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Abstract. 	In	mammalian	embryos,	the	first	visible	differentiation	event	is	the	segregation	of	the	inner	cell	mass	(ICM)	and	
trophectoderm	(TE)	during	the	transition	from	the	morula	to	the	blastocyst	stage.	The	ICM,	which	is	attached	to	the	inside	of	
the	TE,	develop	into	the	fetus	and	extraembryonic	tissues,	while	the	TE,	which	is	a	single	layer	surrounding	the	fluid-filled	
cavity	called	the	blastocoel,	will	provide	extraembryonic	structures	such	as	the	placenta.	ICM/TE	differentiation	is	regulated	
by	the	interaction	between	various	transcriptional	factors.	However,	little	information	is	available	on	the	segregation	of	the	
ICM	and	TE	lineages	in	preimplantation	embryos	of	domestic	animals,	such	as	cattle	and	pigs.	This	review	focuses	on	the	
roles	of	cell	differentiation	 factors	 that	 regulate	 the	 ICM/TE	segregation	of	preimplantation	bovine	and	porcine	embryos.	
Understanding	the	mechanism	of	cell	differentiation	in	early	embryos	is	necessary	to	improve	the	in vitro	production	systems	
for	bovine	and	porcine	embryos.
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Introduction

In vitro	production	(IVP)	of	bovine	embryos,	such	as	composi-
tive	technologies	of	in vitro	maturation	(IVM)	of	oocytes,	in vitro 
fertilization	(IVF)	and	in vitro	culture	(IVC)	of	embryos,	has	gained	
worldwide	interest	for	their	contribution	to	improving	genetic	gains	
in	beef	and	dairy	cattle.	In	2016,	approximately	1	million	bovine	
IVP	embryo	transfers	were	completed	worldwide	(IETS	Report,	
December	2017).	Thus,	IVP	is	already	an	important	method	in	cattle	
production,	and	all	indications	are	that	this	trend	will	continue	[1].	
However,	pregnancy	success	in	cattle	after	embryo	transfer	(ET)	using	
IVP	embryos	is	far	from	ideal.	In	bovine	embryos	obtained	from	
IVP,	a	high	rate	of	embryonic	or	fetal	loss	and	the	large	offspring	
syndrome	(LOS),	the	phenomenon	of	increased	birth	weight	of	
newborn	calves,	has	been	consistently	observed	[1,	2].	On	the	other	
hand,	pigs	have	attracted	increasing	attention	as	suitable	sources	for	
xenotransplantation,	production	of	specific	proteins	by	transgenesis,	
and	biomedical	models	for	studying	human	physiology	and	pathology.	
Successful	piglet	production	from	IVP	embryos	has	accelerated	
progress	in	these	areas.	However,	IVP	of	porcine	embryos	is	still	
inefficient	than	that	of	other	mammals,	such	as	mice	and	cattle.	This	
is	attributed	to	low	development	rates	to	the	blastocyst	stage	and	
the	production	of	poor-quality	blastocysts	[3].	One	of	the	reasons	
for	the	decreased	development	of	bovine	and	porcine	IVP	systems	

described	above	is	limited	knowledge	of	the	molecular	mechanisms	
involved	in	early	embryonic	development.	Therefore,	to	improve	
the	IVP	systems	for	bovine	and	porcine	embryos,	it	is	important	to	
focus	on	the	molecular	mechanisms	underlying	the	regulation	of	
early	embryonic	development.
Differentiation	of	unspecialized	cells	into	other	cell	types	is	a	

crucial	process	of	development.	Thus,	understanding	the	molecular	
mechanisms	governing	lineage	segregation	during	early	embryonic	
development	is	critical	for	elucidating	fundamental	developmental	
pathways.	In	early	mammalian	development,	the	first	lineage	segrega-
tion	occurs	during	the	transition	from	the	morula	to	the	blastocyst	
stage	when	blastomeres	differentiate	into	the	inner	cell	mass	(ICM)	
and	trophectoderm	(TE).	The	ICM	is	a	group	of	pluripotent	cells	
attached	to	inside	of	the	TE	that	gives	rise	to	the	embryonic	tissue	
comprising	the	ectoderm,	mesoderm,	and	endoderm	[4].	In	contrast,	
TE	is	a	single	layer	of	polarized	cells	surrounding	the	blastocoel,	
which	gives	rise	to	the	embryonic	portion	of	the	placenta	[5,	6].	The	
segregation	of	ICM	and	TE	lineages	is	regulated	by	the	interaction	
of	various	genes.	In	mouse	embryos,	the	transcription	factors,	POU	
domain	class	5	transcription	factor	1	(Oct-4)	and	Caudal-related	
homeobox	2	(Cdx2)	play	pivotal	roles	in	the	segregation	of	the	
ICM	and	TE	[7–9].
As	described	above,	the	molecular	mechanisms	that	regulate	the	

segregation	of	the	ICM	and	TE	lineages	have	been	well	characterized	
in	mouse	embryos.	However,	little	information	is	available	on	the	
segregation	of	ICM	and	TE	lineages	in	bovine	and	porcine	embryos.	
Recently,	some	researchers	reported	that	in	contrast	to	mice,	OCT-4 
expression	does	not	appear	to	be	restricted	to	the	ICM,	even	in	
expanded	blastocysts	in	pigs	and	cattle	[10–13].	These	findings	led	
us	to	expect	a	difference	in	the	molecular	mechanisms	that	regulate	
the	segregation	of	the	ICM	and	TE	lineages	between	species.	This	
review	focuses	on	the	roles	of	cell	differentiation	factors	in	the	
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preimplantation	development	of	domestic	animals	by	introducing	
several	findings	based	on	our	studies	[10,	14–20].

Roles of OCT-4 and CDX2 in Preimplantation 
Development of Bovine and Porcine Embryos

In	murine	embryos,	the	transcription	factors	Oct-4	and	Cdx2	
are	necessary	for	the	segregation	and	function	of	ICM	and	TE	
lineages.	Oct-4,	which	is	exclusively	expressed	in	ICM	after	
blastocoel	formation,	is	required	to	maintain	cell	pluripotency	and	
normal	differentiation	into	the	epiblast	[7,	21].	Conversely,	Cdx2	
is	a	TE-specific	transcription	factor	required	for	correct	cell-fate	
specification	and	TE	differentiation	[9].	Murine	embryos	lacking	
Oct-4	or	Cdx2	expression	still	form	ICM	or	TE,	respectively	[9,	22,	
23].	These	findings	indicate	that	both	Oct-4	and	Cdx2	function	in	
the	differentiation	of	ICM	and	TE	after	blastocyst	formation.	First,	
we	demonstrated	the	differences	in	expression	levels	of	several	
genes,	including	OCT-4	and	CDX2,	between	cells	of	the	ICM	and	
TE	lineages	in	bovine	and	porcine	embryos	[10,	17].	The	levels	of	
OCT-4	mRNA	in	the	ICM	of	bovine	and	porcine	blastocysts	were	
higher	than	those	in	TE.	In	contrast,	the	levels	of	CDX2	expression	
in	bovine	and	porcine	TE	lineages	were	higher	than	those	in	ICM	
lineages.	Thus,	we	concluded	that	OCT-4	and	CDX2	might	control	
the	differentiation	of	ICM	and	TE	in	bovine	and	porcine	embryos.	
However,	OCT-4	expression	was	detected	in	both	ICM	and	TE	in	
cattle	and	pigs,	even	at	the	expanded	blastocyst	stage	[10–13,	17,	
24].	Although	these	observations	suggest	a	distinct	role	of	OCT-4	
during	early	development	in	bovine	and	porcine	embryos,	little	is	
known	about	the	functions	of	OCT-4	and	CDX2	during	the	embryonic	
development	of	domestic	animals.
To	elucidate	the	functions	of	OCT-4	and	CDX2	during	early	

development	in	bovine	and	porcine	embryos,	we	performed	OCT-4	
and	CDX2	downregulation	using	RNA	interference	[15,	18,	19].	We	
injected	OCT-4-	or	CDX2-specific	short	interfering	RNAs	(siRNAs)	
into	bovine	or	porcine	zygotes.	The	blastocyst	development	rate	
in	OCT-4-downregulated	bovine	and	porcine	embryos	was	lower	

than	that	in	uninjected	or	control	siRNA-injected	embryos	[18,	19].	
Gene	expression	analysis	revealed	decreased	CDX2	and	fibroblast 
growth factor 4	(FGF4)	expression	in	OCT-4-downregulated	bovine	
embryos	[19].	In	murine	embryos,	FGF4	is	highly	expressed	in	the	
ICM	and	epiblast	and	activates	the	expression	of	FGF	receptor	2	in	
the	TE	lineage	[25,	26].	The	FGF4	signaling	pathway	is	required	
to	maintain	the	proliferation	of	TE	cells	[27–29].	Furthermore,	
CDX2-downregulated	bovine	embryos	developed	to	the	blastocyst	
stage;	however,	in	most	cases,	blastocoel	formation	was	delayed	
[19].	In	addition,	we	constructed	chimeric	embryos	comprising	
blastomeres	that	either	expressed	OCT-4	normally	or	showed	down-
regulated	OCT-4	expression	by	co-injection	of	OCT-4-siRNA	and	
tetramethylrhodamine	isothiocyanate	(TRITC)-dextran	conjugate	
(Dx)	into	one	blastomere	in	2-	to	4-cell	stage	porcine	embryos	
[15].	In	control	embryos,	co-injected	with	control	siRNA	and	Dx,	
Dx-positive	cells	contributed	to	the	TE	lineage	in	almost	all	the	
blastocysts	examined.	In	contrast,	Dx-positive	cells	derived	from	a	
blastomere	co-injected	with	OCT-4-siRNA	and	Dx	degenerated	in	
almost	half	the	blastocysts.	This	was	probably	due	to	the	inability	
of	these	cells	to	differentiate	into	the	TE	lineage.
We	summarized	both	OCT-4	and	CDX2	roles	in	the	early	embryo	

development	of	domestic	animals	in	Fig.	1.	Our	results	indicate	that	
1)	OCT-4	and	CDX2	are	essential	for	early	development	and	gene	
expression	involved	in	the	differentiation	of	ICM	and	TE	lineages	
in	bovine	and	porcine	embryos,	and	2)	the	continuous	expression	
of	OCT-4	in	blastomeres	is	essential	for	TE	formation	in	porcine	
embryos.

Roles of Several Factors Involved in The Hippo Pathway 
in Preimplantation Development of Porcine Embryos

In	mice,	TEA	domain	family	transcription	factor	4	(Tead4)	is	
detected	in	nuclei	from	the	4-cell	to	the	blastocyst	stage	[30].	Murine	
embryos	lacking	Tead4	expression	fail	to	form	a	blastocoel	and	do	
not	express	Cdx2	[30–32].	Furthermore,	expression	of	Oct-4	and	
SRY-related	HMG-box	gene	2	(Sox2)	was	induced	in	these	Tead4-

Fig. 1.	 OCT-4	and	CDX2	are	essential	for	development	from	the	morula	to	the	blastocyst	stage	and	gene	expression	involved	in	the	differentiation	of	
ICM	and	TE	lineages	in	bovine	and	porcine	embryos.	Especially,	the	continuous	expression	of	OCT-4	in	blastomeres	is	essential	for	TE	formation	
in	porcine	embryos.	The	unknown	factor(s)	is	indicated	as	Factor	X.
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deficient	embryos	[32,	33].	Therefore,	Tead4	is	a	critical	factor	in	TE	
segregation	in	murine	embryos.	In	ICM	progenitor	cells,	which	are	
inside	of	embryos,	the	Hippo	pathway	is	active,	inducing	cytoplasmic	
restriction	of	Yes-associated	protein	1	(Yap1)	via	phosphorylation	
[34].	Contrastingly,	the	Hippo	pathway	is	weakly	activated	in	TE	
progenitor	cells,	which	are	outside	of	embryos	[34].	In	the	outer	cells,	
nuclear	accumulation	of	Yap1	leads	to	form	Tead4-Yap1	complex,	
and	the	complex	induces	Cdx2	expression	[34].	Thus,	Tead4	regulates	
the	segregation	of	the	TE	linage	through	the	expression	of	Cdx2 in 
murine	embryos.	In	murine	embryos,	Cdx2	mutation	leads	to	failure	of	
TE	maintenance	[9,	35,	36],	whereas	CDX2-downregulated	embryos	
of	pigs	and	cows	are	able	to	develop	normally	to	the	blastocyst	stage	
and	form	TE	[19,	37,	38].	Furthermore,	CDX2-	and	TEAD4-specific	
localization	in	the	TE	lineage	starts	from	the	ovoid	stage,	the	next	
stage	of	the	blastocyst	[17].	On	the	other	hand,	TEAD4	expression	
in	porcine	embryos	has	been	observed	from	4-cell	stage,	and	TEAD4 
expression	has	been	observed	in	both	ICM	and	TE	regions	at	the	
blastocyst	stage	[17,	39].	These	results	suggest	that	TEAD4	controls	
the	preimplantation	development	of	porcine	embryos	through	the	
expression	of	a	specific	factor	other	than	CDX2.	Therefore,	we	
assessed	TEAD4	expression	at	both	mRNA	and	protein	levels	in	
porcine	preimplantation	embryos	and	performed	TEAD4	knockdown	to	
investigate	TEAD4	function	during	the	early	development	of	porcine	
embryos	[16].	Nuclear	localization	of	TEAD4	protein	was	detected	
at	the	16-cell	stage,	as	well	as	at	subsequent	developmental	stages.	In	
porcine	embryos	injected	with	TEAD4	siRNA,	transformation	from	
morula	to	blastocyst	was	inhibited.	Although	TEAD4	downregulation	
did	not	affect	the	expression	levels	of	OCT-4,	transcription	of	SOX2 
was	detected	at	high	levels	in	TEAD4-downregulated	embryos.	It	is	
possible	that	TEAD4	contributes	to	blastocyst	formation	in	porcine	
embryos	through	downregulation	of	SOX2	expression.
The	Hippo	pathway	controls	various	cellular	events	such	as	cell	

proliferation,	differentiation,	and	cell	death	[40,	41].	Thus,	this	
mechanism	is	one	of	the	main	regulators	of	ICM/TE	lineage	diver-
gence	in	murine	embryos	[34,	42].	Activation	of	the	Hippo	pathway	
depends	on	cell	position	in	preimplantation	embryos.	In	the	inner	
cells	of	murine	morulae,	the	Hippo	pathway	is	activated,	allowing	
the	activation	of	large	tumor	suppressor	1/2	(Lats1/2)	kinases	to	
phosphorylate	Yap1	for	preventing	its	nuclear	accumulation	[34,	42].	
As	a	result,	inhabitation	of	Yap1	transition	into	the	nucleus	occurs,	
and	Yap	1	cannot	bind	to	Tead4	which	is	a	promoting	factor	for	
Cdx2	expression.	The	complex	of	Tead4	and	Cdx2	is	essential	for	
TE	segregation	[30–32,	34,	43].	Thus,	in	the	absence	of	Tead4-Yap1	
activity,	ICM-induced	genes	such	as	Oct-4	and	Sox2	are	expressed	
in	the	inner	cells	[33,	40,	44–46].	On	the	other	hand,	the	Hippo	
pathway	is	repressed	and	Lats1/2	is	not	activated	in	the	outer	cells.	
Thus,	Yap1	is	not	phosphorylated	and	can	be	transferred	into	the	
nucleus.	Consequently,	it	is	indicated	clearly	that	Yap1	binds	to	
Tead4,	and	drives	Cdx2	expression	is	one	of	very	important	event	
for	TE	segregation	[34].	As	described	above,	we	have	demonstrated	
that	blastocyst	formation	was	inhibited	in	TEAD4-downregulated	
porcine	embryos,	and	SOX2	transcript	levels	were	increased	in	these	
embryos	[16].	These	findings	suggest	that	TEAD4	is	needed	for	TE	
segregation	in	porcine	embryos	and	the	Hippo	pathway	controls	this	
mechanism	in	porcine	preimplantation	embryos,	similar	to	mice.	
Therefore,	we	investigated	in	order	to	elucidate	the	roles	of	YAP1	

and	LATS2	in	porcine	preimplantation	development	[14].	In	pigs,	
both YAP1	and	LATS2	mRNA	expressed	higher	levels	in	in vitro 
matured	oocytes	and	1-cell	stage	embryos,	and	decreased	gradually	
with	embryo	development.	Furthermore,	we	demonstrated	YAP1	
nuclear	localization	in	porcine	morula	and	blastocyst	embryos.	
Interestingly,	downregulation	of	either	YAP1 or LATS2	by	specific	
siRNA	injection	into	1-cell	stage	porcine	embryos	inhibited	early	
development	and	affected	the	expression	levels	of	OCT-4	and	SOX2.	
Therefore,	we	concluded	that	YAP1	and	LATS2	are	essential	for	
porcine	preimplantation	development,	and	it	is	possible	that	the	
Hippo	pathway	has	important	roles	in	porcine	ICM/TE	segregation	
as	murine	preimplantation	embryos	[14].
We	summarized	the	roles	of	several	factors	involved	in	the	Hippo	

pathway	in	porcine	embryos	based	on	our	findings	in	Fig.	2.	Our	
results	indicate	the	importance	of	TEAD4	and	regulation	by	YAP1	
and	LATS2,	which	are	main	components	of	the	Hippo	pathway,	in	
early	development	and	gene	expression	involved	in	the	differentiation	
of	ICM	and	TE	lineages	in	porcine	embryos.

Fig. 2.	 A	model	of	ICM/TE	segregation	mechanism	in	porcine	embryos.	
Our	results	indicate	the	importance	of	TEAD4	and	regulation	by	
YAP1	and	LATS2,	which	are	the	main	components	of	the	Hippo	
pathway,	in	early	development	and	gene	expression	involved	in	
the	differentiation	of	ICM	and	TE	lineages	in	porcine	embryos.
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Conclusions and Perspective

Our	results	obtained	from	artificial	downregulation	of	specific	
gene	expression	by	RNA	interference	in	early	embryos	indicated	
clearly	a	regulatory	mechanism	for	the	cell	differentiation	of	ICM	
and	TE	lineages	in	domestic	animals.	Our	observations	led	us	to	
confirm	some	differences	in	the	molecular	mechanisms	that	regulate	
the	segregation	of	the	ICM	and	TE	lineages	between	species.	Further	
analyses	of	the	expression	of	other	factors	and	regulation	mechanisms	
of	these	factors	in	the	cell	differentiation	of	preimplantation	embryos	
are	required.	Furthermore,	it	is	well	known	that	bovine	and	porcine	
embryos	elongate	after	the	blastocyst	stage.	Therefore,	to	obtain	a	
better	understanding	of	the	molecular	mechanism	responsible	for	the	
segregation	of	the	ICM	and	TE	lineages	in	domestic	animal	embryos,	
it	is	necessary	to	study	changes	in	the	expression	of	such	genes	
during	preimplantation	development	including	the	elongation	stage.
Our	findings	and	future	analyses	should	be	available	for	improving	

IVP	systems	for	bovine	and	porcine	embryos.	For	example,	one	of	
the	causes	of	LOS,	which	is	serious	problems	after	ET	of	bovine	
embryos	obtained	from	the	IVP	system,	is	aberrant	gene	expression	
status	in	these	embryos[1,	2].	However,	there	are	no	suitable	markers	
for	evaluation	of	epigenetic	status	in	bovine	IVP	embryos.	We	expect	
that	the	gene	expression	levels	or	status	of	several	factors	involved	
in	the	differentiation	of	ICM	and	TE	lineages	in	bovine	embryos	
will	be	valuable	for	assessment	of	bovine	IVP	embryos.	To	avoid	the	
incidence	of	LOS	offspring	in	the	IVP	system,	we	have	approached	
the	establishment	of	evaluation	methods	for	bovine	IVP	embryos	
using	gene	expression	analysis	of	these	factors.
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