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Summary in English

Recent increases in air temperature, high variability in precipitation, earlier springs and especially
warmer winters, appear to be responsible for the increase in the frequency and virulence of insect
outbreaks in forest ecosystems. Such a case has occurred in Zao Mountains between the prefectures
of Yamagata and Miyagi in northeastern Japan, where an outbreak of bark beetle, that started in
2013, had by the year 2016, completely decimated fir (Abies mariessi) forest stands in areas close to
the tree line and has slowly but steadily moved down the mountains to lower altitudes showing
different degrees of infestation. The total area affected extends to hundreds of hectares that is
impossible to evaluate in its entirety by field surveys. Satellite images provide an overview of the
damage but because of its coarse resolution, it is not possible to observe in detail the infestation of
single trees or the infestation patterns within the forest, hindering the understanding of insect
outbreak spread within the forest, their rate of infestation and in general the evaluation of the
spatial health status of forests within elevational gradients. However, with the recent advances in
Unmanned Aerial Vehicles (UAV), it is now possible to obtain very high resolution of few
centimeters, capable of detecting the shape of leaves or different levels of defoliation of branches of
a single tree. Thus, based on the data collected from this new technology, this study is composed of
two parts: tree health spatial evaluation using Random Forest technique and tree health

identification using Deep Learning techniques.

In the first part, the impacts of terrain on the spread of bark beetles were evaluated using
Random Forest technique to predict the occurrence of bark beetles and different health classes

(healthy, sick, and dead) based on elevation, slope and aspect. Two predictive models were made:



the first model was used to predict two classes “healthy” and “infested” (“infested” includes sick fir
and dead fir trees) to evaluate how the terrain characteristics can impact the spread of bark beetles
in fir forests and the second model was used to predict three classes “healthy”, “sick” and “dead” in
order to evaluate how the terrain affects sickness and mortality rate. The predictors from these
models obtained high overall accuracy of 75% and 71% respectively, by considering only the terrain
factors. This indicates that the terrain regulates the mountainous climate, and as such has strong
influence on the emergence of bark beetle. The results illustrate that elevation which affects 60% of
the accuracy of the predictive model is the most important factor that impacts the spread of bark
beetles and leads to the mortality of trees. Slope and aspect were equally responsible for 20% each
on the model accuracy. High elevation (1600 — 1700 m), steep slope (21.80 - 900), especially those
facing west present the highest percentage of bark beetle infestation and faster mortality rate. This
finding contributes to understanding the biological interaction between the host, the bark beetles
and the habitat which may give some clues on future habitat selection of the host trees as a strategy

to mitigate the impact of bark beetle infestation.

In the second part of the study, an automatic system was developed to classify all the fir trees in
the forest into two classes, healthy and sick fir, based on UAV-acquired data and Deep Learning
analysis. Considering detection alone, the results showed 85.70% success, while in terms of
detection and classification, we were able to detect/classify correctly 78.59% of all tree classes
(39.64% for sick fir). However, with data augmentation, detection/classification percentage of the
sick fir class rose to 73.01% at the cost of the result accuracy of all tree classes that dropped
63.57%. Finally, the results of this study showed that the implementation of UAV, computer vision

and DL techniques has the potential to significantly contribute to the development of a new



approach to evaluate the impact of insect outbreaks in forest. The methodologies and results from
this study provide enhanced approach and opportunities for forest disturbance assessment which

until now have been mainly based on field work and satellite images.
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Summary in Japanese

(HAGE
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Chapter 1
RGN

Introduction



1.1  Background

Bark beetles causing mass forest mortality have been seen in many fir and other coniferous
forests for many centuries (Cole & Amman 1980; Pavlov et al., 2020). In recent years insect
outbreaks in forests appear to be increasing in frequency and magnitude all over the world as a
result of climate change (Agne et al, 2018; Jactel et al, 2019; Przepiora et al, 2020). Insect
disturbed forests reported in 75 countries covering boreal, temperate and tropical regions reached
85.5 million hectares, of which 82% are found in temperate regions. This represents 3% of the total

forest area in these countries (2807 million hectares) (van Lierop et al,, 2015).

Forest worldwide has seen huge economical loss through timber values and tourism due to pest
and insect infestations. Emerald ash borer on ash trees caused US$1 billion lost per year in the
United States; cypress aphids killed trees in many countries around Asia, Africa and Europe that
were worth more than US$50 million; European woodwasp costs Brazil about US$25 million
yearly, etc, (FAO. 2011). From the ecosystem perspective, pests and insects are part of forest
dynamics where all parts of forest interact with each other in beneficial ways. In fact, forest
disturbance is considered as part of the forest ecosystem for forest succession and regeneration
(Raffa, 2015; Linnakoski, 2019; Ciesla, 2001; Logan & Powell 2001). Especially in its native range,
beetles usually infest fresh logs or trees that have already been weakened, contributing to the
regeneration of new trees. Since the host trees usually play a crucial part of the forest ecosystem,
providing food and habitat to nourish forest biodiversity (Keane & Arno 1993; Lanner, 1996;
Keane, 2000; Logan & Powell 2001), aggressive insect outbreaks that lead to large mortality of
healthy trees and rapid degradation on a large-scale, interrupt ecological habitats, disturb forest
ecosystem and influence environmental functions (Arno and Hoff 1990; Keane, 2000). In some
cases, the tree species could become extinct in some specific region or replaced by another species.
For example, after fir disease in the 19® century, in the1880s and in the 1920s, silver fir (Abies
alba) forest in central Europe (Saxony) and northeastern Bavaria became almost extinct in these
habitats (Kandler, 1993). Beside that, the aesthetics and wilderness of forests often are destinations
for diverse purposes for travelers such as sport, psychological health therapy, trekking and camping
(Cole, 1990; Keane, 2000; Hansen et al., 2017). Thus pest infestation also places an adverse effect
on the recreational functions of the forest regarding human health and the tourism economy.
Therefore, it is important to understand the dynamic of forest degradation due to insect outbreaks.

Identifying pest infestation in natural forest is not always for pest control. Sometimes chemical
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treatments leave more negative effect than doing nothing due to various factors like personnel
skills, the characteristics of territories and the extent of infestation (Cole & Amman 1980).
Quantifying the insect outbreaks is necessary to measure carbon emissions, biomass loss,

biodiversity loss and economical loss and thus support strategies for pest prevention.

For that purpose, a feasible and economical method is required to assess pest infestation on a
large scale at individual tree level. Unmanned Aerial Vehicle (UAV), commonly known as drone,
have the advantage of providing data over a large coverage area with high resolutions up to
centimeters can help to meet that demand. In recent years, UAV has become a popular remote
sensing platform for data collection among forest managers and scientists due to its flexibility, time
saving and low cost compared with field measurement and satellite based data. A commercial UAV
can collect images over 100 hectares (Ha) of complex terrain forest in one to ten days with spatial
resolutions up to centimeters, providing the ability to monitor every individual trees down to the
detail of leaf structure. This makes it possible to monitor health conditions of trees based on the
visualizations of canopies. Nisi et al, (2015), Safonova et al., (2000), Nguyen et al, (2021)
pioneered using UAV visual data collection with deep learning techniques to classify tree health
(healthy, sick, dead) based on different degrees of defoliation and obtained good results in term of
accuracy. Another advantage of UAV is that the photos taken overlap each other, advancing 3D
model of the forest with structure from motion (SfM) technique (Westoby et al, 2012; Frey et al,,
2018) and calculate tree heights, making it a potential competitor to Lidar acquired data in terms of
cost and processing (Zarco-Tejada et al,, 2014; Mohan, 2017). Tree height measurement is essential
for many studies to detect individual trees (Mohan, 2017; Brieger et al., 2019, Nguyen et al,
2021), calculate biomass (Lin et al, 2018; Jayathunga et al, 2019), estimate carbon emissions
(Mlambo et al,, 2017) and individual tree crown segmentation (Lim et al, 2015). With the easy on
the mission characteristics, UAV has become an essential tool to collect data repeatedly assisting

forest health change monitoring (Dash et al., 2017).

1.2 Objective

This thesis aims to explore the use of UAV images in combination with Al techniques and GIS
in providing information and a better understanding on the patterns and dynamics of pest-induced
forest disturbance. Through the thesis, I focus on the ecological behavior of Polygraphus proximus,
how it has affected the forest structure and composition observed from a perspective different than

the usual observation from the ground, in the case of this study a straight forward look from the top
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of the canopies (so called nadir). From the imagery, the study aims to explore the possibility of Al
techniques (i.e. deep learning and machine learning) and non-Al techniques (i.e. computer vision
and GIS) to automatically convert remotely sensed data to annotated data for inventory,
geographical analysis and visualization. Further I used the annotated data to analyze the pattern of
infestation, in order to evaluate how the abiotic factors (i.e, elevation, slope, aspect) impact on the
spread of bark beetles. The techniques and study frameworks I propose are intended to provide
useful tools for forest experts and managers to actively manage the forest in ways that help to detect
bark beetle infestation at an early stage and demand the least time and physical work. The study
also provides a foundation for further studies on the automatic classification of the degree of
infestation, forest health temporal change detection and early warning. Finally it will provide an
insight about the pattern of infestation in Zao Mountain, Japan which is relevant to the ecological

behavior of P. proximus bark beetles.

Thus the objectives of the thesis are the following:

1. To detect individual trees by means of Canopy height model (CHM) and computer vision

techniques.
2. To classify healthy fir trees and sick fir trees using deep learning techniques.

3. To investigate the impact of terrain factors on the spread of beetles by means of GIS and

Random Forest (RF) technique.

1.3  Structure of the Study
The study is composed of four main sections and illustrated in figure 1.1:
(I) The field work and the UAV data collection.

(II) The data pre-processing where all the structure from motion (SfM) data were created

including dense point cloud, Digital Surface Model (DSM) and Orthomosaics.

(IIT) The data preparation where canopy height model (CHM), Digital Terrain Model (DTM),

treetop annotation, tree crown annotation and GIS database of tree classes were created.
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(IV) From the data prepared in the previous steps, the analysies were made and divided into

two parts: chapter 2 where the evaluation of the impact of the terrain factors on the infestation of P.

proximus using GIS and Random Forest were performed and chapter 3 where the individual tree

detection and tree health classification using computer vision and deep learning were presented

(achieved with a publication: Nguyen et al, 2021).
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Figure 1.1:
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1.4  Scope

The bark beetle induced tree mortality in Zao Mountains has been studied by the author
through literature reviews and field work. Based on that perception, the study focused on the
computational solutions for the automatic detection of sick trees through the visualization of its
crown on the images and then to evaluate the forest health. These techniques are applicable and will
assist forest staff and managers to manage the forest in an efficient and cost saving ways. However
the scope of this study is not focusing on the identifying the biological/chemical causes of the tree
mortality nor proposing solutions to stop or control the pests, but rather propose a sound

methodology to evaluate forest health.
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Chapter 2

RO

Evaluate the Impact of Terrain on the
Infestation of Polygraphus Proximus Using GIS

and Random Forest
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2.1 Introduction
2.1.1 Background Introduction

As a result of climate change, insect outbreaks are affecting forest ecosystems irreversibly
around the world (Jactel et al,, 2019; Agne et al.,, 2018; Przepidra et al, 2020). In Japan, P. proximus
bark beetles (Nobuchi, 1979) have caused a big loss on the local economy in Northeastern
provinces in term of timber production and tourism and has degraded the ecosystem of the forests
which also host large mammal including Asiatic black bear and Sika deer. Since 2013, the Maries fir
forests in Zao Mountain, Yamagata Prefecture, have been subjected to insect-induced disturbances.
The mortality of the fir trees has been reported as the result of double insect attack. From 2013 to
2016, Tortrix moths (Epinotia piceae) infested trees and affected their capacity to perform
photosynthesis. Since the trees had already been weakened by the previous attacks, P. proximus bark
beetles colonized the trees and led to extensive tree mortality in 2016 (Saito & Chiba.,, 2017). This
coniferous tree species has a high economic value for timber production but mainly as a local tourist
attraction because of the way snow accumulates on its branches, creating giant shapes known as
“Snow Monsters”. The insect attacks led to tree mortality across an area of about 7 ha on the top of

Zao mountain that has taken away the spectacular views of Snow Monsters (figure 2.1).

In its original habitats in Japan, P. proximus is known as a secondary pest, because it infests trees
that are weakened from a primary pest species, from fire or from extreme environmental damage
(EPPO, 2014). There have been several similar incidents of forest damages in Japan caused by this
species of bark beetle. A P. proximus outbreak took place in 1955 in a Sakhalin fir forest stand in
Hokkaido after a typhoon had wiped out the forest (Yamaguchi, 1963). In the period from 1998 to

1999, Abies firma forest in Mount Unzen, Kyushu island, witnessed a die-back after curculionid,
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Parendaeus abietinus, weakened the trees in 1995. The process of die-back slowed down when the
population of P. abietinus decreased from 1998 and P. proximus stopped colonizing healthy trees

after that (Tokuda et al., 2008).

Figure 2.1: Dead trees on the op of Zao Mountains

Although the forest in Zao Mountain is a local tourist attraction and habitat of many tree
species, plants and animal species, there is still not enough attention on the damage to the forest due
to pest outbreaks here. Since the mortality only happens on some certain areas of the forest and at
some certain ranges of elevation, it is worth understanding more thoroughly if there are any
spreading patterns of the P. proximus regarding mountainous topography. The results will contribute
to better understanding the relationship between the terrain and forest ecology. This will also place

the first brick to build up a future early warning system of P. proximus in Japan.
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The objectives of this chapter therefore include (1) to understand the infestation mechanism of
P. proximus on fir trees particularly and of bark beetles on coniferous trees generally and; (2) to
investigate the impact of elevation, slope and aspect on the spreading of P. proximus. These
objectives will be fullfilled using a combination of (1) the review of literature and (2) GIS spatial
analysis and machine learning technique (Random Forest) to find out how accurately the terrain

factors solely can contribute to the prediction of P. proximus infestation in Zao Mountains.
2.1.2 The bark beetles - Polygraphus proximus

Four eye fir bark beetles P. proximus Blandford (Coleoptera: Scolytidae) is a bark beetle species
fed on fir trees (Abies) and other conifers such as pine and spruce; however, only Abies species are
being killed by this pest (EFSA, 2020). P. proximus is distributed in all Japan’s islands (Hokkaido,
Honshu, Kyushu, Shikoku), the Korean peninsula, South-East China, Russia, West Siberia, East
Siberia and the Far East (Tokuda et al, 2008; Baranchikov, 2010; Kerchev, 2014; EPPO, 2014;
Kononov, 2016; EFSA, 2020). While P. proximus is considered as a secondary pest in its original
habitats in East Asia and the Far East, it has been introduced into Russia via the trans-Siberian log
transportation from the Far East and is classified as a high threat to healthy Abies forest stands in

this region(Krivet and Kerchev, 2011; Kerchev, 2014; Kononov, 2016) (ﬁgure 2.2).
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Polygraphus proximus (POLGPR)

2019-10-10
(c) EPPO https://gd.eppo.int

Figure 2.2: The distribution of P. proximus (Source: EPPO Global

O Present @ Transient

Database, https://gd.eppo.int/)

An average adult P. proximus has a broad body and is about 2.5-3.5 mm length. They are known
as bivoltine species, which has 2 swarming periods per year. Every period begins when an adult
beetle emerges from an infested tree and flies to infest another fresh log or weakened tree. The first
emergence takes place in the early summer from May to July and the second emergence occurs at
the end of summer from August to September (EPPO, 2014). A swarming cycle of a beetle begins
when it lays eggs until a young adult emerges through the bark to fly off to another weakened tree.
The ideal weather for the flights is when the average daily temperature in summer is above 15°C,
with calm wind and lack of precipitation (Krivets et al, 2019). During a long fly period, female
beetles may lay eggs in several trees and the generations may overlap. Trees died within 2-4 years
after the colonization (EFSA, 2020). In the early swarming period, male beetles pioneer fresh logs
or weakened trees, bore entry holes and tunnels into the bark where they release pheromones to
attract female beetles. The female beetles follow the pheromone, come into the tunnel, mate in the
nuptial chamber and lay eggs in the maternal galleries (Kerchev, 2014; EFSA, 2020). Although it

belongs to Polygraphus genus, P. proximus is a monogamous species. The mating system includes one
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male and one female, which differs from many other species of the same genus (Kerchev, 2014;
Kobayashi, 2020). Under the bark, the beetles construct egg (maternal) gallery systems that have
double arms laying horizontally to the bark. In rare cases, one, three, four or five galleries of the
same system are found (Kerchev, 2014; Kobayashi, 2020). Kerchev (2014) found 45.2 £ 15.3 eggs
under each maternal system of Abies Sibirica while Yamaguchi (1963) showed that the average
offspring of a female beetle on Shakhalin fir is 23. However Kébayashi (2020) suggests that it is

actually 46 since there is only one female per gallery.

Trees infested by P. proximus show no specific sign in the early stage of the attack. Tree crown
may appear healthy while its stems are covered by resin exuded at entry holes. In the early stage of
the colonization, the crowns become partly defoliated in some branches showing a visual pale-green
colour and when the whole crown turns red, the trees are completely colonized and die off

(Baranchikov et al., 2010; EPPO, 2014; Krivets et al., 2015).

2.1.3 The host — Maries fir (Abies Mariesii)

Abies Mariesii (A. mariesii) is an evergreen tree of the Pinaceae family, Fir genus. It grows in
subalpine zone(cold temperate rain forest) with high rainfall and heavy snow, providing more
moisture to the soil which is important for the development of the trees. This fir species is native to
Japan, known as “Aomori Todomatsu” (Aomori Abies Sachalensis), distributed in Northern Honshu
island (1300 m to 1800 m) and in Central Honshu (1400 m - 2900 m) (Tanaka & Matsui, 2007)
(figure 2.3). These trees usually grow from 10 to 20 m in height and occasionally can reach up to
30 m. The bark has a dark gray color and is smooth. The needles have round tips and fully cover

the branches. A. mariesii’s flower blooms around June, expressing visual bluish purple cylindrical
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cones which grow upward while the male flowers grow downward. This species favours acid, neutral
and moist soils. In Zao Mountains, A. mariesii provide the foundation which become a spectacular
winter scenery of “snow monsters” (Juhyo in Japanese), attracting hundreds of thousands of tourists

every year (figure 2.4).

Abies Mariesti Distribution in Japan
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Figure 2.3: Abies Mariesii distribution in Japan, the demonstration
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: Snow Monster in Zao Mountains (source: https://www.thehiddenjapan.com/zao)

2.1.4 The habitat - terrain (elevation, slope and aspect)

Since elevation, slope and aspect influence the forest composition and structure, so do the
distribution of its dependents such as bark beetles. These factors are usually considered as important

abiotic factors for the spread of bark beetles in literature.
Elevation

In their study about the outbreak of Mountain pine beetle, Logan and Powell (2001) showed
the importance of elevation range in forming a suitable habitat for bark beetles. High elevation is
home for many mountainous conifer species such as lodgepole pine, ponderosa pine and Douglas

pine (Logan and Powell, 2001; Kurz et al, 2008; Safranyik and Carroll, 2007; Cole and Amman,
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1980). The abundance of bark beetle, P. proximus, might be due to the increase in tree density at
higher elevations. Lausch et al,, (2011) through their 18 year models, concluded that elevation plays
the most important role among other abiotic factors in the spreading of bark beetle Ips. Typographus
in a Bavarian National Park where has the elevation rose from 700 m to 1450 m a.m.s.I. However
Amman (1973) found that high elevation can become unsuitable for the survival of the beetles due
to extreme cold weather. On the other hand Logan and Powell, (2001) stated that “high elevation”
is a relative term since it can be high for an area but not for another. Since the dynamics of bark
beetles depend on weather conditions, which vary in latitude and altitude. Therefore, it is important
to find out at which elevation ranges of Zao Mountains, bark beetles P. proximus become more active

and damaging.

Slope and aspect

The aspect toward the sun increase the abundance of bark beetles as the solar radiation helps to
boost their productivity (Reid, 1962; Rasmussen, 1974). Additionally, the sun facing slopes dry the
soil faster, which rots the roots and weakens the trees, making the trees become favorable hosts for
bark beetles. Iwaki and Totsuka (1959) in their study in Mount Shimagare found that A. mariesii
and A. veitchii trees on the gentle slopes facing south (SW-S-SE) in the elevation range from 2100
m - 2500 m a.m.s.] were more vulnerable to stripe withering. They found that the tall trees on this
side of the slope exposed more to strong wind moving upward, which weakened the trees. This
finding also agrees with the study of Yatoh (1958) (cited in Iwaki and Totsuka, 1959) in which the
authors found the disease concentrated more on the SW slope of mount Myojo and mount Chosen.

This latter study was conducted at the elevation of 1718 m, similar to Zao Mountains. Although
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Lausch et al, (2011) found that elevation played an important role in the spreading of bark beetles
in mountainous area through their 18 year models, they did not see the same effect for aspect and
slope. Their conclusion also agreed with the study of Wulder et al,, (2006) at the elevation range
from 600 m to 800 m in which the author found that elevation, slope and aspect did not contribute
to bark beetle infestation. However, these findings did not apply to the case of the national forest
where the elevation range was 1000 m, in which the elevation, slope and aspect increase the

accuracy of infestation model.
2.1.5 Study Sites

Zao Mountains is a volcanic mountain in Northern Honshu island, the main island in Japan,
located on two prefectures Yamagata and Miyagi. The study sites are on the side of Yamagata
prefecture (figure 2.5). The forests here are typical northern subalpine forests (Franklin et al,
1979; Okitsu, 2003) positioned on the latitude and longitude 38°09°10.5”N 140°25’18.4”E, covered
by either pure conifer Maries’s fir (Abies Mariesii) or mixed with other coniferous and deciduous
species (Acer tchonoskii, Acer japonicum, Acer nipponicum, Fagus crenata, Sorbaria sorbifolia, and Salix)
while the understory layer is covered by Sasa grass (ak.a dwarf bamboo) which become an obstacle
for the regeneration of the A. mariesii (Chiba et al, 2020) on the top of the Mountain. The average
minimum and maximum annual temperature of the period from 2012 to 2014 was 9 degree and 14

degree respectively (Akihiko Sasaki, 2015).
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Figure 2.5: Study area

The study area covers an area of 24.5 ha of Zao Mountain, divided into 6 sites according to the
paths within the forest following along the ropeway of cable cars which carry tourists to the top of
the Mountain. The density of the forest is more than 280 trees per hectare. The altitude of terrain
increases from 1367 m to 1714 m and witness an increase in the degrees of fir tree infestation, fir

tree density and decrease in the deciduous density.

Site 1, approximately 4 hectares, has an elevation ranges from 1367 to 1436 meters above
mean sea level (am.s.l) and has the highest composition of mixed forest, with a high proportion of
deciduous trees. The forest on this site is dense with less space for fir trees to grow. The average
canopy area of a deciduous tree in this site is about 50 m? but can reach up to 100 m” while the

canopy of a full-grown healthy fir tree can reach18 + 8 m’,

A transition is observed in site 2 where the area near to the boundary with site 1 is mixed

forest with big deciduous trees, while the rest of the site, the deciduous trees become smaller and fir
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trees become dominant. On this site, a mature fir tree canopy is 30 + 10 m’. Site 2 covers an area of

4.77 hectares, altitude ranges from 1406 to 1476 meters a.m.s.L.

Site 3 covers 5.2 hectares of forest land, with elevation ranges from 1414 to 1490 meters
a.m.s.l, completely dominated by fir trees. The deciduous trees are as small as bushes spread under

canopy, lower than 4 meter height. An average mature fir tree on this site is about 20 + 10 m”’.

Site 4 covers 4.0 hectares, the elevation ranges from 1468 to 1535 meters a.m.s.l, the forest
composition is similar to site 3. However more sick fir trees are found in this site, especially in the

group along the path under the ropeway. A full-grown fir at this site covers about 18 + 10 m’.

Site 4b is the largest site in the study covering more than 7 ha and presents the largest number
of sick fir trees. Elevation ranges from 1491 to 1578 meters a.m.s.l. An adult fir tree on this site is

about 14 + 9 m’.

Site 5 extends almost 7 hectares and the elevation ranges from 1551 to 1706 meters, it has the
steepest slope, with the same forest structure as in site 3 and 4. This site separated from the other 5
sites by the intersection of the forest paths. More than 90% of fir trees here are dead. The trees at
this site are known to be much smaller (Saito & Chiba, 2017) and much higher in density in
comparison with the other lower sites. The forest composition and health condition of each site are

presented in figure 2.6
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Figure 2.6: Forest composition and health condition
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2.2 Material and Methods
2.2.1 UAV imagery collection and processing

Sets of images were collected using commercial RGB drone DJI Phantom RTK cameras at an
altitude of 60 m in the autumn of 2021 on a cloudy day. The drone is equipped with Real Time
Kinetic (RTK) GPS, providing a precise position in real time up to a centimeter level that helps all
the orthomosaic images line up accurately while reducing Geo-referencing tasks for post processing.
Before the flight, all the flight missions were pre-programmed on software DJI GS RTK (DJI Inc,
Shenzhen, China). All the photos were captured with 90% side and front overlap, nadir view (the
camera looks directly down). This setup provided post processing images with ground sampling
distance from 1.3 - 1.5 cm/pixel for sites 2 to 5; 2.2 and 3.2 cm/pixel for site 1 and 4b respectively.

which helps gather information on the detail of the crown.

The set of UAV raw photos were aligned to create dense point clouds and orthomosaics using
structure from motion (SfM) technique (Ullman, 1979) on Metashape software (Agisoft) with
batch process. The processing pipeline and corresponding parameters are described in table 2.1.
The dense point clouds and orthomosaics were exported to *.Jas and *.tif extensions respectively

projection UTM Zone 54N for Japan in order to prepare data for data pre-processing steps.
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Table 2.1: UAV data processing in Metashape with corresponding parameters

Task

Parameters

Align photos

Build Dense Point Cloud

Build Mesh

Build Texture

Build DEM

Build Orthomosaics

Accuracy: high

Key point limit: 40,000
Tie point limit: 4000
Quality: ultra high

Depth filtering: mild

Source data: dense cloud
Surface type: Arbitrary

Depth maps quality: ultra high
Face count: high

Depth filtering: high

Mapping mode: generic
blending mode: mosaic

texture size: 4,096

Source data: dense cloud
Quality: ultra high
Interpolation: enable
Depth filtering: mild

Reuse depth maps: yes
Surface: Mesh

Blending mode: Mosaic

Hole filling: yes
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2.2.2 Data preprocessing

A layer “all_treetops.shp” was created in ArcGIS Pro to annotate all the treetops of six sites. All
these treetops were then attributed with the site number, the orthomosaic number and the tree
classes: healthy fir, sick fir, dead fir and deciduous. Since many deciduous trees from site 2 up to site
5 are too small and do not play the role of wind break or pest transmitting prevention, they were

excluded from the annotation.

In order to calculate the tree density for the hotspot analysis, the study area was constructed
into a grid of 30 m x 30 m fishnet. The grid size was chosen based on the distribution of infested
trees. Smaller grid size results in only a few to zero infested trees in a grid cell while bigger grid

size would result in too many trees within a cell and less cell unit for spatial pattern analysis.

2.2.3 Generate digital terrain model (DTM) for elevation, slope and aspect factors

2.2.3.1  Generating digital terrain model

The dense point clouds were used as input data in Fusion/LDV software (mcgaughey, 2009) to
define ground points by function “GROUNDFILTER” was adapted from algorithm of Kraus and
Pfeifer (1998). Table 2.2 describes an example script that was used to identify ground points from

dense point cloud of site 5.

These bare-earth points were then interpolated to DTM in ArcGIS Pro using function “Las

Dataset to Raster”, serving as the medium to derive elevation, slope and aspect data across the site.
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Table 2.2: Fusion script to identify the ground points for DTM generation

cd C:\
PATH C:\FUSION

set NOLASZIPDLL=

rem CATALOG

rem

set input=E:\Work\STUDY\PhD\ZaoData\RTK\Z5

set output=E:\Work\STUDY\PhD\ZaoData\RTK\Catalog

catalog.exe /density:1,240,256 /coverage %$input%\Z5 densecloud.las %output%\
25 catalog

rem GROUNDFILTER #identify ground point

rem

set input=E:\Work\STUDY\PhD\ZaoData\RTK\Z5

set output=E:\Work\STUDY\PhD\ZaoData\RTK\Ground

groundfilter.exe /tolerance:0.0000001 /smooth:2 /median:3 /finalsmooth
soutput%/25 ground.las 6 %$input%/Z5 densecloud.las

2.2.3.2  Generating elevation, slope and aspect

After DTM was generated in Fusion/LDV software, elevation, slope and aspect was created in

ArcGIS Pro software.

Elevation

In order to derive elevation data for each tree’s location, the function “Extract Values to Points”

in ArcGIS was used to extract values of DTM to all tree points of annotated layer “all_treetops.shp”.
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Sloge

The “Slope” function in “3D Analyst” toolbox (ArcGIS) was used to create a Slope raster From
the DTM. The results were chosen to be presented in degrees. The values of the raster were then

extracted to tree points using function “Extract Values to Points”.
Aspect

The “Aspect” function in “3D Analyst” toolbox (ArcGIS) was used to create an Aspect raster
From the DTM. The values of the raster were then extracted to tree points using function “Extract

Values to Points”

After the processing, the attribute table of the tree points includes the site number, the
orthomosaic number, tree classes, elevation values, slope values and aspect values of each tree, as

presented in figure 2.7

4 FID Shape treeID | Site orthomosai - | type code | tree type AspectVal | Elev Val | SlopeVal
1121 |Point 8690 | 2 |2 1 healthy fir 257152 | 1471.82 | 10.1161
1122 Point 891 | 22 1 healthy fir 252989 | 14717 | 991113
1123 |Point 8692 | 2|2 1 healthy fir 164163 | 147214 | 41.4589
1124 Point 8693 | 22 1 healthy fir 245124 | 1472.58 | 8.56064
1125 |Point 8634 | 2|2 2 sickfir 339382 | 147119 | 446531
1126 Point g0 | 22 2 sickfir 236997 | 14735 | 5.04205
1127 |Point gr21 | 22 1 healthy fir 169275 | 1473.27 | 419623
1128 Point g2 | 22 1 healthy fir 248902 | 147324 | 59202
1128 |Point 8723 | 2|2 1 healthy fir 250514 | 1473.06 | 301122
1130 Point gr24 | 2|2 1 healthy fir 255064 | 1473.18 | 1.44157
1131 |Point gr2e | 2|2 1 healthy fir 337484 | 14423 | 211324
1132 Point 8730 | 2|2 2 dead fir 337450 | 144335 | 210123
1132 |Point g7t | 2|2 2 sickfir 323711 | 144467 | 284315
1134 Point g7z | 2|2 1 healthy fir 337.546 | 143018 | 21.0827
1135 |Point 8733 | 22 1 healthy fir 337484 | 144061 | 21.1324
1136 Point 8734 | 2|2 1 healthy fir 337450 | 144208 | 210123
1137 |Point grs | 2|2 3 dead fir 337.521 | 144020 | 20.9625
1138 Point am6 | 22 2 sickfir 320301 | 144081 | 22.803
1138 |Point 8737 | 2|2 2 sickfir 320301 | 1442.18 | 22.803
1140 Point ame | 22 4 deciduous 262.89 | 1441.53 | 193597
1141 |Point a73e | 22 1 healthy fir 262536 | 1442.59 | 19.4131
1142 Point a0 | 22 1 healthy fir 311657 | 143557 | 321709
1143 |Point a1 | 2|2 1 healthy fir 303551 | 14333 | 313322
1144 Point ams | 22 1 healthy fir 27171 | 144581 | 5.83987
1145 |Point 8750 | 2 |2 1 healthy fir 256400 | 14441 | 812999
1146 Point ars1| 22 1 healthy fir 256400 | 144371 | 812999
1147 |Point 824 | 22 2 sickfir 352308 | 1433.67 | 23.3847
1148 Point 9175 | 2|2 1 healthy fir 257768 | 144467 | 6.36981
1148 |Point g8l | 2|2 1 healthy fir 280423 | 143521 | 29.2864
1150 Point 9183 | 22 1 healthy fir 207630 | 143342 | 294272
1151 |Point 9184 | 2|2 1 healthy fir 207574 | 143699 | 29.3377

& 009,299 selected

Figure 2.7: The Attribute table of all trees

presented in the study area
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2.2.4 Climate data

The monthly climate data were downloaded from the website of Japan Meteorological Agency

(https://www.data jma.go.jp/obd/stats/data/en/smp/index.html) for Yamagata station (Station ID:

47588). The data include maximum and minimum temperature from 1889 to 2020, wind speed
from 1951 to 2020, snow depth from 1953 to 2020 and precipitation from 1889 to 2020. The
Yamagata meteorological station is located at an altitude of 153 meters a.m.s.I while the study sites
on Zao Mountains has an altitude range of 1300 to 1800 meters, so the temperature of Zao
Mountains is naturally lower than at Yamagata city. According to Watanabe (2015) the temperature
difference between Yamagata city and Zao sancho ropeway station is 9 degrees. Thus the data were
converted from Yamagata station (Ty) to Zao Mountain (T,) based on the data provided in the
literature of (Sasaki, 2015) in which the author provided monthly minimum and maximum
temperature of Zao Mountain at 1350 m a.m.sl from November 2011 to October 2014. The
monthly difference in minimum and maximum temperature (d,) between Zao Sancho ropeway
station and Yamagata during the provided period were calculated as d = T, - T, and the results are
shown in table 2.3. The average difference (avg.d;) in minimum and maximum temperature
between Yamagata city and Zao Mountains were then calculated and presented in table 2.4. The
monthly temperatures at Zao Sancho ropeway station were then calculated by subtracting the
temperature at Yamagata station with the average difference between two stations T, = T, - avg.d..
Table 2.4 shows that the difference in minimum and maximum temperature between two stations is
6.3°C and 9.6°C which is suitable with the conclusion of Watanabe (2015). The calculation was
based on the assumption that the annual changes of temperature at two stations were linear. Since

this study only used climate data to observe how it is regulated by the terrain factors and thus
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factors and thus impact on the spread of bark beetles, I consider that this calculation is adequate.
However an accurate measurement on different altitudes of Zao Mountain is recommended to

satisfy the prediction results that are based on climatic conditions.

Since literature about the wind speed and snow depth data of Zao Mountain was not available,

these data were used from Yamagata station to observe the trend from 1950 to 2020.
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Table 2.3: Minimum and maximum temperature observed at Yamagata station (JMA)

and Zao Mountain (Sasaki, 2015)

Year Zao Mountain (Sasaki, 2015) Yamagata station (JMA)
Month Mean minimum Mean maximum Mean minimum Mean maximum . Min . Max
temperature temperature temperature temperature difference difference
2012 11 -2.7 2.2 4.3 7 9.5
11.7
12 -8.4 -3.2 -1.6 4.2 6.8 7.4
2013 1 -10.6 -6.4 -4.4 2.2 6.2 8.6
2 -11.3 -5.7 -4.6 2.4 6.7 8.1
3 -6.9 1.3 -1.3 10 5.6 8.7
4 -2.5 4.5 3.6 15.1 6.1 10.6
5 5.1 13.0 10.1 22.8 5 9.8
6 11.2 17.6 16.5 27.5 5.3 9.9
7 14.9 18.5 20.6 28 5.7 9.5
8 15.5 20.6 21.3 31.2 5.8 10.6
9 11.6 17.8 16.4 26.7 4.8 8.9
10 6.6 12.5 11.8 20.2 5.2 7.7
11 -4.3 2.5 3.1 11.9 7.4 9.4
12 -7.7 -4 -0.1 5.5 7.6 9.5
2014 1 -11.5 -6.2 -3.7 3.7 7.8 9.9
2 -11.7 -7.1 -3.7 3 8 10.1
3 -7.7 -2.2 0.1 7.9 7.8 10.1
4 -29 5.1 3.8 17.1 6.7 12
5 5.0 13.4 11.1 23.6 6.1 10.2
6 10.8 16.9 17.2 27.1 6.4 10.2
7 13.9 19.2 19.9 294 6 10.2
8 15.6 20.6 21.3 30.2 5.7 9.6
9 9.0 15.7 14.7 25.1 5.7 9.4
10 4.5 11.7 8.7 19.2 4.2 7.5

Table 2.4: the average difference in minimum and maximum temperature between Yamagata city

and Zao Mountain

Month 1 2 3 4 5 6 7 8 9 10 11 12 Average
Avg. min
7.4 6.7 6.4 5.6 5.9 5.9 5.8 5.3 4.7 7.2 7.2 6.3
difference
Avg. max
9.3 9.1 9.4 11.3 10 10.1 9.9 10.1 9.2 7.6 9.4 9.5 9.6
difference
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2.2.5 Hotspot analysis

In order to analyse the hotspot of sick fir trees, The hotspot analysis — Getis-ord-Gi* statistics
(Getis and Ord, 2010) was used. The method defines the clusters of high and low values based on
the comparison of sick fir density within the neighbourhood area of a targeted grid cell with the
whole study area (figure 2.8). In a monoculture of fir stand, the infestation was usually found
within 50 m radius (Kerchev & Torchkova, 2018 (cited in EFSA, 2020)), thus a neighbourhood
within 50 m from a targeted cell was chosen to identify hotspots of sick fir. The process was run

on ArcGIS, with returning results in the form of its statistical significance at seven different levels.

T I s
Target = h
I\ Neighbourhood ==
cell / r —
\ area / AT | A=
Neigh\bourhood \\ / =
. / . /
area \ ‘,f‘ \\ // /\”ﬂ7
\ ST
B T
| "
A
]

Figure 2.8: hotspot analysis with targeted grid cells and neighbourhood area
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Table 2.5: interpretation the statistical levels of hotspots and coldspots

Gi_Bin

z-score and p-value

Interpretation

Il Hotspot — 99% Confidence

>+ 2.58 and < 0.01

I Hotspot — 95% Confidence

>+1.96 and < 0.05

Hotspot — 90% Confidence

>+1.65 and < 0.10

Cluster of high values with the
probability less than 1%, 5% and 10%
respectively the spatial pattern is a

result of randomness

Not Significant

No statistical significant

Coldspot — 90% Confidence

>-2.58 and < 0.01

Coldspot - 95% Confidence

>-1.96 and < 0.05

Il Coldspot — 99% Confidence

>-1.65and < 0.10

Cluster of low values with the
probability less than 1%, 5% and 10%
respectively the spatial pattern is a

result of randomness

2.2.6 Random forest

2.2.6.1  Data preparation

Random forest (RF) is a type of classification and regression model asembled from multi-

decision trees. The model uses bootstrapping technique to randomly sample the dataset into many

subsets of features (trees). The result is the average of all voting results from a large number of

trees which helps to improve the model performance and prevent overfitting. RF has been used

widely for its simplicity, ability to handle large datasets and accurate results most of the time

(Breiman, 2001). By generating a large number of random trees from multiple variables, it aims to

find the best model to perform the relationship between a dependent variable and independent

variables. This relationship is illustrated through variable importance in which the role of each

independent variable is permuted to evaluate how the permutation decreases the accuracy of the
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model (Breiman, 2001). In this study, tree health conditions and the three terrain factors were used

as dependent and independent variables.

The hypothesis of this study is that the topographic conditions promote or enhance the spread
of P. proximus in the Mountain. Therefore, the study aims at predicting the fir tree health conditions
from terrain factors using RF. For that, the random forest was used in two scenarios to predict tree
health. The first scenario was to evaluate if there was an impact of terrain factors on the infestation
of fir trees (ﬁgure 2.9). In this scenario, all the trees were classified into two classes: healthy fir and
infested fir (in this study infested fir is used to describe all fir trees that were and have been colonized by
bark beetles including sick fir and dead fir). The second scenario was to evaluate if there was a terrain
pattern that enhanced the spreading — some places infested first showing the highest density of dead
trees now while some places infested later and showing high density of sick trees. In this scenario,

all the trees were classified into three classes: healthy fir, sick fir and dead fir (figure 2.10).

Besides that, two more scenarios that included deciduous trees were analysed to evaluate if there
was an impact of terrain pattern on different tree types and health. These two scenarios are

described in Appendix

Each scenario was run on python as the most popular platform for random forest algorithm and
in ArcGIS with the function names “Forest-based Classification and Regression” to evaluate the

potential of this software in this context of classification.

The data were split into two separate files for the training set (80 %) and test set (20 %). From
the shape file of all the treetop points, the tool “Create Random Points” in ArcGIS was used to

randomly select 7517 points out of 9399 points and exported them into a training and validation
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set to build up a predictive model. The remaining 1882 points were then exported into a test set
file. The voted predictive model was used to predict these 1882 points. The comparison of the
prediction results and the ground truth was made in the form of a confusion matrix to evaluate the
performance of the predictive model. Table 2.6 and 2.7 illustrate the percentage of each health class
present in the training set and test set for each scenario. In this study RF algorithm was performed
using the Scikit-learn library in Python, ensemble package (Pedregosa et al, 2011). For the detail of

the Python code, refer to Appendix

Scenario 1: Two classes of tree health (healthy fir, infested fir)

* OnlyFir_testSet
* OnlyFir_trainSet.

Figure 2.9: The distribution of training dataset and testing dataset for two classes of tree health

(scenario 1 )

Table 2.6: The percentage of each class of tree health contribute to training set and test set

Training set (80 %) Test set (20 %)
Healthy fir 3162 (45.2 %) 819 (46.8 %)
Infested fir 3834 (54.8 %) 932 (53.2 %)
Total 6996 1751
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Scenario 2: Three classes of tree health (healthy fir, sick fir and dead fir)

* Test set - 3 classes
¢+ Train set - 3 classes

Figure 2.10: The distribution of training dataset and testing dataset for three classes of tree health

(scenario 2)

Table 2.7: The percentage of each class of tree health contribute to training set and test set

Training set (80%) Test set (20%)
Healthy fir 3181 (45.5 %) 800 (45.7 %)
Sick fir 1714 (24.5 %) 431 (24.6 %)
Dead fir 2102 (30 %) 519 (29.7 %)
Total 6997 1750

2.2.6.2  Validation

The validation was performed on the test set using a confusion matrix (table 2.8) to compare
the predicted result with the actual result. Three metrics of validation were used to evaluate the
prediction result: precision, recall and F1-score. These metrics were calculated based on the number
of true positive, false negative, false positive and true negative. Besides that, feature importance was
calculated in order to evaluate the importance of each factor elevation, aspect and slope on the

classification of tree types and health in Zao Mountains.
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Table 2.8: Confusion matrix

Predicted class
Tree Not tree
Tree True positive (TP) False negative (FN)
Actual class
Not tree False positive (FP) True negative (TN)

True positive: when the predicted result of a positive class is the same as actual class.
True negative: when the predicted result of a negative class is the same as actual class.
False positive: when the actual class is negative but the predicted result is positive.
False negative: when the actual class is positive but the predicted result is negative.

Accuracy: is the ratio of total correctly classified samples over the total samples. Accuracy is not

a good indicator if the data is imbalanced.
Accuracy = (TP+TN)/(TP+FP+FN+TN)

Precision: is the ratio of true positive results over total positive results. The precision answer the

question, for example: among all of the trees are predicted as sick, how many are actually sick?
Precision = TP/(TP+FP)

Recall: Recall is also known as sensitivity, it is the ratio of true positive over the total of true
positive and false negative. Recall help to answer the question, for example: of all the trees are

actually sick, how many are predicted as sick? Recall = TP/TP+FN

F1-score: F1-score is a metric that works for both balance and imbalance data. The measurement

is the weighted average of precision and recall. If both precision and recall are high, F1 is high; if
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either precision and recall is low, F1 is low. F1 helps to answer how good the classifier can predict

a class. Thus, F1-score is useful to compare the performance of different classifiers.
F1 Score = 2*(Recall * Precision) / (Recall + Precision)

2.3 Result

2.3.1 Tree inventory

A total of 9399 trees in the forest were found from the images and were annotated to convert it
into GIS data. These are trees which are full canopy and partial canopy visible, including seedling,
sapling and mature fir trees. In a total of six sites there are 8747 fir trees and 652 deciduous trees
presenting 93% and 7% of all trees respectively. This composition again confirms the dominance of
Maries fir species in Zao Mountains. Of all the fir trees, 3981 are healthy, 2145 are sick and 2621

are dead (table 2.9), equal to 42.4%, 27.9% and 22.8% respectively (figure 2.11).

Table 2.9: Tree types inventory

Tree type  Site 1 (4 ha)  Site 2 (4.77 ha) Site 3 (5.2 ha) Site 4 (4.04 ha) Site 4b (7.05 ha) Site 5 (6.9 ha)

Number Density Number Density Number Density Number Density Number Density Number Density Total

of trees of trees of trees of trees of trees of trees
Healthy fir 352 88.8 711 149 933 179.4 743 183.9 1227 174 15 2.2 3981
Sick fir 23 5.8 186 39 368 70.8 413 102.2 1017 1443 138 20 2145
Dead fir 10 2.5 24 5.03 34 6.5 72 17.8 194 27.5 2287 3314 2621
Deciduous 410 102.5 154 32.3 43 8.3 24 5.9 14 2 7 1 652
Total 798 199.5 1075 225.4 1378 265 1252 309.9 2452 347.8 2447 354.6 9399

Site 1 is a mixed forest, where more than 50% of trees are full-growth deciduous, there are only
385 fir trees in this site with the density at 97.1 trees/ha. Of which 352 trees are healthy fir, 23

trees are sick and 10 are dead.
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Site 2, the number of fir trees on this site is 921 trees, 193 trees/ha, almost double site 1.
While the density of healthy fir trees and dead fir trees increase doubles from site 1, the number of

sick fir trees increase almost seven times up to 39 trees/ha.

Site 3, the density of fir trees also increases to compare with site 1 and site 2. This is because
there are almost no deciduous trees now, only 43 small deciduous trees are found. Since fir trees
become dominated, the risk of infestation is increased. The total number of fir trees is 1335 with a
density of 256.7 trees/ha, among them 933 are healthy, 368 are sick and 34 are dead, this is equal

to the density of 179.4, 70.8 and 6.5 trees/ha respectively.
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Figure 2.11: Map of the distribution of different tree types on the study sties

The density of fir trees in site 4 continues to increase to 310 trees/ha. The density of healthy,

sick and dead fir is as high as 183.9, 102.2 and 17.8 trees/ha respectively.
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Site 4b, while the density of sick fir and dead fir trees increases to 144.3 and 27.5 trees/ha
respectively, the density of healthy fir trees slightly decreases to 174 trees/ha in comparision to site

4. This shows a sign of the decreasing tree health.

Site 5, the number of fir trees and density are almost similar to site 4b. However, this is a site
with the highest density of dead trees in which the density of healthy and sick fir are only 2.2 and

20 trees/ha respectively while it is 331.4 trees/ha for dead fir.

While the density of healthy fir does not change much from site 2 to site 4b, a significant
increase on sick fir and slight increase on dead fir among these sites show continuous degradation

on forest health condition following the high mortality rate in site 5 (figure 2.12).
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Figure 2.12: The distribution of different tree types in the study sites

2.3.2 The distribution of fir tree health according to the change of terrain

2.3.2.1  Elevation

The elevation of these six sites ranges from 1368 m to 1714 m (figure 2.13). The elevation

1500-1550 meters has the highest number of sick fir trees. This is also the elevation range that has
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the highest number of fir trees, about 2400, followed by the elevation ranges 1450-1500 m with
2200 trees. The elevation range 1400-1450 m and 1550-1600 m have a similar number of fir
trees, 800 and 900, respectively, however at the elevation range of 1550-1600 m the number of
sick and dead firs are three times higher than at the elevation 1400-1450 m. At the elevation range

1600-1700 m most of the trees are dead (figure 2.14).
2.3.2.2  Slope

The slope with an inclination of 16.7°~21.8° has the highest number of fir trees, approx. 1600
trees, followed by the slope with an inclination of 21.8°-31° with 300 trees less. However, the slope
with 21.8°-31° has the highest number of dead fir, 528 trees and the second highest number of

infested fir, 819 trees while these numbers are 471 and 870 respectively for the slope 16.7°-21.8°.

Other slope ranges that have more than 300 dead trees are 11.3°-14°, 14°~16.7° and 31°-45°

with 344, 317 and 342 trees respectively.

Although the slope 45°-90° has a low number of fir trees (534 trees), it also has a high number
of dead trees (255). This is opposite in the case of slope 5.71°-8.53°. This slope has a higher
number of fir trees than the former one, 694 trees, but it has only 94 dead trees and 175 sick trees.

(figure 2.14)
2.3.2.3  Aspect

Aspect shows a very clear effect on the fir tree growth and infestation. Most of the fir trees
grow on the west slopes, including the West, Southwest and Northwest facing slopes. The West slope

has the highest number of fir trees, accounting for 2762 trees, while dead trees and sick trees
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account for 1032 and 621 respectively. The Southwest and Northwest slopes have similar numbers
of fir trees, 2012 and 1974 respectively, however the Southwest slope has almost 1.5 times higher

number of dead trees than the Northwest slope.

In contrast with the west slopes, the east slopes (Northeast, East and Southeast) have the lowest

number of fir trees at an average of approx. 250 trees on each aspect. (ﬁgure 2.14)
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Figure 2.13: Three terrain factors (a) elevation, (b) Slope, (c) aspect
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Figure 2.14: The distribution of elevation, slope and aspect in the study area
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2.3.3 Hotspots of sick fir

In the hotspot analysis, the study focuses only on sick fir in order to know where the
concentration of sickness is and visualize the location that the forest health will more likely be
degraded in the next 2-4 years of infestation. Figure 2.15 shows the hotspot results that was

calculated from sick fir density within 50 m of the vicinity.

The hotspots of sick fir are highlighted in site 4 and especially 4b. Most of the significant
hotspots area (p = 0.01) are located at the elevation 1500-1550 meters (figure 2.16), mid range of

slope face West direction from 8.53-21.8, especially from 16.7° to 21.8°.

Figure 2.15: The hotspots of sick firs
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Figure 2.16: (a) Elevation, (b) slope and (c) aspect distribution of sick fir trees in hotspot area



2.3.4 Random forest for tree health prediction based on terrain factors

Scenario 1: The classification of two classes of healthy fir and infested fir

The confusion matrix shows a balance in the number of healthy fir trees and infested fir trees
that was correctly predicted from the terrain factors in the RF model run in Python. Thus, the
precision, recall, F1-score and accuracy values were similar. Overall, the algorithm could correctly
predict 74.6% of all trees of two classes. Among all the predicted healthy and infested fir 71% and
79% are actually healthy fir and infested fir. Focusing on the recall, of all 819 healthy fir, the
algorithm could correctly predict 639 trees, which accounts for 78% of the total number of trees.
However, there are more infested fir mis-classified as healthy fir: 265 trees out of 932 trees. This
makes the recall of this class slightly low at 72%. F1-score of two classes is balanced as 74% and

75% respectively. (table 2.10)

The RF model run in ArcGIS returns almost 10% lower in overall accuracy. There are less than
153 healthy fir trees predicted correctly compare with infested fir trees, while that number in the

Python model is 28. The results show that precision, recall and F1-score are also lower than in the

Python model. (table 2.10)

Among six sites, site 5 and 1 achieve the highest number of trees that were correctly predicted
98.8% and 87.5%, respectively (table 2.11). Low variation in the tree health condition in these two
sites is the reason for the good results obtained. Most of the trees in site 5 are infested and most of
the trees in site 1 are healthy thus it is more feasible for the algorithm to predict these two sites.
The percentage reduced to 70.8% and 70% in site 2 and site 3 where the number of infested fir

increased to 210 and 402 respectively.
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Table 2.10: Confusion matrices for the classification of healthy fir and infested fir in (A) Python
and (B) ArcGIS

A

Healthy fir Infested fir precision recall f1-score
Healthy fir 639 180 0.71 0.78 0.74
Infested fir 265 667 0.79 0.72 0.75
Opverall accuracy: 74.6 %
B

healthy fir infested fir precision recall f1-score
healthy fir 501 318 0.64 0.61 0.62
infested fir 278 654 0.67 0.7 0.68

Overall accuracy: 66 %

The classification performance continues reducing to 59.1% and 59.7% for site 4 and site 4b

where the number of infested fir keep increasing to 485 and 1211 respectively. The higher variation

in tree classes, the less association between terrain and health condition, the lower the performance

of prediction and vice versa.

Figure 2.17 & 2.18 show more infested were mis-classified into healthy fir in site 1, 2 and 3

and 4, while more healthy fir were mis-classified into infested fir in site 4b and 5. This is because

there are more healthy fir in site 1, 2 and 3 and more infested fir in site 4b and 5.

Table 2.11: The percentage of trees correctly predicted according to sites — result obtained from

the classification model ran in Python

Site Samples (trees) Correctly predicted (trees) Percent
1 80 70 87.5

2 195 138 70.8

3 279 195 70

4 257 152 59.1

4b 454 271 59.7

5 486 480 98.8
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Figure 2.17: (a) classified result, (b) ground truth data (test set) and (c) mis-classified healthy to

infested and infested to healthy from random forest model in python
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Figure 2.18: (a) classified result, (b) ground truth data (test set) and (c) mis-classified healthy

to infested and infested to healthy from random forest model in ArcGIS
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Scenario 2: The classification of three classes of healthy fir, sick fir and dead fir

The confusion matrix shows an imbalance in the number of healthy fir, sick fir and dead fir that
were correctly predicted from the terrain factors in the RF model run in Python. This reflects in the
precision, recall and F1-score results. The precision is very high for dead fir (0.94) but very low for
healthy fir (0.68) and sick fir (0.45). In the recall the results are almost similar for healthy fir and
dead fir (>0.80) but low for sick fir (0.34). Overall, the Python algorithm could correctly predict

71.1% of all trees (table 2.12).

The RF model run in ArcGIS returned 17% lower in overall accuracy. There were less than 293
trees that were predicted correctly compare with the model run in Python. The results show that

precision, recall and F1-score were also lower than in the Python model (table 2.12).

Compared with the model of 2 classes, site 1 and site 4 showed a higher percentage of trees
correctly predicted, while the other sites had lower prediction values (table 2.13), but similar to the
trend obtained from the previous model, site 1 and 5 achieved the highest percentage of trees

correctly predicted. From site 2 to site 4b, the percentages decreased.

There are 99% of trees in site 5 are dead fir. Thus the RF classifier (run in Python) mis-
classified several sick and healthy fir trees as dead fir trees (figure 2.19). In contrast, the model run
in ArcGIS perform poorer when mis-classified many dead firs as healthy firs and sick firs (figure
2.20). Likewise, in site 1 where most of the firs are healthy, the python model mis-classified several
sick firs as healthy firs, but in reverse way, the ArcGIS model mis-classified more healthy fir as sick
fir. From site 2 to site 4b, while python model mis-classified more dead and sick firs into healthy

firs the ArcGIS model mis-classified more healthy and sick firs into dead firs.
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Table 2.12: Confusion matrices for the classification of healthy fir, sick fir and infested fir in

(A) Python and (B) ArcGIS

A

Healthy fir  Sick fir Dead fir precision recall f1-score
Healthy fir 648 144 8 0.68 0.81 0.74
Sick fir 262 147 22 0.45 0.34 0.39
Dead fir 36 33 450 0.94 0.87 0.9

Overall accuracy: 71.1 %

B
Healthy fir  Sick fir Dead fir precision recall f1-score
Healthy fir 419 261 120 0.63 0.52 0.57
Sick fir 179 179 73 0.33 0.42 0.37
Dead fir 64 101 354 0.65 0.68 0.66

Overall accuracy: 54.4 %

Table 2.13: Percentage of trees correctly classified according to sites — result obtained from the

classification model ran in Python

site Samples Correctly classified Percent
1 79 73 92.4
2 186 131 70.4
3 266 179 67.3
4 242 157 64.9
4b 485 244 50.3
5 492 461 93.7
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Figure 2.19: (a) classified result, (b) ground truth data (test set) and (c) mis-classified trees from

random forest model in Python
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Figure 2.20: (a) classified result, (b) ground truth data (test set) and (c) mis-classified trees

from random forest model in ArcGIS
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2.4 Discussion
2.4.1 Variable importance

Variable importance measures the impact of each variable on the accuracy of the RF model by
permuting the values of each variable and measuring how much the permutation decreases the
accuracy of the model. Figure 2.21 shows the importance of elevation, slope and aspect for four
different Random Forest classification models: 2 classes in Python, 3 classes in Python, 2 classes in

ArcGIS and 3 classes in ArcGIS.

0.7
0.6
0.5

0.4 W Python — 2 classes

B Python — 3 classes

0.3 ArcGIS — 2 classes
B ArcGIS - 3 classes
0.
0.
0

Elevation Slope Aspect

N

=

Figure 2.21: Chart shows variable importance of elevation, slope and aspect in

each type of random forest mode

In the two cases of the model run in Python, the variable importance shows the elevation over
weight the slope and aspect by impacting 55-58% on the accuracy of the model to predict health
classes, while in ArcGIS all three variables share the same role. With higher accuracy at 75% and
71% for two classes and three classes models run in Python respectively, it suggests that the

elevation has a higher impact on the abundance of fir bark beetles in the forests. In any case, the
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measures show the significant impact of three terrain factors on the accuracy of predicting the tree
health condition in mountainous forest. These factors have also been found to be key input variables
to predict the spread of bark beetles in previous studies (Wulder et al,, 2006, Lausch et al, 2011).
Table 2.14 shows a distinct trend of the percentage of trees being infested in each elevation range.
Almost 100% of trees on the elevation 1600-1700 m were infested, of which 98.7% were dead.
Thus, only a small percentage of trees remaining at this elevation range were sick. According to
table 2.14, the infestation trend is moving downhill with 64.5% and 45% of trees being infested at
the elevation range of 1550-1600 m and 1450-1500 m. Of which, 42.9% and 38.1% were sick.
Amman (1973) found that cold weather in elevations higher than 2130 meters is too harsh for
bark beetles to survive, while the population of bark beetles increase 3 times at the elevation 1923
meters since at the infestation stage. This suggests that the lower elevation of Zao Mountains with
warmer weather is a suitable habitat for bark beetles to flourish. Besides that, since the damage is
more severe on higher altitude in Zao Mountain than lower altitude, it agrees with the conclusion in
Krivet (2012) (cited in EFSA, 2020) that the beetles flourish in “cold areas with warm and dry
summer”. The altitude of 1600-1700 m of Zao Mountain, colder than lower altitudes and the
temperature in the summer higher than 15°C, maintains the requirement for the emergence of
swarming period (EFSA, 2020) (figure 2.22). Thus the infestation began from the top of the
Mountains where all the trees were dead and continued moving downhill to site 4b and 4 where
there is a cluster of sick fir hotspots. Another reason the infestation begins from the top could be
because the trees are smaller than the trees at lower altitudes. Takagi et al, (2018) found a
significant relationship between small trunks and the intensity of P. proximus colonization. Bigger

trees with thicker bark are more resistant to the infestation, while tree of smaller diameter tend to
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be damaged more severely (Takagi et al, 2018, EFSA, 2020). Futhermore, Takagi et al, (2018)
mentioned that trees with smaller trunks might be more susceptible to climatic conditions and thus
make them more vulnerable to the attack of bark beetles. Although this conclusion is found to be
opposite to the study of Amman (1978), about mountain pine bark beetle which prefer larger-

diameter trees with thicker phloem, it is suitable to the occurrence on Zao Mountain.

Table 2.14: The percentage of infested, sick and dead trees at different elevation range

Elevation Percent infest Percent sick Percent dead
1360 - 1400 3.4 2.7 0.7

1400 - 1450 24.4 21.1 3.3

1450 - 1500 30.6 27.2 3.4

1500 - 1550 45 38.1 6.8

1550 - 1600 64.5 42.9 21.6

1600 - 1700 99.9 1.2 98.7

Figure 2.21 shows a similar role of slope and aspect, approx. 20% each contribute to the
accuracy of the model ran in Python. While table 2.15 shows a tendency of more infested trees on
steeper slopes than on more gentle slopes, the aspect (table 2.16) presents almost the same impact

from all orientation of the slope to the percentage of infestation.

There are 68.5% of trees at the steepest slope 45°-90° being infested and the percentage
gradually reduced to 39.2% at the flat terrain (<3.430). However, the percentage of sick trees is
almost equal in all slope angles, ranging from 21% to 27% with higher percentages found at flat to
gentle slope and lower percentages presented at steeper slopes. In contrast, the percentage of dead

trees increase following the increase of the slope angles, from 12% to 48%. This indicates that the
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steeper slopes accelerate the mortality of trees. This might be related to higher exposure by trees to

the harsh winds in Zao Mountain which suppressed the trees (Iwaki & Totsuka, 1959).

Table 2.15: The percentage of infested, sick and dead trees at different slope range

Slope Percent infested percent sick Percent dead
<3.43 39.2 27.1 12
3.13-5.71 39.5 26 13.5
5.71 - 8.53 38.8 25.2 13.5
8.53-11.3 44.7 26.3 18.4
11.3-14 54.2 25 29.3
14 - 16.7 54.8 24.5 30.3
16.7 - 21.8 55.8 25.6 30.2
21.8 - 31 63 22.4 40.6
31-45 65.4 23.7 41.8
45 -90 68.5 20.8 47.8

The percentage of trees infested, sick and dead are almost the same on all aspects of the
mountain with the averaging of 54% + 5%, 25% £ 2% and 29% % 6% respectively. The highest
percentages of trees being infested and dead are found on the slope facing West at 59.8% (table

2.16).

The percentage of sick trees is similar on all aspects of the Mountains with the average 25% +
2% (table 2.16). Despite the western aspect bing the direction of prevailing wind (Keiko Kai, 1977)
and sun radiation from 11:00 to 16:00 on Zao Mountain during the summer (Appendix). This side
of the slope presents the highest number of dead trees, at 37.4% of all trees on this aspect. However,
this is only slightly higher than the Southeast slope (33.9%) which is not the direction of strong
wind and sun. The north slope shows the lowest percentage of dead trees at 20% of all fir trees on
this aspect. Light and wind are known to have a strong impact on tree stress (Iwaki & Totsuka,

1959; Maruta, & Nakano, 1999). Wind can dry the soil and suppress tree growth, thus making
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thus making them more susceptible to bark beetles. However, the aspect towards strong wind and
light was not found to have impacted strongly on the spread of bark beetles on Zao Mountains. The
high percentage of sick firs and low percentage of dead firs on the South and Northwest slopes
shows that these two aspects have a low pace of mortality. In contrast, the west slope shows a low
percentage of sick fir and a high percentage of dead fir, suggesting a faster pace of tree mortality.
Therefore, although the aspect does not show a strong impact on the infestation of fir trees, it may

still influence the rate of forest health degradation.

Nevertheless, by permutating either aspect or slope factors in RF model, it reduces the accuracy
of the model to 20%, suggesting that it is better to put aspect in the context of slope angle. The
combination of west slope 21°-90° would leave the trees more exposed to the challenging climate of

Zao Mountains and speed up the mortality of the trees.

Table 2.16: The percentage of infested, sick and dead trees at different aspect range

Aspect Percent infested Percent sick Percent dead
North 46.4 26.4 20

Northeast 51.5 22 29.5

East 54 23 31

Southeast 59.5 255 33.9

South 55.2 27.7 27.5
Southwest 54.4 229 31.5

West 59.8 22.5 37.4
Northwest 49.2 27.7 21.6

Regarding the RF model to predict infested, sick and dead trees in Zao Mountain according to
the change of elevation, slope and aspect, the model run in Python provides a better result in term

of validation metrics and variable importance.
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RF model run in ArcGIS illustrates the equal roles of elevation, slope and aspects which do not
explain well the statistical results presented above. It also shows a high number of trees that are mis-
classified in site 5 and site 1 (figure 2.18 & 2.20) where present the lowest variation of tree health
condition, showing a misbehavior of the model. In contrast, the model run in Python provides better

accuracy, especially, in homogeneous area, where prediction are correct (more than 90%).
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Figure 2.22: Mean summer temperature estimated for Zao Mountains at 1350 m

In the comparison between 2 classes model and 3 classes model run in Python, the model
performs better when the number of classes to predict is less. The accuracy is higher and more
balanced in the result of F1-score, recall and precision. In the prediction model for 3 classes, the
model misclassified many sick firs with precision, recall and F1-score of 0.45, 0.34 and 0.39, while
the numbers of dead firs are 0.94, 0.87 and 0.9 and for healthy firs are 0.68, 0.81 and 0.74
respectively. This is because many sick firs were misclassified into healthy firs. The proportion of
training data for healthy fir, sick fir and dead fir were 45.5%, 24.5% and 30%, which shows almost
equal amounts of data for sick firs and dead firs. This means that the low performance on sick fir is

not only the result of imbalance data but also the spatially imbalanced. Dead trees cluster in site 5,
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made it more predictable by relying on terrain factors, especially elevation. Sick trees spread
heterogeneously from site 2 to site 4b, showing less terrain pattern and thus, more challenging to
predict correctly. Nevertheless, with 75% and 71% accuracy achieved for the 2 classes and 3 classes
models, it shows that terrains are the main factors that contribute to the spread of bark beetles in
Zao Mountains, mainly because it regulate the mountainous climate which directly influence the

productivity of bark beetles (Amman, 1978; Logan & Powell 2001).
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Chapter 3
—— W RGN
Individual Sick Fir Tree (Abies mariesii)
Identification in Insect Infested Forests by

Means of UAV Images and Deep Learning



3.1 Introduction
3.1.1 Background

Modern forest management demands more practical approaches on a macroscopic scale with
the accuracy at tree level that can provide detailed information of tree characteristics such as crown
color, tree height, diameter at breast height (DBH), tree crown area and basal area. These
characteristics are essential for quantitative analysis of infestation, evaluating forest damage and
monitoring forest regeneration. Traditional forest surveying on the field can acquire data of a single
tree but face the challenge of seeing the forest condition as a whole and often is time-consuming
and physically demanding. The satellite data can observe large area of forests but too coarse to get
detailed information of a single tree. UAVs, with the ability to acquire data over a large area in high
detail, can fill the gaps between field measurement and satellite observation. Using UAV to evaluate
forest health has increased recent years (Nasi et al, 2015; Smigaj et al., 2015; Safonova et al,
2019). UAVs make data acquisition possible in areas where access is difficult (Pulido et al., 2020),
such as Zao mountain, where field studies face challenges because of unfavorable weather, dense
understory vegetation and complex terrain. UAVs open up opportunities to study mountainous
natural forests where tree distributions are often heterogeneity and high variability among
individual tree characteristics (size, species, and position)- by reconstructing 3D images of the
forest (Diez et al,, 2020; Kentsch et al,, 2020; Krisanski et al., 2020). Such data present high spatial
resolutions (of up to centimeters per pixel) allowing for the analysis of single tree-canopies
(Michez et al,, 2016; Brovkina et al,, 2018). Single tree identification is essential to classify trees, to
monitor their health or to estimate forest inventory, forest biomass and carbon stocks, among other

forest dendrometric (Vastaranta et al.,, 2011; Pulido et al,, 2020; Bennett et al., 2020).
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Nasi et al, (2015); Smigaj et al, (2015); Dash et al,, (2017) presented related methodologies
on forest health evaluation, but these studies took place in plantation forests and relied on either
multi-spectral or hyper-spectral cameras, which are costly and have low spatial resolutions. The low
cost commercial UAV-acquired RGB images are more accessible for any forestry institution while
still offer high sensor quality. Kloucek et al, (2019) used RGB images and multi-spectral images to
classify bark beetle infestation in forest and stated that the consumer-graded UAV performed better,
especially because infested and healthy trees showed a visible distinction at red band. The first try of
drone-acquired RGB images and deep learning to classify insect outbreak in natural forest was
carried out by Safonova et al, (2019) on Siberian fir but the study was conducted on some regions

of interest and lack of assessment of the individual tree detection algorithm.
3.1.2 Individual treetop detection

Individual tree detection is a necessary step towards identifying sick trees and monitoring the
spread of tree diseases in forest (Nési et al, 2015; Smigaj., 2015; Safonova., 2019). Various
methods have been proposed to detect individual trees either through individual treetop detection
(ITD) or through individual tree crown (ITC) delineation. Individual treetop detection (ITD) is to
find the top of the trees while individual tree crown (ITC) delineation is to segment the boundary
of a canopy, many studies have used these two terms to identify individual trees (Ke &
Quackenbush, 201 1) such as Holmgren & Persson, (2004); Kwak et al., (2006); Gougeon, (1998);
Zhen et al, (2015). For decades, most of the studies relied on Very High Resolution (VHR) satellite
images, Airbone Laser Scanning (known as Lidar), multi-spectral and hyper-spectral aerial images

as medium data to detect individual trees (Chen et al., 2006; Kwak et al.,, 2006; Nisi et al., 2016;
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Plesoianu et al., 2020). However, satellite images are affected by cloud and the Lidar approaches are

not always affordable.

Fast improvement in UAV technology has broadened the opportunities to use it in a wide range
of applications. Several studies have attempted to use UAV-acquired RGB images to detect
individual trees directly or indirectly, for example: Lim et al, (2015) attempted to identify 25
individual trees to measure tree height and crown diameter in an urban plantation based on Canopy
Height Model (CHM) and orthomosaics; Kattenborn et al., (2014) detected individual palm trees
using pouring algorithm on UAV-derived CHM in three different tree composition of plantations.
They identified 69.8% of trees at flying altitude of 70m with lower overlapping and 86% of trees at
flying altitude of 100m with higher overlapping; Mohan et al, (2017) developed a method to
automatic detect individual coniferous trees in an open mountainous coniferous forest from UAV-
derived CHM. They detected 312 trees out of 367 trees; Diez et al, (2020) experimented with six
different local maxima detection and image clustering algorithms on UAV-acquired RGB images to
detect treetops in 40 ha mixed natural mountainous forests and evaluated these algorithms. Their
algorithms found 90% of trees with lower location accuracy and 80% with higher location accuracy.
Gu et al.,, 2020 detected the treetops and segmented the canopy crown in a mixed forest with region
growing techniques using natural color UAV. Although they did not illustrate the detection rate,
they could detect 4164 trees in one experiment. Despite different forest structures, these studies
have shown a possibility of using consumer grade UAV for automatic individual treetop detection in

forests.
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ITD in mixed mountainous natural forests faces many challenges when comparing with flat
mono-cultured plantation forests. In mountainous forest, the steep slope makes the flying height to
the ground non-uniform within a fly mission, thus affecting to the size of trees on captured images.
Trees near to the camera are bigger size and more detailed than trees far from the camera. Trees in
natural forest grow more heterogeneously with different age, size and distance between them, which
is more challenging to find a uniform formula for the detection algorithm (Pouliot et al, 2002).
Forest structure also affect the detection of treetops. Coniferous trees have pyramid shape with
obvious treetops place at the center of the canopy which are easier to detect. In contrast, deciduous
trees have large crowns, flat at the center, multiple over grown branches which often lead to over

detection (Diez et al,, 2020).

3.1.3 Deep Learning for tree health identification

In contrast to classical computer vision algorithms, where general expert knowledge is used as
an evaluation metric, emerging technologies such as Deep Learning (DL) allow for the
incorporation of that knowledge into the automatic processing of the images. To build a DL
network, first an architecture or set of nodes and connections among them is defined. The type of
each node, the number of nodes and the connections between them, determine the behavior of the
network. Subsequently, the network is given example data, the DL algorithm learns from these
examples, known as training data. The data are run through the network and the weights in all the
nodes are changed following an optimization process. The ways to solve the problems learnt by the
computer are, thus, directly determined by the expert input. In natural forest, the specific tree

characteristics that we want to find, are sometimes few in numbers, thus creating data imbalances

74



for DL (which has been an important issue since the inception). For example, Dupret et al. (2001)
studied the amount of resampling needed to obtain the best results in binary classification problems
using neural networks based on perceptrons. Their theoretical analysis showed how resampling can
indeed improve the performance of classifiers and is most indicated when the cost of misclassifying
one infrequent class is high in practical terms. However, the paper also states that the ratio between
class samples needs to be carefully studied for each application. In recent years, the emergence of
DL networks and their dominance in computer vision (Krizhevsky et al, 2012; Simonyan et al,
2014; Jandola et al., 2016; He et al, 2016; Huang et al., 2017) has resulted in these ideas being
revisited in light of new application opportunities and data resampling techniques such as data
augmentation being widely used (Cabezas et al, 2020). However, most of the existing approaches
use data augmentation to improve classification performance in datasets that are small but balanced
(Deng et al, 2015; Shiferaw et al, 2019; Zhao et al., 2020; Masarczyk et al.,, 2020). In particular,
we quantify to which extent a careful use of data augmentation and the choice of an adequate DL
architecture, can improve the detection of sick fir trees. In relation to our current work, Onishi &
Ise (2018); Natesan et al. (2019) and Safonova et al. (2019) used drone-acquired RGB data to
develop algorithms for individual tree detection and classification in natural forests. Regarding the
use of DL techniques to study forest health in UAV-acquired RGB images, Safonova et al. (2019)
used DL to recognize the degree of damage of fir trees in a natural forest. Onishi & Ise (2018) and
Natesan et al. (2019) used individual tree detection, in relatively small datasets, but the accuracy
was not quantitatively evaluated in either work and only a qualitative evaluation was provided.
Onishi & Ise (2018) worked with a total testing and training dataset made up of 941 tree images

and achieved classification accuracies of 68-95% for the six species classified. Natesan et al. (2019)
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worked with a dataset built by imaging one single site three times under different lighting
conditions. This dataset contained 1786 tree images of three species and the authors used DL
networks to achieve an average classification accuracy of 80%. Safonova et al. (2019) first predicted
potential regions containing trees in UAV images before classifying them into four degrees of pest
infestation. The authors selected RGB images manually to build a balanced training dataset that was
expanded using data augmentation. Non-tree containing parts of the orthomosaic were filtered out
using computer vision processing. The highest accuracy was reported for dead trees at 91% without
augmentation, while the lowest accuracy values were found for infested trees at 75%. None of these

studies assessed the accuracy of individual tree detection results.

3.1.4 Objectives

We have identified two main issues using UAV-acquired RGB images to detect and classify
individual trees in terms of their health or types. The first one is the relatively small datasets used in
most studies so far. The second is the lack of attention on the performance of treetop detection
algorithms when used in conjunction with classification algorithms. This is especially relevant for
natural forests where tree detection is more challenging (Diez et al, 2020). With this study we aim
to contribute with a new methodology to evaluate insect infestation in forest using UAV-acquired
images. Thus the objectives of this study are (1) Developing an algorithm capable of detecting
treetops and evaluating its performance and (2) Applying DL networks to classify two different
health conditions of Maries fir trees: (i) healthy and (ii) sick trees and a further class for (iii)
deciduous trees. All the data and annotations used for this study are available at:

https://doi.org/10.5281/zenodo.4054338.
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https://doi.org/10.5281/zenodo.4054338

3.2 Study site, data acquisition and problem definition
3.2.1 Study Sites

The study sites are located on Zao mountain, a volcano in the Southeastern part of Yamagata
Prefecture (38°09’10.5”"N 14025’18.4”E). The site covers an area of 18 ha with a tree density of
about 200 trees/ha. The fir trees in the areas are between 41 to 103 years old with an average age
of 72 years. We divided the image acquisition area into four sites relying on the small paths within
the forest. These were used to distinguish both the forest composition and the degrees of insect
damage along an elevation gradient. The elevation increases from 1250 m in site 1 to 1538 m in
site 4. The sites have different compositions and varying intensity of forest damage in terms of tree
species—Site 1 (3.9 ha) and site 2 (5 ha) are composed of Maries fir mixed with other natural
deciduous species such as: Acer japonicum and Acer nipponicum, Fagus crenata, Sorbaria sorbifolia, and
Salix. In sites 3 (5.1 ha) and 4 (4 ha), fir is the dominant species. Fewer sick firs are observed at
the lower sites while the most severely damaged trees are found at higher sites. On the top of the
mountain (1551-1706 m), all fir trees are already dead. Since our study focuses on the detection of
sick trees, we exclude the top of the mountain and present results related only to sites 1 to 4 (figure

3.1).
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Figure 3.1: The four study sites are located in Zao Mountain, Yamagata prefecture, Japan. A gradual
increase in elevation from site 1 to site 4 together with the increasing number of fir trees infested
by bark beetles, followed by the decrease of mixing rate with deciduous species (background map

from Google Hybrid (QGIS 3.10))

3.2.2 UAV Data Acquisition

Sets of RGB aerial photos were collected during the summer of 2019. Three flying missions in
site 1 (mission 1,2,3) ; three in site 2 (mission 4,5,6) and two in site 3 (mission 7,8) were taken
with a DJI Mavic 2 pro Hasselblad L1D-20c camera. The drone acquired 20 Megapixel images,
following routes designed on DJI GS pro software (DJI Inc,, Shenzhen, China). The camera sensor
is a 1 inch CMOS with a fixed focal length 10 mm and aperture f/3.2. The weather on the capturing
days varied but often entailed strong sun in the morning, then cloudy and windy in the afternoon.
The drone flew at 70 m altitude from take-off points, nadir view, 3 m/s and shutter interval of 2 s.

The photos were acquired with 90% side and front overlap. When it was strong sun and wind the
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camera was set at S priority (ISO-100) with shutter speed at 1/240-1/320 s and set at 1/80-
1/120 in more favourable weather. These set-ups maintained exposure values (EV) around 0 to
+0.7 providing a ground sampling distance (GSD) from 1.5-2.1 cm/pixel. We had one flying
mission on site 4 (mission 9) used a DJI Phantom 4 Quadcopter. The camera sensor in this UAV is
1/2.3 inch CMOS with a fixed focal length of 24 mm. The drone was pre-programmed to fly at 45
m high from take off point on a mild weather day. Photos were taken with 90% front and side
overlap. The drone flew at speed 2 m/s, with a shutter interval of 2 s. The camera was set in
automatic mode at a shutter speed of 1/120 s, ISO-100, EV at 0. This set up resulted in a GSD of
2.6 cm/pixel. The number of RAW images of each flight mission ranged from 150 to 390. All the

photos have GPS coordinates which assist 3D reconstruction.

3.2.3 Problem Definition

We divided the trees in our study area into three classes: sick fir (SF), healthy fir (HF) and
broadleaf (BL) trees (hereafter HEF, SF and BL). Pest infestation has different effects on individual
trees, some trees show defoliation on lower branches while in others, defoliation appears on the top
branches. In order to facilitate the classification, we followed the reference on crown condition
classification of the USDA (Schomaker, 2007) in which the authors classified trees based on their
defoliation rates. Following this classification, we subdivided fir trees in Zao mountain in two
classes: healthy, when no leafless branches were observed and sick, when leafless branches were
observed (figure 3.2). Although there are several broadleaf trees, especially on site 1 and 2, we

classified all of them in the single class, BL (figure 3.2).

79



(e) BL (HBL (g) BL
Figure 3.2: (a) healthy fir (HF) fully covered by green leaves; (b) healthy fir (HF) with

minimal defoliation; (c) sick fir (SF) with some leafless branches at the bottom; (d) sick

fir (SF) with majority of leafless branches (e-g) broadleaf (BL) in site 1 and 2

3.3 Methodology
3.3.1 Dense Point Cloud, DSM and Orthomosaic Generation

A Dense point cloud is a set of millions of points positioned by GNSS (Global Navigation and
Satellite System) with 3 dimensional locations (X, Y, Z). It is used to generate the DSM and the
orthomosaics. Orthomosaic images are composed of all raw single images of each flight and are
geographically corrected to be at the true position, reducing the distortion from camera, lens and
topography. An orthomosaic facilitates the labelling of trees in order to create the training and
testing patches for DL. In this study, dense point clouds, DSM and orthomosaics were generated

after aligning the raw RGB images of each flight using Agisoft Metashape.
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The dense point cloud, DSM and orthomosaics were created in Metashape using batch
procedure for the whole dataset of each flight. First, each set of RGB images was aligned without
ground control points (GCP), accuracy to highest, 40,000 key point limit and O tie point limit were
set. Then the “optimize alignment” step was set to default. In the next step, the “dense point cloud”
(high quality, aggressive filtering), “mesh” and “texture” were built. The procedure was completed
with DSM (interpolation enable) and orthomosaics (surface = DSM, blending mode = mosaic, hole
filling = yes) (table 3.1). All the dense point clouds, DSM and orthomosaics were exported to
Tokyo UTM Zone 54N. The same pixel size and extent were set for DSM and orthomosaic of each

flight to overlay and process them in GIMP software and Python.

Table 3.1: Summary of image pre-processing with Metashape

Attribute Value
Accuracy Highest
Key point limit 40,000
Tie point limit 0
Ground control point No
Dense point cloud High quality, aggressive filtering
Mesh Source data: dense cloud
Texture Mapping mode: generic, blending mode: mosaic
DSM Interpolation
Orthomosaic Surface = DSM, blending mode = mosaic, hole filling = yes

3.3.2 Normalized Digital Surface Model (nDSM) Generation and Validation

A nDSM is an elevation model represented on a 2D digital grid surface to display the elevation
of all features above the ground. It was generated in order to filter out the forest floor and produce

elevation maps that only contained the height of trees (figure 3.3). A nDSM was created by
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subtracting the Digital Terrain Model (DTM) from the dense point cloud, where the Digital Terrain
Model (DTM) is an elevation model of bare-earth on a raster image. Our treetop detection
algorithm is based on the local maxima method, therefore, if we use DSM for treetop detection in
steep slopes, the highest point (treetop) downhill could be at the same altitude of the forest floor
uphill (figure 3.3). However, when we use nDSM, the local highest points are only the treetops, as

the forest floor is already normalized (removing the slope effect).

In order to generate nDSM we followed the process as described in figure 3.4. First Fusion/LDV
(McGaughey, 2009) was used to define bare-earth points with the function “GROUNDFILTER”
adapted from the filtering algorithm of (Kraus & Pfeifer, 1998). Then the bare-earth points were
converted to plane surface digital terrain model (DTM) 0.2 m cell size with the function
“GRIDSURFACECREATE”. This function fitted the surface to the forest floor that was visible and

interpolated the parts that were not visible under the canopies.
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Figure 3.3: (a) DSM and (b) nDSM, the lighter (white) pixels represent high elevations

and darker pixels represent low elevations, the black pixel on nDSM represents no value or
the excluded ground and lower vegetation area; (c) the elevation profile of a random area
on the DSM at an altitude of 1320 m as a treetop downhill is at the same altitude of the

ground uphill (red circles)

The DTM was subtracted from the dense point cloud with function “CLIPDTM” to generate the
normalized dense point cloud and then the terrain was normalized to 0 m. Next, the software
Global Mapper was used to filter the points lower than 2 m (considered as lower vegetation) and
points that belong to artefacts. The filtered points were then converted to nDSM where only tree

canopies were present, with the same pixel size as that of the orthomosaic (about 0.02 m) of the
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same area. Finally, QGIS 3.10 was used to convert data from tiff to jpg format for image annotation

with GIMP software.
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Figure 3.4: Work flow to generate nDSM

In order to perform a detailed evaluation of the results of this pre-process we would need a
highly precise digital elevation model, such as the one that could be obtained with a ground based
LiDAR system as well as detailed 3D annotations separating the section of the tree models
corresponding to tree canopies. As such a model was not available, we focused on the visible effects
that the nDSM construction step had on our ground truth. Specifically, we annotated the treetops
manually on the DSM and then monitored how many of them were left out from the nDSM. A
treetop was defined to be left out of the nDSM if (a) it was on a black pixel value (removed area)
or (b) it had not been assigned a black value but the connected component it belonged to was

smaller than a pre-defined threshold.
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3.3.3 Data Annotation

Annotation is a data preparation step where all treetops and tree crowns were manually labelled
on orthomosaic images and nDSM into different binary layers (black and white) including treetops,
healthy fir, sick fir and deciduous. In total, 5364 treetops, 3788 healthy firs, 169 sick firs and 1407
deciduous were annotated. This is a crucial step to prepare training and testing data for the
algorithms. The tree crown annotation was done on the orthomosaics by a careful work following
the definition of tree health while the treetops were annotated with black dots on the DSM and
nDSM in order to first, verify if all the treetops were also found on nDSM and second to evaluate

the result of the treetop detection algorithm. All the annotation process was done in GIMP.

3.3.4 Treetop Detection
3.3.4.1  Treetop Detection Algorithm

This section describes the algorithm that are used to detect treetops in nDSM data. In order to
take full advantage of the precise data representation obtained with the nDSM, a geotif data format
with float components was used, allowing us to encode altitude values in millimeters. The algorithm
uses computer vision techniques to find the regions in the nDSM that correspond to the tips of the
treetops. A sliding window is used to process small parts of the nDSM independently. First, at each
window position, only the pixels with higher intensities are considered. Then wider ranges of
intensities are added iteratively. In each new iteration, connected components not containing any
previously detected treetop are considered and if their areas are large enough, new treetops are
assigned to them. The process continues within the window until all pixel intensities are taken into
account. Subsequently, the window is shifted to a new location. Once all the positions of the sliding

window have been explored, a refinement step is performed to join nearby candidate treetops.

85



Details of each step of the algorithm are as follows:

1. Two-step algorithm: We observed a large concentration of treetops at the higher intensity
pixels. For example in the first orthomosaic 50% of the treetops are in the 10% higher pixels and
90% of the treetops are in the 40% higher pixels. Consequently, the algorithm runs in two key steps
(which we refer to as “bands”). The first considers only pixel intensities of the nDSM from a certain

threshold up and the second one considers all intensities.

2. Sliding window: for each of these two steps, a sliding window was passed over the nDSM.
The positions of the window have a 100-pixel overlap. For each position of the window (figure
3.5), a list of candidate treetops was initialised to an empty list and a threshold value th was set.

Then at each iteration:
» Only the upper band of intensities (larger than th) was considered.

+ Connected components that are computed in the image are limited to the current window and
band of pixel intensities. Each appearing component (if it was large enough) are assigned a new
treetop that is added to the list of treetop candidates. Connected components already contained a
candidate treetop do not add new candidate treetops to the list. If two connected components

contain one treetop, then they are fused and both treetops are kept.

« th is updated and the process continues until th reaches the minimum intensity present in the

window.

3. Refinement: once all the treetops are computed, they are refined to eliminate those that are

too close to each other, specifically, a circle is drawn around each candidate treetop (with radius re f
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Rad = 50 pixels) to exclude pixels higher than the candidate top (with a difference of more than 1.5
meters with the top). Then, the top point in each of the connected components is chosen as a
predicted treetop. Thus, the highest treetops among those whose regions intersect are selected and
the lower are discarded. An initial refinement step is done over the candidate tops resulting from
considering all pixel intensities. Then, the treetop candidates corresponding to the high-intensity
bands is performed. As the treetops detected in the higher-intensity band are considered more

reliable, this second refinement step is less strict (the value for re f Rad = 35)

(@) (b) (c)
Figure 3.5: Treetop detection process: (a) step 1, one fir tree is detected, (b) in step 2,

two more are detected and finally (c) in step 3, one more is detected.

3.3.4.2  Treetop Detection Validation

In order to evaluate the quality of the results of the treetop detection algorithm, we defined five
different criteria. The output of the treetop algorithm is a set of points given as a list of 2D (x, y)
coordinates. Consequently, all of these criteria considered two sets of 2D points: the set of predicted

points and the set of annotated ground truth points.
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Average Euclidean distance to nearest ground truth point (dEuc(PRED, GT)): this criterion
aims to measure how close the treetops predicted are to the ground truth points. It is calculated as
the average of all Euclidean distances between every ground truth point p to its nearest predicted
point p

{Jnin d(_ﬁ,f?)}
R peGT
dEuc(PREDI GT) = pEPRED\PRED|

This metric, however, is somewhat vulnerable to outlier points skewing the value. Also, it does
not clearly express how many predicted points are “close enough” to ground truth points.

Consequently, two other metrics were provided.

Matched ground truth points percentage (m%): the aim of this metric is to provide an
indication of how many treetops were detected. In order to implement this, a value was considered
that roughly represented the radius of a tree crown. Predicted points were considered “matched” if
they were within this threshold of a ground truth point (d( p , p ) < € with p * € PRED
and p € GT. After carefully examining the trees in the orthomosaic, a distance of approximately € =
2.5 meters was used as the permissible margin of errors for two points to still be considered as the
same tree crown. Given the differences in pixel resolution between sites 1, 2 and sites 3, 4, this
stood for an error margin of 125 pixels for sites 1, 2 and 100 pixels for sites 3, 4. This set of
thresholds make our use of this metric highly restrictive in terms of larger tree crowns which can be
up to eight meters in diameter and we would only be considering a small part as valid for matching.

However, we chose them to make it very difficult for a point predicted in one tree crown to be
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matched to a ground truth point in a neighbouring tree crown even in the case of small trees
(whose diameter is typically closer to 3 m). This addresses the issue of whether the points detected
are placed correctly. During our experiments, we realised that some methods providing numerous
candidate points obtained high values for this metric that did not agree with the subjective
evaluation. Thus, in order to complement this metric, a simple metric based on the difference

between the number of ground truth points and the number of detected points was provided.

Average Euclidean distance to closest ground truth points (correctly identified trees
only): a combination of the two previous criteria, the goal in this case is to focus on the quality of

the detection of correctly identified points.

Counting measure (cnt): stands for the difference of trees present in one nDSM, cnt = (n-k)/n
where the number of treetops detected “k” weighted over the number of trees “n”. Consequently,
negative values indicate that the algorithm overestimated the number of trees while positive values

indicate underestimation. Reporting averages of each absolute value was taken to prevent that these

two errors cancel each other.

Percentage of ground truth points detected more than once: to complement the counting
criterion, we also computed the percentage of ground truth points that were matched more than
once. This criterion provided us with more detail into the source of prediction overestimation. A
higher number in this criterion indicated a difficulty to separate individual treetops while a lower

number indicated erroneous points being detected in outer parts of tree canopies.

In order to provide a full picture, the results of the algorithm were compared to those of three

previously existing methods. First two methods (clustering and extrema based methods) (Diez et al,
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2020), were used to exemplify the two families of approaches. Results for iterative Global Maxima
GMax and Gaussian Mixture Model clustering GMM are, thus, presented. Additionally, results
regarding the treetop detection method in Safonova et al, (2019) are also provided. This method,
unlike the method in our study, works using the RGB orthomosaics to detect treetops. First, the
orthomosaics are transformed into gray scale and blurred, then a thresholding step is used to work
with binary images. The resulting images are then eroded and dilated repeatedly to isolate individual
trees and finally a contour area calculation function is used (Dawkins implementation) to determine
treetop candidates. We followed the execution of this algorithm with an additional step where

predicted points that were identified as ground in the nDSM were eliminated.
3.3.5 Treetop Classification

In order to capture the distinctive characteristics of each tree type, a small square patch (100 x
100 pixels approximately 2 x 2 sq.m) around each treetop was sampled (indicated by a single point
at its center). Then, each patch was assigned a class according to the manual annotation codifying
the classes that could be found in the image (SF, HF and BL). Using this information, the problem
was formalized in terms of DL as a classical single-label classification problem using the patches

extracted around the treetops. This problem was solved using one of the following DL classifiers:

3.3.5.1  Treetop Classification Algorithm

In order to classify the patches representing each of the detected treetops, a series of feature
extractor DL networks was used. The following architectures were considered as defined on the

FastAl Library (Howard, 2020). This library uses the torchvision package from pytorch (A
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description of the implementation of each model and a quantitative comparison on the ImageNet

dataset can be found at https://pytorch.org/docs/stable/torchvision/models/).

1. Alexnet (Krizhevsky et al, 2012) is one of the first widely used convolutional neural
networks, composed of eight layers (five convolutional layers sometimes followed by max-pooling
layers and three fully connected layers). This network was the one that started the current DL trend

after outperforming the current state-of-the-art method on the ImageNet data set by a large margin.

2. Squeezenet (landola et al, 2016) uses so-called squeeze filters, including point-wise filter to
reduce the number of necessary parameters. A similar accuracy to Alexnet was claimed with fewer

parameters.

3. Vgg (Simonyan & Zisserman 2014) represents an evolution of the Alexnet network that
allowed for an increased number of layers (16 in the version considered in our work) by using

smaller convolutional filters.

4. Resnet (He et al, 2015) is one of the first DL architectures to allow higher number of layers
(and, thus, “deeper” networks) by including blocks composed of convolution, batch normalization

and ReLU. In the current work a version with 50 layers was used.

5. Densenet (Huang et al,, 2017) is another evolution of the Resnet network that uses a larger
number of connections between layers to claim increased parameter efficiency and better feature
propagation that allows them to work with even more layers (121 in this work). All these DL
classifiers were initialized using Imagenet weights (Krizhevsky et al, 2012) with their final layers
substituted by a linear layer with our number of classes. This final layer was followed by a sofmax

activation function.
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3.3.5.2  Data Augmentation

Data augmentation is a commonly used strategy in DL that allows to increase the size of
datasets without the need to collect new data. In our case, SF is the most important category.
However, this category is much less frequent than the other two. In order to increase the relative
weight of sick fir trees during the training process of DL networks, we used six image
transformations to augment our data: up/down and left/right flips, small central rotations with a
random angle, Gaussian blurring of the images, linear and small contrast changes and localised
elastic deformation. To implement these transformations we used the “imgaug” library (Jung et al,

2020).
3.3.5.3  Treetop Classification Algorithm Training and Validation

The treetop classification algorithm received input of treetop points. For each of these points,

the algorithm:

1. Checked to which of the classes it belonged. To do so it checked the annotated class binary

masks.

2. Cut a small patch of the orthomosaic around each treetop (of 100 x 100 RGB pixels,

amounting approximately to a 2 m sided square).

3. Once the correct class had been identified and the patch built, the patch was stored as an

image with the class name in its file name.

The set thus constructed was then passed on to a deep learning network where it was divided

into training/validation and testing subsets. The treetop points used to build the sets as well as the
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way the training/validation/testing subdivision was made determined what was being tested.
Regarding the treetops, first we used the ground-truth treetops annotated by experts in order to
assess the performance of the classification algorithm with the best possible input data. Then we
used the output of the tree detection algorithm to assess how the classification algorithm performed
as a part of the whole algorithmic pipeline presented. Regarding the division in validation and
testing, first we used all data from all mosaics in a single dataset, dividing it randomly in 80%
training/validation and 20% testing. However, as mosaics in the same sites have overlap, images
from the same tree (taken in different mosaics and thus, in different flights with different lighting

conditions) might have appeared in both the training and testing sets.

We considered this a problem as it put into question the generalization power of the
classification algorithms. Consequently, we also used (in both experiments) a site-based leave-one-
out strategy to prevent this issue as follows: The orthomosaics available were grouped into sites, all
the mosaics of three of the sites were used for training/validation while all the mosaics of the
remaining site were used for testing. The site used for testing was rotated, so all orthomosaics were
used for testing once and no orthomosaic was used for training/validation and testing at the same

time to avoid leakage between the training and testing patches.

» First fold, testing: Site 1 (orthomosaics 1,2,3) - training/validation: Sites 2,3,4 (orthomosaics

4 to 9)

« Second fold, testing: Site 2 (orthomosaics 4,5,6) - training/validation: Sites 1,3,4

(orthomosaics 1to 3 and 7 to 9)
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+ Third fold, testing: Site 3 (orthomosaics 7,8) - training/validation: Sites 1,2,4 (orthomosaics

1 to 6 and 9)

« Fourth fold, testing: Site 4 (orthomosaic 9) — training/validation: Sites 1,2,3 (orthomosaics 1

to 8)

In all cases, the following measures were used to evaluate the classification accuracy: In order to
target the predictive capacity of the algorithms the relation between predicted values and ground
truth values was considered and expressed as: True Positives (TP), False Positives (FP), True
Negatives (TN), False Negatives (FN) Furthermore, and in order to focus on the defined classes,
the following measures were computed on them: True Positive Rate (TPR), also known as
Sensitivity (SENS), False Positive Rate (FPR), also known as the probabilistic complement of

Specificity (SPEC) and finally accuracy (ACC). Their formulae as follow:

TP FP
TP + TN
HEC= TP + TN + FP + FN

3.4 Results
3.4.1 nDSM Validation

nDSM validation was expressed as the percentage of ground truth treetop found in the DSM
missing in the nDSM (0% means all ground truth treetops are present) (table 3.2). The percentage
of treetop missing in nDSM6 and nDSM4 were 0.0% and 6.9%, representing the lowest and highest
values respectively. The mean validation value of all the nDSM was 2.14%. After a visual review of
the images, we found that most of the annotated treetops missing were those of smaller deciduous

trees in distorted areas of the orthomosaic boundary or were small fir trees (2-6 years old) (figure
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3.6). Missing trees represent one of the limitations of this study, since only the treetops found in

the nDSM are considered.

Table 3.2: Percentage of annotated treetop lost when using nDSM instead of DSM

nDSM 1 2 3 4 5 6 7 8 9 Average
% treetop lost 1.12 1.57 0.17 6.90 3.08 2.25 0.00 1.00 3.20 2.14

(b)

Figure 3.6: (a, b) annotated treetops on small trees that

were in DSM (left) but do not appear on the nDSM
(right).

3.4.2 Treetop Detection

The performance of the treetop detection algorithm was evaluated using the quality criteria and
comparing it with the results of three pre-existing algorithms (Safonova et al, 2019; Diez et al,
2020). The percentage of points matched (m%) and counting measure (cnt%) obtained by each of
the algorithms in each of the nDSM (table 3.3). The results showed that the method introduced in
this paper obtained the best overall results both in the matching (85.7%) and counting (9.67%)
criteria. Differences in the results depending on the nDSM, for example nDSM 1,3 and 9 showed
higher accuracy in treetop detection ranging form 89.61% to 96.29%, while nDSM 5 and 6 obtained

matching values of around 85%. The lowest values were obtained for nDSM 2,4,7 and 8 but still
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were all in the range of 80%. The lower matching averages were observed in nDSM that
corresponded to lower and middle areas with steep slopes and the highest rate of mixing with

deciduous trees.

Table 3.3: Individual tree detection method performance. This table show the result using our

data with previously reported algorithm

nDSM 1 2 3 4 5
Methods m% cnt m% cnt m% cnt m% cnt m% cnt
Our approach 89.61 9.87 80.14 14.51 90.47 5.67 82.97 14.15 85.61 8.73

Dawkins (Safonova et al, 2019) 70,54 2.18 54.61 13.79 73.41 6.92 59.79 16.32 51.12 19.35

GM (Diez et al, 2020) 71.17 -9.21 60.75 -11.11 7835 -9.82 70.09 -8.12 69.81 -9.76
FCM (Diez et al, 2020) 66.22 -9.74 61.68 -12.37  73.56 -12.25  73.21 -7.25 69.49 -9.05
nDSM 6 7 8 9 10

Methods m% cnt m% cnt m% cnt m% cnt m% cnt
Our approach 85.71 8.37 80.52 7.74 80 9.24 96.29 8.78 85.7 9.67
Dawkins (Safonova et al, 2019) 50,06 22.43 70.69 1.27 71.36 8.79 92.61 3.31 66.02 10.48
GM (Diez et al, 2020) 68.85 -14.82  63.27 -9.44 72.82 -12.27  87.67 -7.41 71.42 10.22
FCM (Diez et al, 2020) 72.2 -10.18  64.71 -17.87  72.3 -7.76 90.14 -5.71 71.5 10.24

Regarding the counting criterion, our algorithm tended to slightly under-estimate the number of
trees that are represented by cnt positive values. This under-estimation was kept, however, under
10% for most of the orthomosaics and with less variability as that found when using the other
methods. The methods based on finding local extrema and on clustering algorithms GM and FCM
obtained lower performances for matching with values around 71% and similar performances in
terms of the counting criterion. The Dawkins method used before in Safonova et al, (2019)
obtained poor results in terms of matching percentage with an average of 66.02% with some very
low performances in the lower and middle elevation sites (around 50% for nDSMs 2,5,6) and very

good performance for the nDSM in the highest elevation site (nDSM 9).

Regarding the average Euclidean distance between the sets of predicted and ground truth

points, our method obtained the best value with an average of 50.29 pixels of distance (around 1
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m) between each predicted point and its closest ground truth point. As this also considered
unmatched points (further than 100 or 125 pixels) it illustrates the strength of the presented
algorithm. The values for this criterion obtained by the other methods were: FCM 116.32, GMax
118.11, and Dawkins 178.67). The quality of the matching results is also compounded when we
consider the euclidean distance for correctly matched points only. The distance drops from 50.29 to
27.42 showing correctly found points were on average about 50 cm from their corresponding
ground truth point. The percentage of points detected more than once was on average 8.22% with

the highest value of 15.68% for orthomosaic 1 which had the highest occurrence of deciduous trees.

3.4.3 Classification of Ground Truth Treetops Using Deep Learning

In this experiment we assessed the capacity of the DL networks to classify treetops into the
healthy fir, sick fir and deciduous classes. In order to focus on the merits of the classification
algorithms, annotated treetops were used (from now referred to as ground truth or GT treetops).
The data remaining inside the chosen Region of Interest (ROI) of the 9 orthomosaics in the 4 sites
contained 5364 trees (1407 deciduous, 3788 healthy fir and 169 sick fir). Initially, the dataset
constructed considering patches corresponding to all these treetops was divided randomly into 80%
training and 20% testing. Figure 3.7 contains the percentage of misclassification over all images
(Error Rate, ER) values for the validation set in each of the considered DL architectures over a list

of learning rate values.
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Figure 3.7: Error Rate Results for tree health classification for all learning

rates and DL architectures

The best results were obtained by Vgg, with the lowest ER value of 0.03357% for FVgg and
learning Rate (LR) = 0.007 (figure 3.7). The same network reached 0.03521% ER in its unfrozen
version (UNFVgg, LR = 0.005). Resnet and Densenet obtained similar results (0.03603%
UNFResnet, LR = 0.004 or 0.03685% UNFDense, LR = 0.007) with small difference between their
frozen and unfrozen versions. Alexnet and Squeezenet obtained the lowest results with Alexnet
doing slightly better with just under 0.040% ER (0.03949% for UNFAlex LR 0.008) and
Squeezenet reaching an ER of 0.0434% (UNFSqu, LR = 0.004). These results show that all
networks are successful at classifying the images received into the three existing classes. The results
obtained presented problems in terms of their practical use: the class with the highest interest was
sick fir trees, but most of the networks produce low sensitivity value for this class. Table 3.4 shows
the best results obtained regarding this criterion together with the specificity, sensitivity and

accuracy of the other classes (Densenet LR = 0.06).
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Table 3.4: Sensitivity, specificity and accuracy values for the classification of treetop patches

according to health.

Sensitivity Specificity Accuracy
Deciduous 0.982 0.999 0.995
Healthy fir 0.995 0.926 0.976
Sick fir 0.513 0.996 0.980

Table 3.4 shows that even though high accuracy results were obtained in the three classes, the
sick fir class obtains very low results in its sensitivity value. This stands for the classifiers miss-
classifying about half of the sick fir images. The fact that this class is less frequent than the other
two accounts for the high accuracy obtained regardless of this. Furthermore, the data used in this
section contains images from all orthomosaics and sites. Since, the orthomosaics within a site
contain an overlap of the adjacent site (1,2,3 for site 1, 4,5,6 for site 2, 7,8 for site 3 and 9 for site
4), it is possible that the validation sets contained images of trees that also appear in the training
set. While this is often seen in the literature due to the difficulty of obtaining data, we assume that
training the networks in this manner may contribute to a subtle form of over-fitting. In order to
obtain a classification algorithm that presents improved sensitivity for the sick fir class, we used data
augmentation and a leave-one-out strategy for the building site-specific training sets. In terms of DL
networks and given the results presented here, our focus was set on the Unfrozen version of the
Vgg, ResNet and DenseNet. While the best performances of Frozen and Unfrozen networks were
very similar, the smaller variance of Unfrozen networks were valued as a sign of a more stable
performance and were considered as being better suited for the use of data augmentation because of
the larger number of modifiable parameters. This is expected to increase the classification accuracy
of the images containing the augmented classes at the cost of decreasing that of the other classes. To

avoid having images of the same tree (even if taken in different flights) both in the training and
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testing set we used a site-based leave-one-out strategy and build one training/validation distribution
of images for each site. In short, in each fold of the leave-one-out, the orthomosaics of one site were
used as the testing set, while the orthomosaics of all the other sites conformed with the training set.
The sensitivity, specificity and accuracy for the 4 sites using the three DL networks considered
(Densenet, ResNet and Unfrozen Vgg) and five different data augmentation scenarios: No
augmentation (row “no augm”) and 2,6,10 or 20 augmented images for each original sick fir image

(rows augm 2 to augm 20) were used (table 3.5).

Table 3.5: Results for the sick fir class for three DL networks and five data augmentation scenarios.

Values for the LR obtaining best sensitivity are shown for all augmentation scenarios.

DenseNet ResNet VGG

Sens Spec Acc Sens Spec Acc Sens Spec
no augm 0.4109 0.9959 0.9771 0.4422 0.9912 0.9738 0.4001 0.9931 0.9761
augm 2 0.6772 0.9948 0.9763 0.7199 0.9941 0.9782 0.6576 0.9921 0.9752
aumg 6 0.9382 0.9875 0.9796 0.9407 0.9863 0.9788 0.9391 0.9877 0.9787
augm 10 0.9806 0.9839 0.9834 0.9794 0.9810 0.9809 0.9792 0.981 0.9794
augm 20 0.9936 0.9769 0.9836 0.9972 0.9822 0.9880 0.9868 0.9805 0.9791

The results show that the use of data augmentation led to better sensitivity values for the sick
fir class despite a decrease in specificity because of an increase in the number of False Positive
detections of the sick fir class. This is mainly due to the relatively low number of sick fir trees
compared to the total number of trees (sick and healthy fir plus deciduous). Comparing the three
studied networks, Vgg obtained slightly lower values with DenseNet and ResNet showing similar
values. In order to choose between the two networks, the average sensitivity, specificity and accuracy
values in all the learning rates were considered. For example, for augm10, values of 0.97632,
0.8781, 0.9532 for DenseNet and 0.9758, 0.8908, 0.9558 for ResNet. Even though the differences
remained small, ResNet obtained higher values for all datasets suggesting a more stable behaviour in

this classification problem. The same indicators for the other two classes (healthy fir and deciduous)
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showed similar tendencies. For example, for the same dataset (augm10) and comparing the two
learning rates with better sick fir specificity values, ResNet (LR = 0.001) obtained values of 0.8953,
0.9830, 0.9601 for healthy fir, and 0.9921, 0.9720, 0.9877 for deciduous while Densenet (LR =
0.006) obtained 0.8790, 0.9431, 0.9225 for healthy fir and 0.9601, 0.9548, 0.9586 for deciduous.
These values illustrate the slightly superior performance of Resnet over Densenet as well as the
trade-off between the larger specificity values for the sick fir class and a decrease in percentage for
the other classes. The use of data augmentation increased the impact of the sick fir class in the
training step. This results in better sensitivity but also increases the number of False Positives in the
healthy fir class. Considering these results, the ResNet network was used to classify the detected

treetops.

3.4.4 Automatic Detection and Classification of Sick Fir trees

Finally all the algorithms presented in this paper were used together and their combined
performance was evaluated. First, the pre-processing procedure was used to obtain a nDSM from
the drone-acquired data. This nDSM was then used as input for the treetop detection algorithm and
as a result, a list of (x, y) coordinates representing the position of each automatically detected
treetop was obtained. The treetops thus detected were then classified into the three existing classes
(SF, HF and BL) using the ResNet network. Regarding the training/testing sets, used for the ResNet
classifier network, the site wise leave-one-out approach was used. Within each fold of the training
set, we initially used the same approach where ground truth treetop points were considered and 100
x 100 pixel images were cut around them (approximately 2 x 2 sq.m). The testing set was then built

by cutting 100 x 100 pixel images around the automatically detected treetop candidate points.
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However, the results of this approach were not satisfactory, mainly because on the training set the
trunk of the trees was always placed at the center of the image whereas in the testing set this was
not always the case. In order to ameliorate this problem we considered small perturbations of the
coordinates of the ground truth points so that the generated 100 x 100 pixels were not perfectly
centered on the actual ground truth points. All the results presented in this section correspond to

this training strategy.

Concerning data augmentation, for each of the scenarios considered before, we used the
learning rate value that had showed the best results in the classification experiment using ground
truth points. Additionally, in this experiment the practical use of the resulting classifier networks
were considered and three “use cases” were summarised (figure 3.8). First in part (A) of the figure,
data augmentation was not used in order to maximize the total classification accuracy of the
network. Second part (B), a small amount of data augmentation was used to increase the sensitivity
of the sick fir class while retaining most of the networks overall classification accuracy. Finally, part
C contained information of a classifier that relied heavily on data augmentation to provide the
maximum sensitivity for the sick fir class at the cost of decreasing the overall number of correctly

classified trees among all classes.

Our algorithms can be used to gain valuable insight both into the tree type distribution of the
studied forests as well as the health status of the fir trees. On the first case (A), the combination of
our algorithms without using data augmentation provides us with a description of the location of
trees and tree type distribution that automatically places and identifies correctly 78.59% of the trees.

This shows that the analysis of drone-acquired images using computer vision and DL techniques
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presents opportunities for forest research in a much larger scale than what was previously possible.
Although there was 85.07% of trees successfully detected (80.16% for deciduous, 89.6% for healthy
fir and 90.65% for sick fir), the first case had the problem that the sensitivity of the sick fir class
was low with 39.64%, while 72.80% of deciduous trees and 82.07% of healthy fir trees were
detected and classified correctly. The low detection + classification result for sick trees was mainly
due to miss-classification. The value of approximately 40% sensitivity is coherent with the observed
classification of ground truth treetops where the relatively low number of sick fir trees resulted in
low sensitivity for this class. Using data augmentation in the classification part of the algorithm
resulted in improved sensitivity for this class. This is achieved at the cost of decreased accuracy for
the healthy fir and deciduous classes. The second case showed that using a moderate amount of data
augmentation (6 synthetic images are created for each real image in the training set of each fold of
the leave-one-out strategy) can increase the number of sick fir trees detected (up to 55.82%) at the
cost of about a 5% loss in the percentage of trees correctly detected and classified (from 78.59% to
74.47%). This loss is better put into context by looking at the decrease in the number of False
Positives produced for every positive detection. In this case, in order to detect approximately half of
the sick fir trees, 2.13 False Positive predictions were detected for each True Positive. Taking into
consideration, the infrequent occurrence of the sick fir class, the overall accuracy of the system is
still high. Finally, a wider use of data augmentation (with 20 sick fir images created out of each
original one) resulted in a percentage of correctly detected and classified sick fir treetops that rose
to 73.01%. The cost of this increase is a larger FPR for sick fir (raising to 5.24 from 2.21) that

resulted in a higher impact of the total performance of the system (with the percentage of deciduous
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trees correctly detected and classified) slightly decreasing to 73.61% and that of healthy fir trees

registering a sharp decrease down to 60.05%.
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Figure 3.8: Detection and classification of trees according to species and health categories.
Three graphs are presented according to three use cases of our algorithm (A) No Data

Augmentation. (B) Data Augmentation = 6. (C) Data Augmentation = 20.
3.5 Discussion

3.5.1 Data Challenges

The research area is a natural mountainous forest. That presents high heterogeneity in terms of
tree height, age and the tree type distribution within each of the study sites. While the use of UAV

allow the collection of high-resolution data in wide extensions of this difficult-to-access area, the
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data still presents some challenges. For example, after using the UAV-acquired images to build
orthomosaics and DSM, the orthomosaics contained information extraneous to our purposes such as
buildings, power lines or power towers. Additionally, and due to the flight pattern followed for data
acquisition, the border sections of the orthomosaics contained heavy image distortions. Figure 3.9a
presents examples of these two issues. In order to partially address these issues, for each
orthomosaic we selected a Region Of Interest (ROI) in its central part and focused our
computations within that region (figure 3.9 b). Additionally, the mountainous terrain resulted in the
height values encoded in the DSM including in each pixel both the altitude of any trees present
along with the terrain elevation. This severely hampered the automatic detection of treetops as the
slope create the same elevation values of treetop downhill and the ground uphill. This problem was
dealt by normalizing the slope with the Fusion/LDV software and having the ground removed by
the software Global Mapper. Furthermore, some treetops were not distinguishable even in the
nDSM. This happened particularly when larger, taller trees where very close to smaller trees with
lower treetops. Figure 3.9 ¢, d presents an example of this. Even though 10 treetops are visible in
the orthomosaic, only 4 clear distinct regions are visible in the nDSM. Although those treetops were
not visible on the nDSM, they were still marked in the annotation step for the validation, but there
is a high chance that they would not be found by any detection algorithm that uses elevation data to

detect treetops (such as the one presented in this work).
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(c) (d)
Figure 3.9: (a) artefact and distortion at the edge present in the orthomosaic; (b)

ROI was applied to eliminate the artefacts and the distorted edge; (c) 10 Trees

present in orthomosaics but (d) only 4 trees have clear distinct regions in nDSM.

The use of the pre-processing step allowed us to focus the detection and classification efforts in
the parts of the orthomosaics and DSMs that correspond to tree canopies. Furthermore our treetop
detection algorithm is based on exploring pixel altitude values starting with higher values (expected
to belong to treetop tips). This makes it necessary to mitigate the distorting effect of the terrain in
the elevation values by using the nDSM, which resulted in the loss of 2% of the treetops. Most of
the lost treetops were located in parts of the orthomosaics that were out of the ROIL. The number of
treetops remain after the pre-processing step (5364 trees, with 169 sick fir trees) was larger than
the number of trees considered in the other studies (336 in the testing set in Safonova et al,

(2019) or 931 tree samples in the testing set in Sun et al, (2019) for example). The 85.70%
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matching percentage obtained by the algorithm represents a clear improvement compared to
existing methods (71.50% for the second-best method studied (Diez et al, 2020)). Most treetop
detection mistakes occurred when deciduous trees were detected (80.16% matching percentage)
while the fir classes presented even better performances (89.6% for healthy fir and 90.65% for sick
fir). The counting criterion (cnt) results showed that the method used tends to overestimate the
number of existing trees (by 9.67% on average), while other methods obtained better results in
relation to the counting criterion for some sites. For example, for nDSM 1 our method obtained
89.61% matching with an overestimation of 9.87% of the number of treetops (yielding, thus,
81.56% of matched points among those predicted). On the other hand, the implementation of the
Dawkins method used in Safonova et al, (2019) obtained 70.54% matching with 2.18% of treetop
underestimation (representing a 72% of success). In comparison, our method found more ground
truth points and made stronger predictions which can be explained by the fact that the data used in
Safonova et al,, (2019) was slightly different. While the tree species and the tree health problems
studied in the later paper are the same, the boreal conditions in Siberia decreased the biodiversity
so only fir trees are present which allows a clear visualization of individual trees. In this respect,
nDSM 9, corresponding to the top site and with poor presence of deciduous trees may be more
similar to the data in Safonova et al, (2019). The higher performance of our algorithm over the
other algorithms considered is also supported by the average Euclidean distance metric. This method
obtained a low value of just over 50 pixels (slightly under one meter) from any predicted point to
the closest ground truth point. This value becomes as low as 27.42 pixels when other matched
points were considered. The merits of these results are highlighted by taking into account the

multiple data challenges previously mentioned. The effects of these particular conditions can be
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appraised by comparing the results of the GMax (m%: 71.42, cnt: 10.22) and FCM (m%: 71.50, cnt:
10.24) methods with the data of our study to the ones they obtained in Diez et al, (2020) (m%:
90, cnt: 9). The decrease in performance is due to the differences in data as well as the more strict
matching conditions expressed by the e parameter (3 m in Diez et al, (2020) compared to 2-2.5 in
our study). We consider that these strict conditions coupled with the larger amount of data
compared to other papers in the research area showcase the importance of the results achieved. The
difference with previous studies also showed how this part of the algorithmic process is the most
challenging and that further progress is likely possible. The performance of five existing DL
networks were studied (AlexNet, Squeezenet, Vgg, ResNet and DenseNet) to classify the patches
around treetops. Ground truth treetops were used to evaluate the performance of this part of our
algorithmic process independently. Initial results using all data from all orthomosaics showed that all
networks were able to obtain low error rates, especially Vgg (with the best value of ER =
0.03357%); ResNet and DenseNet performed well. However, the sick fir class was frequently missed
and the low error rates reflected its low occurrence rate. While the numbers showed that the studied
networks performed well, concerns towards their practical use arose. In order to address this issue
as well as overfitting, a site-wise leave-one-out strategy was used to make sure that the training and
testing sets never contained images from the same trees (even if taken in different flights and with
different lighting conditions). Results showed that data augmentation succeeded in increasing the
importance of the sick fir class during the training process and, thus, increase the sensitivity values
obtained. This was coupled with minor decreases in specificity and accuracy for the sick fir class
(0.9810, 0.9809) for the Resnet network when using 10 augmented images for each real sick fir

image. The decrease in specificity produced that some images that did not contain sick fir trees were
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wrongly predicted as such (False Positive detections). This resulted in slightly decreased accuracy
values for the other classes (0.9601 accuracy of healthy fir). These results, even those with slightly
lower accuracy, were in the higher band of the results obtained in previous studies (91.95-98.97%
accuracy to classify sick fir in Safonova et al, (2019), 94.01-97% in Kentsch et al, (2020) to
distinguish between deciduous and evergreen trees or 73.25% accuracy for multi-species
classification (Sun et al, 2019). Finally, the performance of all the algorithms introduced in the
paper was studied when applied to solve the real-life problem of classifying tree health and type
classes found in forest sites. After adapting the training sets to account for the fact that the
automatically detected treetops were not perfectly centered on the tree trunks, we aimed at assessing
how many trees in the three categories were correctly detected and classified. After exploring
different data augmentation scenarios three different use cases for our algorithms were presented. In
the first case, working with the original data without data augmentation we were able to correctly
detect and classify over 78% of the trees, giving a reliable description of the tree type distribution of
the forest with percentages of correctly detected and classified trees of 72.80% and 82.07% for
deciduous and healthy fir, respectively. The biggest downside of this case was the relatively low
success rate in the classification of sick fir trees. Although 90.65% of sick fir trees were detected
over all sites, only 39.64% of them were correctly classified with most of them misclassified as
healthy. These results were in line with the tendency observed in the experiment where ground
truth points had been used for classification, the low number of sick fir trees resulted in this class
being mostly ignored in the training process and in a low specificity result. However, even in this
situation, the information resulting from our algorithm was of practical use. A detailed analysis for

each site showed that the algorithm found 3/20 sick fir trees in site 1, 13/49 in site 2, 7/20 in site
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3 and 44/80 in site 4. The results missed a small cluster containing 4 trees in the orthomosaic 1 but
otherwise found sick trees in all other affected regions (including one in a region containing only
three sick trees in orthomosaic 3). The algorithm tended to underestimate the extent of the regions
affected by classifying the less affected trees as healthy but correctly identified the affected regions.
As mentioned before, the definition of “sick” fir is slightly open to interpretation, especially, when
trees presenting slight defoliation (figure 3.2b) are considered healthy while others with slightly
more defoliation, sometimes obscured by top branches with green leaves (Figure 3.2c) are
considered sick. Because of this, in practice any cluster of sick trees detected using the algorithm
would need to be confirmed by expert analysis of the drone images and, if at all possible, with
observations on the ground. Nevertheless, the results presented here show that this version of the
algorithms can be used as an automatic early warning tool to detect even minor bark beetle
outbreaks. In the other two cases presented, data augmentation was used to increase the importance
of the sick fir class during training in order to increase its specificity. This was achieved at the cost
of producing a number of False Positive detections, mostly by classifying healthy fir trees as sick. In
the “balanced” case (augm 6) we could detect 55.82% of the sick fir trees producing 2.13 extra
False Positive detections for each correct one (FPR 2.23) and in the case where we focused in the
detection of sick fir trees (augm 20) we detected 73.01% of them at the cost of an FPR of 5.24.
Both of these approaches correctly detected and classified trees in all outbreak regions at the price
of overestimating their extension. The somewhat difficult distinction between sick and healthy fir
played a reverse role to the first use case with most of the False Positive sick fir detections being

found in areas close to outbreaks but marked as healthy. Although this may provide users with
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wrong information and exaggerating the extent of the outbreaks it can also be seen as a way to

point out possible areas of outbreak development.

3.6 Conclusions

The study presented algorithms for the automatic detection and classification of fir trees
(healthy and sick in terms of a bark beetle infestation) as well as deciduous trees. The detection of
individual treetops was found to be a key part of the process that had not been studied in enough
detail so far. Our results, including the comparison of three state of the art methods showed that the
algorithm for treetop detection introduced in the current work was able to detect 85.70% of
existing trees, outperforming existing methods in experiments that were challenging both in terms
of the data used and the quality criteria considered. We then moved on to show how, as seen in
other application domains, DL networks can successfully learn to classify the classes present in our
problem (obtaining over 98% accuracy on average over the three classes). However, in this case a
careful use of data augmentation was needed to obtain results that not only presented good
classification metrics but were also meaningful in practice. We have also presented what is, to the
best of our knowledge, a detailed study of the performance of all the algorithms presented when
used together, paying special attention to the sources of error and to their practical implications. In
terms of the detection of sick fir trees, the main goal of our study, we showed how just under 10%
of the points were not detected and how the amount of remaining points correctly classified
depended on how data augmentation was used. In one use case, our algorithms were able to detect
and classify correctly 78% of the trees in all species. This algorithm was also able to detect all but

one of the existing outbreak clusters (composed of 4 sick trees) where it detected only about 40%
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of the existing sick trees. This percentage was increased to 73.01% at the price of producing a large
number of false positive detections. Consequently, we have shown how computer vision and DL
networks when used to process UAV-acquired images, already provide a valuable tool for the
automatic detection and monitoring of sick fir trees with tangible benefits in terms of study time,
human resources needed and extent of land area required for study. Regarding future research
directions, the treetop detection algorithm could be improved by considering the detection of
treetops of each separate species individually since a 10% discrepancy in the percentage of
successfully detected trees was observed between fir and deciduous trees. Regarding the classification
algorithm, collecting datasets with a larger number of sick tree examples would reduce the need to
use data augmentation and, with it, the number of false positive detections. This would also open

the possibility to DL networks with a larger number of layers and optimizable parameters.
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Chapter 4 Conclusion

The results of this study have shown the potential of UAV technology and Al to solve problems
in forest research. The use of UAV in forestry closes the gap between the single tree and the whole
forest level analysis. The very high resolution UAV-acquired images open a new window on the level
of detail with which we can observe tree spatial and temporal changes in their health condition. In
this study, we have focused on the health condition of Abies mariesii trees in Zao Mountains in
northeastern Japan and have obtained an understanding of the tree health condition at individual
level and the distribution of these health categories within the fir forest ecosystem. Furthermore, the
large areas of around 20-30 hectares that we covered with the UAV and their different geographical
conditions (altitude, slope steepness, aspect, and forest composition) within the research site has
allowed us to infer the possible factors affecting the spread of bark beetles or the mitigation factors
that prevent it. The validation of the results obtained from the RGB images by means of field survey

has been an important part of this study.

Maries fir trees are found as north as Aomori prefecture and as south as Gifu prefecture
comprising a latitudinal range of approximately 700 km, however, the virulence of the attack has
only been observed in Zao Mountains. Therefore, the methodology we have applied in our study,
gave us an understanding of the damage caused in this area and establish a solid base for studying
the process involved in the weakening of fir forest that has served as an ideal host for bark beetle

outbreak.

In this study, the role of terrain properties or characteristics in the spread of bark beetles have

been evaluated by using Random Forest (RF) to predict the infestation and tree health status using
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elevation, slope, and aspect as the possible drivers. The model accuracy gained 75% for the
prediction on the occurrence of bark beetles (healthy and infested classes) and 71% for the
prediction on tree health categories (healthy, sick and dead). This proves that terrain has played a
major role on the spread of bark beetles in Zao Mountains. The feature importance function in the
RF has also provided an insight into each terrain factor. Elevation controls 60% of the accuracy of
the model while slope and aspect each share 20% role each. This is mainly because terrain regulates
the mountainous climate which is important for suitable conditions of outbreak of bark beetles
(Amman, 1973) while slope and aspect enhance the effect of strong wind and light which stress the
trees (Iwaki & Totsuka, 1959; Maruta, & Nakano, 1999). However, further studies should be
conducted in the other prefectures where also has the distribution of fir trees in order to verify if

the finding in this study can also be applied to explain the situation in the other Mountain across

Japan.

Regarding the automatic tree detection, the study could detect about 90% of fir trees and more
than 80% of deciduous trees, outperforming the methods of previous studies (Safonova et al, 2019;
Diez et al, 2020) when applied on our data. The complex terrain is found as one of the major
challenges for the data analysis. It is solved by using nDSM (or CHM) to normalize the terrain.
However the quality of the nDSM also affects the accuracy of the detection. According to the results,
Phantom 4 provided better quality of DSM and nDSM in comparison with Mavic 2 pro, presenting
better detection result on site 4 (87.9%) than site 2 (84.4%) and 3 (79.8%). Site 1 with the lowest
number of trees (approx. 800 trees) achieved the highest percentage of trees detected (88.7%). The
missing fir trees were found on the distorted edges or not appeared on the nDSM. Besides the

constraint of UAV platform, the flying height also affects the quality of nDSM. All the data in this

114



study were collected within 60 m - 70 m flying height above the take off points. In steep slope
mountains, this created heterogeneous heights from the UAV to the trees. The trees that are farther
from the UAV will have less detail, thus, appear smaller and vague on the nDSM. Flying the UAV
following the terrain is recommended in the future to maintain the same distance from it to the
trees, so does the tree size and the amount of details of all trees by increasing the number of dense

points.

This study has also successfully classified two classes of fir: healthy and sick, using DL, with the
accuracy of nearly 98% for each class. Focusing on the true positive (correctly predicted) result, the
healthy class achieved 99.5% of sensitivity while it was only 51.3% for sick class using the DenseNet
model, due to the imbalance of the data (much more healthy fir than sick fir presented in the
images). The performance of sick fir was maximized to 99.7% by using augmentation techniques on
ResNet model. Beside the amount of data that affected the performance of the DL model, the
annotation was found to be crucial for the classification quality. Since the number of sick trees
classification was done based on the level of defoliation and the different patterns of defoliation that
infested fir trees can show, it was not always straight forward to define how sick one tree is.
Therefore in this study, in order to create a strong definition for the DL to recognize sick trees, |
only focused on one type of sick (when there is at least one branch totally defoliated). Thus, in
order to develop a classification system that is able to identify different degrees of sickness based on
the defoliation (Ferracini, 2020), a mathematical system is recommended to standardize the manual
annotation. This will also benefit the annotation process in term of time saving as the amount of

annotated data required for DL is large.
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Appendix

A. Random Forest code for tree types and health prediction

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics

import seaborn as sns

import csv

#import training dataset

train_set = pd.read_csv('Training_set.csv')
x_train = train_set.iloc[;, 4:-1].values
y_train =train_set.iloc[;, -1].values

#import testing dataset

test_set = pd.read_csv('Test_Set.csv')
x_test =test_set.iloc[;, 4:-1].values
y_test =test_set.iloc[:, -1].values

# feature scaling

sc = StandardScaler()

x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)

#RF classifier with training dataset

clf = RandomForestClassifier(bootstrap=True, n_estimators = 1000, criterion = 'gini',
random_state = 0, min_samples_split=2)

clf fit(x_train, y_train)

#qgenerate prediction
y_pred = clf.predict(x_test)

# save to file
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with open('E:/python/ML/Chapter3_RF/Y_pred.csv', 'w', newline =") as f:
my_writer = csv.writer(f)
#write the data into column
for value iny_pred:
my_writer.writerow([value])

#confusion matrix and calculate accuracy score

labels = np.unique(y_test)

cm = metrics.confusion_matrix(y_test, y_pred, labels= labels)
print(pd.DataFrame(cm, index=labels, columns=labels))
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

#feature important
feature_imp = pd.Series(clf.feature_importances_)
print(feature_imp)

#visualizing the feature importance

#%matplotlib inline

# Creating a bar plot
sns.barplot(x=feature_imp.index, y=feature_imp)
# Add labels to your graph

plt.xlabel('Features')

plt.ylabel('Feature Importance Score')
plt.title("Visualizing Important Features")
plt.legend()

plt.show()
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B. Three classes of tree types and health in Python

¢ 3classes_testset

¢ 3classes_trainset

Figure 1: The distribution of training dataset and testing dataset for three classes of tree types

and health

Table 1: The percentage of each tree type contribute into training set and test set

Training set

Test set

Healthy fir
Infested fir

3191 (42.5 %)
3806 (50.6 %)

790 (42 %)
960 (51 %)

Deciduous 520 (6.9 %) 132 (7 %)
Total 7517 1882
Result

Table 2: Confusion matrix for the classification of only fir health

healthy fir infested fir Deciduous
Healthy fir 579 169 42
Infested fir 284 668 8
Deciduous 74 5 53
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Overall accuracy: 69.1 %

Table 3: Classification validation metrics

precision recall f1-score
Healthy fir 0.62 0.73 0.67
Infested fir 0.79 0.70 0.74
Deciduous 0.51 0.40 0.45

Feature importance:

Aspect 0.224333
Elevation 0.545925

Slope 0.229742

Visualizing Important Features

o e o o
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Feature Importance Score
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Features

Aspect Elevation Slope

Figure 2: Feature importance of aspect, elevation and slope

in the classification of tree types and health
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C. Climate data
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Figure 3: maximum and minimum temperature from 1954 to 2020 calculated for Zao

Mountain at 1350 m
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Figure 5: Snow depth and Wind speed observed at Yamagata station from 1954 to 2020
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