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ABSTRACT Inmachine learning, observation features aremeasured in ametric space to obtain their distance
function for optimization. Given similar features that are statistically sufficient as a population, a statistical
distance between two probability distributions can be calculated for more precise learning. Provided the
observed features are multi-valued, the statistical distance function is still efficient. However, due to its scalar
output, it cannot be applied to represent detailed distances between feature elements. To resolve this problem,
this paper extends the traditional statistical distance to a matrix form, called a statistical distance matrix.
The proposed approach performs well in object recognition tasks and clearly and intuitively represents the
dissimilarities between cat and dog images in the CIFAR dataset, even when directly calculated using the
image pixels. By using the hierarchical clustering of the statistical distance matrix, the image pixels can be
separated into several clusters that are geometrically arranged around a center like a Mandala pattern. The
statistical distance matrix with clustering is called the Information Mandala.

INDEX TERMS Statistical distance matrix, hierarchical clustering, Mandala.

I. INTRODUCTION
Classification is a type of supervised learning in machine
learning that identifies to which of a set of categories a
new observation belongs, based on a training set of labeled
observations. The corresponding procedure for unsupervised
learning is called clustering, which groups observations into
categories based on their inherent similarities. In both clas-
sification and clustering, observation features are measured
in a metric space, and their dissimilarities or distances are
calculated for optimization. For example, a support vector
machine (SVM) [1] in classification needs to measure the
distance between two observation categories using the most
efficient kernel function. For clustering, the k-means [2]
approach aims to divide observations into categories to mini-
mize the within-cluster sum of squares metric of the features
in Euclidean or Mahalanobis space.

Provided the observation features are considered random
variables or the feature set is considered a random vector in
a probability space, measuring the distance between observa-
tions can be interpreted as quantifying a statistical distance
between two probability distributions. Statistical distances
have special mathematical properties that not all distances
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have. These properties include making distance measure-
ments not only more effective and appropriate but also more
robust to small outliers. Some important statistical distances,
such as the Mahalanobis distance [3], Bhattacharyya dis-
tance [4], Hellinger distance [5], Kullback-Leibler diver-
gence [6], [7], and Chernoff distance [8], have been applied
to artificial intelligence applications, such as image seg-
mentation [9], [10], texture segmentation [11], color and
texture matching [12], feature extraction [13], speech recog-
nition [14], and action recognition [15]. However, a clear
limitation of these general statistical distances is that they
only provide a scalar output to represent a global feature
distance between two observations, regardless of the size of
the feature set or the dimensionality of the corresponding
random vector. Thus, the local distances of all features in the
set or the relationships of all elements in the random vector
cannot be elaborated. Therefore, an important problem is how
to refine the concept of statistical distance to move from a
scalar to a matrix.

The concept of a distance matrix has been introduced in
graph theory [16]. In a directed graph, a distance matrix is
defined by a weighted adjacency matrix. Given that each
edge is assigned a weight, the distance between two ver-
tices can be defined as the minimum sum of the weights
of the shortest paths connecting the two vertices. The
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distance matrix is asymmetric and not metric because the
paths are oriented. If there are enough samples of each ver-
tex, the cross-correlation matrix or partial cross-correlation
matrix is used to identify the weights and quantify the dis-
tance matrix. However, due to its information loss from the
assumption that all the data is in a probability space, the cor-
relation matrix is not yet delicate or precise enough to satisfy
some machine learning requirements.

To solve the above problems, this paper transforms tradi-
tional statistical distances into their matrix forms through a
simple de-trace operation, and experimentally demonstrates
the results for complicated distance performances using the
CIFAR-10 dataset, which is the most famous dataset in
machine learning.

II. PRELIMINARIES
First, we provide definitions of probability theory to specify
the statistical distance.
Definition 1: In probability theory, a measurable function

from a probability space (�,F ,P) to a measurable space
(3,G) is called a (3,G)-valued random variable, and is
denoted by one of X, Y , Z , . . .. Let G := B(3) (Borel
σ -field). If X is a measurable function from (�,F ,P) to
(R,B(R)), it is called a real-valued random variable. If X :=
[X1, . . . ,Xd ]ᵀ is a measurable function from (�,F ,P) to
(Rd ,B(Rd )), it is called a d-dimensional random vector,
where Xi is the i-th component of X, and X1, . . . Xd are
random variables on a common probability space.
Definition 2: Let X be a (3,G)-valued random variable

on a probability space (�,F ,P). Then, a probability measure
P ◦ X−1 on a measurable space (3,G) is defined as P ◦
X−1(B) := P(X−1(B)) = P(X ∈ B),B ∈ G. Then P ◦ X−1 is
called the distribution of X, and is denoted by PX .
Definition 3: Consider a real-valued random variable or

random vector X with distribution PX on a measurable space
(R,B(R)). If F(x) := P(X ≤ x) = PX ((−∞, x]), for x ∈ R,
then F(x) is called the cumulative distribution function of X
on R. Moreover, if F(x) is absolutely continuous on R, then
fX (x) := dF(x)/dx is called the probability density function
of X.
Definition 4: Given a probability space (�,F,P) for a d-

dimensional random vector X1 with distribution PX on the
measurable space (Rd ,B(Rd )), the cumulative distribution
function is defined as F1(x) := P(X1 ≤ x) = PX ((−∞, x]),
for x ∈ Rd . If F1(x) is absolutely continuous with respect
to x on Rd , then pX (x) := dF1(x)/dx is called the proba-
bility density function of X1. Given another probability space
(�,F ,Q), for a d-dimensional random vector X2 with dis-
tribution QX on the measurable space (Rd ,B(Rd )), we can
similarly obtain the corresponding probability density func-
tion of X2, i.e., qX (x) := dF2(x)/dx, based on the cumulative
distribution function F2(x) := Q(X ≤ x) = QX ((−∞, x]).
Note that pX (x) and qX (x) are generally abbreviated to p(x)
and q(x).

Based on these definitions, several indices have been intro-
duced in statistics to reflect the dissimilarity between two

probability distributions, p(x) and q(x). The Bhattacharyya
distance DB was first proposed by [4] as a metric for quanti-
fying dissimilarity:

DB := − ln
∫
Rd
p

1
2 (x)q

1
2 (x)dx. (1)

The Chernoff distance DC , an extension of DB, was intro-
duced in [8]. Here, the square root operator is replaced with
an exponent coefficient s.

DC := − ln
∫
Rd
ps(x)q1−s(x)dx (2)

TheKullback-Leibler divergenceDKL , formulated as follows,
was proposed in [6], [7]. Note that it is not a metric because
it does not satisfy the metric axiom.

DKL :=
∫
Rd

[p(x)− q(x)] ln
[
p(x)
q(x)

]
dx (3)

The Hellinger distanceDH , as introduced in [5], is defined as
follows through the Hellinger integral:

DH :=
1
√
2

∫
Rd

∥∥∥p 1
2 (x)− q

1
2 (x)

∥∥∥
2
dx. (4)

These measures all give scalar dissimilarities between the
two probability distributions p(x) and q(x), regardless of the
dimensionality of the corresponding random vector.

III. MAIN RESULTS
A. DE-TRACE OPERATION FOR DISTANCE MATRIX
We use the de-trace operation to convert the scalar-valued
statistical distances into their matrices. We first focus on
the Mahalanobis distance DM introduced in [3] for easy
understanding because it can be considered a particular case
of the Bhattacharyya distance DB. Given two populations
with respective mean vectors µ1,µ2 ∈ Rd and covariance
matrices 61,62 ∈ Rd×d , the squared Mahalanobis distance
D2
M is written in a quadratic form:

D2
M = (µ1 − µ2)

ᵀ6−1(µ1 − µ2)

= tr
{
(µ1 − µ2)(µ1 − µ2)

ᵀ6−1
}
= trDM , (5)

where 6 = 61 = 62. This quadratic form can be trans-
formed to a trace form, as noted in Eqn. (5). By removing the
trace, we can obtain the Mahalanobis distance matrix DM in
a de-trace form, Eqn. (6).

DM = (µ1 − µ2)(µ1 − µ2)
ᵀ6−1 (6)

By contrast, the Bhattacharyya distance DB with corre-
sponding distance matrix DB is defined in a continuous mea-
surable space as per Definition 4. In this paper, we suppose
that two d-dimensional random vectors X1 and X2 follow
two normal distributions,N (µ1,61) andN (µ2,62), respec-
tively. Thus, DB for X1 and X2 is defined as

DB =
1
4
(µ1 − µ2)

ᵀ(61 +62)−1(µ1 − µ2)

+
1
2
ln
[
det6

−
1
2

1 det
(
61 +62

2

)
det6

−
1
2

2

]
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= tr
{
1
4
(µ1 − µ2)(µ1 − µ2)

ᵀ(61 +62)−1

+
1
2

[
ln
(
61 +62

2

)
− ln(6

1
2
16

1
2
2 )
]}
= trDB. (7)

We find that the first term of Eqn. (7) is similar to Eqn. (5) and
can be transformed to the same trace form. The second term
can also be changed into a trace form based on the following
equations.

detA detB = det(AB), (8)

ln(detA) = tr(lnA), (9)

tr[ln(AB)] = tr(lnA)+ tr(lnB) (10)

Here, all above equations hold, if and not only if A and
B are two positive definite matrices in Rd×d . Note that
Eqn. (9) holds by Jacobi’s formula for any complex square
matrix where ln(A) is defined. Then, by dissolving the trace,
the Bhattacharyya distance matrix DB can be written as Eqn.
(11).

DB =
1
4
(µ1 − µ2)(µ1 − µ2)

ᵀ(61 +62)−1

+
1
2

[
ln
(
61 +62

2

)
− ln(6

1
2
16

1
2
2 )
]

(11)

The Chernoff distance DC between the two normal distri-
butions N (µ1,61) and N (µ2,62) is defined as

DC

=
1
2
s(1− s)(µ1 − µ2)

ᵀ[(1− s)61 + s62]−1(µ1 − µ2)

+
1
2
ln
{
det6s−1

1 det [(1− s)61 + s62] det6
−s
2

}
= tr

{
1
2
s(1− s)(µ1 − µ2)(µ1 − µ2)

ᵀ[(1− s)61+s62]−1

+
1
2
{ln [(1− s)61 + s62]− ln

(
61−s

1 6s
2

)
}

}
= trDC ,

(12)

where s ∈ [0, 1]. After the transformation for obtaining the
trace form, the corresponding matrix DC is obtained as Eqn.
(13).

DC

=
1
2
s(1− s)(µ1 − µ2)(µ1 − µ2)

ᵀ[(1− s)61 + s62]−1

+
1
2
{ln [(1− s)61 + s62]− ln

(
61−s

1 6s
2

)
} (13)

Note that the Chernoff distance DC with distance matrix DC
extends DB with DB, and is more flexible and adaptive due
to the exponent coefficient s being adjustable according to
computation requirements.

The Kullback-Leibler divergenceDKL betweenN (µ1,61)
and N (µ2,62) is given by

DKL =
1
2
(µ1 − µ2)

ᵀ(61 +62)−1(µ1 − µ2)

+
1
2
tr(6−11 62 +6

−1
2 61 + 2Id )

= tr
{
1
2
(µ1 − µ2)(µ1 − µ2)

ᵀ(61 +62)−1

+
1
2
(6−11 62 +6

−1
2 61 + 2Id )

}
= trDKL , (14)

where Id is a d-dimensional identity matrix. It is easy to write
its trace form and obtain the corresponding distance matrix
DKL as in Eqn. (15), where there exists no logarithm operation
in the second term.

DKL =
1
2
(µ1 − µ2)(µ1 − µ2)

ᵀ(61 +62)−1

+
1
2
(6−11 62 +6

−1
2 61 + 2Id ) (15)

The Hellinger distance DH between N (µ1,61) and
N (µ1,61) is written as

DH =
[
1− exp(−DB)

] 1
2 =

[
1− exp(− trDB)

] 1
2 . (16)

It can be considered a function with respect toDB, but cannot
be changed into a complete trace form. Thus, the Hellinger
distance DH has no distance matrix.
Here, under the assumption that the distance is

non-negative real number, all the elements of the above
distance matrices are set to the absolute value of the original
one. Based on these statistical distance matrices, we apply
an ordinary hierarchical clustering [17], [18] to cluster the
elements of a random vector. Given a cut-off threshold, this
clustering algorithm can provide stable and reliable clustering
results for the elements of a random vector.

B. HIERARCHICAL CLUSTERING FOR DISTANCE MATRIX
The input to the hierarchical clustering algorithm is defined as
a finite element set S of the random vector X with a distance
function δ, which is the map δ : S × S → R. Here, δ(u, v)
is assigned the element value in a distance matrix D of X at
location (u, v) and may be zero, where u, v ∈ S and δ(u, u) is
set to 0. Given that the set S has d elements, there exist

(d
2

)
pairwise distances.

The output of the hierarchical clustering algorithm is
defined by a dendrogram, which can be considered as a
data structure and is expressed as a mathematical graph.
A stepwise dendrogram is used in this paper. Given a finite
set S0 with cardinality d = |S0|, a stepwise dendrogram
is a list of triples 〈ui, vi, δ(ui, vi)〉, i = 0, . . . , d − 2 with
the corresponding node labels ni, where ui, vi ∈ Si. Set S0
is the initial data point. Set Si+1 is recursively defined as
(Si\{ui, vi}) ∪ ni. In each step, the new node labeled ni is
formed by joining nodes ui and vi at distance δ(ui, vi). The
procedure contains d − 1 steps, such that the final state is a
single node containing all d initial nodes.

The proposed hierarchical clustering algorithm is given in
Algorithm 1.

Here, the agglomerative formula for updating δ is defined
as largest-distance function between δ(ui, x) and δ(vi, x):

f (δ(ui, x), δ(vi, x)) := max(δ(ui, x), δ(vi, x)). (17)
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Algorithm 1 Hierarchical Clustering Algorithm for Distance
Matrix
1: Inputs:

Node labels: S0
Distance function: δ

2: Initialize:
Number of input nodes: d ← |S|
Stepwise dendrogram: L ← ∅

3: for i = 0 to d − 2 do
4: (ui, vi) ← argminSi×Si\1i

δ, 1i denotes diagonal
elements in Si × Si.

5: Append triple 〈ui, vi, δ(ui, vi)〉 to L
6: Si← Si\{ui, vi}
7: Create a new node label ni /∈ Si
8: Update δ for all x ∈ Si by

δ(ni, x) = δ(x, ni) := f (δ(ui, x), δ(vi, x))

9: Si+1← Si ∪ {ni}
10: end for
11: Outputs:

Stepwise dendrogram: L

There exist other useful formulas like smallest-distance
function:

f (δ(ui, x), δ(vi, x)) := min(δ(ui, x), δ(vi, x)), (18)

or average-distance function:

f (δ(ui, x), δ(vi, x)) :=
1
|Si|2

∑
i∈Si

∑
i∈Si

(δ(ui, x), δ(vi, x)).

(19)

Given a cut-off threshold, this algorithm can provide stable
and reliable clustering results for the elements of a random
vector.

IV. COMPUTED EXAMPLES
We use the CIFAR-10 dataset [19] to test the effects of the
statistical distance matrices. This dataset contains 60,000
32 × 32 color images in 10 different classes. To simplify
the calculation and obtain distinguishable results, as shown
in Figure 1, we calculated only the distance matrices between
airplanes and dogs, birds and dogs, cats and dogs, such that
the similarities between every two objects could range from
weak to strong.

A. STATISTICAL DISTANCE MATRIX
Given a value space U = [0, 1] for an image pixel, an image
A := [aij] ∈ Um×n, i = 1, . . . ,m, j = 1, . . . , n is re-formed
as a := [át ] = vecA ∈ Ud×1, t = 1, . . . , d, d =
m × n through matrix vectorization vec(·). Let image sets
{ak} and {bk}, k = 1, . . . ,N of two classes be regarded as
two populations with d-dimensional random vectors X1 and
X2, which respectively follow the two normal distributions

FIGURE 1. Examples of airplanes, birds, cats, and dogs in the
CIFAR-10 dataset.

N (µ1,61) and N (µ2,62), where

µ1 := E[X1] =
1
N

N∑
k=1

ak , µ2 := E[X2] =
1
N

N∑
k=1

bk ,

61 := var[X1] =
1

N − 1

N∑
k=1

[(ak − µ1)(ak − µ1)
ᵀ],

62 := var[X2] =
1

N − 1

N∑
k=1

[(bk − µ2)(bk − µ2)
ᵀ]. (20)

In the examples, {ak} and {bk} were set to the image sets
of airplanes and dogs, birds and dogs, and cats and dogs in
order, where m and n are set to 32, respectively. Note that
N = 5000 because of only the training images are used
for each class. By calculating and substituting their mean
vectors µ1 and µ2 with covariance matrices 61 and 62 into
Eqn. (6)-(15), we can obtain the four statistical distance
matrices DM , DKL , DB, and DC for all of three cases, where
each D := [δuv] ∈ Rd×d , u, v = 1, . . . , d .
As shown in Figure 2, DM and DKL for all of three cases

appear chaotic and uninformative. By contrast, the local
distances with high values represent a grid-like pattern
in the middle of DB and DC , where the exponent coef-
ficient s in DC was set to 0.3. These high-valued local
distances can effectively be used to distinguish the corre-
sponding elements of the random vectors X1 and X2 in
the measurable space, which are also regarded as the cor-
responding pixels of the images ak and bk . Considering
that DB is a particular case of DC where s is set to 1/2,
the DC -like statistical distance matrices are confirmed to be
valid.

Based on the definition equations of statistical distance
matrices, the vertical and horizontal lines of elements in these
matrices, called rows and columns, are related to {ak} and
{bk}, respectively. Note that {ak} is regarded as the image sets
of airplanes, birds, or cats. {bk} is only assigned to the image
set of dogs.
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FIGURE 2. Statistical distance matrices DM , DKL, DB, and DC for the cases of airplanes and dogs, birds and dogs, cats and dogs, respectively. Every
subfigure corresponds a distance matrix in the same from. Here, DB and DC perform better than DM and DKL due to their grid-like patterns.

B. DISTANCE-ACCUMULATION IMAGE
Furthermore, for each image pixel, we can accumulate all
of its related local distances as a value and assign it to the
current pixel to form a distance-accumulation vector φ :=
[φ́t ] ∈ Rd×1, t = 1, . . . , d by using the following distance-
matrix-imaging method:

φ́t =

d∑
u=1

δut +

d∑
v=1

δtv. (21)

Then, φ is re-formed as a distance-accumulation image8 :=
[φij] = v̂ecφ, i = 1, . . . ,m, j = 1, . . . , n, where v̂ec(·)
denotes the reverse process of vec(·). Note that8 has the same
form with the image A. Unlike the statistical distance matrix
D, every axis of 8 is related to the double classes owing to
Eqn. (21).

The effects of the statistical distance matrices are
more clearly reflected in their distance-accumulation
images than themselves. As illustrated in Figure 3,
the distance-accumulation images of DM and DD are dis-
ordered, and those of DB and DC are ordered. The main

representation is that the high-value pixels are all concen-
trated in the center of the distance-accumulation image,
showing a distribution similar to a circle or an ellipse. For
objects with low similarities, such as airplanes and dogs,
the number of high-value pixels is greater and their loca-
tions are more concentrated. By contrast, between objects
with high similarities, such as cats and dogs, high-value
pixels are fewer and concentrated in the center of the
image more broadly along with middle-value pixels. There-
fore, the distance-matrix-imagingmethod can simultaneously
quantify the differences between the pixels of every two
objects in degree and position.

C. TEST FOR CENTRALIZATION OF HIGH-VALUED
ELEMENTS
Let the distance-accumulation image 8 be normalized as
a discrete distribution 8̄ := [φ̄ij], i = 1, . . . ,m, j =
1, . . . , n in two dimensions, where the summation of all the
elements in 8̄ is set to 1 by φ̄ij := φij/

∑n
j=1

∑m
i=1 φij.

As proposed in [20], this distribution shape can be fitted by a
2-dimensional normal distribution with a probability density
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FIGURE 3. Distance-accumulation images 8M , 8KL, 8B, and 8C for the cases of airplanes and dogs, birds and dogs, cats and dogs, respectively. Every
subfigure corresponds a distance-accumulation image in the same from. Here, 8B and 8C perform better than 8M and 8KL due to the centralization of
their high-valued elements.

function p(x, y). Then, the normal distribution is quantized
as a discrete distribution P := [pij], i = 1, . . . ,m, j =
1, . . . , n. The Hadamard-production summation of 8̄ and P,
defined as 8̄ � P :=

∑n
j=1

∑m
i=1 φ̄ijpij, is considered as

a measure to estimate whether the high-valued elements of
8̄ are centralized. As shown in Figures 4-6, the values of
8̄B�PB and 8̄C�PC are greater than those of 8̄M�PM and
8̄KL � PKL for every case; therefore, 8̄B and 8̄C have more
high-valued elements centralized in image than 8̄M and 8̄KL .
It causes that their elements, which also means the pixels
of object image, can be clustered easily and clearly at the
following step.

D. TEST FOR SHAPE SIMILARITY TO MANDALAS
Finally, the hierarchical clustering algorithms respectively
based on the three agglomerative formulas, which are
the smallest-distance function (18), the average-distance
function (19), and the largest-distance function (17), are
used to cluster the pixels of object images based on
the statistical distance matrix DB. Here, the pixels of
object images are separated into three clusters, and labeled
in the distance-accumulation images for the three cases,

respectively. As shown in Figures 8, 9, and 10, the hier-
archical clustering algorithm based on the largest-distance
function (17) performs best with the most abundant patterns.

Moreover, in Figures 8, 9, and 10, the cluster patterns
are all circular or square, symmetrical, and radiate from a
center point. Therefore, the cluster patterns can be consid-
ered as Mandalas.1 Thus, we establish the term ‘‘Information
Mandala’’ to describe the statistical distance matrix with
clustering.

We also compare our proposed hierarchical clustering with
spectrum clustering [21] and k-medoids clustering [22] to
prove its effectiveness for the statistical distance matrix. The
corresponding experimental results, shown in Figures 11, 13,
and 15, reflect that our proposed hierarchical clustering per-
forms better with clearer and more ordered clustering results
than the other two clusterings. Here, the pixels of object
images are separated into ten clusters.

1The wordMandala is a Sanskrit termmeaning ‘‘sacred circle.’’ In various
religious traditions, such as Hinduism, Buddhism, Jainism, and Shintoism,
a mandala is used as a map to represent paradise, gods, or actual shrines.
Mandalas are circular or square and designed with repeating colors, shapes,
and patterns that radiate from a center point. Mandalas can be precise,
carefully measured, geometric, and perfectly symmetrical.
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FIGURE 4. Hadamard-production summation of 8̄ and P for the case of
airplanes and dogs. (a): 8̄M � PM ; (b): 8̄KL � PKL; (c): 8̄B � PB;
(d): 8̄C � PC . Here, 8̄B � PB and 8̄C � PC are greater than 8̄M � PM and
8̄KL � PKL, that is 8B and 8C have more high-valued elements
centralized in image than 8M and 8KL.

Furthermore, we propose a novel measure, referred to as
relative span summation, to decide whether the clustering

FIGURE 5. Hadamard-production summation of 8̄ and P for the case of
birds and dogs. (a): 8̄M � PM ; (b): 8̄KL � PKL; (c): 8̄B � PB; (d): 8̄C � PC .
Here, 8̄B � PB and 8̄C � PC are greater than 8̄M � PM and 8̄KL � PKL,
that is 8B and 8C have more high-valued elements centralized in image
than 8M and 8KL.

results are similar toMandalas. As shown in Figure 7, the ele-
ments of A are reordered as ã := [ãt ], t = 1, . . . , d,
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FIGURE 6. Hadamard-production summation of 8̄ and P for the case of
cats and dogs. (a): 8̄M � PM ; (b): 8̄KL � PKL; (c): 8̄B � PB; (d): 8̄C � PC .
Here, 8̄B � PB and 8̄C � PC are greater than 8̄M � PM and 8̄KL � PKL,
that is 8B and 8C have more high-valued elements centralized in image
than 8M and 8KL.

d = m × n along an Archimedean spiral, which
winds around the center point of A. Then, as shown

FIGURE 7. Image element reordering, where the elements of A are
reordered as ã := [ãt ], t = 1, . . . ,d ,d = m× n along an Archimedean
spiral winding around the center point of A.

in Figures 12, 14, and 16, the r-th cluster can be denoted as a
set of the element subscripts T (r)

:= {t (r)(1), . . . , t (r)(N (r))}
from ã, where N (r) is the amount of the elements included in
the r-th cluster. Given t (r)(1) < . . . < t (r)(N (r)), the span of
T (r) can be defined as span(r) := t (r)(N (r))− t (r)(1)+ 1.

For any cluster T (r), suppose that its element subscripts
are consecutive integers, which means these elements are
arranged continuously on theArchimedean spiral, there exists
a minimum span assigned as span(r) = N (r). Then, we can
obtain a minimum span summation Span :=

∑
r span(r) =∑

r N
(r)
= d of all the clusters, that is all the clusters are

arranged integrally on the Archimedean spiral and connected
end-to-end. Otherwise, we have a general span summation
Span =

∑
r span(r) >

∑
r N

(r)
= d , which indicates some

clusters overlap on the Archimedean spiral. Note that Span
will increase more greatly, while the clusters overlap more
richly and disordered. Therefore, the ratio of Span to d , also
called as relative span summation Span /d , can be considered
as the measure to decide whether the clustering results are
circular and radiate from a center point like Mandalas.

As illustrated in Figures 12, 14, and 16, it obvious that the
Span /ds of our proposed hierarchical clustering are smaller
than those of the spectrum clustering and the k-medoids clus-
tering for every case. Therefore, our hierarchical clustering
is more effective to extract the clear and ordered clustering
results than the other two clusterings. Here, the amount of
cluster is set to 10.

V. DISCUSSIONS
We first discuss why the statistical distance matrices DB and
DC are effective in the feature-distance measurement. There
is a quadratic term with respect to the mean vectors µ1 and
µ2 and covariance matrices 61 and 62 in DB and DC . This
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FIGURE 8. The labeled distance-accumulation image 8B to show the
proposed hierarchical clustering results (three clusters) for the case of
airplanes and dogs using the statistical distance matrix DB. (a):
smallest-distance function (18); (b): average-distance function (19);
(c): largest-distance function (17). Here, (c) is best with the most
abundant patterns.

FIGURE 9. The labeled distance-accumulation image 8B to show the
clustering results (three clusters) for the case of birds and dogs using the
statistical distance matrix DB. (a): smallest-distance function (18);
(b): average-distance function (19); (c): largest-distance function (17).
Here, (c) is best with the most abundant patterns.
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FIGURE 10. The labeled distance-accumulation image 8B to show the
clustering results (three clusters) for the case of cats and dogs using the
statistical distance matrix DB. (a): smallest-distance function (18);
(b): average-distance function (19); (c): largest-distance function (17).
Here, (c) is best with the most abundant patterns.

FIGURE 11. The labeled distance-accumulation image 8B to show the
clustering results (ten clusters) for the case of airplanes and dogs using
the statistical distance matrix DB. (a): spectrum clustering; (b): k-medoids
clustering; (c): proposed hierarchical clustering. Here, (c) is most similar
to Mandalas.
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FIGURE 12. The colored clustering mask on the reordered image ã to
show the clustering results (ten clusters) for the case of airplanes and
dogs using the statistical distance matrix DB. The head t (r )(1) and tail
t (r )(N (r )) of the r -th cluster T (r ) are connected by a line, whose center are
labeled by its span span(r ) := t (r )(N (r ))− t (r )(1)+ 1 in brackets.
(a): spectrum clustering; (b): k-medoids clustering; (c): proposed
hierarchical clustering. Here, (c) is most similar to Mandalas.

FIGURE 13. The labeled distance-accumulation image 8B to show the
clustering results (ten clusters) for the case of birds and dogs using the
statistical distance matrix DB. (a): spectrum clustering; (b): k-medoids
clustering; (c): proposed hierarchical clustering. Here, (c) is most similar
to Mandalas.
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FIGURE 14. The colored clustering mask on the reordered image ã to
show the clustering results (ten clusters) for the case of birds and dogs
using the statistical distance matrix DB. The head t (r )(1) and tail t (r )(N (r ))
of the r -th cluster T (r ) are connected by a line, whose center are labeled
by its span span(r ) := t (r )(N (r ))− t (r )(1)+ 1 in brackets. (a): spectrum
clustering; (b): k-medoids clustering; (c): proposed hierarchical clustering.
Here, (c) is most similar to Mandalas.

FIGURE 15. The labeled distance-accumulation image 8B to show the
clustering results (ten clusters) for the case of cats and dogs using the
statistical distance matrix DB. (a): spectrum clustering; (b): k-medoids
clustering; (c): proposed hierarchical clustering. Here, (c) is most similar
to Mandalas.
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FIGURE 16. The colored clustering mask on the reordered image ã to
show the clustering results (ten clusters) for the case of cats and dogs
using the statistical distance matrix DB. The head t (r )(1) and tail t (r )(N (r ))
of the r -th cluster T (r ) are connected by a line, whose center are labeled
by its span span(r ) := t (r )(N (r ))− t (r )(1)+ 1 in brackets. (a): spectrum
clustering; (b): k-medoids clustering; (c): proposed hierarchical clustering.
Here, (c) is most similar to Mandalas.

term also exists in DM and DKL . There is also an item that
contains only the logarithm of the covariance ratio in DB and
DC and does not contain the mean vector. There is no such
item containing only the covariance matrix in DM , and the
only item containing the covariance ratio inDKL has not been
calculated logarithmically. When the two mean vectors are
equal or approximate, the value of the quadratic term tends
to zero, meaning that when the two probability distributions
overlap heavily, the term of the covariance ratio plays a more
important role than the quadratic term. This is the reason DB
and DC are effective.

Next, we explain why cluster analysis is needed. Before
cluster analysis, the statistical distancematrixD represents all
the local distances between the elements of the random vector
X . A large number of the local distances are so near zero that
D becomes sparse. On the other hand, in graph theory, D can
be mapped to a directed graph, whose vertices are defined as
the elements of X , and whose edges are assigned to the local
distances. However, in some applications when this graph
is large, processing the edges with small values increases
the computational complexity. Therefore, a tree structure is
applied to reduce the number of unimportant edges in the
graph and to arrange the vertices hierarchically according
to their important edges with reassigned values. This tree
structure can greatly accelerate the access speed and save
memory space in the computer.

Then, we specify why the statistical distance matrices have
further information than the cross-correlation matrix. The
cross-correlation matrix 61,2 of X1 and X2 is defined as

61,2 := cov[X1,X2] = E
[
(X1 − E[X1])(X2 − E[X2])ᵀ

]
=

1
N − 1

N∑
k=1

[(ak − µ1)(bk − µ2)
ᵀ]. (22)

It can be normalized as

R := corr[X1,X2] = (diag61)−
1
261,2(diag62)−

1
2 , (23)

where diag6 denotes the diagonal matrix of 6. Note that
diag61 and diag62 only include the diagonal elements of
61 and 62. It causes the cross-correlation matrix R to lose
information included in the inverses of 61 and 62, which is
important on the assumption that all the data is in a proba-
bility space. Therefore, the cross-correlation matrix is not yet
delicate or precise enough to satisfy some machine learning
requirements.

Finally, we consider the relation between the statistical
distance matrices and the Capsule Neural Network (Cap-
sNet), which is a novel and useful model of neural networks
proposed in [23], [24]. In this paper, the statistical distance
matrices are similar to the matrix of weights in CapsNet.
Thus, they are viewpoint-invariant and can be used to dis-
tinguish an object no matter how much its pose has changed
in the image. However, compared to CapsNet, the proposed
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statistical distance matrices are more intuitive based on the
distance-accumulation images and more specifiable by using
the hierarchical clustering method. Therefore, the statistical
distance matrices, represented as Information Mandalas, can
be considered an extended version of the matrix of weights.

VI. SUMMARY
Through the experimental comparisons of object images
whose pixels are considered features, we confirmed that
DC -like statistical distance matrices are more effective in
distinguishing objects than other distance matrices. Their
distance-accumulation images showed that high-valued pix-
els were concentrated in the middle of the image. Moreover,
we found that after the hierarchical clustering of the distance
matrix, all the pixel clusters basically surround the center of
the image and are arranged radially from inside to outside
according to the distance value. Since these patterns are very
similar to Mandalas, we refer to the statistical distance matrix
with clustering as the Information Mandala. The Information
Mandala is a new form of entropy.Wewill use it to understand
convolutional neural networks in our future work.

A. DERIVATION FOR THE BHATTACHARYYA DISTANCE DB
(EQN. (7))
Let two d-dimensional random vectors X1 and X2 follow
two normal distributionsN (µ1,61) andN (µ2,62), respec-
tively. Their corresponding probability density functions p(x)
and q(x) are defined as

p(x) := det(2π61)−
1
2 exp

[
−
1
2
(x− µ1)

ᵀ6−11 (x− µ1)
]
,

q(x) := det(2π62)−
1
2 exp

[
−
1
2
(x− µ2)

ᵀ6−12 (x− µ2)
]
.

(24)

The product of their square roots is written as

p
1
2 (x)q

1
2 (x) = det(2π61)−

1
4 det(2π62)−

1
4

× exp
[
−
1
4
(x− µ1)

ᵀ6−11 (x− µ1)

−
1
4
(x− µ2)

ᵀ6−12 (x− µ2)
]
. (25)

By integrating Eqn. (25) in Rd with respect to x, we obtain∫
Rd
p

1
2
X (x)q

1
2
X (x)dx

= det(2π61)−
1
4 det(2π62)−

1
4 (26)

× exp
[
−
1
4
(µᵀ

16
−1
1 µ1 + µ

ᵀ
26
−1
2 µ2)

]
(27)

×

∫
Rd

exp
[
−
1
4
xᵀ(6−11 +6

−1
2 )x

+
1
2
(µᵀ

16
−1
1 + µ

ᵀ
26
−1
2 )x

]
dx. (28)

Eqns. (26), (27), and (28) can be transformed as follows. First,
we define the following term:

This transformation is based on

(61 +62)−1 = 6
−1
1 −6

−1
1 (6−12 +6

−1
1 )−16−11

= 6−12 −6
−1
2 (6−11 +6

−1
2 )−16−12 , (30)

with

(6−11 +6
−1
2 ) = 6−11 626

−1
2 +6

−1
2 616

−1
1

= 6−11 (61 +62)6
−1
2

= 6−12 (61 +62)6
−1
1 . (31)

Here, Eqn. (30) holds by

(A+ CBCᵀ)−1 = A−1

−A−1C(B−1 + CᵀA−1C)−1CᵀA−1, (32)

where A, B, C are all positive-definite matrices. 6 is a mean
of 61 and 62 as

6 :=
61 +62

2
. (33)

Then let Eqn. (28) be∫
Rd

exp
[
−
1
2
xᵀ6−1x+

1
2
(µᵀ

16
−1
1 + µ

ᵀ
26
−1
2 )x

]
dx =

∫
Rd

× exp
[
−
1
2
yᵀy+

1
2
(µᵀ

16
−1
1 +µ

ᵀ
26
−1
2 )(6−11 66−12 )−

1
2 y
]

× d
[
(6−11 66−12 )−

1
2 y
]
,

= Eqn. (29)︸ ︷︷ ︸
first factor

×Eqn. (28)/Eqn. (29)︸ ︷︷ ︸
second factor

, (34)

where

y := (6−11 66−12 )
1
2 x. (35)

By multiplying Eqn. (27) and the first factor of Eqn. (34)
together, we obtain

Eqn. (27)× Eqn. (29)

= exp
[
−
1
8
(µᵀ

16
−1µ1 − 2µᵀ

16
−1µ2 + µ

ᵀ
26
−1µ2)

]
= exp

[
−
1
8
(µ1 − µ2)

ᵀ6−1(µ1 − µ2))
]
. (36)

The second factor of Eqn. (34) is transformed as

det
[
(6−11 662

−1)−
1
2

] ∫
Rd

× exp
{
−
1
2

[
y−

1
2
(6−11 662

−1)−
1
2 (6−11 µ1 +6

−1
2 µ2)

]ᵀ
×

[
y−

1
2
(6−11 662

−1)−
1
2 (6−11 µ1 +6

−1
2 µ2)

]}
dy

= (2π)
k
2 det(6−11 662

−1)−
1
2 (37)

using change-of-variable technique. Given

Eqn. (26)× Eqn. (37)

= det(2π61)−
1
4 det(2π62)−

1
4 (2π )

k
2 det(6−11 662

−1)−
1
2

= (2π)−
k
4 det6

−
1
4

1 (2π )−
k
4
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exp
[
1
8
(µᵀ

16
−1
1 + µ

ᵀ
26
−1
2 )(6−11 66−12 )−1(6−11 µ1 +6

−1
2 µ2)

]
= exp

[
1
8
(µᵀ

16
−1
1 626

−1µ1 + 2µᵀ
16
−1µ2 + µ

ᵀ
26
−1
2 616

−1µ2)
]

= exp
[
1
8
(2µᵀ

16
−1
1 (I −61(61 +62)−1)µ1 + 2µᵀ

16
−1µ2 + 2µᵀ

26
−1
2 (I −62(61 +62)−1)µ2)

]
= exp

[
1
8
(2µᵀ

16
−1
1 µ1 − µ

ᵀ
16
−1µ1 + 2µᵀ

16
−1µ2 + 2µᵀ

26
−1
2 µ2 − µ

ᵀ
26
−1µ2)

]
. (29)

× det6
−

1
4

2 (2π )
k
2 det(6−11 662

−1)−
1
2

= det6
1
4
1 det6−

1
2 det6

1
4
2 , (38)

the Bhattacharyya distance DB is achieved by

− ln(Eqn. (36)× Eqn. (38))

=
1
8
(µ1 − µ2)

ᵀ6−1(µ1 − µ2)

+
1
2
ln
[
det6

−
1
2

1 det6 det6
−

1
2

2

]
. (39)
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