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Abstract We present the cross section for e+e− → hZ
with arbitrary sets of electron and Z boson polarizations at
the full next-to-leading order in various extended Higgs mod-
els, such as the Higgs singlet model (HSM), the inert doublet
model (IDM) and the two Higgs doublet model (2HDM). We
systematically perform complete one-loop calculations to the
helicity amplitudes in the on-shell renormalization scheme,
and present the full analytic results as well as numerical
evaluations. The deviation �RhZ in the total cross section
from its standard model (SM) prediction is comprehensively
analyzed, and the differences among these models are dis-
cussed in details. We find that new physics effects appearing
in the renormalized hZ Z vertex almost govern the behav-
ior of �RhZ , and it takes a negative value in most cases.
The possible size of �RhZ reaches several percent under
the theoretical and experimental bounds. We also analyze
the deviation �RhZ

XY in the total cross section times decay
branching ratios of the discovered Higgs boson by utiliz-
ing the H-COUP program. It is found that the four types
of 2HDMs can be discriminated by analyzing the correla-
tion between �RhZ

ττ and �RhZ
bb and those between �RhZ

ττ

and �RhZ
cc . Furthermore, the HSM and the IDM can be dis-

criminated from the 2HDMs by measuring �RhZ
WW . These

signatures can be tested by precision measurements at future
Higgs factories such as the International Linear Collider.
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1 Introduction

Since the discovery of the new particle with the mass of
125 GeV at the LHC in 2012 [1,2], it has turned out that its
properties are in agreement with those of the Higgs boson in
the standard model (SM) within theoretical and experimental
uncertainties [3,4]. While no signal for new physics (NP)
beyond the SM has been observed at the LHC up to now,
there are phenomena that cannot be explained within the SM
such as dark matter, baryon asymmetry of the universe and
tiny neutrino masses. In addition to these phenomenological
problems, there are conceptual problems in the SM such as
the hierarchy problem, no unified description for the gauge
group and the flavor structure and so on. Therefore, the SM
must be replaced by a more fundamental theory.
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While the Higgs boson was found, the structure of the
Higgs sector remains unknown. There is no theoretical prin-
ciple to insist on the minimal structure of the Higgs sector
as introduced in the SM, and the possibility that the Higgs
sector takes a non-minimal form is not excluded experimen-
tally. Furthermore, such non-minimal Higgs sectors are often
introduced in various new physics models, where the above-
mentioned problems are tried to be solved. Therefore, unrav-
eling the structure of the Higgs sector is one of the central
interests of current and future high-energy physics, and the
direction of new physics can be determined by reconstructing
the Higgs sector experimentally.

The discovery of additional scalar bosons is a clear evi-
dence of extended Higgs sectors, and enormous efforts have
been devoted to discover such new particles in a wide variety
of the search channels [5–21]. However, no observation of
such new particles has been reported, leading to constraints
on parameters of extended Higgs models such as masses
and coupling constants. Direct searches of new particles are
one of the key programs at the LHC as well as at the high-
luminosity LHC (HL-LHC) [22].

In addition to the direct searches, extended Higgs sec-
tors can be indirectly explored by measuring various prop-
erties of the discovered Higgs boson such as cross sections,
the width and decay branching ratios because mixings of
Higgs bosons and/or radiative corrections of additional Higgs
bosons would modify them from their SM values. If devia-
tions from the SM are detected, the magnitude of deviations
tells us upper limits on the mass scale of the second Higgs
boson by taking into account theoretical consistencies [23–
25]. In addition, the pattern of deviations gives us information
on the structure of the Higgs sector such as the representation
of the weak isospin, the number of Higgs fields and the struc-
ture of Yukawa interactions [23]. Therefore, the discovered
Higgs boson is a probe of new physics.

Precision measurements of the properties of the discov-
ered Higgs boson are also one of the main targets at current
and future collider experiments. At the LHC, the Higgs boson
couplings have been measured with typically order ten per-
cent accuracy. Most extended Higgs models can accommo-
date this SM-like situation at the lowest order of the perturba-
tion. Therefore, measurements with a few percent accuracies
become more important where quantum corrections play an
essential role, and it enables us to extract the signature of new
physics. Accuracy of the measurement of Higgs boson cou-
plings is expected to be improved at the HL-LHC and further
significantly at future lepton colliders; e.g., the International
Linear Collider (ILC) [26–29], the Future Circular Collider
(FCC-ee) [30] and the Circular Electron Positron Collider
(CEPC) [31].

In order to compare theoretical predictions with future
precision measurements, theoretical calculations comparable
with expected experimental accuracy are inevitable. Radia-

tive corrections to the SM-like Higgs boson vertices have
been studied in various Higgs sectors such as the model with
a real isospin singlet Higgs field (HSM) [32–35], two Higgs
doublet models (2HDMs) [36–49], the inert doublet model
(IDM) [50,51] and so on. In order to see differences in the
prediction among these models, it is quite important to calcu-
late the renormalized SM-like Higgs boson vertices in a con-
sistent and systematic way. The H-COUP program [52,53]
enables us to evaluate the decay rates including higher-order
corrections for the SM-like Higgs boson in the HSM, the IDM
and the 2HDM with four types of Yukawa interactions clas-
sified under the softly-broken Z2 symmetry [54,55]. Also,
other numerical tools to evaluate the decay of the Higgs boson
with radiative corrections are available; e.g., 2HDECAY [56]
and Prophecy4f [57].

In this paper, we present the cross section for e+e− → hZ
with arbitrary sets of electron and Z boson polarizations at
the full next-to-leading order (NLO) in the HSM, the IDM
and the 2HDMs. At the future lepton colliders, not only the
decay properties of the discovered Higgs boson but also its
production cross section can be precisely measured. Espe-
cially, e+e− → hZ is the dominant production process at the
center-of-mass (CM) energy of 240–250 GeV,1 and precise
calculations of its cross section in various extended Higgs
models are quite important. The NLO calculation has been
performed in the SM [61–63], the IDM [64] and the 2HDM
[65,66].2 We systematically perform complete NLO calcula-
tions to the helicity amplitudes in each extended Higgs model
based on the on-shell renormalization scheme [37,43,71,72],
and the full analytic results, as well as numerical evaluations,
are presented. We comprehensively analyze the deviations
in the cross section from the SM prediction in each model
under the constraints of perturbative unitarity [34,73–77] and
vacuum stability [78–83], conditions to avoid wrong vacua
[84–88] and experimental constraints. We discuss the dif-
ferences in the predictions of the cross section among these
models in detail. We also show correlations of the deviation
in the cross section times the decay branching ratios of the
SM-like Higgs boson from the SM predictions and discuss
the discrimination of the extended Higgs models.

This paper is organized as follows. In Sect. 2 we briefly
introduce the HSM, the 2HDMs and the IDM. In Sect. 3 we
present the helicity amplitude of e+e− → hZ including the
electroweak (EW) radiative corrections. In Sect. 4 we show
numerical results of deviations in the cross section from the
SM prediction in each model. In addition, we show the cor-
relations of the deviation in the cross section times the decay
branching ratios of the SM-like Higgs boson from the SM

1 For higher energies, the Higgs boson production via W boson fusion
is getting more important [58–60].
2 In Refs. [67–70], the NLO calculations for e+e− → hZ have been
performed in the minimal supersymmetric standard model.
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predictions. Conclusions are given in Sect. 5. In Appendix,
the input parameters and explicit formulae for the NLO cal-
culations are presented.

2 Models with non-minimal Higgs sectors

In this section, we briefly review the HSM, the 2HDM and the
IDM. Before moving on to the discussion on each extended
Higgs model, we review concepts of general constraints on
parameter spaces that are independent of models. We then
define the extended Higgs models in order.

2.1 Constraints on extended Higgs models

First of all, the size of Higgs quartic couplings is constrained
by the perturbative unitarity bound, which was originally
introduced to obtain the upper limit on the mass of the
Higgs boson in the SM [89,90]. Using the equivalence the-
orem [91], this bound requires that the magnitude of par-
tial wave amplitudes for the elastic scatterings of two-body
to two-body scalar boson processes, including the Nambu–
Goldstone (NG) bosons, does not exceed a certain value.
Each eigenvalue of the s-wave amplitude ai0 should satisfy

|ai0| ≤ ξ, (2.1)

where ξ = 1 [89,90] or 1/2. We take ξ = 1/2 in this paper.
Next, the vacuum stability bound provides an independent

constraint on scalar quartic couplings. This bound requires
that the Higgs potential is bounded from below in any direc-
tion with large field values. This condition is trivially satisfied
in the SM by taking the Higgs quartic coupling to be positive.
However, this bound requires a set of inequalities in terms of
Higgs quartic couplings in extended Higgs models [79].

Furthermore, in extended Higgs models, wrong local
vacua can appear in addition to the true vacuum giving the
correct value of the Fermi constant GF . We have to avoid
parameter regions where the depth of such wrong vacua
becomes deeper than that of the true one. The condition
to avoid the wrong vacua can be written by combinations
of dimensionful and dimensionless parameters in the Higgs
potential, and it provides an independent constraint from the
above two constraints.

Apart from these theoretical constraints, we need to take
into account bounds from experimental data. At the LEP/SLC
experiments, various EW observables have been precisely
measured such as the masses and widths of the weak gauge
bosons. These precision measurements can be used to con-
strain the size of new physics effects which can enter into
the two-point functions for weak gauge bosons. Such indi-
rect effects, so-called oblique corrections, are conveniently
parameterized by the S, T and U parameters [92,93], which

are expressed in terms of two-point functions of the weak
bosons. From the global fit of EW parameters [94], new
physics effects on the S and T parameters under U = 0
are constrained by

S = 0.05 ± 0.09, T = 0.08 ± 0.07, (2.2)

with the correlation factor of +0.91 and the reference values
of the masses of the SM Higgs boson and the top quark being
mref

h = 126 GeV and mref
t = 173 GeV, respectively.

Flavor experiments also provide important constraints on
the parameter space in extended Higgs models, particularly
in multi-doublet models. We will discuss these constraints in
more detail in Sect. 2.3 about the 2HDM. Additional scalars
have been directly searched at the LHC [5–21], and con-
straints are obtained for parameters of extended Higgs mod-
els. In addition, Higgs coupling measurements also give con-
straints especially on the mixing parameters in the HSM and
the 2HDM [3,4]. The application of these constraints to each
extended Higgs sector will be discussed in the following sub-
sections.

2.2 Higgs singlet model

In the HSM, we have one isospin doublet scalar field � with
the hypercharge Y = 1/2 and one real singlet field S with
Y = 0. We parametrize these scalar fields as

� =
(

G+
1√
2
(v + φ + iG0)

)
, S = vS + s, (2.3)

where v is the vacuum expectation value (VEV) of the dou-
blet field which is related to the Fermi constant by v =
(
√

2GF )−1/2 � 246 GeV, while vS is the VEV of the singlet
field. The component fields G± and G0 in the doublet field
correspond to the NG bosons.

The most general Higgs potential is given by

VHSM(�, S) = m2
�|�|2 + λ|�|4 + μ�S|�|2S + λ�S|�|2S2

+ tS S + m2
S S

2 + μS S
3 + λS S

4, (2.4)

where all the parameters are real. We can take any value of
vS without changing physical results [85], and we fix vS = 0
in the following discussion.

In the HSM, we have two physical neutral Higgs bosons.
Their mass eigenstates are defined by introducing the mixing
angle α as

(
s
φ

)
= R(α)

(
H
h

)
with R(θ) =

(
cθ −sθ
sθ cθ

)
, (2.5)

with the shorthand notation for the trigonometric functions
as sθ ≡ sin θ and cθ ≡ cos θ . We define the domain of α as
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−π/2 ≤ α ≤ π/2. We identify h as the discovered Higgs
boson with a mass of 125 GeV. After solving the tadpole
conditions, the squared masses of neutral Higgs bosons are
expressed as

m2
H = M2

11c
2
α + M2

22s
2
α + M2

12s2α, (2.6)

m2
h = M2

11s
2
α + M2

22c
2
α − M2

12s2α, (2.7)

tan 2α = 2M2
12

M2
11 − M2

22

, (2.8)

where the squared mass matrix elements M2
i j (i, j = 1, 2) in

(s, φ)T basis are given by

M2
11 = M2 + λ�Sv

2, M2
22 = 2λv2, M2

12 = μ�Sv,

(2.9)

with M2 ≡ 2m2
S . The parameters m2

� and tS are eliminated
by using the stationary conditions for φ and s. We can replace
the parameters λ,m2

S and μ�S with m2
H ,m2

h and α by using
Eqs. (2.6)–(2.8). We choose the following five parameters to
be the free input parameters in the HSM:

mH , λ�S, μS, λS, cα, (2.10)

and the two parameters mh and v are fixed by experiments. If
the Higgs potential respects an exact discrete Z2 symmetry,
the tS, μS and μ�S terms are forbidden. This corresponds to
the case with α → 0 and μS → 0.

The kinetic terms of scalar fields are given by

LHSM
kin = |Dμ�|2 + 1

2

(
∂μS

)2
, (2.11)

where Dμ is the covariant derivative for the Higgs doublet.
The gauge–gauge-scalar type interaction terms are given by

LHSM
kin ⊃ gmW (cαW

+
μ W−μh + sαW

+
μ W−μH)

+ gZmZ

2
(cαZμZ

μh + sαZμZ
μH), (2.12)

where g is the weak gauge coupling and gZ = g/cW with
θW being the weak mixing angle.

The Yukawa interaction terms are the same as those in the
SM and given by

LHSM
Y = −YuQL�̃uR − Yd QL�dR − YeLL�eR + h.c.,

(2.13)

where �̃ = iσ2�
∗. In the above equation, QL and LL are

left-handed quark and lepton doublets, respectively, while
uR, dR and eR are right-handed up-type quark, down-type

quark and charged lepton singlets, respectively. The interac-
tion terms for h and H with fermions are given by

LHSM
Y ⊃ −

∑
f=u,d,e

m f

v
(cα f̄ f h + sα f̄ f H). (2.14)

We note that the SM-like Higgs bosons couplings with the
SM particles are universally suppressed by cα as compared
to those SM values.

The parameters in the Higgs potential are constrained by
perturbative unitarity, vacuum stability and the conditions
to avoid wrong vacua. For the perturbative unitarity bound,
there are four independent eigenvalues given in Refs. [34,73].
The necessary and sufficient conditions to satisfy vacuum
stability are given by [78]

λ� > 0, λS > 0, 2
√

λ�λS + λ�S > 0. (2.15)

For the conditions to avoid wrong vacua can be found in Refs.
[84–86].

The one-loop corrected two-point functions for weak
bosons are found in Ref. [95]. Imposing the constraint from
the S and T parameters, we can obtain the upper limit on mH

depending on the value of cα . Constraints on the mass of the
additional Higgs boson and the mixing angle from the LHC
data have been studied in Refs. [96,97].

2.3 Two Higgs doublet model

In the 2HDM, we have two isospin doublet scalar fields �i

with the hypercharge Y = 1/2. We parametrize these dou-
blets as

�i =
(

ω+
i

1√
2
(vi + hi + i zi )

)
, (i = 1, 2), (2.16)

where v1 and v2 are the VEVs of two doublets with v =√
v2

1 + v2
2.

In the most general 2HDM, flavor-changing neutral cur-
rents (FCNCs) appear at tree level, and it is severely con-
strained by experiments. In order to avoid such FCNCs, we
introduce a discrete Z2 symmetry, where two doublets trans-
form as �1 → �1 and �2 → −�2 [98,99]. One can intro-
duce the soft breaking term of the Z2 symmetry in the Higgs
potential without spoiling the desirable property of the flavor
sector.
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The most general Higgs potential under the softly-broken
Z2 symmetry is given by

V2HDM(�1,�2)

= m2
1|�1|2 + m2

2|�2|2 − m2
3

(
�

†
1�2 + h.c.

)
+ 1

2
λ1|�1|4 + 1

2
λ2|�2|4 + λ3|�1|2|�2|2 + λ4|�†

1�2|2

+ 1

2
λ5

[(
�

†
1�2

)2 + h.c.

]
. (2.17)

Although m2
3 and λ5 are generally complex, we take them to

be real and consider the CP-conserving case for simplicity.
The mass eigenstates of the Higgs fields are defined as

(
ω±

1
ω±

2

)
=R(β)

(
G±
H±
)

,

(
z1

z2

)
= R(β)

(
G0

A

)
,(

h1

h2

)
=R(α)

(
H
h

)
, (2.18)

where tan β = v2/v1, and H± and A are the charged and
CP-odd Higgs bosons respectively, while H and h are the
CP-even Higgs bosons. We define the domain of β to be
0 ≤ β ≤ π/2. We identify h as the discovered Higgs boson
with a mass of 125 GeV. After solving two tadpole conditions
for h1 and h2, the squared masses of the charged and CP-odd
Higgs bosons are given by

m2
H± = M2 − 1

2
(λ4 + λ5)v

2, m2
A = M2 − λ5v

2, (2.19)

where M2 = m2
3/(sβcβ) which describes the softly-breaking

scale of the Z2 symmetry. The squared masses of the neutral
Higgs bosons and the mixing angle β − α are given by

m2
H = M2

11c
2
β−α + M2

22s
2
β−α − M2

12s2(β−α), (2.20)

m2
h = M2

11s
2
β−α + M2

22c
2
β−α + M2

12s2(β−α), (2.21)

tan 2(β − α) = − 2M2
12

M2
11 − M2

22

, (2.22)

where M2
i j (i, j = 1, 2) are the squared mass matrix ele-

ments for the CP-even scalar states in the Higgs basis [100]
(h1, h2)R(β):

M2
11 = (λ1c

4
β + λ2s

4
β)v2 + 1

2
λ345v

2s2
2β, (2.23)

M2
22 = M2 + 1

4
(λ1 + λ2 − 2λ345)v

2s2
2β, (2.24)

M2
12 = −1

2
(λ1c

2
β − λ2s

2
β − λ345c2β)v2s2β, (2.25)

with λ345 ≡ λ3+λ4+λ5. We define the domain of β−α to be
0 ≤ β −α ≤ π so that sβ−α is always positive and cβ−α has

the opposite sign from M2
12 [101]. The eight parameters in

the Higgs potential are expressed by the following six input
parameters:

mH , mA, mH± , M2, tan β, sβ−α, (2.26)

and the two parameters mh and v are fixed by experiments.
In addition, we have a degree of freedom of the sign of cβ−α .

The kinetic terms of the Higgs doublets are given by

L2HDM
kin = |Dμ�1|2 + |Dμ�2|2. (2.27)

In the mass eigenbasis of the Higgs bosons, the gauge-gauge-
scalar type interaction terms are given by

L2HDM
kin ⊃gmW (sβ−αW

+
μ W−μh + cβ−αW

+
μ W−μH)

+ gZmZ

2
(sβ−αZμZ

μh + cβ−αZμZ
μH). (2.28)

The Yukawa interaction terms under the Z2 symmetry are
given by

L2HDM
Y = − YuQL�̃uuR − Yd QL�ddR

− YeLL�eeR + h.c., (2.29)

where �u,d,e are either �1 or �2. As in Table 1, there are
four types of Yukawa interactions according to the Z2 charge
assignment [102,103]. The interaction terms for the physical
Higgs bosons with the fermions are given by

L2HDM
Y ⊃ −

∑
f =u,d,e

m f

v
[(sβ−α + ζ f cβ−α) f̄ f h

+ (cβ−α − ζ f sβ−α) f̄ f H − 2i I f ζ f f̄ γ5 f A]

+
√

2

v
[Vud ū(muζu PL − mdζd PR)dH+

− meζeν̄PReH
+ + h.c.], (2.30)

with I f = 1/2 (−1/2) for f = u (d, e) and Vud is the
Cabibbo–Kobayashi–Maskawa matrix element.

The parameters in the Higgs potential are constrained
by perturbative unitarity, vacuum stability and the condi-
tion to avoid wrong vacua. For the perturbative unitarity
bound, there are twelve independent eigenvalues of the s-
wave amplitude matrix [74–77]. The vacuum stability bound
is sufficiently and necessarily satisfied by imposing the fol-
lowing conditions [79–83]

λ1 > 0, λ2 > 0,
√

λ1λ2 + λ3 + MIN(0, λ4 + λ5,

λ4 − λ5) > 0. (2.31)
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Table 1 Charge assignment of
the softly-broken Z2 symmetry
and the mixing factors in
Yukawa interactions

Z2 charge Mixing factor
�1 �2 QL LL uR dR eR ζu ζd ζe

Type-I + − + + − − − cot β cot β cot β

Type-II + − + + − + + cot β − tan β − tan β

Type-X (lepton specific) + − + + − − + cot β cot β − tan β

Type-Y (flipped) + − + + − + − cot β − tan β cot β

In addition, the wrong vacua can be avoided by taking M2 ≥
0 [87]. We thus only take the positive value of M2 in the
following discussion.3

The expressions of the two-point functions for the weak
bosons in the 2HDM are found in Refs. [106–110]. Impos-
ing the constraint of the S and T parameters, we can find
that the charged Higgs bosons and one of the neutral Higgs
bosons should be approximately degenerate in their mass.
This results from the constraint of the T parameter, and it
can be satisfied if the Higgs potential respects the custo-
dial symmetry [111,112]. Constraints on the parameters in
2HDMs from the LHC data have been discussed in Refs.
[25,101,113–116].

In the 2HDM, constraints from flavor experiments are
important to be taken into account. These bounds particu-
larly provide the lower limit on the mass of the charged Higgs
bosonmH± depending on the type of Yukawa interaction and
tan β. For example, from the B → Xsγ data, mH± has to
be greater than about 800 GeV at 95% confidence level (CL)
in the Type-II and Type-Y 2HDMs with tan β � 2 [117],
while O(100) GeV of mH± is allowed in the Type-I and
TypeX 2HDMs with tan β � 2 [118]. Constraints on mH±
and tan β from various flavor observables are also shown in
Ref. [119] in the four types of 2HDMs.

2.4 Inert doublet model

The contents of the Higgs bosons in the IDM are the same
as those in the 2HDM. In the IDM, we assume an exact Z2

symmetry and prohibit the m2
3 term in the Higgs potential

which softly breaks the Z2 symmetry in the 2HDM. We also
assume that the second Higgs doublet �2 does not develop
the VEV to avoid the spontaneous breaking down of the Z2

symmetry.
We parametrize the doublets as

�1 =
(

G+
1√
2
(v + h + iG0)

)
, �2 =

(
H+

1√
2
(H + i A)

)
.

(2.32)

3 We use the tree-level perturbative unitarity and vacuum stability con-
ditions throughout this paper. We refer to Refs. [104,105] as higher-
order effects for these constraints.

The squared masses of the Higgs bosons are given by

m2
h = λ1v

2, (2.33)

m2
H = M2 + 1

2
(λ3 + λ4 + λ5)v

2, (2.34)

m2
A = M2 + 1

2
(λ3 + λ4 − λ5)v

2, (2.35)

m2
H± = M2 + 1

2
λ3v

2, (2.36)

where M2 ≡ m2
2. We note that in addition to the absence of

the m2
3 term, there is no tadpole condition for H . Therefore,

the mass formulae for the scalar bosons are different from
those in the 2HDM. We choose the following five parameters
to be the free input parameters in the IDM:

mH , mA, mH± , M2, λ2, (2.37)

and the two parameters mh and v are fixed by experiments.
The parameters in the Higgs potential are constrained by

perturbative unitarity, vacuum stability and the condition to
guarantee the inert vacuum. The same conditions for pertur-
bative unitarity and vacuum stability in the 2HDM can be
applied to the IDM, because these bounds are given in terms
of the scalar quartic couplings. In addition, there is the con-
dition to guarantee the inert vacuum with (〈�0

1〉, 〈�0
2〉) =

(v/
√

2, 0) [88],

m2
1√
λ1

<
M2

√
λ2

. (2.38)

Since the tadpole condition makes m2
1 negative, and the vac-

uum stability condition constraints λ1 and λ2 to be posi-
tive, the condition given in Eq. (2.38) is satisfied by taking
M2 > 0. We refer to this condition as the one to avoid wrong
vacua, according to the other two models discussed above.

For the constraints of the S and T parameters, we can use
the same expressions as those in the 2HDM with sβ−α = 1.
As similar to the case in the 2HDMs, the charged Higgs
bosons and one of the neutral Higgs bosons should be approx-
imately degenerate in their mass in order to satisfy the con-
straint from the T parameter. In the IDM, constraints on the
masses of the additional Higgs bosons from collider experi-
ments are relatively weak since the additional Higgs bosons
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Table 2 Scaling factors for the SM-like Higgs boson couplings in the
extended Higgs models

HSM 2HDMs IDM

κV cα sβ−α 1

κ f cα sβ−α + ζ f cβ−α 1

do not couple to the SM fermions. Constraints from the LEP
and the LHC have been studied in Ref. [120] and Refs.
[121,122], respectively. Dark matter constraints from relic
density and direct detection also limit the parameter space;
see, e.g., Refs. [122,123] for details.

Finally, we summarize the scaling factors for the SM-
like Higgs boson couplings to the weak bosons κV and the
fermions κ f in Table 2.

3 Electroweak corrections to the process e+e− → hZ

In this section, we define the notation for the process e+e− →
hZ and discuss the helicity amplitudes based on the form-
factor decomposition. We list relevant renormalized quan-
tities for this process and give the formulae of form factors
including the one-loop corrections. The differential cross sec-
tion with arbitrary sets of electron and Z boson polarization
is also presented. For the numerical evaluation, we use the
SM input parameters given in Appendix A.

3.1 Helicity amplitudes and cross section

The process

e−(pe, σe) + e+(pē, σē) → h(kh) + Z(kZ , λ) (3.1)

is depicted in Fig. 1. The momenta and helicities of the
incoming electron and positron are denoted by (pe, σe) and
(pē, σē), respectively. Correspondingly, (kZ , λ) is used for
the outgoing Z boson, and kh is the momentum of the outgo-
ing Higgs boson. The signs ‘+’ and ‘−’ of the variables σe
and σē refer to helicities +1/2 and −1/2, respectively. The
helicity λ takes ‘±’ or ‘0’. In the following discussion, we
neglect the mass of the electron whenever it is possible.

The Mandelstam variables are denoted by

s = (pe + pē)
2 = (kZ + kh)

2, (3.2)

t = (pe − kZ )2 = (pē − kh)
2, (3.3)

u = (pe − kh)
2 = (pē − kZ )2, (3.4)

Fig. 1 The process e+e− → hZ with momentum and helicity assign-
ments. The momenta pe and pē are incoming, while kh and kZ are
outgoing

and they satisfy s + t + u = m2
Z + m2

h . In the CM frame
of the e+e− collision, the momenta of each external particle
are

pμ
e =

√
s

2
(1, 0, 0, 1), (3.5)

pμ
ē =

√
s

2
(1, 0, 0,−1), (3.6)

kμ
Z =

√
s

2

(
1 + m2

Z − m2
h

s
, β sin θ, 0, β cos θ

)
, (3.7)

kμ
h =

√
s

2

(
1 − m2

Z − m2
h

s
,−β sin θ, 0,−β cos θ

)
, (3.8)

where β is defined by

β = |kZ |
E

= 1

s

√[
s − (mZ + mh)2

][
s − (mZ − mh)2

]
,

(3.9)

with the beam energy E = √
s/2. We use the scattering angle

θ between e− and Z boson; p̂e · k̂Z = cos θ where the hat
indicates the unit vector. The scattering angle θ is related to
t and u via

t = 1

2
(m2

Z + m2
h − s) + s

2
β cos θ, (3.10)

u = 1

2
(m2

Z + m2
h − s) − s

2
β cos θ. (3.11)

The helicity amplitudes for e+e− → hZ vanish for
σe = σē in the limit me → 0 due to the chirality con-
servation. Therefore, we use σ = σe = −σē for the non-
vanishing amplitudes. The helicity amplitude Mσλ(s, t) can
be decomposed into a set of basic matrix elements Mi,σλ

and corresponding form factors Fi,σ (s, t) as [63]

Mσλ(s, t) =
3∑

i=1

Fi,σ (s, t)Mi,σλ(s, t). (3.12)
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The basic matrix elements are given by

Mi,σλ = jσ,μ(pe, pē)T
μν
i (s, t)ε∗

ν (kZ , λ), (3.13)

where ε∗μ(kZ , λ) is the polarization vector for Z boson, and
jμσ (pe, pē) is the fermion current of the initial electron and
positron,

ε∗μ(kZ ,±) = 1√
2
[0,∓ cos θ, i,± sin θ ], (3.14)

ε∗μ(kZ , 0) =
√
s

2mZ
[β, α sin θ, 0, α cos θ ], (3.15)

jμσ (pe, pē) = v̄(pē)γ
μPσu(pe) = √

s[0, 1, σ i, 0], (3.16)

with the chirality projection operator Pσ = (1 +σγ5)/2 and
α = 1+(m2

Z −m2
h)/s. The three basis tensor Tμν

i are defined
by

Tμν
1 = gμν, Tμν

2 =kμ
Z (pe + pē)

ν, Tμν
3 = kμ

Z (pe − pē)
ν.

(3.17)

In the CM frame, the first elements of basic matrix M1,σλ

become

M1, σ± = σ

√
s

2
(1 ± σ cos θ) = σ

√
2s d1

σ,±(θ), (3.18)

M1, σ0 = − sα

2mZ
sin θ = σ

sα√
2mZ

d1
σ,0(θ), (3.19)

where d j
m′,m(θ) is the Wigner’s d function. The second ele-

ments M2,σλ are

M2,σ± = 0, (3.20)

M2,σ0 = − s2β2

4mZ
sin θ = σ

s2β2

2
√

2mZ
d1
σ,0(θ). (3.21)

The third elements M3,σλ are

M3, σ± = ± sβ

2

√
s

2
sin2 θ = ±sβ

√
s

3
d2

2,0(θ), (3.22)

M3, σ0 = s2αβ

4mZ
cos θ sin θ = − s2αβ

4mZ

[
d2

2,1(θ) − d2
2,−1(θ)

]
.

(3.23)

The six physical helicity amplitudes are given in terms of the
form factors Fi,σ by

Mσ±(s, t) =
√
s

2

[
F1,σ (s, t) ± sβ

2
(σ ∓ cos θ)F3,σ (s, t)

]
× (σ ± cos θ), (3.24)

Mσ0(s, t) = − s

2mZ

[
αF1,σ (s, t) + sβ2

2
F2,σ (s, t)

− sαβ

2
cos θF3,σ (s, t)

]
sin θ. (3.25)

We denote the tree- and one-loop contributions to the
helicity amplitude as

M(0)
σλ(s, t) =

3∑
i=1

F (0)
i,σ (s, t)Mi,σλ, (3.26)

M(1)
σλ(s, t) =

3∑
i=1

F (1)
i,σ (s, t)Mi,σλ. (3.27)

The helicity-dependent differential cross section at NLO in
EW is given by

dσ

d�
(σ, λ; s, t) = β

64π2s

{
|M(0)

σλ(s, t)|2

+2 Re[M(1)
σλ(s, t)M(0)∗

σλ (s, t)]
}

. (3.28)

The helicity-dependent cross section σ(σ, λ; s) can be
obtained by integrating Eq. (3.28) over the solid angle.

In a realistic setup, one needs to introduce the degree of
polarization of initial electron Pe and positron Pē. We use the
convention where a purely left-handed (right-handed) elec-
tron corresponds to Pe = −1 (+1). The polarized differential
cross section is given by

dσ

d�
(Pe, Pē, λ; s, t)

=
∑
σ=±

1

4
(1 + σ Pe)(1 − σ Pē)

dσ

d�
(σ, λ; s, t). (3.29)

The unpolarized cross section σ(λ; s) corresponds to Pe =
Pē = 0. (Pe, Pē) = (∓0.8,±0.3) is planned polarization at
the ILC [27].

The polarized cross section can be rewritten in terms of
the helicity-dependent cross section as [124]

σ(Pe, Pē, λ; s) = 1

4
(1 − Pe)(1 + Pē)σ (−, λ; s)

+ 1

4
(1 + Pe)(1 − Pē)σ (+, λ; s)

= σ(λ; s)(1 − PePē)(1 − Peff ALR). (3.30)
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Fig. 2 Tree-level diagram for the process e+e− → hZ

where the effective polarization Peff and the left-right asym-
metry ALR are defined as

Peff = Pe − Pē
1 − PePē

, (3.31)

ALR = σ(−, λ; s) − σ(+, λ; s)
σ (−, λ; s) + σ(+, λ; s) . (3.32)

By using Eq. (3.30), one can easily evaluate the effect of
the beam polarization from the helicity-dependent cross sec-
tions. Therefore, in the following discussion, we focus on the
unpolarized and helicity-dependent cross section to exhibit
analytical behaviors.

3.2 Tree-level contribution to the helicity amplitudes

At LO, only one diagram of Fig. 2 is relevant since the
electron-Higgs coupling is proportional to me, and it is neg-
ligible. The contribution of the tree-level diagram to the form
factors is expressed as

F (0)
i,σ = gZ�

1,(0)
hZ Z

s − m2
Z

gσ f (0)
i , (3.33)

with the tree level hZ Z coupling �
1,(0)
hZ Z = 2κZm2

Z/v. The
scaling factor κZ is given in Table 2. If there is no mixing
between CP-even scalars, the cross section in the extended
Higgs models is the same as that in the SM at LO. The cou-
plings g± are defined by

g+ = s2
W , g− = −1

2
+ s2

W . (3.34)

The coefficients f (0)
i are

f (0)
1 = 1, f (0)

2 = f (0)
3 = 0. (3.35)

The lowest order differential cross section is given by

dσLO

d�
(σ, λ; s, t)

= β

64π2s

∣∣F (0)
1,σ

∣∣2
⎧⎪⎨
⎪⎩

2s|d1
σ,±(θ)|2 (λ = ±),

s2α2

2m2
Z

|d1
σ,0(θ)|2 (λ = 0).

(3.36)

In the left panel of Fig. 3, we show the helicity-dependent
cross sections at LO as a function of the CM energy. In
the numerical evaluation, we take GF as an input given in
Appendix A and use the tree-level relation v = (

√
2GF )−1/2.

The solid and dashed lines correspond to the transversely
(λ = ±) and the longitudinally (λ = 0) polarized Z bosons,
respectively. The cross sections peak just above the thresh-
old

√
s = mZ + mh and monotonically decrease at higher

energies. For energies well above the threshold, the longi-
tudinally polarized Z boson dominates the cross section.
This is due to the factor s/m2

Z originated from the longi-
tudinal polarization vector defined in Eq. (3.15). The cross
section for the left-handed electron is larger than that for the
right-handed electron because the left-handed electron more
strongly couples to the Z boson than the right-handed elec-
tron (g−/g+)2 � 1.8. At

√
s = 250 GeV, the unpolarized

cross section is 242 fb, and the polarized cross section is
379 fb with (Pe, Pē) = (−0.8, 0.3). Therefore, the beam
polarization significantly changes the size of the cross sec-
tion. We note that the predicted value of the LO cross section
highly depends on the input schemes.

The angular distributions of the LO cross section at
√
s =

250 GeV are given in the right panel of Fig. 3. They are
determined by d1

σ,λ(θ). The cross section for the transversely
polarized Z boson is proportional to 1 + cos2 θ , and it takes
maximal value in the forward-backward direction. On the
other hand, that for the longitudinally polarized Z boson is
proportional to 1 − cos2 θ , and it vanishes in the forward-
backward direction and takes maximal value at cos θ = 0.

3.3 One-loop contributions to the form factors

As shown in Fig. 4, the one-loop contributions to the form
factors F (1)

i,σ consist of (a) the Z boson self-energy and the
Zγ mixing, (b) the Zeē vertex correction, (c) the hZ Z and
hZγ vertex corrections, (d-e) the heē vertex correction and
(f) the box diagrams. In addition, the renormalization fac-
tors of the weak gauge bosons are not to be unity in our
renormalization scheme [71,72]. Therefore, we have the term
− Re

{
�′

Z Z (m2
Z )
}
/2 from the wave function renormalization

of the on-shell Z boson. Furthermore, the EW correction to
the Fermi decay constant �r appears when one replaces the
VEV in the tree-level amplitude with GF , since the tree-level
relation between these two parameters is no longer valid at the
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Fig. 3 (Left) Helicity-dependent cross sections of e+e− → hZ at LO
in the SM as a function of CM energy. The red lines show the results
for the left-handed electron and the right-handed positron, while the
blue lines show those for the right-handed electron and the left-handed
positron. The solid (dashed) lines show the results for the transversely

(longitudinally) polarized Z bosons. The black solid line corresponds to
that for the unpolarized cross section where the polarization of Z boson
is also summed. (Right) Helicity-dependent differential cross sections
of e+e− → hZ at LO in the SM as a function of cos θ at

√
s = 250 GeV.

The line colors and styles are the same as those of the left figure

(a) (b) (c)

(d) (e) (f)

Fig. 4 NLO corrections for e+e− → hZ ; a Gauge boson self-energy, b Zeē vertex, c hZ Z and hZγ vertices, d, e heē vertex, f box diagrams

one-loop level. This replacement corresponds to the resum-
mation of universal higher-order leading corrections such as
large logarithms from light fermion masses [62]. The one-
loop contributions to the form factors F (1)

i,σ are given by

F (1)
i,σ = FZZ

i,σ + FZγ

i,σ + FZeē
i,σ + FhZ Z

i,σ + FhZγ

i,σ + Fheē
i,σ

+ FBox
i,σ + F

�′
Z Z

i,σ + F�r
i,σ , (3.37)

where the terms in the first line correspond to the contri-
butions from the diagrams in Fig. 4, while the terms in the
second line come from the renormalization procedure. For
the computation of these EW corrections, we adopt the mod-
ified on-shell renormalization scheme defined in Ref. [43].
In the on-shell renormalization scheme, all the counterterms

in the amplitude of e+e− → hZ are determined in terms of
the one-particle irreducible (1PI) diagrams for one- and two-
point functions of Higgs bosons, gauge bosons and fermions
by imposing a set of the renormalization conditions. Adding
these counterterms, one can obtain the ultra-violet (UV) finite
one-loop corrected vertices.

In the wide range of extended Higgs models, there are
mixings among Higgs bosons, and the gauge dependence
appears in the renormalization of these mixing angles. We
apply the pinch technique to remove the gauge dependence
in the renormalized vertex functions [32,41,43].

Apart from the UV divergences, there are infrared (IR)
divergences when we calculate virtual photon loop contri-
butions. In the calculation of individual photon loop con-
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tributions, we regularize them with a finite photon mass μ.
The photon mass dependences in the one-loop calculation are
exactly canceled by adding contributions of real photon emis-
sions. The analytic expression of the real photon contribution
with the soft-photon approximation is given by [61–63],

dσsoft = dσLO

{
−α

π

[
ln

4�E2

μ2

(
1 + ln

m2
e

s

)

+1

2
ln2 m2

e

s
+ ln

m2
e

s
+ π2

3

]}
, (3.38)

with the photon energy cutoff �E . The dependence of
�E vanishes in the inclusive cross section where one also
includes the contribution of hard photon emissions [62]. The
inclusive cross section still depends on ln

(
m2

e/s
)
, and this

logarithmic term potentially takes a large value. This depen-
dence can also be eliminated by introducing the electron
structure functions as discussed in Ref. [66]. However, the
treatment of hard photon emission highly depends on the
experimental setup. The hard photon changes the kinemat-
ics of the process, and these effects would be eliminated by
applying appropriate experimental cuts. In addition, if one
considers the scenario with κZ � 1, these effects in extended
Higgs models are almost the same as in the SM. Therefore, we
do not consider the electromagnetic effects when we focus
on the difference between the predictions in the extended
models and those in the SM.

In the one-loop calculation, we choose the fine structure
constant αem, the Fermi constant GF and the Z boson mass
mZ as the input EW parameters. In addition to these EW
parameters, we also use the shift of the fine structure constant
�αem, the strong coupling constant αs and the masses of
the fermions and the discovered Higgs boson as the input
parameters. The values of these SM input parameters are
given in Appendix A. We use the input parameters given in
Eqs. (2.10), (2.26) and (2.37) in the HSM, the 2HDMs and
the IDM, respectively.

3.3.1 Renormalized vertices

In the following calculation, the Z f f̄ , hZ Z , hZγ and h f f̄
vertices are relevant, where hZγ vertex is one-loop induced.
Each of these vertices can be decomposed into several form
factors depending on their Lorentz structure.

The renormalized Z f f̄ vertex can be decomposed in the
massless limit of external fermions as

�̂
μ

Z f f̄
(p f , p f̄ , pZ )

= gZγ μ
[
�̂V
Z f f̄

− γ5�̂
A
Z f f̄

]
(p2

f , p
2
f̄
, p2

Z ), (3.39)

where p f (p f̄ ) is the incoming four-momentum of the
fermion (anti-fermion), and pZ is the outgoing four-
momentum of the Z boson. We can further decompose these

vertices into the tree-level and one-loop level contributions

�̂i
Z f f̄

= �
i,(0)

Z f f̄
+ �

i,(1)

Z f f̄
,

with �
i,(1)

Z f f̄
= �

i,1PI
Z f f̄

+ δ�i
Z f f̄

, (i = V, A). (3.40)

The tree-level contribution is given by

�
V,(0)

Z f f̄
= I f

2
− Q f s

2
W , �

A,(0)

Z f f̄
= I f

2
. (3.41)

In the massless limit of external fermions, expressions of
these vertices in the HSM, the 2HDMs and the IDM are the
same as those in the SM. Analytic expressions for the 1PI
diagrams and counterterms are presented in Appendix B in
Ref. [55].

The renormalized hZ Z vertex can be decomposed as

�̂
μν
hZ Z (p1, p2, ph) =

[
gμν�̂1

hZ Z + pν
1 p

μ
2

m2
Z

�̂2
hZ Z

+iεμνρσ p1ρ p2σ

m2
Z

�̂3
hZ Z

]
(p2

1, p2
2, p2

h),

(3.42)

where p1 and p2 are incoming four-momenta of the Z bosons,
and ph is the outgoing four-momentum of the SM-like Higgs
boson. We can further decompose these vertices into the tree-
level and one-loop level contributions

�̂i
hZ Z = �

i,(0)
hZ Z + �

i,(1)
hZ Z ,

with �
i,(1)
hZ Z = �

i,1PI
hZ Z + δ�i

hZ Z , (i = 1, 2, 3). (3.43)

The tree-level contribution is given by

�
1,(0)
hZ Z = 2κZm

2
Z

(√
2GF

)1/2
, �

2,(0)
hZ Z = �

3,(0)
hZ Z = 0.

(3.44)

The form factor �̂3
hZ Z is non-zero only when the SM-like

Higgs boson is a CP-mixed state. Therefore this form fac-
tor vanishes in the model with CP conservation in the Higgs
sector. Analytic expressions for the 1PI diagrams and coun-
terterms are presented in Ref. [34] for the HSM, Ref. [39]
for the 2HDMs and Ref. [51] for the IDM.

Similarly, we define the loop-induced hZγ vertex as

�̂
μν
hZγ (pZ , pγ , ph) =

[
gμν�̂1

hZγ + pν
Z p

μ
γ

p2
h

�̂2
hZγ

+iεμνρσ pZρ pγ σ

p2
h

�̂3
hZγ

]
(p2

Z , p2
γ , p2

h). (3.45)
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The form factor �̂3
hZγ vanishes in the model with CP conser-

vation in the Higgs sector. Analytic expressions for the 1PI
diagrams and counterterms are presented in Refs. [55,125].

The renormalized h f f̄ vertex can be decomposed as

�̂h f f̄ (p f , p f̄ , ph) =�̂S
h f f̄

+ γ5�̂
P
h f f̄

+ /p f �̂
V1

h f f̄
+ /p f̄ �̂

V2

h f f̄

+ /p f γ5�̂
A1

h f f̄
+ /p f̄ γ5�̂

A2

h f f̄

+ /p f /p f̄ �̂
T
h f f̄

+ /p f /p f̄ γ5�̂
PT
h f f̄

,

(3.46)

where p f (p f̄ ) is the incoming four-momentum of the
fermion (anti-fermion), and ph is the outgoing four-
momentum of the SM-like Higgs boson. Analytic expres-
sions for the renormalized vertices are presented in Ref. [34]
for the HSM, Ref. [39] for the 2HDMs and Ref. [51] for the
IDM.

3.3.2 Expression of form factors including one-loop
corrections

We list the one-loop contributions to the form factors in terms
of the renormalized quantities. The one-loop propagator cor-
rections appear in the sum in Eq. (3.37) as the term

FSE
i,σ = gZ�

1,(0)
hZ Z

s − m2
Z

[
−gσ

�̂T
Z Z (s)

s − m2
Z

− QesWcW
�̂T

Zγ (s)

s

]
f (0)
i ,

(3.47)

with the renormalized self-energies �̂T
V V ′(s) of the neutral

vector bosons. The renormalized Zeē corrections appear as

FZeē
i,σ = gZ�

1,(0)
hZ Z

s − m2
Z

{[
�̂V
Zeē − σ �̂A

Zeē

]
(m2

e,m
2
e, s)

}
f (0)
i .

(3.48)

The renormalized hZV (V = Z , γ ) corrections appear as

FhZV
i,σ = gZ

s − m2
Z

gσ f Z(1)
i (s) + gZ

s
QesW cW f γ (1)

i (s),

(3.49)

with

f Z(1)
1 (s) = �̂1

hZ Z (m2
Z , s,m2

h), (3.50)

f Z(1)
2 (s) = − 1

m2
Z

�̂2
hZ Z (m2

Z , s,m2
h), (3.51)

f γ (1)
1 (s) = �̂1

hZγ (m2
Z , s,m2

h), (3.52)

f γ (1)
2 (s) = − 1

m2
h

�̂2
hZγ (m2

Z , s,m2
h). (3.53)

The renormalized heē corrections appear as

Fheē
i,σ = − gZ gσ

{[
�̂
V1
heē + σ �̂

A1
heē

]
(t, 0,m2

h)

−
[
�̂
V2
heē + σ �̂

A2
heē

]
(0, u,m2

h)
}
f (0)
i . (3.54)

The 1/t and 1/u terms originated from the fermion propa-
gator are canceled by the vertex corrections [63]. However,
the renormalized vertices depend on t and u, and they cause
non-trivial cos θ dependence.

There are the five W boson mediated and one Z boson
mediated box diagrams in the massless limit of the electron.
The amplitudes of the W boson mediated diagrams can be
written as

Mk
σλ

= κV

16π2 δσ−
3∑

i=1

CkFk
i (s, t)Mi,σλ, (k = 1, 2, . . . , 5),

(3.55)

with

Fk
1 (s, t) = Fk(s, t), (3.56)

Fk
2 (s, t) = 1

2

[
Fk
e (s, t) + Fk

ē (s, t)
]
, (3.57)

Fk
3 (s, t) = 1

2

[
Fk
e (s, t) − Fk

ē (s, t)
]
. (3.58)

The amplitude of the Z boson mediated diagram has a dif-
ferent structure from others, and it can be written as

M6
σλ = κV

16π2

3∑
i=1

g3
σC

6F6
i (s, t)Mi,σλ, (3.59)

with

F6
1 (s, t) = F6(s, t), (3.60)

F6
2 (s, t) = 1

2

[
F6
e (s, t) + F6

ē (s, t)
]
, (3.61)

F6
3 (s, t) = 1

2

[
F6
e (s, t) − F6

ē (s, t)
]
. (3.62)

The expressions of Ck and Fk
i (s, t) are given in Appendix B.

We define Bi,σ (s, t) by

Bi,σ (s, t) = κV

16π2

[
δσ−

5∑
k=1

CkFk
i (s, t) + g3

σC
6F6

i (s, t)

]
.

(3.63)

Finally, the form factors at one-loop level are given by

F (1)
i,σ = gZ

s − m2
Z

{
�

1,(0)
hZ Z

[
− gσ

�̂T
Z Z (s)

s − m2
Z
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+
[
�̂V
Zeē − σ �̂A

Zeē

]
(m2

e,m
2
e, s)

]
f (0)
i + gσ f Z(1)

i (s)

}

+eQe

s

[
−�

1,(0)
hZ Z

�̂T
Zγ (s)

s − m2
Z

f (0)
i + f γ (1)

i (s)

]

−gZ gσ

{[
�̂
V1
heē + σ �̂

A1
heē

]
(t, 0,m2

h)

−
[
�̂
V2
heē + σ �̂

A2
heē

]
(0, u,m2

h)
}
f (0)
i

+Bi,σ (s, t) + gZ�
1,(0)
hZ Z

s − m2
Z

gσ

×
[
−1

2
Re
{
�′

Z Z (m2
Z )
}

− �r

]
f (0)
i . (3.64)

4 Numerical results

In this section, we begin with an analysis on the behavior of
the NLO weak corrections to the cross section of the e+e− →
hZ process in the SM. We then analyze the deviations from
the SM values at NLO in the HSM, the 2HDM and the IDM.

We evaluate the form factors F (1)
i,σ by using the H-COUP

program [52,53], where GF is taken as an input. In order
to compare our results in the SM with the previous works
[63,126–128], we extend the H-COUP program and takemW

as an input instead of GF . With this extension, we have con-
firmed that our results are in agreement with the previous
results. In the following, we show the results obtained in the
scheme where αem(0),GF and mZ are input parameters.

In order to study the theoretical behavior of the one-loop
corrections, we parametrize the differential cross section as

dσ = dσLO(1 + δweak + δem), (4.1)

where δweak and δem denote the relative weak and electro-
magnetic corrections, respectively.

As we will see below, the NP effects mainly come from
�̂1
hZ Z vertex, and that appear independently of σ and λ.

Therefore, we show the results of the unpolarized cross sec-
tion where the polarization of the Z boson is also summed. In
order to analyze the NP effects in each renormalized quantity,

we introduce �
EW
X ,

�
EW
X = �EW

X,NP − �EW
X,SM,

(X=Z Z , Zγ, Zeē, hZ Z , hZγ, heē, Box, �′
Z Z , �r),

(4.2)

with �EW
X = σX/σLO. We evaluate σX by substituting

M(1)X
σλ (s, t) =

3∑
i=1

FX
i,σMi,σλ (4.3)

into M(1)
σλ(s, t) in Eq. (3.28), where FX

i,σ is defined in
Eq. (3.37). We also evaluate the ratios of the total cross sec-
tions to exhibit the deviations from the predictions in the
SM,

�RhZ = σNP

σSM
− 1. (4.4)

4.1 Standard model

In the left panel of Fig. 5, we show the weak one-loop cor-
rections to the helicity-dependent cross sections as a func-
tion of the CM energy. The weak corrections to the cross
section for the right-handed electron are positive, and they
increase the cross section by about 10%. On the other hand,
those for the left-handed electron are negative, and the size
of these corrections strongly depends on the CM energy.
The reason for this difference comes from negative contribu-
tions from the box diagrams. Among the six box diagrams,
the five W boson mediated diagrams only contribute to the
helicity amplitudes for the left-handed electron. They give
negative contributions to the helicity-dependent cross sec-
tions for the left-handed electron. In addition, their effects
become relevant at higher energies and give large negative
corrections. The peak around

√
s � 350 GeV corresponds

to the threshold at 2mt in the top-loop contributions. We
note that the NNLO electroweak-QCD corrections have been
estimated in Refs. [127,128], and the magnitude is about a
percent.

In the right panel of Fig. 5, we show the weak one-loop
corrections to the differential cross sections as a function of
the CM energy. From Eq. (3.63), we can see that only the
heē vertex and box corrections cause different cos θ depen-
dence from those at LO. At

√
s = 250 GeV, this effect is

not so large, and the angular distribution of the Z boson is
almost determined by the d1

σ,λ(θ) functions. At higher ener-
gies, the angular distribution of the Z boson is significantly
modified through the box contributions [63]. However, the
size of the cross sections decreases in such a higher energy
region.

4.2 Higgs singlet model

First, we consider the Z2 symmetric scenario in the HSM
where cα = 1 and μS = 0. There remain three input
parameters, mH , λ�S and λS . In the following analysis,
we impose perturbative unitarity, vacuum stability, avoid-
ing wrong vacua, and the constraints of the EW S and T
parameters. In order to analyze the theoretical behavior, we
here do not impose the constraints from the direct searches
of the additional Higgs boson and the Higgs coupling mea-
surements. In addition, we impose M2 > 0 as in the case of
the IDM and the 2HDMs.
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Fig. 5 (Left) Weak corrections to the helicity-dependent cross sections
in the SM. The red lines show the results for the left-handed electron
and the right-handed positron, while the blue lines show those for the
right-handed electron and the left-handed positron. The solid (dashed)
lines show the results for the transversely (longitudinally) polarized

Z bosons. The black solid line corresponds to that for the unpolarized
cross section where the polarization of Z boson is also summed. (Right)
Weak corrections to the helicity-dependent differential cross sections
in the SM at

√
s = 250 GeV. The line colors and styles are the same as

those of the left figure

Fig. 6 NP effects in the EW corrections as a function of the mass of the
additional Higgs boson in the Z2 symmetric HSM at

√
s = 250 GeV.

The left panel shows �
EW
X with λS = 1. The right panel shows �RhZ

with λS = 0.1 (red), 1 (blue) and 2 (green). The solid and dashed curves
denote the case with the maximal and minimal values of M2, respec-
tively. Perturbative unitarity, vacuum stability, avoiding wrong vacua,
and the constraints of the EW S and T parameters are imposed

In the left panel of Fig. 6, we show �
EW
X defined in

Eq. (4.2) as a function of the mass of the additional Higgs
boson in the Z2 symmetric HSM at

√
s = 250 GeV. We here

take λS = 1 and scan λ�S for |λ�S| < 4π . In the Z2 sym-

metric HSM, only �
EW
hZ Z takes non-zero value. Furthermore,

among the components of the renormalized hZ Z vertex in
Eq. (3.43), the wave function renormalization factor of the
SM-like Higgs boson δZh only gives the NP effects. δZh

is defined by the two-point function of the SM-like Higgs
boson �1PI

hh (p2) as

δZh = − d

dp2 �1PI
hh (p2)

∣∣∣∣
p2=m2

h

. (4.5)

As the NP contributions, there are two H propagated dia-
grams in �1PI

hh (p2). One of them is proportional to λhhHH ,
while the other is proportional to λ2

hHH . However, the former
does not contribute to δZh because the loop function A(mH )

does not depend on the external momentum p2. Therefore,
only the latter contributes to the helicity amplitude as the NP
effect,

δZHSM
h − δZSM

h = −λ2
hHH

16π2

d

dp2 B0(p
2;m2

H ,m2
H )

∣∣∣∣
p2=m2

h

,

(4.6)
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with λhHH = −λ�Sv. We note that this difference does not
directly depend on λS , but it indirectly determines the possi-
ble size of the NP effects through the perturbative unitarity
and vacuum stability bounds.

The magnitude of �
EW
hZ Z becomes larger when the mass

of the extra Higgs boson is taken to be larger up to around
700 GeV. This peak corresponds to the point where the mini-
mum value of M2 = m2

H −λ�Sv
2 changes from zero to non-

zero due to the perturbative unitarity bound. At this point,
λ�S takes the maximal value, and it triggers a sizable effect.4

In the case of larger values of mH , the magnitude of �
EW
hZ Z

monotonically decreases because perturbative unitarity con-
strains the size of λ�S . In such a large mass region, mH is
approximately equal to M , and the additional Higgs boson
almost decouples following the decoupling theorem [131].

We can also see the relatively large NP effects when the
mass of the additional Higgs boson is below 200 GeV. In
this region, λ�S takes a negative value satisfying the vacuum
stability bound thanks to the sizable λS . While the sign of
λ�S is flipped, only |λ�S|2 appears in Eq. (4.6). Therefore,

�
EW
hZ Z is negative independently of the sign of λ�S .
In the right panel of Fig. 6, we show the predictions of

�RhZ in Eq. (4.4) as a function of the mass of the additional
Higgs boson in the Z2 symmetric HSM at

√
s = 250 GeV.

We here take λS to 0.1, 1 and 2 and scan λ�S for |λ�S| < 4π .
In the Z2 symmetric HSM, the Z2 symmetry prohibits the
mixing of the CP-even states, and �RhZ = 0 at LO. The
behavior of �RhZ is only determined by δZh , and almost

the same as that of �
EW
hZ Z . The possible magnitude of �RhZ

indirectly depends on the value of λS through the conditions
of perturbative unitarity and vacuum stability. For mH ≥
200 GeV, the possible magnitude of �RhZ decreases as λS

becomes large. On the other hand, for mH < 200 GeV, the
possible magnitude of �RhZ increases as λS becomes large
because a large negative value of λ�S is allowed under the
vacuum stability bound.

We here mention the scenario where μS softly breaks the
Z2 symmetry. We note that �RhZ does not directly depend
on μS , and the behavior of �RhZ is the same as that in the Z2

symmetric HSM. However, μS indirectly affects the possible
size of the NP effects through the conditions for avoiding
wrong vacua. For example, the region wheremH � 300 GeV
is excluded if μS = 100 GeV.

Next, we consider the scenario with the mixing of the

CP-even states. In the left panel of Fig. 7, we show �
EW
X as

a function of the mass of the additional Higgs boson with
cα = 0.99 and μS = 0 at

√
s = 250 GeV. We here take

4 In such a point Higgs self-couplings become large, so that the pertur-
bative series could converge slowly. Therefore the higher-order effects
should be studied carefully. For example, in Refs. [129,130], two-loop
effects for the Higgs trilinear coupling λhhh are estimated in various
extended Higgs models.

λS = 1 and scan λ�S for |λ�S| < 4π . We note that not only
the renormalized hZ Z vertex but also the other renormalized
quantities differ from the SM values unlike the case in the

Z2 symmetric HSM. However, the magnitude of �
EW
hZ Z is

larger than that of the others. For mH � 700 GeV, �
EW
hZ Z

takes a negative value, while it takes a positive value for
mH > 700 GeV. In order to realize the finite mixing of
the CP-even states with a large mass of the additional Higgs
boson, the Higgs quartic couplings should take large values,
and it triggers a so-called non-decoupling effect.

In the right panel of Fig. 7, we show the predictions of
�RhZ as a function of the mass of the additional Higgs boson
with cα = 0.99 and μS = 0 at

√
s = 250 GeV. We here take

λS to 0.1, 1 and 2 and scan λ�S for |λ�S| < 4π . If there
is the mixing of the CP-even states, the LO cross section
decreases from its SM value. When cα = 0.99, the size of
deviation is �RhZ = −s2

α � −0.02 at LO. We can see that
the magnitude of one-loop effects is comparable with that of
the LO contribution, and the NP effects sizably change the
predictions for �RhZ . The behavior of �RhZ is almost the

same as that of �
EW
hZ Z . For mH � 500 GeV, �

EW
hZ Z increases

the magnitude of �RhZ , while it decreases the magnitude
of �RhZ for mH > 500 GeV. For mH ≥ 1000 GeV, the
possible magnitude of �RhZ decreases as λS becomes large.
On the other hand, for mH < 500 GeV, it increases as λS

becomes large.

4.3 Inert doublet model

In the IDM, the Z2 symmetry prohibits the mixing of the CP-
even states, and �RhZ = 0 at LO, similarly to the case in the
Z2 symmetric HSM. In the following analysis, we assume
that the additional Higgs bosons are degenerate in their mass,
m� ≡ mH = mH± = mA. There remain two input param-
eters, λ2 and M2. We impose perturbative unitarity, vacuum
stability, avoiding wrong vacua, and the constraints of the
EW S and T parameters. In order to analyze the theoret-
ical behavior, we here do not impose the constraints from
the direct searches of the additional Higgs boson, the Higgs
coupling measurements and the dark matter experiments.

In the left panel of Fig. 8, we show �
EW
X as a function of

the mass of the additional Higgs bosons in the IDM at
√
s =

250 GeV. We here take λ2 = 1 and scan M2 for 0 ≤ M2 ≤
(3 TeV)2. We note that not only the renormalized hZ Z vertex
but also the other renormalized quantities differ from the SM
values unlike in the Z2 symmetric HSM. This is because the
additional Higgs bosons are charged under the SM gauge

group. However, the magnitude of �
EW
hZ Z is larger than that

of the others in most cases. In the IDM, there are two main
contributions to �

EW
hZ Z . The first one is λ2

h�� terms originated
from δZh , similarly to the case in the Z2 symmetric HSM. In
addition, there are 1PI diagram contributions proportional to
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Fig. 7 NP effects in the EW corrections as a function of the mass of
the additional Higgs boson in the HSM with cα = 0.99 and μS = 0

at
√
s = 250 GeV. The left panel shows �

EW
X with λS = 1. The right

panel shows �RhZ with λS = 0.1 (red), 1 (blue) and 2 (green). The

solid and dashed curves denote the case with the maximal and minimal
values of M2, respectively. The black dashed line shows the size of
the LO deviation due to the mixing of the CP-even states. Perturbative
unitarity, vacuum stability, avoiding wrong vacua, and the constraints
of the EW S and T parameters are imposed

Fig. 8 NP effects in the EW corrections as a function of the masses
of the additional Higgs bosons in the IDM at

√
s = 250 GeV. We take

mH = mA = mH± . The left panel shows �
EW
X with λ2 = 1. The right

panel shows �RhZ with λ2 = 0.1 (red), 1 (blue) and 5 (green). The
solid and dashed curves denote the case with the maximal and minimal
value of M2, respectively. Perturbative unitarity and vacuum stability
bounds and the constraints on the S and T parameters are imposed

λh��, where the additional Higgs bosons propagate internal
lines. The couplings λh�� are proportional to (m2

� −M2)/v,
and large corrections appear when one consider the sizable
differences between m� and M . In general, δZh governs the

magnitude of �
EW
hZ Z , and its behavior is almost the same as

that in the Z2 symmetric HSM. The maximal deviation in the
IDM is larger than that in the Z2 symmetric HSM because
we have more than one additional Higgs boson running in
the loop in the IDM. It monotonically decreases when m� >

600 GeV following the decoupling theorem.
We can also see the sizable NP effects when m� is below

200 GeV, similarly to the case in the HSM. In addition, �
EW
hZ Z

can be positive if m� is lighter than about 150 GeV. This is
because of the contributions from 1PI diagrams. While δZh

gives negative contributions to �
EW
hZ Z , 1PI diagrams for the

hZ Z vertex give positive contributions. As we have already
mentioned, δZh generally gives larger contributions than 1PI
diagram contributions. However, if λh�� is not so large, 1PI
diagram contributions can overcome the contribution of δZh ,

and there are parameter points, where �
EW
hZ Z is positive.

In the right panel of Fig. 8, we show the predictions of
�RhZ as a function of the mass of the additional Higgs
bosons in the IDM at

√
s = 250 GeV. We here take λ2

to 0.1, 1 and 5 and scan M2 for 0 ≤ M2 ≤ (3 TeV)2. The
behavior of �RhZ is almost the same as that of �

EW
hZ Z . The

possible magnitude of �RhZ indirectly depends on the value
of λ2 through the conditions of perturbative unitarity and vac-
uum stability. For m� ≥ 200 GeV, the possible magnitude of
�RhZ decreases as λ2 becomes large. On the other hand, for
m� < 200 GeV, the possible magnitude of �RhZ increases
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Fig. 9 NP effects in the EW corrections as a function of masses of
the additional Higgs bosons in the Type-I 2HDM with sβ−α = 1 at√
s = 250 GeV. We take mH = mA = mH± . The left panel shows

�
EW
X with tan β = 1.5. The right panel shows �RhZ with tan β = 1.5

(red), 3 (blue) and 5 (green). The solid and dashed curves denote the
case with the maximal and minimal value of M2, respectively. Pertur-
bative unitarity and vacuum stability bounds and the constraints on the
S and T parameters are imposed

as λ2 becomes large, similarly to the case in the Z2 symmetric
HSM.

4.4 Two Higgs doublet model

First, we consider the alignment limit with sβ−α = 1, where
�RhZ = 0 at LO. We also assume that the additional Higgs
bosons are degenerate in mass, m� ≡ mH = mH± =
mA. There remain two input parameters, tan β and M2.
We impose perturbative unitarity, vacuum stability, avoiding
wrong vacua, and the constraints of the EW S and T param-
eters. In order to analyze the theoretical behavior, we here
do not impose the constraints from the direct searches of the
additional Higgs boson, the Higgs coupling measurements
and the flavor measurements.

We analyze all the four types of 2HDMs, and it turns out

that predictions for �
EW
X and �RhZ are almost the same.

This is because differences among the four types of 2HDMs
appear through the down-type quark and lepton Yukawa
interactions with the SM-like Higgs boson. As we will see

later, the magnitude of �
EW
hZ Z is larger than that of the others in

the 2HDMs, similarly to the case in the HSM and the IDM.

In �
EW
hZ Z , the top-quark contributions dominate fermionic

contributions, and there is no sizable difference among the
four types of 2HDMs. Therefore, we show the predictions
for �RhZ in the Type-I 2HDM as a representative in the
following.

In the left panel of Fig. 9, we show �
EW
X as a function

of the mass of the additional Higgs bosons in the Type-I
2HDM with sβ−α = 1 at

√
s = 250 GeV. We here take

tan β = 1.5 and scan M2 for 0 ≤ M2 ≤ (3 TeV)2. We note
that not only the renormalized hZ Z vertex but also the other
renormalized quantities differ from the SM values because

the additional Higgs bosons interact with the gauge bosons,

the quarks and the leptons. Qualitative behaviors of �
EW
X are

almost the same as those in the Z2 symmetric HSM and the

IDM except for m� ≤ 200 GeV. The magnitude of �
EW
hZ Z is

larger than that of the others in most of the parameter space.
It monotonically decreases when m� > 450 GeV following
the decoupling theorem.

There is no sizable negative correction below 200 GeV
unlike in the Z2 symmetric HSM and the IDM. This is
because the Higgs quartic couplings in the 2HDMs are more
constrained by vacuum stability than λS in the HSM and λ2

in the IDM. If m� is lighter than about 150 GeV, �
EW
X can

be positive due to the 1PI diagram contributions, similarly to
the case in the IDM.

In the right panel of Fig. 9, we show the predictions of
�RhZ as a function of the mass of the additional Higgs
bosons in the Type-I 2HDM at

√
s = 250 GeV. We here take

tan β to 1.5, 3 and 5 and scan M2 for 0 ≤ M2 ≤ (3 TeV)2.

The behavior of �RhZ is almost the same as that of �
EW
hZ Z .

The possible magnitude of �RhZ decreases as tan β becomes
large due to the perturbative unitarity and vacuum stability
bounds.

Next, we consider the scenario with the mixing of the
CP-even states. In the top (bottom) left panel of Fig. 10, we

show �
EW
X as a function of the mass of the additional Higgs

bosons in the Type-I 2HDM with sβ−α = 0.99 and cβ−α < 0
(cβ−α > 0) at

√
s = 250 GeV. We here take tan β = 1.5 and

scan M2 for 0 ≤ M2 ≤ (3 TeV)2. The magnitude of �
EW
hZ Z

is larger than that of the others independently of the sign of

cβ−α . In addition, �
EW
hZ Z takes a negative value except for the

mH � 300 GeV with cβ−α < 0 unlike in the HSM. We can
see the non-decoupling effect in a large mass region of the
additional Higgs bosons because they cannot decouple while
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Fig. 10 NP effects in the EW corrections as a function of masses of
the additional Higgs bosons in the Type-I 2HDM with sβ−α = 0.99
at

√
s = 250 GeV. We take mH = mA = mH± . The top left panel

shows �
EW
X with tan β = 1.5 and cβ−α < 0. The top right panel shows

�RhZ with tan β = 1.5 (red), 3 (blue) and 5 (green) and cβ−α < 0.

The bottom panels correspond to the case with cβ−α > 0. The solid
and dashed curves denote the case with the maximal and minimal value
of M2, respectively. The black dashed line shows the size of the LO
deviation due to the mixing. Perturbative unitarity and vacuum stability
bounds and the constraints on the S and T parameters are imposed

keeping the finite mixing of the CP-even states, similarly to
the case in the HSM. The maximal value of m� is about
900 GeV for sβ−α = 0.99 with cβ−α < 0, while it is about
600 GeV with cβ−α > 0 for tan β = 1.5.

In the top (bottom) right panel of Fig. 10, we show �RhZ

as a function of the mass of the additional Higgs bosons in the
Type-I 2HDM with sβ−α = 0.99 and cβ−α < 0 (cβ−α > 0)
at

√
s = 250 GeV. We here take tan β to 1.5, 3 and 5 and

scan M2 for 0 ≤ M2 ≤ (3 TeV)2. The LO cross section
decreases from its SM value due to the mixing of the CP-
even states. When sβ−α = 0.99, the size of deviation is
�RhZ = −c2

β−α � −0.02 at LO. We can see that the mag-
nitude of one-loop effects is comparable with that of the LO
contribution, and the NP effects sizably change the predic-
tions for �RhZ . The behavior of �RhZ is almost the same
as that of �

EW
hZ Z . In the both signs of cβ−α , �

EW
hZ Z generally

increases the magnitude of |�RhZ | except for the region with
relatively lighter mass of the additional Higgs bosons. The
possible magnitude of �RhZ decreases as tan β becomes

large due to the perturbative unitarity and vacuum stability
bounds.

Finally, we mention the corrections to the angular distri-
bution of the Z boson. As we have mentioned, the heē vertex
and box contributions cause non-trivial cos θ dependence. In
the limit of the massless electron, only mixing of CP-even
states modifies the heē vertex and box contributions. How-
ever, as we can see from Figs. 7 and 10, these effects are
rather small at

√
s = 250 GeV. Therefore, the angular distri-

bution of Z bosons is almost the same as the predictions in
the SM.

4.5 Correlation in the cross section times decay branching
ratios

In this subsection, we analyze the correlation in the cross
section times decay branching ratios of the SM-like Higgs
boson in the HSM, the IDM and the four types of 2HDMs.
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At future collider experiments such as the ILC, the cross
section of e+e− → hZ can be measured without depend-
ing on the decay of the SM-like Higgs boson by utilizing
the recoil mass technique [26,132]. This makes it possible
to measure the decay branching ratio of the SM-like Higgs
boson independently of the cross section. However, the cross
section times decay branching ratios of the SM-like Higgs
boson can be measured more precisely. In Table 3, we sum-
marize the expected accuracy of the cross section times decay
branching ratios of the SM-like Higgs boson at the ILC at√
s = 250 GeV with 250 fb−1 for (Pe, Pē) = (−0.8,+0.3).

The values in Table 3 are taken from Table VI in [26].
In the following, we analyze the predictions forσ(e+e− →

hZ) × BR(h → XY ) at one-loop level, where X and Y
denote decay products of the SM-like Higgs boson. In order
to discuss deviations from predictions in the SM, we evaluate
the ratio of the total cross section times the decay branching
ratios

�RhZ
XY = σNP(e+e− → hZ)BRNP(h → XY )

σSM(e+e− → hZ)BRSM(h → XY )
− 1, (4.7)

where we assume the beam polarization (Pe, Pē) = (−0.8,+0.3).
In the evaluation of the decay branching ratios of the SM-
like Higgs boson with the one-loop EW and QCD cor-
rections, we use the H-COUP program [52,53]. Although
the magnitude of �RhZ

XY depends on the treatment of the
QED corrections, we do not consider these corrections and
discuss the pattern of the deviations in the correlation of
σ(e+e− → hZ) × BR(h → XY ). The QED corrections
in the cross section universally change the magnitude of
σ(e+e− → hZ) × BR(h → XY ). Therefore, the pattern
of the deviations is not changed even if we include the QED
corrections following a realistic experimental setup.

We scan the input parameters in each model in the fol-
lowing way. In the HSM, there are five input parameters as
given in Eq. (2.10). We here use M2 as an input parameter
instead of λ�S . The mass of the additional Higgs boson H is
scanned as

400 GeV ≤ mH < 2000 GeV, (4.8)

while cα and M2 are scanned as

0.95 ≤ cα < 1, 0 ≤ M2 < (mH + 250 GeV)2. (4.9)

We here take μs = 0 and λS = 0.1 for simplicity.
In the 2HDMs, we have six input parameters given in

Eq. (2.26). We assume that the additional Higgs bosons are
degenerate in mass as in the previous subsection. In this sce-
nario, the constraint of the EW T parameter is satisfied inde-
pendently of the type of the 2HDMs. The degenerate mass

m�(= mH± = mH = mA) is scanned as

400 GeV ≤ m� < 2000 GeV for the Type-I and X 2HDMs,
(4.10)

800 GeV ≤ m� < 2000 GeV for the Type-II and Y 2HDMs.
(4.11)

The lower bound of m� in the Type-I and Type-X 2HDMs
comes from the direct search for A → τ τ̄ at the LHC [25]. In
the Type-I 2HDM, the parameter regions with tan β � 2 are
not excluded. However, we take the above parameter regions
for simplicity. In the Type-II and Type-Y 2HDMs, the lower
bound comes from the flavor experiments, especially from
Bs → Xsγ [117]. In addition, we scan the other parameters
as

0.98 ≤ sβ−α < 1, 2 ≤ tan β < 10,

0 ≤ M2 < (m� + 250 GeV)2. (4.12)

The lower bound of tan β comes from the flavor experiments.
We analyze both the positive and negative signs of cβ−α .

In the IDM, we have five input parameters given in
Eq. (2.37). We take mH = 63 GeV which is favored by dark
matter constraints. In order to satisfy the constraint from the
EW T parameter, we assume that H± and A are degenerate
in mass. The degenerate mass mH±(= mA), M2 and λ2 are
scanned as

100 GeV ≤ mH± < 1000 GeV, (4.13)

0 ≤ M2 < (m� + 250 GeV)2, (4.14)

0 < λ2 < 4π. (4.15)

Over the above parameter spaces, we impose the con-
straints discussed in Sect. 2 such as perturbative unitarity,
vacuum stability, avoiding wrong vacua, and the constraints
from the EW S and T parameters. In addition, we take into
account the current data of the signal strengths of the discov-
ered Higgs boson at the LHC. We evaluate the decay rates
of the SM-like Higgs boson with higher-order corrections by
using the H-COUP program [52,53]. We define the scaling

factor κXY =
√

�NP
h→XY /�SM

h→XY at the one-loop level, and
remove the parameter points, where κXY deviates from the
observed data at 95% CL. In Table 4, we summarize the cur-
rent measurements of κXY factors at 1σ accuracy. The values
in Table 4 are taken from Table XI in Ref. [3]. We assume
that there is no decay mode where the SM-like Higgs boson
decays into additional Higgs bosons.

In the Type-II, X and Y 2HDMs, we have parameter points
where Yukawa coupling constants take the negative sign with
a large value of tan β and cβ−α > 0. These parameter points
show the sizable deviation both in the Higgs branching ratio
and cross section. However, we simply omit such particular
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Table 3 Expected 1σ accuracy for the SM-like Higgs boson mea-
surements at the ILC. We quote the values at

√
s = 250 GeV with

250 fb−1 for (Pe, Pē) = (−0.8,+0.3) in Table VI in Ref. [26].

Except for σ(e+e− → Zh), the numbers correspond to the accuracy
of σ(e+e− → hZ) × BR(h → XY )

σ (e+e− → Zh) h → bb̄ h → cc̄ h → τ τ̄ h → WW ∗ h → Z Z∗ h → γ γ

2% 1.3% 8.3% 3.2% 4.6% 18% 34%

Table 4 Current measurements κXY factors at 1σ accuracy. We quote the values in Table XI in [3]. We assume that there is no decay mode where
the SM-like Higgs boson decays into additional Higgs bosons

κb κτ κγ κg κZ κW

1.03+0.19
−0.17 1.05+0.16

−0.15 1.05 ± 0.09 0.99+0.11
−0.10 1.11 ± 0.08 1.05 ± 0.09

parameter points in the following analysis in order to extract
general features in the 2HDMs.

Before moving on to the numerical results, we discuss the
general property of �RhZ

XY . The ratio of the total cross section
times the decay branching ratio �RhZ

XY can be rewritten as

�RhZ
XY = �RZh + �RXY + �RZh�RXY , (4.16)

with �RZh defined in Eq. (4.4) and �RXY defined as

�RXY = BRNP(h → XY )

BRSM(h → XY )
− 1. (4.17)

The order of loop expansion of �RZh�RXY is O(h̄2), and it
is sub-leading. Therefore, the qualitative behavior of �RhZ

XY
can be understood by independently analyzing �RZh and
�RXY .

The behavior of �RXY has been studied in Ref. [55] by
using the H-COUP program [52,53]. For later convenience,
we briefly summarize the behavior of �RXY in the HSM,
the IDM and the four types of 2HDMs. First, in the HSM,
the decay branching ratios of h are almost the same as those
in the SM predictions, because the partial decay widths are
universally suppressed by the radiative corrections and the
mixing of the CP-even states. In our study, both �Rττ and
�Rbb are at most 0.5%.

The same argument has been claimed for the IDM in
Ref. [55]. However, we find that the parameter regions where
both �Rbb and �Rττ take a few percent deviations. This dif-
ference comes from the large value of λ2. In Ref. [55], λ2

has been fixed to 0.1. However, the magnitude of λ2 indi-
rectly controls the possible size of other Higgs quartic cou-
plings especially through the vacuum stability bound given
in Eq. (2.31). We have obtained the almost same results as
those in Ref. [55] when we impose λ2 ≤ 0.1.

In the 2HDMs, the predictions to �Rττ and �Rbb spread
out into different directions according to the type of the
Yukawa interactions and the sign of cβ−α . The possible mag-
nitudes of the deviations in the Type-II, X and Y 2HDMs are

rather large compared to the Type-I 2HDM, the HSM and the
IDM. They can reach several tens of percent, and especially
�Rττ reaches a hundred percent in the Type-X 2HDM.

In Fig. 11, we show the correlations between �RhZ
ττ and

�RhZ
bb in the HSM, the IDM and the four types of 2HDMs. We

take the color codes where orange, grey, red, blue, green and
purple correspond to the HSM, the IDM and the Type-I, II,
X, Y 2HDMs, respectively. The lighter color corresponds to
the lighter mass scale of the additional Higgs bosons, m� ≥
400, 800, 1200 and 1600 GeV in order. In the left (right)
panel, we show the results with cβ−α < 0 (cβ−α > 0). The
results in the HSM and the IDM are the same both in the left
and right panels.

As discussed in Eq. (4.16), �RhZ
XY can be rewritten as

the sum of �RZh and �RXY , and �RZh takes a negative
value in most cases. In the Type-II, X and Y 2HDMs, the
typical size of �RXY is larger than �RZh . Therefore, the
pattern of the deviation is mainly determined by �RXY , and
it is consistent with previous analysis in Ref. [55]. In these
models, the possible sizes of the deviations are large enough
to be detected at the ILC if m� is about 1 TeV or less.

In the HSM, the Type-I 2HDM and the IDM, we can see
sizable deviations both in �RhZ

ττ and �RhZ
bb , and they reach

about 10%. Both �RhZ
ττ and �RhZ

bb take larger values than
those in �Rττ and �Rbb. This is because the typical size of
�RZh is larger than �RXY in these models, and �RXY also
takes a negative value in the HSM, the Type-I 2HDM with
cβ−α < 0 and the IDM. In the Type-I 2HDM with cβ−α > 0,
�RXY takes a positive value. However, the typical size of
�RXY is smaller than �RhZ , and �RZh

XY takes a negative
value in most of the parameter regions. In the Type-I 2HDM,
�RZh

XY quickly decouples. This is because a non-zero cβ−α

realizes the maximal deviation in �RhZ , especially at LO. If
m� is large, the possible value of cβ−α is constrained mainly
by perturbative unitarity. On the contrary, in the other types
of 2HDMs with cβ−α > 0, the decoupling behavior is not
clearly seen. This is because taking the inner parameter tan β

large keeps the magnitude of the deviation to be large even
in the case of large m�. On the other hand, constraints from
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Fig. 11 Correlation between �RhZ
ττ and �RhZ

bb in the HSM (orange),
the IDM (grey) and the Type-I (red), Type-II (blue), Type-X (green),
Type-Y (purple) 2HDMs. The left panel shows the results with cβ−α <

0 in the 2HDMs, and the right panel shows those with cβ−α > 0. The

ranges of the parameters are explained in the text. The lighter color
corresponds to the lighter mass scale of the additional Higgs bosons,
m� ≥ 400, 800, 1200 and 1600 GeV in order

the Higgs signal strength in the HSM are weaker than those
in the 2HDMs, and the deviation in cα realizes the sizable
�RZh

XY even if m� is larger than 1 TeV. In the IDM, the
decoupling limit cannot be applied because we fix mH =
63 GeV. Therefore, we have a sizable deviation although
there is no mixing between the CP-even states.

In Fig. 12, we show the correlations between �RhZ
ττ and

�RhZ
cc in the HSM, the IDM and the four types of 2HDMs.

The color codes and gradations are the same as those in
Fig. 11. In the left (right) panel, we show the results with
cβ−α < 0 (cβ−α > 0). The results in the HSM and the IDM
are the same both in the left and right panels.

Qualitative behavior of the deviations in each model is
the same as in Fig. 11. In the Type-II, X and Y 2HDMs, the
typical size of �RXY is larger than �RZh , and the pattern of
the deviation is mainly determined by �RXY . On the other
hand, we also have sizable deviations in the HSM, the Type-
I 2HDM and the IDM, and they reach about 10%. In the
Type-I 2HDM with cβ−α > 0, �RXY takes a positive value.
However, the typical size of �RXY is smaller than �RhZ ,
and �RZh

XY takes a negative value in most of the parameter
regions.

If cβ−α is negative, the directions of the deviations in
�RhZ

ττ and �RhZ
cc are the same in the HSM, the IDM and

the Type-I and Y 2HDMs. However, this overlap can be par-
tially resolved by looking at the correlation between �RhZ

ττ

and �RhZ
bb where the Type-Y 2HDM shows a different cor-

relation with others. On the other hand, if cβ−α is positive,
the directions of the deviations in �RhZ

ττ and �RhZ
bb are the

same in the HSM, the IDM and the Type-I and II 2HDMs.
This overlap can also be resolved by looking at the corre-
lation between �RhZ

ττ and �RhZ
cc where the Type-II 2HDM

shows a different correlation with others.
In order to discriminate the Type-I 2HDM from the HSM

and the IDM, we can use the correlation between �RhZ
ττ

and �RhZ
WW . In Fig. 13, we show the correlations between

�RhZ
ττ and �RhZ

WW in the HSM, the IDM and the four types
of 2HDMs. The color codes and gradations are the same as
those in Fig. 11. In the left (right) panel, we show the results
with cβ−α < 0 (cβ−α > 0). The results in the HSM and the
IDM are the same both in the left and right panels. Especially
in the case of cβ−α < 0, �RhZ

WW takes a positive value in the
Type-I 2HDM, while it takes a negative value in the HSM and
the IDM. Even in the case of cβ−α > 0, there is a stronger
correlation between �RhZ

ττ and �RhZ
WW in the HSM and the

IDM than those in the Type-I 2HDM.
Finally, we discuss the discrimination between the HSM

and the IDM. The deviation �RhZ
γ γ might be useful to dis-

criminate these models because it is mainly affected by the
contribution of the charged Higgs bosons. The behaviors of
�RhZ

ττ and �RhZ
γ γ show a different correlation between the

HSM and the IDM. However, the possible size of �RhZ
γ γ is at

most 20%, and it is rather challenging to discriminate them
with 95% CL at the ILC. The large uncertainty in �RhZ

γ γ

at the ILC mainly comes from the low statistics, and this
would be improved by performing the combined study with
the measurements at the ILC and the HL-LHC.
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Fig. 12 Correlation between �RhZ
ττ and �RhZ

cc . Color codes and the ranges of the parameters are the same as in those of Fig. 11

Fig. 13 Correlation between �RhZ
ττ and �RhZ

WW . Color codes and the ranges of the parameters are the same as in those of Fig. 11

5 Conclusion

We have calculated the cross section for e+e− → hZ with
arbitrary sets of electron and Z boson polarization at the
full next-to-leading order in the HSM, the IDM and the four
types of 2HDMs. We have systematically performed com-
plete one-loop calculations to the helicity amplitudes in the
on-shell renormalization scheme and present the full analytic
results as well as numerical evaluations. The deviation �RhZ

in the total cross section from its SM prediction has been
comprehensively analyzed, and the differences among these
models have been discussed in detail. We have found that
new physics effects appearing in the renormalized hZ Z ver-
tex almost govern the behavior of �RhZ . We have also shown
that the predictions for the deviations in the total cross sec-

tion of e+e− → hZ times the branching ratios of h → XY .
It has been found that we can discriminate the four types
of 2HDMs by analyzing the correlation between �RhZ

bb and
�RhZ

ττ and those between �RhZ
cc and �RhZ

ττ . Furthermore,
the Type-I 2HDM might be specified from the HSM and the
IDM by measuring the deviation in �RhZ

WW . These signatures
can be tested by precision measurements at future Higgs fac-
tories such as the ILC. On the other hand, the discrimination
between the HSM and the IDM is rather challenging only by
the measurement at the ILC. However, this problem might
be solved by taking into account the deviation in h → γ γ

signals at the LHC and the HL-LHC.
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Appendix A: Input parameters

We work in the scheme where αem(0),GF and mZ are
input parameters following theH-COUP program. In Table 5,
we list the SM input parameters. The values of input parame-
ters are taken from Ref. [94]. Other parameters can be evalu-
ated in terms of the above inputs by using tree-level relations.

Table 5 SM input parameters. The values are taken from Ref. [94]

Input parameter Symbol Value

Fine-structure
constant at the
Thomson limit

α−1
em (0) 137.035999139

Fermi constant GF
[
GeV−2

]
1.1663787 × 10−5

Z boson mass mZ [GeV] 91.1876

Strong coupling
constant at mZ

αs(mZ ) 0.1181

Higgs boson mass mh [GeV] 125.1

Top-quark pole
mass

mt [GeV] 173.1

Bottom-quark
pole mass

mb [GeV] 4.78

Charm-quark
pole mass

mc [GeV] 1.67

Tauon mass mτ [GeV] 1.77686

Muon mass mμ [GeV] 0.105658367

Appendix B: Analytic formulae for the box diagrams

We here give the analytic expressions for the box dia-
gram contributions denoted by Fk

i (s, t) in Eqs. (3.55) and
(3.59) in terms of the Passarino–Veltman functions defined
in Ref. [133]. We calculate the box diagrams in the ’t Hooft–
Feynman gauge (Fig. 14).

The analytic expressions are given as follows

C1 = 1

2
g4mWcW , (B.1)

F1
e = 4(D0 + D11 + D13 + D25)

× (0, 0,m2
Z ,m2

h, s, u;W, 0,W,W ), (B.2)

F1
e = 2(D13 − D12 + 2D26)

× (0, 0,m2
Z ,m2

h, s, u;W, 0,W,W ), (B.3)

F1 = −2C0(s,m
2
Z ,m2

h;W,W,W )

− [4D27 + (s − t + m2
Z )(D0 + D11)

+ uD13 + 2(u − m2
Z )D12]

× (0, 0,m2
Z ,m2

h, s, u;W, 0,W,W ), (B.4)

C2 = 1

2
g4mWcW , (B.5)

F2
e = 2(D13 − D12 + 2D26)

× (0, 0,m2
Z ,m2

h, s, t;W, 0,W,W ), (B.6)

F2
e = 4(D0 + D11 + D13 + D25)

× (0, 0,m2
Z ,m2

h, s, t;W, 0,W,W ), (B.7)

F2 = −2C0(s,m
2
Z ,m2

h;W,W,W )

− [4D27 + (m2
Z + s − u)(D0 + D11)

+ 2(t − m2
Z )D12 + t D13]

× (0, 0,m2
Z ,m2

h, s, t;W, 0,W,W ), (B.8)

C3 = −1

4
g3gZmW , (B.9)

F3
e = 0, (B.10)

F3
e = −4(D12 − D13)

× (0, 0,m2
Z ,m2

h, s, u;W, 0,W,G±), (B.11)

F3 = C0(s,m
2
Z ,m2

h;W,W,W )

+ 2[−(u − m2
h)(D0 + D11) + uD13]

× (0, 0,m2
Z ,m2

h, s, u;W, 0,W,G±), (B.12)

C4 = −1

4
g3gZmWs2

W , (B.13)

F4
e = −4(D12 − D13)(0, 0,m2

Z ,m2
h, s, t;W, 0,W,G±),

(B.14)

F4
e = 0, (B.15)

F4 = C0(s,m
2
Z ,m2

h;W,W,W )

+ 2[−(t − m2
h)(D0 + D11) + t D13]
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Fig. 14 Box diagrams for
e+e− → hZ

× (0, 0,m2
Z ,m2

h, s, t;W, 0,W,G±), (B.16)

C5 = −(vν + aν)
2m2

W

v
g2gZ , (B.17)

F5
e = −2(D0 + D11 + D12 + D24)

× (0,m2
Z , 0,m2

h, t, u;W, 0, 0,W ), (B.18)

F5
e = −2D26(0,m2

Z , 0,m2
h, t, u;W, 0, 0,W ), (B.19)

F5 = −C0(t, 0,m2
h;W, 0,W )

− [−2D27 + (t − m2
Z )(D0 + D11) + m2

Z D12]
× (0,m2

Z , 0,m2
h, t, u;W, 0, 0,W ), (B.20)

C6 = −4m2
Z

v
g3
Z , (B.21)

F6
� = −2(D0 + D11 + D12 + D24)

× (0,m2
Z , 0,m2

h, t, u; Z , 0, 0, Z), (B.22)

F6
�

= −2D26(0,m2
Z , 0,m2

h, t, u; Z , 0, 0, Z), (B.23)

F6 = −C0(t, 0,m2
h; Z , 0, Z)

− [−2D27 + (t − m2
Z )

× (D0 + D11)+m2
Z D12](0,m2

Z , 0,m2
h, t, u; Z , 0, 0, Z).

(B.24)
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