupted by .noise, the opposite side can 

still be used for feature extraction. The recent literature indicates that face recogQi­

tion and facial expression classification has achieved a high accuracy on benchmark 

datasets with a large number of face images in the wild. However, unlike the pur­

pose of recognizing as many people as possible, real applications for families or 

companies usually aim to recognize a small group of people as accurate as possi­

ble. In case of the face is partially occluded, convolutional solutions always simply 

put images with occlusions into the training dataset and hope the convolution neural 

network learn a model robust to partial occlusion. These processes not only increase 
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the burden of learning, but also affect the model to identify normal images without 

occlusions. 

To address this problem, an automatic selection of the better half of the face 

can be used for identity recognition with only a single half face. Different from 

the MegaFace challenge of recognizing millions of identities in the wild, this thesis 

focuses on buildill.g recognition systems for a small number of people with fewer 

training images, for example, building access control systems for research labora-

tory members or family members. This thesis proposes an artificial face image con-

struction method and a half-face training strategy for transfer learning of pre-trained 

conventional neural network models. The facial image reconstruction to discard the 

influence of partial occlusion is also discussed. Based on the phenomenon that 

human faces are roughly symmetrical, the intact half face can be used to recon­

struct the facial information of the occluded areas. Specifically, occlusion on the 

. left-half face is reconstructed with a linear combination of features on the right­

half face, and vice versa. The process is modeled by keeping row sparsity for the 

coefficient matrix with l2,1-norm regularization while minimizing the reconstruc­

tion error. An alternative iterative algorithm is proposed to solve the optimization 

problem. To validate the effectiveness of the reconstruction, the pre-trained CNN 

model is trained on normal face images and tested with various occluded images. 

Extensive experimental results show that the proposed method improves the per­

formance of state-of-the-art models by utilizing the symmetrical characteristics of 

human faces. 

However, in the case where the middle part of face is occluded by the mask, 

an orthogonaliz�d coupled learning model can be learned to approximate no-mask 
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face images with images in the masked face database. Then, this model can be used 

to predict the no-mask face image of a person with masked face images of the same 

person. The prediction results may differ by the number and quality of images in 

the database. I plan to combine the orthogonalized coupled lea.ming model with 

the aforementioned method in this thesis to handle more cases of occlusions in the 

future. 
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