, 57 5 AVIN 5F-b

E %  SINGH DHIRENDRANATH

AgE (HE) HA7rthE

2o EE O EME (8%

24 0B S EMESTE

$MgE5EAE 4M44€3H23H

SRIFEQES  RABEANE S &% 1 BERLEREt

MEMROER  EOBEHAN HRBEEYER

FMUMXEH Development of a crop growth monitoring system using an unmanned
ground vehicle (UGV) and deep learning for rice cultivation
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Information on crop gfthh is necessary to guide the management practices of farmers to
have optimum productivity. Rice, being an important food source for mofe than half of the
world’s population is one of the crops for which production and productivity must increase
in order for the food demands of an ever increasing population is met. In this work, a method
for the collection, analysis and communication of crop grthh information, representing a
crop growth monitoring system by GIS for rice cultivation was developed and evaluated.
Specifically, the study evaluated the capability of an unmanned groﬁnd vehicle for data
cdllection, applied deep learning techniques to estimate tiller numbers in rice, and finally
developed growth méps using GIS to communicate the data on tiller growth to the end users.
An outline of the chapters are as follows: '

In chapter 2, the unmanned ground vehicle Mimamori-kun is introduced and its
performance for crop senSing was evalﬁated. Its field performance was evaluated in three
field types: puddled rice fields, drill seeded rice fields and green soybean fields. The chapter
- also focuses on the type and quality of data éollected by the robot, it’s designed relative to
“the intended purpose, and other crop application / functionalitiesﬂ for which the rdbot can be‘
applied. ' . | |

. Chapter 3 focuses on analyzing images captured by Mimamori-kun using deep learning to
estimate tiller number in rice. Three apprqa'ches to class ranges were tested to determine
at which point accurate detections can be obtained: actual tiller number, grouped tillers and
a class range based on the distribution tillers per plant at the growth stage. The trained
models could not accurately detect actual tiller number, but good results (mAP; 62.3,61.83,
67.5, 63.5,73.5 and 49.8) could obtain with the distribution class range



Chapter 4 continues the work done in chapter 3 to develop a method for tiller number
estimation using deep learning and investigated the influence of dataset composition on
performance of deep levarning models. Four datasets were constructed for each stage of
tillering: early tillering, active tillering, and maximum tillering by applying the concepts of
mixed varieties, class balance, and data augmentation. YOLOv4 models were trained to :
estimate tiller numbers using each constructed ddataset and their pefformance evaluated.
Results showed that the trained models with datasets created lising a combination of mixed
variety, class balance, and aﬁgmentation had the best performance in estimating tiller
number at the three tillering stages with a mAP range of 68.8 to 86.4. _

In chapter 5, a method to visualize the analysis done by deep learning models with the
creation of growth maps is discussed. The models developed in chapter 4 were used to
analyze images from the entire field, after which the results of the analysis were merged
with RTK GNSS and image data to create maps in GIS that shows the distribution of tiller
growth in the field. The results show that the model used to analyze images from the active
tillering stage is more robust with a difference of less than 10 % when compared to the
ground truth data, and can be applied in the field. However, calculation of the average
tillers/m2 for the entire field from the AI estimation showed statistically significant
differences from the tillers/m2 for the field calculated from the ground truth data,
suggesting further improvement in AI performance is required. The creation of growth maps
provides an avenue to easily interpret the analysis by deep learning models spatially and
can be a useful tool to guide management practices to improve productivity. However, there
is still need to optimize the data collection and processing methods to improve efficiency
and remove of error sources. » ' .

Finally, in the general discussion all components of the growth information system are
discussed and it was concluded that this work offers a new approach to crop growth
monitoring in rice thfough the use of the unmanned ground Vehiqle, and has the pdtential
to provide farmers with useful information that can help in making decisions for crop

management in an effort to obtain maximum productivity.
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